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Abstract

Imaging Flow Cytometry (IFC) enables rapid acquisition of thousands of single-cell images
per second, capturing information from multiple fluorescent channels. However, the
conventional process of staining cells with fluorescently labeled conjugated antibodies for
IFC analysis is labor-intensive, costly, and potentially detrimental to cell viability. To
streamline experimental workflows and reduce expenses, it is imperative to identify the most
relevant channels for downstream analysis. In this study, we present PXPermute, a
user-friendly and powerful method that assesses the significance of IFC channels for a given
task, such as cell profiling. Our approach evaluates channel importance by permuting pixel
values within each channel and analyzing the resulting impact on the performance of
machine learning or deep learning models. Through rigorous evaluation on three
multi-channel IFC image datasets, we demonstrate the superiority of PXPermute in
accurately identifying the most informative channels, aligning with established biological
knowledge. To facilitate systematic investigations of channel importance and aid biologists in
optimizing their experimental designs, we have released PXPermute as an easy-to-use
open-source Python package.
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Introduction

Imaging flow cytometry (IFC) is a high-throughput microscopic imaging technique that
captures multiparametric fluorescent and morphological information from thousands of single
cells. This versatile method allows researchers to rapidly record and analyze large cohorts of
cells, providing valuable insights into cell populations 3. IFC has been used for profiling
complex cell phenotypes and identifying rare cells and transition states 3, making it an
indispensable tool for various applications such as drug discovery *, disease detection,
diagnosis 3, and cell profiling *®. Fluorescent staining of cells, while informative, is not
without its limitations. The panel design process for imaging flow cytometry (IFC) can be
time-consuming and expensive °. Moreover, the use of multiple stains can introduce
complications such as spectral overlaps and compensation issues °. Additionally, fluorescent
staining has the potential to harm cells, and artifacts may arise during the staining and
sample preparation steps 4. To address these challenges, it is crucial to carefully select a
restricted number of stainings, simplifying laboratory procedures, reducing costs, preserving
cell integrity, and enabling the evaluation of new fluorescent stainings. This is particularly
significant in the context of delicate cells in hematological diseases * or synapse formation °.
Machine learning methods, such as image classification, promise to deliver accurate,
consistent, fast, and reliable predictions "3, A few open-source libraries have recently been
published, specializing in machine learning for IFC analysis '>"'4'> These libraries provide
in-model interpretability like random forest '® or post-model interpretability using methods
such as Grad-CAM ' for convolutional neural networks. However, none of them are
designed specifically to evaluate the importance of fluorescent channels and require
adaptation to address this specific task.

A natural solution to identify the most important fluorescent stainings is to systematically
remove single or combinations of channels and retrain and re-evaluate the model to
investigate the channel's importance for the model's performance. However, such an
approach is time-consuming and computationally costly, requiring 2" models to be trained,
where n is the number of channels. Another solution is to design model architectures that
allow for the analysis of different channel features separately. In that direction, Kranich et al.
'8 proposed a convolutional autoencoder (CAE) in which each channel is embedded
separately using an encoder and one shared decoder. The model embeddings are then
concatenated and passed to a random forest classifier that enables channel importance
rankings, as each channel is encoded separately. This method has two main limitations: (i) It
is bound to the specific model architecture, and training the CAE is only manageable if the
number of channels is limited, as training many separate encoders can be computationally
very expensive; (ii) Feature correlations across channels are ignored by extracting features
from each channel separately, which can negatively affect model performance or miss
meaningful correlations among stainings '°°.

We have developed PXPermute, a model-agnostic post-model interpretation method that
identifies channel importance, ranks channels according to their contribution to a
downstream task's performance, and improves upon the previously mentioned
shortcomings. We compare PXPermute with adapted state-of-the-art post-model
interpretability methods on three publicly available IFC datasets. Our work identifies the most
important channels that align with each dataset's biology. PXPermute can also identify the
least informative stainings, which might be eliminated from the experiment without affecting
model performance. To the best of our knowledge, PXPermute is the first method that
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systematically studies channel importance and can lead to optimized workflows in
multichannel fluorescent staining experiments.

