bioRxiv preprint doi: https://doi.org/10.1101/2023.05.28.542666; this version posted May 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Detection of interactions between genetic marker sets and environment in a

genome-wide study of hypertension

Linchuan Shen', Amei Amei!, Bowen Liu!, Yunging Liu?, Gang Xu'?, Edwin C. Oh**, Zuoheng
Wang?

'Department of Mathematical Sciences, University of Nevada, Las Vegas

2Department of Biostatistics, Yale School of Public Health

3Department of Internal Medicine, University of Nevada School of Medicine, Las Vegas

“Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas

Correspondence

Amei Amei, PhD

Department of Mathematical Sciences
University of Nevada, Las Vegas
4505 S. Maryland Parkway

Las Vegas, NV 89154

Phone: (702) 895-5159

Fax: (702) 895-4343

Email: amei.amei@unlv.edu

Zuoheng Wang, PhD
Department of Biostatistics
Yale School of Public Health

60 College St.

New Haven, CT 06510

Phone: (203) 737-2672

Fax: (203) 785-6912

Email: zuoheng.wang@yale.edu



mailto:amei.amei@unlv.edu
mailto:zuoheng.wang@yale.edu
https://doi.org/10.1101/2023.05.28.542666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.28.542666; this version posted May 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Summary

As human complex diseases are influenced by the interplay of genes and environment,
detecting gene-environment interactions (G X E') can shed light on biological mechanisms of
diseases and play an important role in disease risk prediction. Development of powerful
quantitative tools to incorporate G X E in complex diseases has potential to facilitate the accurate
curation and analysis of large genetic epidemiological studies. However, most of existing methods
that interrogate G X E focus on the interaction effects of an environmental factor and genetic
variants, exclusively for common or rare variants. In this study, we proposed two tests,
MAGEIT RAN and MAGEIT FIX, to detect interaction effects of an environmental factor and a
set of genetic markers containing both rare and common variants, based on the MinQue for
Summary statistics. The genetic main effects in MAGEIT RAN and MAGEIT FIX are modeled
as random or fixed, respectively. Through simulation studies, we illustrated that both tests had type
I error under control and MAGEIT RAN was overall the most powerful test. We applied MAGEIT
to a genome-wide analysis of gene-alcohol interactions on hypertension in the Multi-Ethnic Study
of Atherosclerosis. We detected two genes, CCNDBP1 and EPB42, that interact with alcohol usage
to influence blood pressure. Pathway analysis identified sixteen significant pathways related to
signal transduction and development that were associated with hypertension, and several of them
were reported to have an interactive effect with alcohol intake. Our results demonstrated that
MAGEIT can detect biologically relevant genes that interact with environmental factors to

influence complex traits.
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1. Introduction

Causes of human complex diseases are multifactorial including the interplay of genes and
environment. The effect of environment exposures on disease outcomes can vary across genotypic
groups. It has been reported that individuals with certain genetic profiles have elevated disease
risk only when they are exposed to an environment in many complex diseases (Lin and others.,
2013). For example, many environmental factors such as aging, sex, smoking, diet, stress, air
quality and among others influence disease risk, progression and severity (Bhatnagar, 2017,
Cosselman, Navas-Acien and Kaufman, 2015). As a result, incorporating gene-environment
interactions (G X E) has become crucial in the study of complex traits. Genome-wide association
studies (GWAS) have successfully identified many genetic variants associated with human
diseases. However, the estimated effects of these variants are small and only explain small portion
of the heritability of complex diseases (Eichler and others., 2010). Several studies have suggested
that G X E may contribute partly to the missing heritability and the detection of G X E could lead
to meaningful implication in fields of public health and personalized medicine (Eichler and others.,
2010, Thomas, 2010).

Traditional G X E analyses focus on evaluating the interactions with genetic variants one at a
time (Aschard and others., 2010, Kraft and others., 2007, Manning and others., 2011). Possible
limitations in such approaches include the burden of multiple hypothesis testing and lacking
consideration of joint effects shared by multiple variants with similar biological functions,
resulting in power loss in the analysis (Lin and others.,2013). In recent years, genome-wide search
for G X E has been emerging (Khoury and Wacholder, 2009, Thomas, 2010) and several studies
have investigated G X E from multiple variants in a genetic marker set (Chen, Meigs and Dupuis,

