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Summary 

As human complex diseases are influenced by the interplay of genes and environment, 

detecting gene-environment interactions (𝐺𝐺 × 𝐸𝐸 ) can shed light on biological mechanisms of 

diseases and play an important role in disease risk prediction. Development of powerful 

quantitative tools to incorporate 𝐺𝐺 × 𝐸𝐸 in complex diseases has potential to facilitate the accurate 

curation and analysis of large genetic epidemiological studies. However, most of existing methods 

that interrogate 𝐺𝐺 × 𝐸𝐸  focus on the interaction effects of an environmental factor and genetic 

variants, exclusively for common or rare variants. In this study, we proposed two tests, 

MAGEIT_RAN and MAGEIT_FIX, to detect interaction effects of an environmental factor and a 

set of genetic markers containing both rare and common variants, based on the MinQue for 

Summary statistics. The genetic main effects in MAGEIT_RAN and MAGEIT_FIX are modeled 

as random or fixed, respectively. Through simulation studies, we illustrated that both tests had type 

I error under control and MAGEIT_RAN was overall the most powerful test. We applied MAGEIT 

to a genome-wide analysis of gene-alcohol interactions on hypertension in the Multi-Ethnic Study 

of Atherosclerosis. We detected two genes, CCNDBP1 and EPB42, that interact with alcohol usage 

to influence blood pressure. Pathway analysis identified sixteen significant pathways related to 

signal transduction and development that were associated with hypertension, and several of them 

were reported to have an interactive effect with alcohol intake. Our results demonstrated that 

MAGEIT can detect biologically relevant genes that interact with environmental factors to 

influence complex traits. 
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1. Introduction 

Causes of human complex diseases are multifactorial including the interplay of genes and 

environment. The effect of environment exposures on disease outcomes can vary across genotypic 

groups. It has been reported that individuals with certain genetic profiles have elevated disease 

risk only when they are exposed to an environment in many complex diseases (Lin and others., 

2013). For example, many environmental factors such as aging, sex, smoking, diet, stress, air 

quality and among others influence disease risk, progression and severity (Bhatnagar, 2017, 

Cosselman, Navas-Acien and Kaufman, 2015). As a result, incorporating gene-environment 

interactions (𝐺𝐺 × 𝐸𝐸) has become crucial in the study of complex traits. Genome-wide association 

studies (GWAS) have successfully identified many genetic variants associated with human 

diseases. However, the estimated effects of these variants are small and only explain small portion 

of the heritability of complex diseases (Eichler and others., 2010). Several studies have suggested 

that 𝐺𝐺 × 𝐸𝐸 may contribute partly to the missing heritability and the detection of 𝐺𝐺 × 𝐸𝐸 could lead 

to meaningful implication in fields of public health and personalized medicine (Eichler and others., 

2010, Thomas, 2010). 

Traditional 𝐺𝐺 × 𝐸𝐸 analyses focus on evaluating the interactions with genetic variants one at a 

time (Aschard and others., 2010, Kraft and others., 2007, Manning and others., 2011). Possible 

limitations in such approaches include the burden of multiple hypothesis testing and lacking 

consideration of joint effects shared by multiple variants with similar biological functions, 

resulting in power loss in the analysis (Lin and others., 2013). In recent years, genome-wide search 

for 𝐺𝐺 × 𝐸𝐸 has been emerging (Khoury and Wacholder, 2009, Thomas, 2010) and several studies 

have investigated 𝐺𝐺 × 𝐸𝐸 from multiple variants in a genetic marker set (Chen, Meigs and Dupuis, 

2014, Chi and others., 2021, Jiao and others., 2013, Lin and others., 2019, Lin and others., 2013, 
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Lin and others., 2016, Su, Di and Hsu, 2017, Tzeng and others., 2011, Wang and others., 2020). 

For a set of common genetic variants, gene-environment set association test (GESAT) was 

developed using a generalized linear model and ridge regression (Lin and others., 2013). For rare 

variants, Chen et al. proposed INT-FIX and INT-RAN for testing 𝐺𝐺 × 𝐸𝐸 effect, as well as a joint 

test, JOINT, that detects the effects of a set of genetic variants as well as their interactions with an 

environmental factor simultaneously (Chen, Meigs and Dupuis, 2014). They used a beta density 

function for genetic effect to reflect larger contributions from rare genetic variants. Genetic main 

effects in their 𝐺𝐺 × 𝐸𝐸 tests were treated as fixed in INT-FIX or random in INT-RAN, respectively. 

The three tests were implemented as an R package called rareGE. To assess rare variants by 

environment interaction, Lin et al. developed the interaction sequence kernel association test 

(iSKAT) that modeled the main effects of rare variants using weighted ridge regression and 

allowed the interactions with environment across genetic variants to be correlated (Lin and others., 

2016). GESAT, the three tests in the rareGE package and iSKAT are all variance component-based 

tests that are robust to the signs and magnitudes of the 𝐺𝐺 × 𝐸𝐸 effects when many variants in a 

genetic region are non-causal and/or there are mixed beneficial and detrimental variants (Lee, Wu 

and Lin, 2012, Santorico and Hendricks, 2016, Wu and others., 2011). A unified hierarchical 

modeling of 𝐺𝐺 × 𝐸𝐸 effects from a set of rare variants, called mixed effects score test for interaction 

(MiSTi), which models 𝐺𝐺 × 𝐸𝐸 effects by a fixed component as well as a random component was 

developed (Su, Di and Hsu, 2017). They constructed two independent score statistics and 

combined them using data-adaptive approaches. Simulation studies showed that MiSTi has greater 

than or comparable power to iSKAT. MiSTi provided a unified regression framework for testing 

interaction effects between a set of rare variants and an environmental factor where many existing 

methods can be derived from by constraining certain parameters to be zero. In addition to the above 
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mentioned 𝐺𝐺 × 𝐸𝐸 tests that were developed under the regression framework, Lin et al. proposed a 

polygenic test of  𝐺𝐺 × 𝐸𝐸  effect using Bayes factors (Lin and others., 2019). In their adaptive 

combination of Bayes factors method (ADABF), 𝐺𝐺 × 𝐸𝐸 effects are assumed to follow a normal 

distribution. Variants in a genetic region were sorted by Bayes factors and p-values were calculated 

using a resampling procedure. When there are a few genetic variants interacting with the 

environmental factor, ADABF had higher power than other methods for detecting 𝐺𝐺 × 𝐸𝐸 effects. 

Complex diseases are influenced by many genetic variants including common and/or rare. 