Results

PXPermute - A model-agnostic post-hoc interpretability method for channel
importance

We propose PXPermute, a model-agnostic post-hoc interpretability method for channel
importance (Fig. 1a). Let's assume there exist a dataset with images x with n channels.
Moreover, for each x there is a corresponding label y covering m classes. Finally, a deep
learning or classical machine learning model f(x, y) is already trained on images x and label
y. To apply PXPermute, for each class (cl) in the dataset, the metric M, (e.g. accuracy) is

evaluated on an independent test set. Next, for each channel Ch, PXPermute randomly

shuffles pixels, and the model f(xCh) calculates the new performance Mflh after the

disturbance to the input image " This process is done iteratively for each channel Ch. We

define the difference between the original performance with the new performance as:

Ch

AMcl = Mcl — Mflh . The channel importance for a channel Ch can be obtained by

aggregating (e.g., average) the differences for each class {Mfﬁ, Mf:; Mfl}; MS;} (Fig 1b,

and Methods).

We selected three publicly available IFC datasets to demonstrate PXPermute's potential to
rank fluorescent stainings as well as stain-free channels in multichannel images. The first
dataset contains 15,311 images of two classes, comprising 8,884 apoptotic cells and 6,427
non-apoptotic cells with only a bright field and one fluorescent channel (Fig. 2a and
Methods). The second dataset contains 5,221 images of lymphocytes that form
immunological synapses '*%'. Images contain a single cell, two cells, or more than two cells.
It is distributed into the following nine classes: B cells, T cells without signaling, T cells with
signaling, T cell with smaller B cells, B & T cells in one layer, synapse without signaling,
synapse with signaling, no cell-cell interaction, and multiplets. This data set includes eight
channels: brightfield, antibody (Ab), CD18, F-actin, MHCII, CD3, P-CD3¢, and Live/Dead
stainings (Fig. 2b and Methods). Considering that the dataset consists of live T or B cells
with no antibodies, the Ab and Live/Dead channels do not contain any relevant information.
Therefore they are used as a sanity check in the channel importance analysis. Finally, the
white blood cell dataset '? includes 98,013 images with eight classes and twelve channels.
The classes are CD14+ monocyte, CD15+ neutrophil, CD19+ B cell, CD4+ T cell, CD56+
NK, CD8+ T cell, NKT, and Eosinophil. The channels include brighfield1 (BF1), CD15, SigL8,
CD14, CD19, darkfield (DF), CD3, CD45, brightfield 2 (BF2), CD4, CD56, and CD8 (Fig. 2c
and Methods).

PXPermute detects the most important channels in alignment with biological
knowledge

As a proof of concept, we used PXPermute on a ResNet18 22 pretrained on ImageNet 2, a
widely used deep learning model for image classification 2*?°. Considering that this model
was designed originally for natural images with three channels, we replaced the first layer of
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the network by matching the number of channels per dataset. Also, the classification layer
was changed based on the number of classes in each dataset (see Methods for details). We
trained the ResNet18 on each dataset to classify the cells into the given cell types and
compared it to the state-of-the-art performance. For the apoptotic vs. non-apoptotic cells, the
model reached the performance of F1-macro = 0.97+0.01 (mean and standard deviation
from five-fold cross-validation). For the synapse formation data set, the model reached an
F1-macro performance of 0.95+0.01. Finally, for the white blood cell dataset, our model
reached 0.98+0.01 of F1-macro (Methods).