2014, Chi and others., 2021, Jiao and others., 2013, Lin and others., 2019, Lin and others., 2013,
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Lin and others., 2016, Su, Di and Hsu, 2017, Tzeng and others., 2011, Wang and others., 2020).
For a set of common genetic variants, gene-environment set association test (GESAT) was
developed using a generalized linear model and ridge regression (Lin and others., 2013). For rare
variants, Chen et al. proposed INT-FIX and INT-RAN for testing G X E effect, as well as a joint
test, JOINT, that detects the effects of a set of genetic variants as well as their interactions with an
environmental factor simultaneously (Chen, Meigs and Dupuis, 2014). They used a beta density
function for genetic effect to reflect larger contributions from rare genetic variants. Genetic main
effects in their G X E tests were treated as fixed in INT-FIX or random in INT-RAN, respectively.
The three tests were implemented as an R package called rareGE. To assess rare variants by
environment interaction, Lin et al. developed the interaction sequence kernel association test
(iISKAT) that modeled the main effects of rare variants using weighted ridge regression and
allowed the interactions with environment across genetic variants to be correlated (Lin and others.,
2016). GESAT, the three tests in the rareGE package and iSKAT are all variance component-based
tests that are robust to the signs and magnitudes of the G X E effects when many variants in a
genetic region are non-causal and/or there are mixed beneficial and detrimental variants (Lee, Wu
and Lin, 2012, Santorico and Hendricks, 2016, Wu and others., 2011). A unified hierarchical
modeling of G X E effects from a set of rare variants, called mixed effects score test for interaction
(MiSTi), which models G X E effects by a fixed component as well as a random component was
developed (Su, Di and Hsu, 2017). They constructed two independent score statistics and
combined them using data-adaptive approaches. Simulation studies showed that MiSTi has greater
than or comparable power to iISKAT. MiSTi provided a unified regression framework for testing
interaction effects between a set of rare variants and an environmental factor where many existing

methods can be derived from by constraining certain parameters to be zero. In addition to the above
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mentioned G X E tests that were developed under the regression framework, Lin ef al. proposed a
polygenic test of G X E effect using Bayes factors (Lin and others., 2019). In their adaptive
combination of Bayes factors method (ADABF), G X E effects are assumed to follow a normal
distribution. Variants in a genetic region were sorted by Bayes factors and p-values were calculated
using a resampling procedure. When there are a few genetic variants interacting with the
environmental factor, ADABF had higher power than other methods for detecting G X E effects.
Complex diseases are influenced by many genetic variants including common and/or rare.
Current methods in detecting G X E mainly focus on the interaction effects of an environmental
factor and genetic variants, exclusively for common or rare. Although ADABF considers both
common and rare variants in a genetic region, it does not distinguish the effects of the two types
of variants in model fitting and hence may overlook the relatively larger contribution from rare
variants. Recently, MQS (MinQue for Summary statistics) was developed for estimating variance
components in linear mixed models (Zhou, 2017). MQS is based on the method of moments and
the minimal norm quadratic unbiased estimation criterion. Compared to the restricted maximum
likelihood estimation method (REML), MQS provided unbiased and statistically efficient
estimates. It was extended to model the epistatic interactions between genetic variants (Crawford
and others., 2017). In this study, we propose two tests to detect interactions between an
environmental factor and a set of genetic markers containing both rare and common variants based
on the MQS method. We name it as MArginal Gene-Environment Interaction Test with RANdom
or FIXed genetic effects (MAGEIT RAN or MAGEIT FIX). We assessed the performance of the
two tests in detecting G X E for a set of genetic variants and compared it with existing set-based
G X E methods via simulation studies. Our results demonstrated that both MAGEIT RAN and

MAGEIT_FIX had well controlled type I error. MAGEIT RAN was most powerful in majority of
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the simulation scenarios. We applied MAGEIT RAN and MAGEIT FIX to a genome-wide
analysis of gene-alcohol interaction on hypertension in the Multi-Ethnic Study of Atherosclerosis

(MESA) and identified hypertension-related G X E and pathways.

2. Methods

Suppose a phenotype of interest, an environmental variable and genome-wide genetic variants

: T
are measured on n subjects. Let yy, Ex, Gy, = (le,sz, ...,ka) and Xy, = (X1, Xizr ooor Xier) T
denote the phenotype, environmental variable, genotypes of p variants in a genomic region, and
m non-genetic covariates for the kth subject, respectively, for k = 1, 2, ..., n, where Gy; =0, 1 or

2 depending on whether subject k has 0, 1 or 2 copies of minor allele at the jth variant. We use

S, = (E G, ExGro, oy Ex ka)T to denote the genetic variants by environment interaction for the
kth subject. Our goal is to test whether there are interactions between the variant set and
environment that influence the phenotype of interest.
2.1 Model for continuous phenotype

Lety = (51, Y2, s V)T, E = (Ey, Ey, ..., E,)T, and € = (g4, &5, +++, ,)7 denote vectors of the
phenotype, environmental variable, and error term of length n. We further define an n X m
covariate matrix X = [X,X,, -+, X,,]7, an n X p genotype matrix G = [G4, G,, -, G,]”, and an
n X p matrix § = [S;,8,,--,5,]7 of the G X E. Then, the following model specifies the
relationship between a continuous phenotype Y and X, E, G and S

y=a9l+Xa, + a,E+ G + Sy + &, (1)

where 1 is an n X 1 vector of 1, a, is an intercept term, a; = (@qq, A1z, oo, A1)’ Az, B =

T T ) . .
(,81, Ba, s ﬁp) and y = (yl,yz, ...,yp) are regression coefficients for the covariates,

environmental factor, genetic variants, and G X E terms. We further assume that ¥ and & follow
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2
multivariate normal distributions with y ~ MVN(O,% W3) and € ~ MVN(O, 7%I,), where W, =

diag(wy1, Waz, -+, Wop) contains weights of the p G X E terms and I, is an identity matrix of
dimension n.
2.2 Marginal gene-environment interaction test