Current methods in detecting 𝐺𝐺 × 𝐸𝐸 mainly focus on the interaction effects of an environmental 

factor and genetic variants, exclusively for common or rare. Although ADABF considers both 

common and rare variants in a genetic region, it does not distinguish the effects of the two types 

of variants in model fitting and hence may overlook the relatively larger contribution from rare 

variants. Recently, MQS (MinQue for Summary statistics) was developed for estimating variance 

components in linear mixed models  (Zhou, 2017). MQS is based on the method of moments and 

the minimal norm quadratic unbiased estimation criterion. Compared to the restricted maximum 

likelihood estimation method (REML), MQS provided unbiased and statistically efficient 

estimates. It was extended to model the epistatic interactions between genetic variants (Crawford 

and others., 2017). In this study, we propose two tests to detect interactions between an 

environmental factor and a set of genetic markers containing both rare and common variants based 

on the MQS method. We name it as MArginal Gene-Environment Interaction Test with RANdom 

or FIXed genetic effects (MAGEIT_RAN or MAGEIT_FIX). We assessed the performance of the 

two tests in detecting 𝐺𝐺 × 𝐸𝐸 for a set of genetic variants and compared it with existing set-based 

𝐺𝐺 × 𝐸𝐸 methods via simulation studies. Our results demonstrated that both MAGEIT_RAN and 

MAGEIT_FIX had well controlled type I error. MAGEIT_RAN was most powerful in majority of 
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the simulation scenarios. We applied MAGEIT_RAN and MAGEIT_FIX to a genome-wide 

analysis of gene-alcohol interaction on hypertension in the Multi-Ethnic Study of Atherosclerosis 

(MESA) and identified hypertension-related 𝐺𝐺 × 𝐸𝐸 and pathways. 

 

2. Methods 

Suppose a phenotype of interest, an environmental variable and genome-wide genetic variants 

are measured on 𝑛𝑛 subjects. Let 𝑦𝑦𝑘𝑘,𝐸𝐸𝑘𝑘,𝑮𝑮𝑘𝑘 = �𝐺𝐺𝑘𝑘1,𝐺𝐺𝑘𝑘2, … ,𝐺𝐺𝑘𝑘𝑘𝑘�
𝑇𝑇
 and 𝑿𝑿𝑘𝑘 = (𝑋𝑋𝑘𝑘1,𝑋𝑋𝑘𝑘2, … ,𝑋𝑋𝑘𝑘𝑘𝑘)𝑇𝑇 

denote the phenotype, environmental variable, genotypes of 𝑝𝑝 variants in a genomic region, and 

𝑚𝑚 non-genetic covariates for the 𝑘𝑘th subject, respectively, for 𝑘𝑘 = 1, 2, … ,𝑛𝑛, where 𝐺𝐺𝑘𝑘𝑘𝑘 = 0, 1 or 

2 depending on whether subject 𝑘𝑘 has 0, 1 or 2 copies of minor allele at the 𝑗𝑗th variant. We use 

𝑺𝑺𝑘𝑘 = �𝐸𝐸𝑘𝑘𝐺𝐺𝑘𝑘1,𝐸𝐸𝑘𝑘𝐺𝐺𝑘𝑘2, … ,𝐸𝐸𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘�
𝑇𝑇
 to denote the genetic variants by environment interaction for the 

𝑘𝑘 th subject. Our goal is to test whether there are interactions between the variant set and 

environment that influence the phenotype of interest. 

2.1 Model for continuous phenotype 

Let 𝒚𝒚 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛)𝑇𝑇, 𝑬𝑬 = (𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛)𝑇𝑇, and 𝜺𝜺 = (𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑛𝑛)𝑇𝑇 denote vectors of the 

phenotype, environmental variable, and error term of length 𝑛𝑛 . We further define an 𝑛𝑛 × 𝑚𝑚 

covariate matrix 𝑿𝑿 = [𝑿𝑿1,𝑿𝑿2,⋯ ,𝑿𝑿𝑛𝑛]𝑇𝑇, an 𝑛𝑛 × 𝑝𝑝 genotype matrix 𝑮𝑮 = [𝑮𝑮1,𝑮𝑮2,⋯ ,𝑮𝑮𝑛𝑛]𝑇𝑇, and an 

𝑛𝑛 × 𝑝𝑝  matrix 𝑺𝑺 = [𝑺𝑺1,𝑺𝑺2,⋯ ,𝑺𝑺𝑛𝑛]𝑇𝑇  of the 𝐺𝐺 × 𝐸𝐸 . Then, the following model specifies the 

relationship between a continuous phenotype 𝒀𝒀 and 𝑿𝑿,𝑬𝑬,𝑮𝑮 and 𝑺𝑺 

𝒚𝒚 = 𝛼𝛼0𝟏𝟏 + 𝑿𝑿𝜶𝜶1 + 𝛼𝛼2𝑬𝑬 + 𝑮𝑮𝑮𝑮 + 𝑺𝑺𝜸𝜸 + 𝜺𝜺,                                             (1) 

where 𝟏𝟏  is an 𝑛𝑛 × 1  vector of 1, 𝛼𝛼0  is an intercept term, 𝜶𝜶1 = (𝛼𝛼11,𝛼𝛼12, … ,𝛼𝛼1𝑚𝑚)𝑇𝑇 , 𝛼𝛼2 , 𝜷𝜷 =

�𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑝𝑝�
𝑇𝑇

 and 𝜸𝜸 = �𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑝𝑝�
𝑇𝑇

 are regression coefficients for the covariates, 

environmental factor, genetic variants, and 𝐺𝐺 × 𝐸𝐸 terms. We further assume that 𝜸𝜸 and 𝜺𝜺 follow 
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multivariate normal distributions with 𝜸𝜸 ~ MVN(𝟎𝟎, 𝜎𝜎
2

𝑝𝑝
𝑾𝑾2

2) and 𝜺𝜺 ~ MVN(𝟎𝟎, 𝜏𝜏2𝑰𝑰𝑛𝑛), where 𝑾𝑾2 =

diag(𝑤𝑤21,𝑤𝑤22,⋯ ,𝑤𝑤2𝑝𝑝) contains weights of the 𝑝𝑝 𝐺𝐺 × 𝐸𝐸  terms and 𝑰𝑰𝑛𝑛  is an identity matrix of 

dimension 𝑛𝑛. 

2.2 Marginal gene-environment interaction test 

We are interested in testing genetic variants by environment interactions in a genomic region, 

i.e., testing the null hypothesis 𝐻𝐻0:𝜸𝜸 = 𝟎𝟎, which is equivalent to testing 𝐻𝐻0: 𝜎𝜎2 = 0. We develop 

two 𝐺𝐺 × 𝐸𝐸  tests, in which the genetic main effects 𝜷𝜷  are modeled as random and fixed, 

respectively. 

When we treat the genetic main effects 𝜷𝜷 as random, we assume that 𝜷𝜷~ MVN(𝟎𝟎,𝜔𝜔
2

𝑝𝑝
𝑾𝑾1

2), 

where 𝑾𝑾1 = diag(𝑤𝑤11,𝑤𝑤12,⋯ ,𝑤𝑤1𝑝𝑝)  are weights of the 𝑝𝑝  variants. We use the MQS method 

(Zhou, 2017) to estimate the three variance components 𝜔𝜔2, 𝜎𝜎2 and 𝜏𝜏2. In order to eliminate the 

fix effects 𝛼𝛼0,𝜶𝜶1  and 𝛼𝛼2  in Model (1), we multiply both sides of the model, from left, by a 

projection matrix 𝑴𝑴, where 𝑴𝑴 = 𝑰𝑰 − 𝒃𝒃(𝒃𝒃𝑇𝑇𝒃𝒃)−1𝒃𝒃𝑇𝑇 with 𝒃𝒃 = [𝟏𝟏,𝑿𝑿,𝑬𝑬]. Then Model (1) becomes 