Considering that no method has been previously developed for assessing channel
importance, we adapted already existing methods used for pixel-wise interpretation,
including occlusion 2, DeepLift %, Guided Grad-CAM ", integrated gradients %, and LRP
(Table 1 and Methods). We modified the occlusion method to occlude the images
channel-wise so that the whole channel is replaced with the 0. Similar to PXPermute, the
drop in model performance is considered as the channel importance (Supplementary Fig.
1a). The other methods originally provide pixel-wise importance for each image, typically
visualized as a heatmap *. We aggregate the pixel importance per channel to adapt them to
calculate a channel-wise importance score (Supplementary Fig. 1b). Except for channel-wise
occlusion, all these methods are not model agnostic and strongly depend on the quality of
the pixel importance estimation and its aggregation to obtain a channel score.

We benchmarked all interpretation methods on the trained models in the next step. With
each model training in the cross-validation scheme, we also run each interpretation method.
Therefore we have five values per method for each channel. To provide a comparative
overview, we normalized each channel's importance to the interval of 0 and 1 (Fig. 3).
Hence, the most important channel obtained an importance score of 1, and the least
important channel had a score of 0. For simplicity, the number of existing channels in the
datasets as well as previous relevant works, we only focus on the top-1 channel for the
apoptotic cell dataset and the top-3 channels for the synapse formation and the white blood
cell datasets.

We first applied the channel importance methods to the apoptotic cells dataset. Kranich et al.
previously showed on this dataset that the fluorescent channel is more important than the
brightfield channel for predicting apoptotic cells '®. PXPermute, channel-wise occlusion, and
Guided GradCAM correctly identified the fluorescent channel as the most important channel
for predicting apoptotic cells, which aligns with previous work . In contrast, integrated
gradients, DeeplLift, and LRP identify brightfield as the most important channel (Fig. 3a and
Supplementary Fig. 2a), leading to a false conclusion on this dataset.

For the synapse formation dataset, we previously showed that the most important channels
are CD3, MHCII, and P-CD3C '°2'". PXPermute identifies the top channels P-CD3Z, CD3, and
MHCII in line with previous knowledge (Fig. 3b and Supplementary Fig. 2b). Channel-wise
occlusion finds the same top-3 channels but in a different order. GradCAM identifies P-CD3(,
Live/Dead, and CD18 as the most important channels. This order does not fit to our prior
knowledge because Live/Dead is an irrelevant channel, as the original authors only
annotated the live cells. Integrated gradients and DeeplLift identify CD3, P-CD3C, and BF as
the most important channels. Finally, LRP identifies CD3, BF, and Ab as the most important
channels. This contradicts our knowledge, as no antibody exists in the dataset.

The white blood cell dataset has the largest number of channels and the highest variation of
the channel rankings. This dataset had not been used for channel importance before.
However, from the work of Lippeveld et al. '?, it is possible to infer that CD3, CD4, CD56, and
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CD8 are the most important channels. PXPermute suggests that the top-3 channels are
CD56, CD8, and CD4, confirming Lippeveld et al.’s work. Channel-wise occlusion suggests
that CD56, CD3, and CD19 are the most important channels. Guided GradCAM suggests
that BF1, CD56, and BF2 are the most important channels. Integrated gradients identified
CD46, CD19, and BF1 as the most important channels. DeeplLift indicates that the most
important channels are CD56, CD19, and BF1. Finally, LRP implies that CD19, BF2, and
BF1 are the most important channels (Fig. 3c and Supplementary Fig. 2¢). Our method

identified channel importance closely aligned with existing baselines and expert findings
10,12,18

Identifying and removing unnecessary channels with PXPermute

To validate channel importance rankings suggested by PXPermute and the other methods,
we applied the remove-and-retrain principle *': First, we sorted image channels according to
their predicted importance score in ascending manner, from the least important channel to
the most important. Then we iteratively removed channels from the dataset, from the least
important to the most important channel. Secondly, after each removal, the classification
model was retrained on the dataset containing the subset of channels to perform the same
classification task as before. During the remove-and-retrain process, we fixed model
hyperparameters. We repeated this procedure for every channel ranking (see Fig. 3). In an
ideal scenario, removing a channel that is not important for the model prediction should not
affect model performance while removing a channel that is important for the model should
highly affect its performance. Therefore, if the performance of a model during the
remove-and-retrain process drops faster for a given sequence of channels than for another
sequence of channels, it shows that the sequence ordering was not optimal. To numerically
compare the drops in classification performance, we calculate the average F1-macro across
all the runs (see Fig. 3).