We are interested in testing genetic variants by environment interactions in a genomic region,
i.e., testing the null hypothesis Hy: ¥ = 0, which is equivalent to testing Hy: 02 = 0. We develop
two G X E tests, in which the genetic main effects f are modeled as random and fixed,

respectively.
2
When we treat the genetic main effects f as random, we assume that S~ MVN(O,%W%),

where W, = diag(wy1, W1z, -+, Wqp) are weights of the p variants. We use the MQS method

(Zhou, 2017) to estimate the three variance components w?, 62 and 72. In order to eliminate the

fix effects ay, a; and a, in Model (1), we multiply both sides of the model, from left, by a

projection matrix M, where M = I — b(b"b)~1b" with b = [1, X, E]. Then Model (1) becomes
y' =g +s" +¢&,

where y* = My, g* = MGB, s* = MSy, and € = Me. It follows that g* ~ MVN(0, w?G*) with

_ (Mew)M6w )T
1

_ (Mswy)(MsW )"

G . 8~ MVN(0,5°5") with §* = =—2""=2" and " ~ MVN(0,7°M).

Consequently, we have y* ~ MVN(0, w2G* + 02S* + 12 M).
We estimate the variance components using the method of moments based on the following
set of second moment matching equations,
E(yTAy") = tr(A(w?G" + 62S* + T2M)) = w*tr(AG*) + o?tr(AS*) + T2tr(AM), (2
where A is an arbitrary symmetric non-negative definite matrix (Zhou, 2017). Since there are three

unknown parameters (w?, 02, 72), three different A’s are required to obtain parameter estimates.
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In the method of moments, the expectation of Eq. (2) is usually replaced with the realized value
yTAy*. Let A, = G*, A, = §* and A; = M (Zhou, 2017), then, the resulting estimates of the

variance components are given in a matrix form as

57 Y76yl [w(6°6) (S wr(6)] [yT6y
|:6_2 — A—l y*TS*y* — tr(S*G*) tI'(S*S*) t'I"(S*) y*TS*y* ,
72 yTy* tr(G*) tr(S") n—(m+2) yTy*

where we used tr(G'M) =tr(MG*) = tr(G*) , tr(§*M) = tr(MS*) = tr(§*) , tr(MM) =
tr(M) =n— (m+2), and y'"TMy* = y*Ty* . The variance component estimator 62 is
considered as the test statistic, which we named as MArginal Gene-Environment Interaction Test
with RANdom genetic main effects (MAGEIT RAN). Specifically, the MAGEIT RAN test
statistic is

6% =y T{(A™)216" + (A" )32 8" + (A )31}y = y"Hy", 3)
where H = (A™1),,G* + (A71),,8" + (A1) 551.

Under Hy: 62 = 0, y* ~ MVN(0, 0%G* + 72M), suggesting that y* has the same distribution
1
as (w?G* + t2M)2Z with Z ~ MVN(O0,1,)). Therefore, the method of moments estimator 62

1 1
follows the same distribution as Z7 ((@3G* + t2M)2)T H(@3G* + 15 M)2Z, which has a mixture

of x?2distribution 6% ~ Y7~y A;x5; . Here, (@3,15) are estimates of (w? 7%) under the null

hypothesis, (1, -, 4,) are eigenvalues of the matrix ((@ZG* + f(Z)M)%)TH(&)\(Z)G* + ng)%, and
)(f,i are independent y? variables (Zhou, 2017).The p-value of 62 can be evaluated by the Davies
method (Davies, 1980, Wu and others., 2011) and Liu-Tang-Zhang approximation (Liu, Tang and
Zhang, 2009).

If we treat the genetic main effects 8 as fixed, we use the MQS method (Zhou, 2017) to

estimate the two variance components o2 and 72. To eliminate the fix effect terms a,, &, a, and
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B in Model (1), we left multiply the model by a projection matrix M = I — b(b"b)™*b” with b =
[1, X, E, G]. Then the model becomes y* = s* + £* and it contains two variance components ¢
and 72. Using the method of moments, we obtain the following estimates of the variance

components,

[52] _ [ tr(s's") (S 1 [y*TS*y*
2l tr($") n—(m+p+2) y Ty |

(3
The variance component estimator 62 is considered as the test statistic, which we named as
MArginal Gene-Environment Interaction Test with FIXed genetic main effects (MAGEIT FIX).
Specifically, the MAGEIT FIX test statistic is

2 _ Y T{(n—(m+p+2))s*—tr(S")y* )
T (n—(m+p+2))tr(s*S*)—tr(s*)2"

o
Under Hy: 0% =0, 62 follows a mixture of x? distribution 6% ~ Yy A;x7; with (A,+,4,)