𝒚𝒚∗ = 𝒈𝒈∗ + 𝒔𝒔∗ + 𝜺𝜺∗, 

where 𝒚𝒚∗ = 𝑴𝑴𝑴𝑴, 𝒈𝒈∗ = 𝑴𝑴𝑴𝑴𝑴𝑴, 𝒔𝒔∗ = 𝑴𝑴𝑴𝑴𝜸𝜸, and 𝜺𝜺∗ = 𝑴𝑴𝑴𝑴. It follows that 𝒈𝒈∗ ~ MVN(𝟎𝟎,𝜔𝜔2𝑮𝑮∗) with 

𝑮𝑮∗ = (𝑴𝑴𝑴𝑴𝑾𝑾1)(𝑴𝑴𝑴𝑴𝑾𝑾1)𝑇𝑇

𝑝𝑝
, 𝒔𝒔∗ ~ MVN(𝟎𝟎,𝜎𝜎2𝑺𝑺∗)  with 𝑺𝑺∗ = (𝑴𝑴𝑴𝑴𝑾𝑾2)(𝑴𝑴𝑴𝑴𝑾𝑾2)𝑇𝑇

𝑝𝑝
, and 𝜺𝜺∗ ~ MVN(𝟎𝟎, 𝜏𝜏2𝑴𝑴) . 

Consequently, we have 𝒚𝒚∗ ~ MVN(𝟎𝟎,𝜔𝜔2𝑮𝑮∗ + 𝜎𝜎2𝑺𝑺∗ + 𝜏𝜏2𝑴𝑴). 

We estimate the variance components using the method of moments based on the following 

set of second moment matching equations, 

𝐸𝐸(𝒚𝒚∗𝑇𝑇𝑨𝑨𝒚𝒚∗) = tr�𝑨𝑨(𝜔𝜔2𝑮𝑮∗ + 𝜎𝜎2𝑺𝑺∗ + 𝜏𝜏2𝑴𝑴)� = 𝜔𝜔2tr(𝑨𝑨𝑮𝑮∗) + 𝜎𝜎2tr(𝑨𝑨𝑺𝑺∗) + 𝜏𝜏2tr(𝑨𝑨𝑨𝑨),      (2) 

where 𝑨𝑨 is an arbitrary symmetric non-negative definite matrix (Zhou, 2017). Since there are three 

unknown parameters (𝜔𝜔2,𝜎𝜎2, 𝜏𝜏2), three different 𝑨𝑨’s are required to obtain parameter estimates. 
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In the method of moments, the expectation of Eq. (2) is usually replaced with the realized value 

𝒚𝒚∗𝑇𝑇𝑨𝑨𝒚𝒚∗ . Let 𝑨𝑨1 = 𝑮𝑮∗ , 𝑨𝑨2 = 𝑺𝑺∗  and 𝑨𝑨3 = 𝑴𝑴 (Zhou, 2017), then, the resulting estimates of the 

variance components are given in a matrix form as 

�
𝜔𝜔�2
𝜎𝜎�2
𝜏̂𝜏2
� = 𝚲𝚲−1 �

𝒚𝒚∗𝑇𝑇𝑮𝑮∗𝒚𝒚∗

𝒚𝒚∗𝑇𝑇𝑺𝑺∗𝒚𝒚∗

𝒚𝒚∗𝑇𝑇𝒚𝒚∗
� =  �

tr(𝑮𝑮∗𝑮𝑮∗) tr(𝑮𝑮∗𝑺𝑺∗) 𝑡𝑡𝑡𝑡(𝑮𝑮∗)
tr(𝑺𝑺∗𝑮𝑮∗) tr(𝑺𝑺∗𝑺𝑺∗) 𝑡𝑡𝑡𝑡(𝑺𝑺∗)

tr(𝑮𝑮∗) tr(𝑺𝑺∗) 𝑛𝑛 − (𝑚𝑚 + 2)
�

−1

�
𝒚𝒚∗𝑇𝑇𝑮𝑮∗𝒚𝒚∗

𝒚𝒚∗𝑇𝑇𝑺𝑺∗𝒚𝒚∗

𝒚𝒚∗𝑇𝑇𝒚𝒚∗
�, 

where we used tr(𝑮𝑮∗𝑴𝑴) = tr(𝑴𝑴𝑮𝑮∗) = tr(𝑮𝑮∗) , tr(𝑺𝑺∗𝑴𝑴) = tr(𝑴𝑴𝑺𝑺∗) = tr(𝑺𝑺∗) , tr(𝑴𝑴𝑴𝑴) =

tr(𝑴𝑴) = 𝑛𝑛 − (𝑚𝑚 + 2) , and 𝒚𝒚∗𝑇𝑇𝑴𝑴𝒚𝒚∗ = 𝒚𝒚∗𝑇𝑇𝒚𝒚∗ . The variance component estimator 𝜎𝜎�2  is 

considered as the test statistic, which we named as MArginal Gene-Environment Interaction Test 

with RANdom genetic main effects (MAGEIT_RAN). Specifically, the MAGEIT_RAN test 

statistic is 

𝜎𝜎�2 = 𝒚𝒚∗𝑇𝑇{(𝚲𝚲−1)21𝑮𝑮∗ + (𝚲𝚲−1)22𝑺𝑺∗ + (𝚲𝚲−1)23𝑰𝑰}𝒚𝒚∗ = 𝒚𝒚∗𝑇𝑇𝑯𝑯𝒚𝒚∗,                    (3) 

where 𝑯𝑯 = (𝚲𝚲−1)21𝑮𝑮∗ + (𝚲𝚲−1)22𝑺𝑺∗ + (𝚲𝚲−1)23𝑰𝑰. 

Under 𝐻𝐻0: 𝜎𝜎2 = 0, 𝒚𝒚∗ ~ MVN(𝟎𝟎,𝜔𝜔2𝑮𝑮∗ + 𝜏𝜏2𝑴𝑴), suggesting that 𝒚𝒚∗ has the same distribution 

as (𝜔𝜔2𝑮𝑮∗ + 𝜏𝜏2𝑴𝑴)
1
2𝒁𝒁  with 𝒁𝒁 ~ MVN(𝟎𝟎, 𝑰𝑰𝑛𝑛) . Therefore, the method of moments estimator 𝜎𝜎�2 

follows the same distribution as 𝒁𝒁𝑇𝑇((𝜔𝜔�02𝑮𝑮∗ + 𝜏̂𝜏02𝑴𝑴)
1
2)𝑇𝑇𝑯𝑯(𝜔𝜔�02𝑮𝑮∗ + 𝜏̂𝜏02𝑴𝑴)

1
2𝒁𝒁, which has a mixture 

of 𝜒𝜒2 distribution 𝜎𝜎�2 ∼ ∑ 𝜆𝜆𝑖𝑖𝜒𝜒1,𝑖𝑖
2𝑛𝑛

𝑖𝑖=1 . Here, (𝜔𝜔�02, 𝜏̂𝜏02)  are estimates of (𝜔𝜔2, 𝜏𝜏2)  under the null 

hypothesis, (𝜆𝜆1,⋯ , 𝜆𝜆𝑛𝑛) are eigenvalues of the matrix ((𝜔𝜔�02𝑮𝑮∗ + 𝜏̂𝜏02𝑴𝑴)
1
2)𝑇𝑇𝑯𝑯(𝜔𝜔�02𝑮𝑮∗ + 𝜏̂𝜏02𝑴𝑴)

1
2, and 

𝜒𝜒1,𝑖𝑖
2  are independent 𝜒𝜒12 variables (Zhou, 2017).The p-value of 𝜎𝜎�2 can be evaluated by the Davies 

method (Davies, 1980, Wu and others., 2011) and Liu-Tang-Zhang approximation (Liu, Tang and 

Zhang, 2009). 