For the apoptotic cells dataset, the order suggested by PXPermute, channel-wise occlusion,
and Guided GradCAM was the optimal sequence. They showed the highest performance
(average F1-macro of 0.97+0.01, n=10 based on five-fold cross-validation and two
channels). They were followed by LRP (0.83+0.14), integrated gradients (0.83+£0.15), and
DeeplLift (0.82+0.15) (Fig. 4a).

For the synapse formation dataset, PXPermute predicted the best sequence of channels
(average F1-macro=0.92+0.04, n=40 based on five-fold cross-validation and eight channels).
It was followed by GuidedGradCAM (0.90+0.05), DeeplLift (0.891£0.07), channel-wise
occlusion (0.89+0.08), integrated gradients (0.88+0.07), and LRP (0.86+0.08) (Fig. 4b).

For the white blood cell dataset, PXPermute, channel-wise occlusion, and DeeplLift predicted
the best sequence of channels (average F1-macro=0.97+0.02, n=60 based on five-fold
cross-validation and 12 channels). It was followed by integrated gradients (0.96+0.02),
Guided GradCAM (0.94+0.06), and LRP (0.90+0.05) (Fig. 4c). The same pattern could be
observed for average F1-micro and accuracy. Therefore, PXPermute is the only method that
correctly detects the order of the importance of the channels in all datasets (Fig. 4).

PXPermute finds the optimal panel with a minimal number of stainings

Identifying a minimal set of stainings required for a downstream task has manifold
advantages, such as the potential to reduce staining artifacts, save cost and time in sample
preparation. It also allows adding new, more meaningful stainings to the panel. Therefore,
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identifying the minimum set of channels a model requires to deliver optimal performance is
highly beneficial. To investigate this effect, we compared the model's performance trained
with only non-stained channels, with only the most important channels according to
PXPermute adding non-stain channels and with all channels. We conducted these
experiments on the synapse formation and the white blood cell dataset (Fig. 5) and skipped
the apoptotic cell dataset, as it has only two channels.

For the synapse formation, the stain-free selection of channels (BF) achieves 0.78+0.09
F1-macro in a five-fold cross-validation setup. Adding the suggested channels from
PXPermute, namely, MHCII, CD3, and P-CD3(, improves the classification to 0.93+0.01
F1-macro, which is not so different from 0.94+0.01 F1-macro, which is the accuracy when
using all channels. For the white blood cell dataset, the stain-free selection of channels
(BF1, BF2, and DF) achieves 0.8410.04 F1-macro. By adding only the three most important
channels identified by PXPermute, namely CD4, CD56, and CD8, the classifier archives the
performance of 0.97+0.01 F1-macro, which is not significantly less than a model trained on
all channels, reaching 0.97+0.00 F1-macro. We have shown that PXPermute can identify the
most important channels for a cell classification task. The required channels can be halved
without significantly decreasing the model's performance.

Discussion

In this study, we introduced PXPermute, a pioneering post-model interpretability method that
assesses the impact of fluorescent stainings on cell classification. By applying PXPermute to
three publicly available imaging flow cytometry (IFC) datasets, we demonstrated its efficacy
in accurately identifying the most significant channels in accordance with biological
principles. Moreover, PXPermute facilitated panel optimization by recommending a reduced
number of stainings that maintained comparable performance to using all channels.

Channel importance in the context of staining has received limited attention in previous
studies, with only a handful of works touching upon its significance '*'®. Therefore, our
research represents the first comprehensive investigation into systematically exploring
channel and staining importance. Kranich et al. proposed a convolutional autoencoder that
can rank the channels after training a random forest on the decoupled features of each
encoder '®. However, this work is limited as it is constrained to a specific model architecture
and dataset with the smallest number of channels. Previously, we performed a
remove-and-retrain ablation study to identify the most important channels °. However, this
method needs a clearer channel ranking, and the computational expense of retraining the
model with all possible channel combinations is prohibitive. PXPermute addresses these
limitations and provides a model-agnostic method for feature ranking that can be applied
independently of the number of channels or model architecture.