1 1
being the eigenvalues of the matrix ((£5M)2)TH(t5M)z.
2.3 Model for binary phenotype
We consider a liability threshold model and assume the binary outcome y;, of the kth subject

is determined by an unobserved continuous liability variable z, i.e.,
1, >0
Vi = { Zk fork=1,..,n, (5)
k

where the underlying liability vector z = (zq,2,, -, 2,)7 is specified using Model (1). The full
likelihood of the liability threshold mixed effects model is intractable due to an n-dimensional
integration over the liability variable z. Following the previous studies (Crawford and Zhou, 2018,
Engel, Buist and Visscher, 1995, Kuss, Rasmussen and Herbrich, 2005, Tempelman and Gianola,
1993, Williams and Barber, 1998), the liability threshold mixed effects model can be approximated

by a linear mixed effects model on Z = E(z|y), an estimated posterior mean of the liabilities,
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Z=ayl+Xa; +a,E+GB + Sy + & (6)
The posterior mean Z can be obtained by approximation under certain assumptions based on the
properties of GWAS data (Crawford and Zhou, 2018). Specifically, we assume that (i) subjects
are unrelated, and (ii) both the genetic main effects and interaction effects are small such that the
terms G and Sy can be ignored. Under these assumptions, the distribution of the liability variable
can be approximated by z ~ MVN(a,1 + Xa; + a,E, I,,) and Z is computed as the mean of the
following truncated normal distribution (Crawford and Zhou, 2018)

N(ag+ Xra, + ayE, 1) withz, =0 ify, =1

T . . fork=1,2,..,n.
N(ay+ Xpa, + a,E, 1) withz, <0 ify, =0

Zi| Yk ~ {

The parameters @, a@; and a, are estimated using a probit model on the phenotype y.

To test the interaction effects between a set of genetic variants and an environmental variable
on the binary phenotype y, we implement MAGEIT RAN and MAGEIT FIX on the estimate of
the liability variable Z. To construct MAGEIT RAN, the liability threshold mixed effects model
specified in Egs (5) and (6) contains three variance components (w?, 02, 72), where o2 represents
a measure of interactions between the p genetic variants and the environmental variable. In order
for the model to be identifiable, we put a constrain on the variance of z, e.g., w? + 62 + 12 =1

(Lee and others., 2011). Similarly, we set 2 + 72 = 1 for MAGEIT_FIX.

3. Simulation Studies

We conducted simulation studies to evaluate the performance of MAGEIT RAN and
MAGEIT FIX to detect set-based G X E effects for both continuous and binary phenotypes, where
the variant set contains both common and rare variants. We assessed type I error and empirical
power of MAGEIT RAN and MAGEIT FIX, and compared them with three set-based G X E

tests, GESAT-W (Lin and others., 2013), aMiSTi (Su, Di and Hsu, 2017), and ADABF (Lin and
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others., 2019). These three existing methods are popular for G X E analysis and have well-
developed R packages. For fair comparisons, the same weights for rare and common variants were
used in all methods except ADABF which does not distinguish common and rare variants and
hence no weights were used in the implementation.
3.1 Simulation settings

To generate genotypes, we first simulated 100,000 chromosomes over a 5 Kb region using a
coalescent model that mimics the linkage disequilibrium (LD) structure and recombination rates
of the European population (Schaffner and others., 2005, Shlyakhter, Sabeti and Schaftner, 2014).
Then we randomly selected 10 common variants with minor allele frequency (MAF) > 0.05 and
40 rare variants with 0.005 < MAF < 0.05 to compose a set of 50 genetic variants.

We simulated a continuous phenotype using the following trait model,

10 10
Vi = 0.05X,; + 0.057X,, + 0.64E;, + Z w1 B;Gr; + Z w1 E G + &
j=1 =1

where X, ~ N(62.4,11.5%) mimicking age and X, ~ Bernoulli(0.52) mimicking sex (Lin and
others.,2013). The 10 genetic variants with main effects and the 10 variants with interaction effects
were randomly selected from the set of the 50 variants, independent of E. The environmental
variable E is a Bernoulli random variable taking values of 0 or 1 with a probability of 0.5. The
weight of a rare variant in wy; or wy, is set to Beta(MAF; 1, 25), the beta density function with

parameters 1 and 25 evaluated at the variant’s MAF, and the weight of a common variant in wy

Beta(0.05; 1,25)

or wy; is set to cBeta(MAF;0.5,0.5) with c = ——————=
Beta(0.05; 0.5,0.5)

(Ionita-Laza and others., 2013,

Madsen and Browning, 2009). The error term &, ~ N(0, 1.5%) indicates independent noise.

For a binary trait, we use the following logistic regression model,
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10 10
logit(P(y, = 1)) = —=6.2 4 0.05X;; + 0.057X,, + 0.64E; + Z wyB;Grj + Z W Vi ExGres
j=1 =1

where all parameters are the same as those used in the continuous phenotype model. In all
simulation settings, each simulated dataset contains 5,000 subjects (2,500 cases and 2,500 controls
for binary phenotype).

In the type I error assessment, we set all y; to be 0, i.e., no G X E effects, and generated 10°
datasets containing 50 genetic variants (10 common and 40 rare variants). We considered three
scenarios: (1) no genetic main effect, i.e., ; = 0 for j = 1,2, ...,10; (2) for continuous/binary
phenotype, assigning B; ~ U(0.07, 0.11)/U(0.08, 0.12) to two randomly selected common
variants and fB; ~ U(0.15, 0.19)/U(0.18, 0.22) to eight randomly selected rare variants; (3)
similar to scenario (2) except that half of the common/rare variants have negative effects.