If we treat the genetic main effects 𝜷𝜷 as fixed, we use the MQS method (Zhou, 2017) to 

estimate the two variance components 𝜎𝜎2 and 𝜏𝜏2. To eliminate the fix effect terms 𝛼𝛼0,𝜶𝜶1, 𝛼𝛼2 and 
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𝜷𝜷 in Model (1), we left multiply the model by a projection matrix 𝑴𝑴 = 𝑰𝑰 − 𝒃𝒃(𝒃𝒃𝑇𝑇𝒃𝒃)−1𝒃𝒃𝑇𝑇 with 𝒃𝒃 =

[𝟏𝟏,𝑿𝑿,𝑬𝑬,𝑮𝑮]. Then the model becomes 𝒚𝒚∗ = 𝒔𝒔∗ +  𝜺𝜺∗ and it contains two variance components 𝜎𝜎2 

and 𝜏𝜏2 . Using the method of moments, we obtain the following estimates of the variance 

components, 

�𝜎𝜎�
2

𝜏̂𝜏2
� =  �

𝑡𝑡𝑡𝑡(𝑺𝑺∗𝑺𝑺∗) 𝑡𝑡𝑡𝑡(𝑺𝑺∗)
𝑡𝑡𝑡𝑡(𝑺𝑺∗) 𝑛𝑛 − (𝑚𝑚 + 𝑝𝑝 + 2)�

−1
�𝒚𝒚

∗𝑇𝑇𝑺𝑺∗𝒚𝒚∗

𝒚𝒚∗𝑇𝑇𝒚𝒚∗
�. 

The variance component estimator 𝜎𝜎�2  is considered as the test statistic, which we named as 

MArginal Gene-Environment Interaction Test with FIXed genetic main effects (MAGEIT_FIX). 

Specifically, the MAGEIT_FIX test statistic is 

𝜎𝜎�2 = 𝒚𝒚∗𝑇𝑇{(𝑛𝑛−(𝑚𝑚+𝑝𝑝+2))𝑺𝑺∗−𝑡𝑡𝑡𝑡(𝑺𝑺∗)𝑰𝑰}𝒚𝒚∗

(𝑛𝑛−(𝑚𝑚+𝑝𝑝+2))𝑡𝑡𝑡𝑡(𝑺𝑺∗𝑺𝑺∗)−𝑡𝑡𝑡𝑡(𝑺𝑺∗)2 .                                             (4) 

Under 𝐻𝐻0: 𝜎𝜎2 = 0 , 𝜎𝜎�2  follows a mixture of 𝜒𝜒2  distribution 𝜎𝜎�2 ∼ ∑ 𝜆𝜆𝑖𝑖𝜒𝜒1,𝑖𝑖
2𝑛𝑛

𝑖𝑖=1  with (𝜆𝜆1,⋯ , 𝜆𝜆𝑛𝑛) 

being the eigenvalues of the matrix ((𝜏̂𝜏02𝑴𝑴)
1
2)𝑇𝑇𝑯𝑯(𝜏̂𝜏02𝑴𝑴)

1
2. 

2.3 Model for binary phenotype 

We consider a liability threshold model and assume the binary outcome 𝑦𝑦𝑘𝑘 of the 𝑘𝑘th subject 

is determined by an unobserved continuous liability variable 𝑧𝑧𝑘𝑘, i.e., 

𝑦𝑦𝑘𝑘 = �1, 𝑧𝑧𝑘𝑘 ≥ 0
0, 𝑧𝑧𝑘𝑘 < 0        for 𝑘𝑘 = 1, … ,𝑛𝑛,                                            (5) 

where the underlying liability vector 𝒛𝒛 = (𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑛𝑛)𝑇𝑇 is specified using Model (1). The full 

likelihood of the liability threshold mixed effects model is intractable due to an 𝑛𝑛-dimensional 

integration over the liability variable 𝒛𝒛. Following the previous studies (Crawford and Zhou, 2018, 

Engel, Buist and Visscher, 1995, Kuss, Rasmussen and Herbrich, 2005, Tempelman and Gianola, 

1993, Williams and Barber, 1998), the liability threshold mixed effects model can be approximated 

by a linear mixed effects model on 𝒛𝒛� = 𝐸𝐸(𝒛𝒛|𝒚𝒚), an estimated posterior mean of the liabilities, 
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𝒛𝒛� = 𝛼𝛼0𝟏𝟏 + 𝑿𝑿𝜶𝜶1 + 𝛼𝛼2𝑬𝑬 + 𝑮𝑮𝜷𝜷 + 𝑺𝑺𝜸𝜸 + 𝜺𝜺.                                       (6) 

The posterior mean 𝒛𝒛� can be obtained by approximation under certain assumptions based on the 

properties of GWAS data (Crawford and Zhou, 2018). Specifically, we assume that (i) subjects 

are unrelated, and (ii) both the genetic main effects and interaction effects are small such that the 

terms 𝑮𝑮𝑮𝑮 and 𝑺𝑺𝜸𝜸 can be ignored. Under these assumptions, the distribution of the liability variable 

can be approximated by 𝒛𝒛 ∼ MVN(𝛼𝛼0𝟏𝟏 + 𝑿𝑿𝜶𝜶1 + 𝛼𝛼2𝑬𝑬, 𝑰𝑰𝑛𝑛) and 𝒛𝒛� is computed as the mean of the 

following truncated normal distribution (Crawford and Zhou, 2018) 

𝑧𝑧𝑘𝑘|𝑦𝑦𝑘𝑘 ~ �
𝑁𝑁(𝛼𝛼0 + 𝑿𝑿𝑘𝑘𝑇𝑇𝜶𝜶1 + 𝛼𝛼2𝐸𝐸𝑘𝑘, 1) with 𝑧𝑧𝑘𝑘 ≥ 0 if 𝑦𝑦𝑘𝑘 = 1
𝑁𝑁(𝛼𝛼0 + 𝑿𝑿𝑘𝑘𝑇𝑇𝜶𝜶1 + 𝛼𝛼2𝐸𝐸𝑘𝑘, 1) with 𝑧𝑧𝑘𝑘 < 0 if 𝑦𝑦𝑘𝑘 = 0

       for 𝑘𝑘 = 1, 2, … ,𝑛𝑛. 

The parameters 𝛼𝛼0,𝜶𝜶1 and 𝛼𝛼2 are estimated using a probit model on the phenotype 𝒚𝒚. 