To prove PXPermutes' robustness, we studied it on three different publicly available
datasets. We identified that the fluorescent channel is more important than the brightfield
channel for the apoptotic vs. non-apoptotic cells, which aligns with the previous work . In
the synapse formation study, MHCII, CD3, and P-CD3( were identified to detect
immunological synapses, again in alignment with the original study °. While other methods
also found a high-performing combination of channels, none aligned with underlying biology,
and they were probably only hinting at possible artifacts in the dataset. Finally, for the white
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blood cell dataset, the authors did not provide a clear channel importance ranking ™.
However, it was possible to infer from their work that adding CD4, CD56, and CD8 can
improve the classification performance significantly. This is the same combination as
suggested by PXPermute. Apart from the current datasets, PXPermute can potentially be
used on other data modalities such as multiplex IF images (mIF) >34 and multiplexed protein
maps %, where the data includes multiple fluorescent stainings with complex
morphologies.

To utilize PXPermute in lab conditions, we recommend performing a small experiment with
all the possible stainings and applying PXPermute to the data. After the post-hoc analysis,
the main experiment can be done using the selected channels.

A potential limitation in this work is the need to repeat the execution of PXPermute multiple
times to enhance its robustness. This iterative process can be time-consuming depending on
the dataset size and the number of channels involved. However, it is worth noting that
PXPermute has been designed to support parallelization, enabling significant acceleration of
the calculations and mitigating this limitation.

In summary, PXPermute is the first method that systematically studies channel importance
and can potentially lead to optimizing the workflow of biologists in the lab. PXPermute can
be implemented for panel optimization and benefit biologists in their lab work.
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Materials and Methods

Data sets

All data studied in this work was acquired through imaging flow cytometry. For model training
and testing, brightfield, as well as fluorescent channels, were used. In the datasets with a
strong imbalance, the training set was oversampled by randomly selecting indices from
minority classes with replacement. All images were rescaled to 0 and 1 using the minimum
and maximum of the datasets.

Apoptotic Cells dataset - This dataset was published by Kranich et al. '®, who not only
solved the binary classification task (apoptotic vs. non-apoptotic cell) but also studied the
channel importance directly. Each class is represented by only two channels, one
fluorescent (Fig. 2 a). The images were cropped to 32x32. The dataset was accessed here:

https://github.com/theislab/dali/tree/master/data

Synapse formation dataset - Shetab Boushehri and Essig et al. published this dataset %'
to study the process of synapse formation using IFC. Their dataset includes nearly 2,8
million images containing T cells and B-LCL cells or their conjugates; only 5,221 are labeled
by an expert. Each image contains eight channels containing brightfield (BF, stain-free),
antibody (Ab, fluorescent), CD18 (fluorescent), F-actin (fluorescent), MHCII (fluorescent),
CD3 (fluorescent), P-CD3C (fluorescent), and Live/Dead (fluorescent) (Fig. 2b). This
annotated subset only contains images of live cells with no antibody. Therefore, Ab and
Live/Dead channels are redundant. Moreover, they showed that for the classification of
synapses, the most important channels are MHCII, CD3, and P-CD3¢. Since the images are
in different sizes, they have been padded to 128x128 to prepare them for training. The
dataset was accessed here: https://doi.org/10.5061/dryad.ht76hdrk7