In the power comparison, we designed eight simulation scenarios that differ in three key factors
that represent different considerations in the simulation design. The first factor pertains to the
presence or absence of genetic main effects; the second factor focuses on the allocation of
contributions from common and rare variants; and the third factor considers the direction of genetic
main effects and G X E effects, either all positive effects or half positive and half negative effects.
We considered ten variants with G X E effects, either two common and eight rare variants, or four
common and six rare variants. The G X E effect y; was generated from U(0.17, 0.21) and
U(0.57, 0.61) for common and rare variants, respectively, for continuous phenotype; and from
U(0.28, 0.32) and U(0.86, 0.90) for common and rare variants, respectively, for binary
phenotype. The first four simulation scenarios have no genetic main effect and they are as follow:
(1) two common and eight rare variants with positive G X E effects; (2) two common and eight

rare variants with G X E effects, 50% of y; > 0 and 50% of y; < 0; (3) four common and six rare
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variants with positive G X E effects; and (4) four common and six rare variants with G X E effects,
50% of y; > 0 and 50% of y; < 0. The remaining four simulation scenarios have two common
and eight rare variants with genetic main effects: (5) B; was specified the same as in scenario (2)
in the type I error assessment, two common and eight rare variants with positive G X E effects; (6)
B was specified the same as in scenario (3) in the type I error assessment, two common and eight
rare variants with G X E effects, 50% of y; > 0 and 50% of y; < 0; (7) B; was specified the same
as in scenario (2) in the type I error assessment, four common and six rare variants with positive
G X E effects; and (8) B; was specified the same as in scenario (3) in the type I error assessment,
four common and six rare variants with G X E effects, 50% of y; > 0 and 50% of y; < 0. Power
was evaluated using 1,000 simulated datasets in each scenario.
3.2 Simulation results

Empirical type I error rate was calculated at the nominal level a, for « = 0.01, 0.001 and
0.0001, based on 10° replicates, under three simulation scenarios, for both continuous and binary
phenotypes (Table 1). In most simulations, the type I error of MAGEIT FIX was within the 95%
confidence interval of the nominal level, while the type I error of MAGEIT RAN was lower than
the nominal level in all simulation settings, especially for binary phenotype, suggesting that the
MQS-based testing procedure tends to produce conservative p-values due to the approximation we
used to handle binary phenotype (Crawford and Zhou, 2018, Schweiger and others., 2017).

Empirical power was calculated at the significant level of 10™#, based on 1,000 simulation
replicates. Figures 1 and 2 demonstrate the power results of the five methods, MAGEIT RAN,
MAGEIT FIX, GESAT-W, aMiSTi and ADABF, under eight simulation scenarios, for
continuous and binary phenotypes, respectively. MAGEIT RAN had comparable to higher power

than the other methods across all simulation scenarios. We observed similar patterns for
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continuous and binary phenotypes. MAGEIT RAN was much more powerful than other tests
when there was no genetic main effect (Scenarios 1-4). For continuous traits, MAGEIT FIX had
comparable power to GESAT-W and higher power than aMiSTi in all simulation scenarios. For
binary phenotypes, GESAT-W was comparable or more powerful than MAGEIT FIX and
ADABF. When the G X E effects had mixed positive and negative directions (Scenarios 2,4,6,8),
aMiSTi had the lowest power for both continuous and binary phenotypes. Since aMiSTi is a
combination of burden and variance component test, it loses power when there are both protective

and detrimental variants in the genomic region being tested (Basu and Pan, 2011).

4. Application to MESA data

To demonstrate the utility of our proposed methods, we performed a genome-wide analysis of
gene-alcohol interaction on hypertension in MESA (Bild and others., 2002). MESA is a large
longitudinal study of subclinical cardiovascular diseases including more than 6,800 participants.
We analyzed the hypertension outcome measured at the first physical examination of 6,403
participants, consisting of 2,851 subjects with hypertension and 3,552 subjects without
hypertension. The participants cover a diverse group of subjects including white (39.3%), African
American (26.1%), Hispanic (22.5%), and Asian (12.1%). Alcohol usage (consumption of
alcoholic beverages currently or formerly) was treated as an environmental variable, with 6,379
responses including 5,058 YESs and 1,321 NOs.

Samples were genotyped using the Affymetrix Human SNP Array 6.0. After data cleaning,
IMPUTE2 (Howie, Donnelly and Marchini, 2009) was used for imputation with the 1000 Genome
Phase 3 data as a reference panel. We excluded subjects whose proportion of successfully imputed

variants < 5% or empirical inbreeding coefficients > 0.05, resulting in 6,424 subjects for further
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analysis. The following quality-control criteria were applied: (1) call rate > 95%, (2) MAF > 0.5%,
and (3) Hardy-Weinberg y? statistic p-value > 107, resulting in a final set of 8,540,864 variants.
In the gene-based G X E analysis, we restricted analysis on protein-coding regions based on the
reference genome GRCh37 (Frankish and others., 2019). In total, there were 18,977 genes on the
22 chromosomes and the number of variants in each gene region ranges from 2 to 5000, with a
medium number of 383. Upon integrating the hypertension, alcohol usage and genotype data, a
final set of 6,375 individuals are retained for downstream analyses.