To test the interaction effects between a set of genetic variants and an environmental variable 

on the binary phenotype 𝒚𝒚, we implement MAGEIT_RAN and MAGEIT_FIX on the estimate of 

the liability variable 𝒛𝒛�. To construct MAGEIT_RAN, the liability threshold mixed effects model 

specified in Eqs (5) and (6) contains three variance components (𝜔𝜔2,𝜎𝜎2, 𝜏𝜏2), where 𝜎𝜎2 represents 

a measure of interactions between the 𝑝𝑝 genetic variants and the environmental variable. In order 

for the model to be identifiable, we put a constrain on the variance of 𝒛𝒛, e.g., 𝜔𝜔2 + 𝜎𝜎2 + 𝜏𝜏2 = 1 

(Lee and others., 2011). Similarly, we set 𝜎𝜎2 + 𝜏𝜏2 = 1 for MAGEIT_FIX. 

 

3. Simulation Studies 

We conducted simulation studies to evaluate the performance of MAGEIT_RAN and 

MAGEIT_FIX to detect set-based 𝐺𝐺 × 𝐸𝐸 effects for both continuous and binary phenotypes, where 

the variant set contains both common and rare variants. We assessed type I error and empirical 

power of MAGEIT_RAN and MAGEIT_FIX, and compared them with three set-based 𝐺𝐺 × 𝐸𝐸 

tests, GESAT-W (Lin and others., 2013), aMiSTi (Su, Di and Hsu, 2017), and ADABF (Lin and 
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others., 2019). These three existing methods are popular for 𝐺𝐺 × 𝐸𝐸  analysis and have well-

developed R packages. For fair comparisons, the same weights for rare and common variants were 

used in all methods except ADABF which does not distinguish common and rare variants and 

hence no weights were used in the implementation. 

3.1 Simulation settings 

To generate genotypes, we first simulated 100,000 chromosomes over a 5 Kb region using a 

coalescent model that mimics the linkage disequilibrium (LD) structure and recombination rates 

of the European population (Schaffner and others., 2005, Shlyakhter, Sabeti and Schaffner, 2014). 

Then we randomly selected 10 common variants with minor allele frequency (MAF) > 0.05 and 

40 rare variants with 0.005 < MAF < 0.05 to compose a set of 50 genetic variants. 

We simulated a continuous phenotype using the following trait model, 

𝑦𝑦𝑘𝑘 = 0.05𝑋𝑋𝑘𝑘1 + 0.057𝑋𝑋𝑘𝑘2 + 0.64𝐸𝐸𝑘𝑘 + �𝑤𝑤1𝑗𝑗𝛽𝛽𝑗𝑗𝐺𝐺𝑘𝑘𝑘𝑘

10

𝑗𝑗=1

+ �𝑤𝑤2𝑙𝑙𝛾𝛾𝑙𝑙𝐸𝐸𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘

10

𝑙𝑙=1

+ 𝜀𝜀𝑘𝑘, 

where 𝑋𝑋𝑘𝑘1 ∼ N(62.4, 11.52) mimicking age and 𝑋𝑋𝑘𝑘2 ∼ Bernoulli(0.52) mimicking sex (Lin and 

others., 2013). The 10 genetic variants with main effects and the 10 variants with interaction effects 

were randomly selected from the set of the 50 variants, independent of 𝐸𝐸. The environmental 

variable 𝐸𝐸 is a Bernoulli random variable taking values of 0 or 1 with a probability of 0.5. The 

weight of a rare variant in 𝑤𝑤1𝑗𝑗 or 𝑤𝑤2𝑙𝑙 is set to Beta(MAF; 1, 25), the beta density function with 

parameters 1 and 25 evaluated at the variant’s MAF, and the weight of a common variant in 𝑤𝑤1𝑗𝑗 

or 𝑤𝑤2𝑙𝑙  is set to 𝑐𝑐Beta(MAF; 0.5, 0.5)  with 𝑐𝑐 = Beta(0.05; 1,25)
Beta(0.05; 0.5,0.5)  (Ionita-Laza and others., 2013, 

Madsen and Browning, 2009). The error term 𝜀𝜀𝑘𝑘 ∼ N(0, 1.52) indicates independent noise. 

For a binary trait, we use the following logistic regression model, 
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logit�𝑃𝑃(𝑦𝑦𝑘𝑘 = 1)� = −6.2 + 0.05𝑋𝑋𝑘𝑘1 + 0.057𝑋𝑋𝑘𝑘2 + 0.64𝐸𝐸𝑘𝑘 + �𝑤𝑤1𝑗𝑗𝛽𝛽𝑗𝑗𝐺𝐺𝑘𝑘𝑘𝑘

10

𝑗𝑗=1

+ �𝑤𝑤2𝑙𝑙𝛾𝛾𝑙𝑙𝐸𝐸𝑘𝑘𝐺𝐺𝑘𝑘𝑘𝑘

10

𝑙𝑙=1

, 

where all parameters are the same as those used in the continuous phenotype model. In all 

simulation settings, each simulated dataset contains 5,000 subjects (2,500 cases and 2,500 controls 

for binary phenotype). 

In the type I error assessment, we set all 𝛾𝛾𝑙𝑙 to be 0, i.e., no 𝐺𝐺 × 𝐸𝐸 effects, and generated 106 

datasets containing 50 genetic variants (10 common and 40 rare variants). We considered three 

scenarios: (1) no genetic main effect, i.e., 𝛽𝛽𝑗𝑗 = 0 for 𝑗𝑗 = 1, 2, … , 10; (2) for continuous/binary 

phenotype, assigning 𝛽𝛽𝑗𝑗 ∼ U(0.07,  0.11) / U(0.08,  0.12)  to two randomly selected common 

variants and 𝛽𝛽𝑗𝑗 ∼ U(0.15,  0.19) /U(0.18,  0.22)  to eight randomly selected rare variants; (3) 

similar to scenario (2) except that half of the common/rare variants have negative effects. 

In the power comparison, we designed eight simulation scenarios that differ in three key factors 

that represent different considerations in the simulation design. The first factor pertains to the 

presence or absence of genetic main effects; the second factor focuses on the allocation of 

contributions from common and rare variants; and the third factor considers the direction of genetic 

main effects and 𝐺𝐺 × 𝐸𝐸 effects, either all positive effects or half positive and half negative effects. 