White blood cell dataset - The white blood cell dataset > (WBC) contains 98,013 IFC
images, each with twelve channels, which were obtained from two whole blood samples of
patients. In each image, a single cell is contained, with eight classes (Fig. 2 c): natural killer
(NK) cells (669 samples), neutrophils (18,325 samples), eosinophils (1,537 samples),
monocytes (1,282 samples), B cells (889 samples), T cells CD8+ (1,788 samples) and CD4+
(4,476 samples), natural killer T (NKT) cells (1,028 samples), and a separate class
comprising unidentifiable cells (1,286 samples). All images were reshaped to 64x64. The
channels comprise two brightfield channels, one dark field channel, and nine stained
channels. Lippeveld et al. "2 have shown that stain-free data suffices to classify monocytes
and neutrophils, but to classify others reliably, the dataset must include stained channels.
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The dataset was accessed here:
https://cloud.irc.ugent.be/public/index.php/s/assnP3Z2F|Tbztc

Classification Models

In this work, we analyzed a commonly used deep learning classifier. The models'
decision-making process cannot be interpreted without applying explainability methods. We
selected ResNet18 (16) from all image classification models due to its good performance
reported in the previous works '%'224 \We used weights pre-trained on ImageNet 23
implemented in the PyTorch package *. To utilize the scikit-learn ® pipeline for the deep
learning model, we used the model wrapper from the Skorch library 3. The pipeline
comprises the data transformation step, which includes normalizing samples with 1st and
99th percentile of images for each dataset, random vertical, horizontal flip, and random
noise. To evaluate and compare model accuracy, we have used the F1-score. The model
was trained with the cross-entropy loss and AdamW optimizer, with a batch size of 128. The
learning rate was set to 0.001 when initializing a new model before starting the training and
was kept decreasing by a factor of 0.5 if there was no improvement in the F1-macro score of
the validation set for five epochs straight. We have also applied the early stopping technique
abrupting the training if the same metric stays constant + 0.0001 for 50 epochs.

Model Interpretation

To the best of the authors’ knowledge, no methods can be directly applied to the pre-trained
model to evaluate the channel importance. However, some methods evaluate the
importance of a single or set of pixels. Thus, our first approach was to aggregate their results
per channel. The aggregation method takes the median of the pixel values per channel.

In this study, we have used the following pixel-wise interpretation methods to analyze the
channel importance:

PxPermutes - Analog to pixel-wise interpretation, channel importance can be estimated via
conducting sensitive analysis: measuring changes in the model output caused by changes in
input. However, our method permutes pixels in the channel compared to occlusion %, which
replaces a specific pixel area with an occluding mask. We avoid violating the critical principle
of machine learning, which states that training and test sets must be drawn from the same
distribution.

Permuting pixels per channel destroys the structural information contained in contours,
edges, or areas. It can still be guaranteed that the degradation in the model performance
was not due to the artifacts in the distribution.

PXPermute augments each image channel in a dataset by permuting the pixels of each
channel k times. For a dataset with N images, PXPermute generates N * k modified
multichannel images; see Fig. 1 b. The user can define the parameter k: a larger k leads to
more robust results but requires more computational resources. For a very large k, the
algorithm's complexity increases and approaches the brute force search approach, in which
the model is retrained and re-evaluated for all possible channel combinations. We test
PXPermute on a single cell classification task, measuring the drop in F1-score as our metric
for performance evaluation. PXPermute design is inspired by the previous works on feature
importance as well as interpretability of CNN models 264%4'  which tries to solve the
disadvantages of the other interpretability methods and combine all the strengths, such as
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independence on the model architecture, preserving the same train/test distribution, and
simplicity in one method.

Occlusion - Zeiler et al. % introduced the idea of estimating the importance of the part of the
scene by replacing it with a grey square and observing the classifier's output. Such a
technique was called sensitive analysis or occlusion sensitivity. Later, Zintgraf et al. initiated
removing the information from an image completely and calculating the effect. In addition,
the authors proposed optimizing the occluding strategy by introducing the marginalization of
the occluded pixel. Finally, the method was studied further and formalized by Samek et al. **:
R = fx) — f(xOA — mi)), where R is a heatmap, fis a classifier function, m is an

indicator function for removing the patch or feature, and ® denotes the element-wise
product. As a result, the heatmap highlights the patches (pixels) stronger if their removal
affected the classifier results more. Due to its mechanism, the method is referred to as the
perturbation-based forward propagation method.