4.1 Analysis of G X E effect

We performed genome-wide tests of gene-alcohol interaction effects on hypertension using all
five methods, MAGEIT RAN, MAGEIT FIX, GESAT-W, aMiSTi, and ADABF. Age at the first
exam, sex, and the top ten principal components (PCs) of the genetic relationship matrix were
included in the analysis. The top ten PCs were calculated using the LD pruned variants with MAF >
0.05 to control for population structure.

MAGEIT RAN and aMiSTi showed no evidence of inflation, with the genomic control
inflation factors of 0.966 and 0.997, respectively. The G X E test assuming fixed genetic main
effects, MAGEIT FIX, and the Bayes factor-based test, ADABF, were conservative, with the
genomic control inflation factors of 0.822 and 0.826, respectively. The genomic control inflation
factor was 1.403 for GESAT-W. Therefore, we further adjusted the results of GESAT-W using

genomic control.

No genes reached genome-wide significance at the p-value threshold of 12'237 = 2.63 x 107°,

commonly-used in gene-based analyses (Epstein and others., 2015). Table 2 lists the top genes for

which at least one of the five tests gives a p-value < 10™*. The gene CCNDBP]I had the smallest

1 —

p-value, detected by MAGEIT RAN (p-value = 2.80 X 107°) at a significance level of YT



https://doi.org/10.1101/2023.05.28.542666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.28.542666; this version posted May 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

5.27 X 107°, a suggestive significance threshold in genome-wide scan (Lander and Kruglyak,
1995). The p-value of EPB42 (p-value = 5.98 x 107°) is close to the suggestive significance
threshold, generated by MAGEIT RAN. Both CCNDBPI and EPB42 are located at 15q15.2. The
cytogenetic region 15q15 has previously been reported to be associated with blood pressure (Kraja
and others., 2005). Moreover, EPB42 was shown to be significantly down-regulated in heavy
drinkers after exposed to psychological stress (Beech and others., 2014, Chen and others., 2021,
Ma and others., 2022).
4.2 Pathway analysis

Functional pathway analysis was conducted on genes that had G X E to identify enriched
pathways related to hypertension, using MetaCore™. The top genes for which at least one of the
five tests had a p-value < 5 X 1073 were selected. Fisher’s exact test was used to determine
whether the gene list was enriched for a functional pathway. At the false discovery rate (FDR) <
0.05, there are 16 significant pathways that were reported to be related to hypertension (Table 3).
Of particular interest are eight signaling pathways related to development and signal transduction
that are relevant to hypertension and alcohol drinking. The first three pathways include a signal
transduction pathway related to ERK1/2 signaling (p-value = 9.66 X 10™°, FDR = 1.08 X 107?)
and two development pathways related to activation of ERK by alpha-1 adrenergic receptors (p-
value = 4.82 X 1073, FDR = 4.92 X 1072) and EPO-induced MAPK (p-value = 4.82 X 1073,
FDR = 4.92 x 10~2). Mitogen-activated protein kinases (MAPKSs) are a group of serine/threonine
kinases that include extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinases
(JNK1/2/3), and p38 (El-Mas and Abdel-Rahman, 2019). Highly conserved in eukaryotes, the
MAPK signaling pathway has been implicated in cardiac remodeling and myocardial damage (Liu

and Molkentin, 2016). For example, cardiac-specific ERK1/2 knockout mice developed cardiac
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dilation and eccentric growth of the heart (Kehat and others., 2011), suggesting that ERK1/2 can
regulate critical signal transduction pathways. In addition, p38 family members can participate in
both protective and deleterious actions in the stress myocardium, demonstrating a key role for
MAPKSs proteins in cardiac physiology (Romero-Becerra and others., 2020). The fourth pathway
is a developmental module related to vascular endothelial growth factor (VEGA) signaling and
activation (p-value = 3.97 X 1073, FDR = 4.50 x 10~2). The VEGF signaling pathway plays a
vital role in the vasculogenesis and angiogenesis in both embryo and adult (Zachary and Gliki,
2001). During neovascularization, VEGF is involved in gene expression, vascular permeability,
and the migration, proliferation, and survival of cells (Shibuya, 2011). Studies indicated that VEGF
blockade leads to endothelial dysfunction and the inhibition of VEGF-dependent vasodilatory
pathways (Robinson and others., 2010). These mechanisms together with the loss of microvascular
capillary density through capillary rarefaction cause systemic vasoconstriction and hence resulting
in hypertension (Robinson and others.,2010). An animal study also suggested that physiologically
relevant levels of alcohol consumption may associated with the stimulation of VEGF expression
and angiogenesis (Tan and others., 2007). The fifth one is a development pathway related to
positive regulation of WNT/Beta-catenin signaling in the nucleus (p-value = 1.87 x 103, FDR =
3.92 X 1072). WNT/Beta-catenin signaling pathway, also called canonical WNT signaling
pathway in this context, is active in adult cardiac tissue after many cardiac injuries (Ozhan and
Weidinger, 2015). WNT/Beta-catenin governs several elements of the renin-angiotensin system
(RAS) containing angiotensinogen, renin, angiotensin-converting enzyme, and AT1 receptor (L
Ruby and others., 2010, Xiao and others., 2019). Animal studies have shown that WNT2-deficient
(another canonical Wnt signaling component) mice exhibit vascular abnormalities, abnormal