We considered ten variants with 𝐺𝐺 × 𝐸𝐸 effects, either two common and eight rare variants, or four 

common and six rare variants. The 𝐺𝐺 × 𝐸𝐸  effect 𝛾𝛾𝑙𝑙  was generated from U(0.17,  0.21)  and 

U(0.57,  0.61) for common and rare variants, respectively, for continuous phenotype; and from 

U(0.28,  0.32)  and U(0.86,  0.90)  for common and rare variants, respectively, for binary 

phenotype. The first four simulation scenarios have no genetic main effect and they are as follow: 

(1) two common and eight rare variants with positive 𝐺𝐺 × 𝐸𝐸 effects; (2) two common and eight 

rare variants with 𝐺𝐺 × 𝐸𝐸 effects, 50% of 𝛾𝛾𝑗𝑗 > 0 and 50% of 𝛾𝛾𝑗𝑗 < 0; (3) four common and six rare 
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variants with positive 𝐺𝐺 × 𝐸𝐸 effects; and (4) four common and six rare variants with 𝐺𝐺 × 𝐸𝐸 effects, 

50% of 𝛾𝛾𝑗𝑗 > 0 and 50% of 𝛾𝛾𝑗𝑗 < 0. The remaining four simulation scenarios have two common 

and eight rare variants with genetic main effects: (5) 𝛽𝛽𝑗𝑗 was specified the same as in scenario (2) 

in the type I error assessment, two common and eight rare variants with positive 𝐺𝐺 × 𝐸𝐸 effects; (6) 

𝛽𝛽𝑗𝑗 was specified the same as in scenario (3) in the type I error assessment, two common and eight 

rare variants with 𝐺𝐺 × 𝐸𝐸 effects, 50% of 𝛾𝛾𝑗𝑗 > 0 and 50% of 𝛾𝛾𝑗𝑗 < 0; (7) 𝛽𝛽𝑗𝑗 was specified the same 

as in scenario (2) in the type I error assessment, four common and six rare variants with positive 

𝐺𝐺 × 𝐸𝐸 effects; and (8) 𝛽𝛽𝑗𝑗 was specified the same as in scenario (3) in the type I error assessment, 

four common and six rare variants with 𝐺𝐺 × 𝐸𝐸 effects, 50% of 𝛾𝛾𝑗𝑗 > 0 and 50% of 𝛾𝛾𝑗𝑗 < 0. Power 

was evaluated using 1,000 simulated datasets in each scenario. 

3.2 Simulation results 

Empirical type I error rate was calculated at the nominal level 𝛼𝛼, for 𝛼𝛼 = 0.01, 0.001 and 

0.0001, based on 106 replicates, under three simulation scenarios, for both continuous and binary 

phenotypes (Table 1). In most simulations, the type I error of MAGEIT_FIX was within the 95% 

confidence interval of the nominal level, while the type I error of MAGEIT_RAN was lower than 

the nominal level in all simulation settings, especially for binary phenotype, suggesting that the 

MQS-based testing procedure tends to produce conservative p-values due to the approximation we 

used to handle binary phenotype (Crawford and Zhou, 2018, Schweiger and others., 2017). 

Empirical power was calculated at the significant level of 10−4, based on 1,000 simulation 

replicates. Figures 1 and 2 demonstrate the power results of the five methods, MAGEIT_RAN, 

MAGEIT_FIX, GESAT-W, aMiSTi and ADABF, under eight simulation scenarios, for 

continuous and binary phenotypes, respectively. MAGEIT_RAN had comparable to higher power 

than the other methods across all simulation scenarios. We observed similar patterns for 
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continuous and binary phenotypes. MAGEIT_RAN was much more powerful than other tests 

when there was no genetic main effect (Scenarios 1-4). For continuous traits, MAGEIT_FIX had 

comparable power to GESAT-W and higher power than aMiSTi in all simulation scenarios. For 

binary phenotypes, GESAT-W was comparable or more powerful than MAGEIT_FIX and 

ADABF. When the 𝐺𝐺 × 𝐸𝐸 effects had mixed positive and negative directions (Scenarios 2,4,6,8), 

aMiSTi had the lowest power for both continuous and binary phenotypes. Since aMiSTi is a 

combination of burden and variance component test, it loses power when there are both protective 

and detrimental variants in the genomic region being tested (Basu and Pan, 2011). 

 

4. Application to MESA data 

To demonstrate the utility of our proposed methods, we performed a genome-wide analysis of 

gene-alcohol interaction on hypertension in MESA (Bild and others., 2002). MESA is a large 

longitudinal study of subclinical cardiovascular diseases including more than 6,800 participants. 

We analyzed the hypertension outcome measured at the first physical examination of 6,403 

participants, consisting of 2,851 subjects with hypertension and 3,552 subjects without 

hypertension. The participants cover a diverse group of subjects including white (39.3%), African 

American (26.1%), Hispanic (22.5%), and Asian (12.1%). Alcohol usage (consumption of 

alcoholic beverages currently or formerly) was treated as an environmental variable, with 6,379 

responses including 5,058 YESs and 1,321 NOs. 

Samples were genotyped using the Affymetrix Human SNP Array 6.0. After data cleaning, 

IMPUTE2 (Howie, Donnelly and Marchini, 2009) was used for imputation with the 1000 Genome 

Phase 3 data as a reference panel. We excluded subjects whose proportion of successfully imputed 

variants < 5% or empirical inbreeding coefficients > 0.05, resulting in 6,424 subjects for further 
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analysis. The following quality-control criteria were applied: (1) call rate > 95%, (2) MAF > 0.5%, 

and (3) Hardy-Weinberg 𝜒𝜒2 statistic p-value > 10−6, resulting in a final set of 8,540,864 variants. 

In the gene-based 𝐺𝐺 × 𝐸𝐸 analysis, we restricted analysis on protein-coding regions based on the 

reference genome GRCh37 (Frankish and others., 2019). In total, there were 18,977 genes on the 

22 chromosomes and the number of variants in each gene region ranges from 2 to 5000, with a 

medium number of 383. Upon integrating the hypertension, alcohol usage and genotype data, a 

final set of 6,375 individuals are retained for downstream analyses.  

4.1 Analysis of 𝑮𝑮 × 𝑬𝑬 effect 

We performed genome-wide tests of gene-alcohol interaction effects on hypertension using all 

five methods, MAGEIT_RAN, MAGEIT_FIX, GESAT-W, aMiSTi, and ADABF. Age at the first 

exam, sex, and the top ten principal components (PCs) of the genetic relationship matrix were 

included in the analysis. The top ten PCs were calculated using the LD pruned variants with MAF > 

0.05 to control for population structure. 

MAGEIT_RAN and aMiSTi showed no evidence of inflation, with the genomic control 

inflation factors of 0.966 and 0.997, respectively. The 𝐺𝐺 × 𝐸𝐸 test assuming fixed genetic main 

effects, MAGEIT_FIX, and the Bayes factor-based test, ADABF, were conservative, with the 

genomic control inflation factors of 0.822 and 0.826, respectively. The genomic control inflation 

factor was 1.403 for GESAT-W. Therefore, we further adjusted the results of GESAT-W using 

genomic control. 

No genes reached genome-wide significance at the p-value threshold of 0.05
18,977

= 2.63 × 10−6, 

commonly-used in gene-based analyses (Epstein and others., 2015). Table 2 lists the top genes for 

which at least one of the five tests gives a p-value < 10−4. The gene CCNDBP1 had the smallest 

p-value, detected by MAGEIT_RAN (p-value = 2.80 × 10−5) at a significance level of 1
18,977

=
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5.27 × 10−5, a suggestive significance threshold in genome-wide scan (Lander and Kruglyak, 

1995). The p-value of EPB42 (p-value = 5.98 × 10−5) is close to the suggestive significance 

threshold, generated by MAGEIT_RAN. Both CCNDBP1 and EPB42 are located at 15q15.2. The 

cytogenetic region 15q15 has previously been reported to be associated with blood pressure (Kraja 

and others., 2005). Moreover, EPB42 was shown to be significantly down-regulated in heavy 

drinkers after exposed to psychological stress (Beech and others., 2014, Chen and others., 2021, 

Ma and others., 2022). 