vascular patterns, and increased vascular fragility (Cattelino and others., 2003, Iso and others.,
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2006). Interestingly, chronic ethanol consumption affects the activation of WNT/Beta-catenin
signaling pathway and WNT/Beta-catenin directly controls alcohol-induced big potassium (BK)
internalization (Mercer, Hennings and Ronis, 2015, Veldzquez-Marrero and others., 2016). The
sixth one is a development pathway related to WNT and Notch signaling in early cardiac
myogenesis (p-value = 2.35 X 1073, FDR = 4.00 x 1072). The Notch-mediated signaling,
together with other signaling pathway such as VEGF and WNT, play a crucial role in vascular
development and angiogenesis (Caliceti and others., 2014). Alternations of Notch signaling is
responsible for abnormal blood vessel and heart malformations (Zhou and Liu, 2014). Studies
shown that in human coronary artery endothelial cells, ethanol activates notch pathway (Morrow
and others., 2010, Morrow and others., 2014). The seventh pathway is a signal transduction
pathway related to angiotensin II signaling via beta-arrestin (p-value = 9.17 X 10™*, FDR =
3.00 x 1072). Angiotensin II (Ang II), a potent vasoconstrictor and a major effector molecule of
renin-angiotensin system (RAS), participates in atherosclerosis and cardiovascular remodeling and
raises blood pressure by exploiting various signaling cascades like WNT/beta-catenin (Benigni,
Cassis and Remuzzi, 2010, Forrester and others., 2018, Fyhrquist, Metsédrinne and Tikkanen, 1995,
Kawai and others., 2017, Zhou and Liu, 2016). Animal studies reveal that angiotensinogen genes
affect alcohol drinking behavior through Ang II (Fitts, 1993, Maul and others., 2001). The last
pathway is a signal transduction pathway related to adenosine Al receptor signaling (p-
value=1.06 X 107, FDR=1.08 x 1072). Adenosine modulates cardiovascular function and
produces bradycardia and hypotension when mediated systematically (Barraco and others., 1987,
Evoniuk, von Borstel and Wurtman, 1987). Activation of adenosine A1 receptor causes contraction
of vascular smooth muscle and the adenosine A1l receptor agonists produce decreases in blood

pressure and heart rate (Schindler and others., 2005). It has been observed that raised adenosine
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levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of Al
receptors in the cerebellum, striatum, and cerebral cortex (L Ruby and others., 2010). A1 agonists
have been shown to decrease anxiety-like behavior, tremor, and seizures during acute ethanol

withdrawal in mice (Kaplan and others., 1999).

5. Conclusion

Human complex diseases are influenced by both genetic variation and interactions between
gene and environmental factors. Many disease-associated genes have already been identified.
Consequently, detecting and understanding gene-environment interactions becomes an important
task for disease risk prediction (Hunter, 2005). In this study, we developed two methods
MAGEIT RAN and MAGEIT FIX to detect the interaction between an environmental factor and
gene sets where the genetic main effects were modeled as random or fixed, respectively. Both tests
can be applied to continuous and binary phenotypes. Our methods is based on the MQS estimation
(Zhou, 2017), which has been applied in MAPIT (Marginal ePlstasis Test) (Crawford and others.,
2017) and LT-MAPIT (liability threshold marginal epistasis test) (Crawford and Zhou, 2018) to
detect gene-gene interactions. Our methods not only apply the MQS estimation to detect gene-
environment interaction but also extends their methods by modeling genetic main effects as
random in MAGEIT RAN. Since variants in a genomic region can be either protective or
deleterious and their effect sizes may vary, modeling genetic effects as random, as in
MAGEIT RAN, can capture different directions and magnitude of the genetic effects.

We compared the performance of MAGEIT RAN and MAGEIT FIX and three set-based
G X E tests through simulations and real data analysis. In the simulation study, we demonstrated

that MAGEIT FIX had well-controlled type I error rate while MAGEIT RAN was slightly


https://doi.org/10.1101/2023.05.28.542666
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.28.542666; this version posted May 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

conservative, especially for binary phenotypes, due to approximations used when specifying
MAGEIT on binary phenotypes. MAGEIT RAN was overall the most powerful among the five
methods across all simulation settings. Application of MAGEIT RAN and MAGEIT FIX to the
MESA hypertension data identified two genes, CCNDBPI and EPB42, located at the cytogenetic
region 15q15.2 which has been reported to be associated with blood pressure. The EPB42 gene
was reported to be significantly down-regulated in heavy drinkers after exposed to psychological
stress. Moreover, we identified 16 significant pathways that were related to hypertension, among
them eight signaling transduction and development pathways are related to hypertension and
alcohol usage. Given the established role of the genes and pathways we identified, MAGEIT has
been shown to be able to detect biologically relevant genes that interact with environmental factors
to influence complex traits.