4.2 Pathway analysis 

Functional pathway analysis was conducted on genes that had 𝐺𝐺 × 𝐸𝐸  to identify enriched 

pathways related to hypertension, using MetaCoreTM. The top genes for which at least one of the 

five tests had a p-value < 5 × 10−3  were selected. Fisher’s exact test was used to determine 

whether the gene list was enriched for a functional pathway. At the false discovery rate (FDR) < 

0.05, there are 16 significant pathways that were reported to be related to hypertension (Table 3). 

Of particular interest are eight signaling pathways related to development and signal transduction 

that are relevant to hypertension and alcohol drinking. The first three pathways include a signal 

transduction pathway related to ERK1/2 signaling (p-value = 9.66 × 10−5, FDR = 1.08 × 10−2) 

and two development pathways related to activation of ERK by alpha-1 adrenergic receptors (p-

value = 4.82 × 10−3, FDR = 4.92 × 10−2) and EPO-induced MAPK (p-value = 4.82 × 10−3, 

FDR = 4.92 × 10−2). Mitogen-activated protein kinases (MAPKs) are a group of serine/threonine 

kinases that include extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinases 

(JNK1/2/3), and p38 (El-Mas and Abdel-Rahman, 2019). Highly conserved in eukaryotes, the 

MAPK signaling pathway has been implicated in cardiac remodeling and myocardial damage (Liu 

and Molkentin, 2016). For example, cardiac-specific ERK1/2 knockout mice developed cardiac 
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dilation and eccentric growth of the heart (Kehat and others., 2011), suggesting that ERK1/2 can 

regulate critical signal transduction pathways. In addition, p38 family members can participate in 

both protective and deleterious actions in the stress myocardium, demonstrating a key role for 

MAPKs proteins in cardiac physiology (Romero-Becerra and others., 2020). The fourth pathway 

is a developmental module related to vascular endothelial growth factor (VEGA) signaling and 

activation (p-value = 3.97 × 10−3, FDR = 4.50 × 10−2). The VEGF signaling pathway plays a 

vital role in the vasculogenesis and angiogenesis in both embryo and adult (Zachary and Gliki, 

2001). During neovascularization, VEGF is involved in gene expression, vascular permeability, 

and the migration, proliferation, and survival of cells (Shibuya, 2011). Studies indicated that VEGF 

blockade leads to endothelial dysfunction and the inhibition of VEGF-dependent vasodilatory 

pathways (Robinson and others., 2010). These mechanisms together with the loss of microvascular 

capillary density through capillary rarefaction cause systemic vasoconstriction and hence resulting 

in hypertension (Robinson and others., 2010). An animal study also suggested that physiologically 

relevant levels of alcohol consumption may associated with the stimulation of VEGF expression 

and angiogenesis (Tan and others., 2007). The fifth one is a development pathway related to 

positive regulation of WNT/Beta-catenin signaling in the nucleus (p-value = 1.87 × 10−3, FDR = 

3.92 × 10−2 ). WNT/Beta-catenin signaling pathway, also called canonical WNT signaling 

pathway in this context, is active in adult cardiac tissue after many cardiac injuries (Ozhan and 

Weidinger, 2015). WNT/Beta-catenin governs several elements of the renin-angiotensin system 

(RAS) containing angiotensinogen, renin, angiotensin-converting enzyme, and AT1 receptor (L 

Ruby and others., 2010, Xiao and others., 2019). Animal studies have shown that WNT2-deficient 

(another canonical Wnt signaling component) mice exhibit vascular abnormalities, abnormal 

vascular patterns, and increased vascular fragility (Cattelino and others., 2003, Iso and others., 
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2006). Interestingly, chronic ethanol consumption affects the activation of WNT/Beta-catenin 

signaling pathway and WNT/Beta-catenin directly controls alcohol-induced big potassium (BK) 

internalization (Mercer, Hennings and Ronis, 2015, Velázquez-Marrero and others., 2016). The 

sixth one is a development pathway related to WNT and Notch signaling in early cardiac 

myogenesis (p-value = 2.35 × 10−3 , FDR = 4.00 ×  10−2 ). The Notch-mediated signaling, 

together with other signaling pathway such as VEGF and WNT, play a crucial role in vascular 

development and angiogenesis (Caliceti and others., 2014). Alternations of Notch signaling is 

responsible for abnormal blood vessel and heart malformations (Zhou and Liu, 2014). Studies 

shown that in human coronary artery endothelial cells, ethanol activates notch pathway (Morrow 

and others., 2010, Morrow and others., 2014). The seventh pathway is a signal transduction 

pathway related to angiotensin II signaling via beta-arrestin (p-value = 9.17 × 10−4 , FDR = 

3.00 × 10−2). Angiotensin II (Ang II), a potent vasoconstrictor and a major effector molecule of 

renin-angiotensin system (RAS), participates in atherosclerosis and cardiovascular remodeling and 

raises blood pressure by exploiting various signaling cascades like WNT/beta-catenin (Benigni, 

Cassis and Remuzzi, 2010, Forrester and others., 2018, Fyhrquist, Metsärinne and Tikkanen, 1995, 

Kawai and others., 2017, Zhou and Liu, 2016). Animal studies reveal that angiotensinogen genes 

affect alcohol drinking behavior through Ang II (Fitts, 1993, Maul and others., 2001). The last 

pathway is a signal transduction pathway related to adenosine A1 receptor signaling (p-

value= 1.06 × 10−4 , FDR= 1.08 × 10−2 ). Adenosine modulates cardiovascular function and 

produces bradycardia and hypotension when mediated systematically (Barraco and others., 1987, 

Evoniuk, von Borstel and Wurtman, 1987). Activation of adenosine A1 receptor causes contraction 

of vascular smooth muscle and the adenosine A1 receptor agonists produce decreases in blood 

pressure and heart rate (Schindler and others., 2005). It has been observed that raised adenosine 
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levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of A1 

receptors in the cerebellum, striatum, and cerebral cortex (L Ruby and others., 2010). A1 agonists 

have been shown to decrease anxiety-like behavior, tremor, and seizures during acute ethanol 

withdrawal in mice (Kaplan and others., 1999). 

 

5. Conclusion 

Human complex diseases are influenced by both genetic variation and interactions between 

gene and environmental factors. Many disease-associated genes have already been identified. 

Consequently, detecting and understanding gene-environment interactions becomes an important 

task for disease risk prediction (Hunter, 2005). In this study, we developed two methods 

MAGEIT_RAN and MAGEIT_FIX to detect the interaction between an environmental factor and 

gene sets where the genetic main effects were modeled as random or fixed, respectively. Both tests 

can be applied to continuous and binary phenotypes. Our methods is based on the MQS estimation 

(Zhou, 2017), which has been applied in MAPIT (Marginal ePIstasis Test) (Crawford and others., 

2017) and LT-MAPIT (liability threshold marginal epistasis test) (Crawford and Zhou, 2018) to 

detect gene-gene interactions. Our methods not only apply the MQS estimation to detect gene-

environment interaction but also extends their methods by modeling genetic main effects as 

random in MAGEIT_RAN. Since variants in a genomic region can be either protective or 

deleterious and their effect sizes may vary, modeling genetic effects as random, as in 

MAGEIT_RAN, can capture different directions and magnitude of the genetic effects. 

We compared the performance of MAGEIT_RAN and MAGEIT_FIX and three set-based 

𝐺𝐺 × 𝐸𝐸 tests through simulations and real data analysis. In the simulation study, we demonstrated 

that MAGEIT_FIX had well-controlled type I error rate while MAGEIT_RAN was slightly 
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conservative, especially for binary phenotypes, due to approximations used when specifying 

MAGEIT on binary phenotypes. MAGEIT_RAN was overall the most powerful among the five 

methods across all simulation settings. Application of MAGEIT_RAN and MAGEIT_FIX to the 

MESA hypertension data identified two genes, CCNDBP1 and EPB42, located at the cytogenetic 

region 15q15.2 which has been reported to be associated with blood pressure. The EPB42 gene 

was reported to be significantly down-regulated in heavy drinkers after exposed to psychological 

stress. Moreover, we identified 16 significant pathways that were related to hypertension, among 

them eight signaling transduction and development pathways are related to hypertension and 

alcohol usage. Given the established role of the genes and pathways we identified, MAGEIT has 

been shown to be able to detect biologically relevant genes that interact with environmental factors 

to influence complex traits. 

There are several limitations in our methods. First, the type I error of MAGIT_RAN is 

conservative, particularly when there are genetic main effects, thus resulted in slight power loss in 

simulation scenarios 5-8. This is because the variation of the estimated variance component 𝜎𝜎�2 is 

larger when there are genetic main effects compared with no genetic main effect. Additionally, in 

MAGEIT_RAN, the regression coefficients 𝛽𝛽𝑗𝑗  of the genetic main effects are assumed to be 

independent and 𝛾𝛾𝑗𝑗  of the 𝐺𝐺 × 𝐸𝐸  interactions as well. In reality, it is possible there exist 

correlations among these effects in a genomic region. This assumption may contribute to power 

loss, particularly in cases where most variants interact with the environmental factor and the effects 

of interactions are in the same direction. Nevertheless, considering the inherent complexities of 

linkage disequilibrium and haplotype effects, it is more appropriate to consider potential 

correlations among these coefficients. Given this, our model can be expanded to accommodate 

correlations among variants in a genomic region. 
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6. Software 

Code to reproduce the results of the article is available at https://github.com/ZWang-Lab/MAGEIT. 
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Table 1. Empirical type I error of MAGEIT_RAN and MAGEIT_FIX, based on 106 replicates 

Test Nominal 
Level 

Continuous Binary 
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

MAGEIT_RAN   
0.01 9.66 × 10

-3 8.85 × 10
-3 8.62 × 10

-3 9.51 × 10
-3 7.77 × 10

-3 8.47 × 10
-3 

0.001 8.17 × 10
-4 6.09 × 10

-4 5.30 × 10
-4 7.90 × 10

-4 4.92 × 10
-4 5.04 × 10

-4 
0.0001 6.70 × 10

-5 2.90 × 10
-5 3.40 × 10

-5 6.20 × 10
-5 2.80 × 10

-5 2.20 × 10
-5 

MAGEIT_FIX 
0.01 9.87 × 10

-3 9.98 × 10
-3 1.02 × 10

-2 9.68 × 10
-3 9.67 × 10

-3 9.70 × 10
-3 

0.001 9.89 × 10
-4 9.99 × 10

-4 9.57 × 10
-4 9.38 × 10

-4 9.58 × 10
-4 8.99 × 10

-4 
0.0001 1.01 × 10

-4 9.80 × 10
-5 8.80 × 10

-5 9.00 × 10
-5 8.70 × 10

-5 9.20 × 10
-5 

The 95% confidence interval of a nominal level 𝛼𝛼 was calculated as 𝛼𝛼 ± 1.96�𝛼𝛼(1 − 𝛼𝛼)/106. 
Specifically, the 95% confidence intervals are (9.80 × 10−3, 1.02 × 10−2) for 𝛼𝛼 = 0.01, (9.38 ×
10−4, 1.06 × 10−3)  for 𝛼𝛼 = 0.001 , and (8.04 × 10−5, 1.20 × 10−4)  for 𝛼𝛼 = 0.0001 . Rates 
outside of the 95% confidence interval are in bold. 
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Table 2. Genes with p-value < 10−4 in at least one of the tests in the MESA data 
Chr Gene # SNP Region MAGEIT_RAN MAGEIT_FIX GESAT-W aMiSTi ADABF 

15 
CCNDBP1 237 15q15.2 2.80 × 10

-5
 2.03 × 10

-3
 6.28 × 10

-3
 3.32 × 10

-2
 4.90 × 10

-2
 

EPB42 269 15q15.2 5.98 × 10
-5

 2.05 × 10
-3

 1.12 × 10
-2

 3.97 × 10
-2

 1.00 × 10
-1

 
The smallest p-values among the five tests at the given genes are in bold. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.28.542666doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542666
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Pathways with FDR < 0.05 in the MESA data 
Pathway P-value FDR 
Signal transduction_ERK1/2 signaling pathway 9.66 × 10

-5
 1.08 × 10

-2
 

Signal transduction_Adenosine A1 receptor signaling pathway 1.06 × 10
-4

 1.08 × 10
-2

 
Signal transduction_Adenosine A3 receptor signaling pathway 4.76 × 10

-4
 2.16 × 10

-2
 

Development_Thromboxane A2 signaling pathway 5.57 × 10
-4

 2.17 × 10
-2

 
Translation_Translation regulation by Alpha-1 adrenergic receptors 6.96 × 10

-4
 2.47 × 10

-2
 

Signal transduction_S1P2 receptor inhibitory signaling 8.58 × 10
-4

 2.92 × 10
-2

 
Signal transduction_Angiotensin II signaling via Beta-arrestin 9.17 × 10

-4
 3.00 × 10

-2
 

Regulation of CFTR activity (normal and CF) 1.26 × 10
-3

 3.21 × 10
-2

 
Development_Positive regulation of WNT/Beta-catenin signaling in the nucleus 1.87 × 10

-3
 3.92 × 10

-2
 

Signal transduction_S1P1 receptor signaling 2.13 × 10
-3

 3.92 × 10
-2

 
Development_WNT and Notch signaling in early cardiac myogenesis 2.35 × 10

-3
 4.00 × 10

-2
 

Nociception_Nociceptin receptor signaling 2.67 × 10
-3

 4.19 × 10
-2

 
Development_VEGF signaling and activation 3.97 × 10

-3
 4.50 × 10

-2
 

Development_Estrogen-independent activation of ESR1 and ESR2 4.53 × 10
-3

 4.80 × 10
-2

 
Development_Activation of ERK by Alpha-1 adrenergic receptors 4.82 × 10

-3
 4.92 × 10

-2
 

Development_EPO-induced MAPK pathway 4.82 × 10
-3

 4.92 × 10
-2
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Figure 1. Empirical power of MAGIT_RAN, MAGIT_FIX, GESAT-W, aMiSTi and ADABF for 
a continuous phenotype. 
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Figure 2. Empirical power of MAGIT_RAN, MAGIT_FIX, GESAT-W, aMiSTi and ADABF for 
a binary phenotype. 
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