There are several limitations in our methods. First, the type I error of MAGIT RAN is
conservative, particularly when there are genetic main effects, thus resulted in slight power loss in
simulation scenarios 5-8. This is because the variation of the estimated variance component 672 is
larger when there are genetic main effects compared with no genetic main effect. Additionally, in
MAGEIT_RAN, the regression coefficients f; of the genetic main effects are assumed to be
independent and y; of the G X E interactions as well. In reality, it is possible there exist
correlations among these effects in a genomic region. This assumption may contribute to power
loss, particularly in cases where most variants interact with the environmental factor and the effects
of interactions are in the same direction. Nevertheless, considering the inherent complexities of
linkage disequilibrium and haplotype effects, it is more appropriate to consider potential
correlations among these coefficients. Given this, our model can be expanded to accommodate

correlations among variants in a genomic region.
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6. Software

Code to reproduce the results of the article is available at https://github.com/ZWang-Lab/MAGEIT.
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Table 1. Empirical type I error of MAGEIT RAN and MAGEIT FIX, based on 10° replicates

Test Nominal Continuous Binary
Level Scenario 1 Scenario2 Scenario3 Scenariol Scenario2 Scenario 3
0.01 9.66x 10" 8.85x10° 862x10° 9.51x10° 7.77x10° 847x10°
MAGEIT _RAN 0,001 817x10" 6.09x10" 530x10" 7.90x10" 4.92x10° 5.04x10"
0.0001  6.70x10° 2.90x10° 3.40x10° 620x10° 2.80x10° 220x10"
0.01 9.87x10° 9.98x10° 1.02x10° 9.68x10° 9.67x10° 9.70x10"
MAGEIT FIX 0,001 9.89x10" 9.99x10" 957x10" 938x10" 9.58x10° 8.99x10"

0.0001 101x10" 9.80x10° 880x10° 9.00x10° 870x10° 920x 10"

The 95% confidence interval of a nominal level @ was calculated as a + 1.96,/a(1 — a)/106.
Specifically, the 95% confidence intervals are (9.80 x 1073,1.02 x 1072) for @ = 0.01, (9.38 X
107%,1.06 x 1072) for @ = 0.001, and (8.04 X 107°,1.20 x 10™%) for « = 0.0001 . Rates
outside of the 95% confidence interval are in bold.
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Table 2. Genes with p-value < 10 in at least one of the tests in the MESA data

Chr Gene  #SNP Region MAGEIT RAN MAGEIT FIX GESAT-W  aMiSTi  ADABF
CCNDBPI 237 15q152  280x10° 203%10° 628x10° 332x10° 490x10°
EPB42 269 15q152 598x10° 205x10° 1.12x10° 3.97x10° 1.00x10"

The smallest p-values among the five tests at the given genes are in bold.
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Table 3. Pathways with FDR < (.05 in the MESA data

Pathway P-value FDR

Signal transduction ERK1/2 signaling pathway 9.66 x 10'5 1.08 x 10'2
Signal transduction_Adenosine A1l receptor signaling pathway 1.06 x 10'4 1.08 x 10'2
Signal transduction_Adenosine A3 receptor signaling pathway 476 100 216x10"
Development Thromboxane A2 signaling pathway 557x10° 2.17x10°
Translation_Translation regulation by Alpha-1 adrenergic receptors 6.96 x 10" 247x10"
Signal transduction_S1P2 receptor inhibitory signaling 8 58 x 10'4 2.92 x 10'2
Signal transduction_Angiotensin II signaling via Beta-arrestin 917x10"  3.00x10"
Regulation of CFTR activity (normal and CF) 126 x10°  321x10"
Development_Positive regulation of WNT/Beta-catenin signaling in the nucleus 187100 3.92x10"
Signal transduction_S1P1 receptor signaling 2.13 x 10'3 3.92 x 10'2
Development. WNT and Notch signaling in early cardiac myogenesis 235x10°  4.00x 10"
Nociception Nociceptin receptor signaling 2.67 x 10'3 4.19 x 10'2
Development VEGEF signaling and activation 397x10°  4.50x10"
Development Estrogen-independent activation of ESR1 and ESR2 453x10° 48010
Development Activation of ERK by Alpha-1 adrenergic receptors 4.82 x 10'3 4.92 x 10'2

Development EPO-induced MAPK pathway 4.82 x 10'3 4.92 x 10'2
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Figure 1. Empirical power of MAGIT RAN, MAGIT FIX, GESAT-W, aMiSTi and ADABF for
a continuous phenotype.
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Figure 2. Empirical power of MAGIT RAN, MAGIT FIX, GESAT-W, aMiSTi and ADABF for
a binary phenotype.
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