Despite the simplicity of the concept, the method has its disadvantages. One of them is
computational complexity. Every time one pixel or patch is occluded, the output must be
recomputed. The computational time can rapidly become infeasible if the input is very large.
Another problem of the approach is the saturation effect. It occurs when removing only one
patch at a time does not affect the output, but removing multiple patches simultaneously
does. This leads to misinterpretation and wrong conclusions. In addition, occluding the test
image changes its distribution, which can lead to a corrupted interpretation.

Guided Grad-CAM - another way of interpreting a model is backpropagating an important
signal from the output towards the input. If occlusion requires perturbing and passing the
input forward multiple times, this approach needs to do a backward pass only once, making
it computationally efficient. Nevertheless, gradient-based backpropagation methods have
drawbacks, including the saturation effect and being designed for convolutional neural
networks only.

Guided Grad-CAM is an element-wise product of the results of two other interpretational
approaches: Guided Backpropagation and Grad-CAM ". On the one hand, Grad-CAM uses
the last convolutional layer's gradient information to evaluate each neuron's importance for a
specific class. On the other hand, Guided Backpropagation isn’t class-discriminative but
rather highlights details of an image by visualizing gradients in high resolution. Thus, fusing
both methods results in high-resolution class-discriminative saliency maps.

DeepLift - with this method, authors addressed the saturation problem by considering
gradient-based interpretation approaches ?’. Instead of propagating the gradients, this
approach suggests propagating the difference from a reference. For example, the reference
input can be blurred images or images containing only the background color. Consequently,
the method's output strongly depends on the definition of reference input, which requires
data or domain knowledge.

Layer-wise relevance propagation (LRP) - the idea is to calculate the relevance of input
features to the particular prediction %. The relevance is propagated from the output back to
the input layers by distributing the output value into relevance scores for each underlying
neuron sequentially based on the model’s weights and activations. So that the neuron with a
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positive contribution receives proportionally a bigger relevance score. The method applies
the set of propagation rules depending on the activations and layers, making this method
more difficult with the implementation and more computation expensive if applied to a
large-scale model.
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Figure 1: PXPermute allows to identify most important fluorescent channels in a
multi-channel imaging flow cytometry experiment and thus reduces lab work and
expenses.

a. Schematic of a PXPermute embedded end-to-end analysis. In the first part, biologists image
thousands of single cells using imaging flow cytometry in different fluorescent and brightfield
channels. The second part PXPermute, will select the most important channels based on the
task.
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b. Schematic of PXPermute, a simple yet powerful method to find the most important channels.
In the first step, a performance metric Mcl (such as accuracy or F1-score) is calculated per class
cl. Then each channel Ch is shuffled, and the performance per class cl is calculated as Mflh

Finally, the difference between the original performance and the permuted one is calculated.
These differences are averaged and yield the channel importance.
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Method name Adaptation Advantages Disavantages
+ Open source
+ Model agnostic
PXPermute None + Simple concept o ) - Higher run time
+ Keeps the data distribution
+ No parameter tuning
. Occluding + Rapid run-time
Channel-wise !
: channels + Model agnostic B P
occlusion instead of + Simple concept Changes the data distribution
pixels + No parameter tuning
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(Selvaraju et al.) per channel P - Needs adaptation
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(Shrikumar et al.) values + Open source - ﬁqulresdparameter tuning
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Using the .
. . e - Model-specific
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: per channel - Needs adaptation

Table 1: Adaptation of used methods for benchmarking.

Apart from PXPermute, designed for channel importance, all other methods are adapted from
their original design. Their other advantages and disadvantages are based on model specificity,
design complexity, run-time, and the need for tuning.
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Figure 2: Three datasets with various numbers of images and channels are used to
evaluate PXPermute.

Rows indicate classes, and columns indicate the channels. Channels marked with (*) indicate
that those channels have been identified as the most important channels in previous works.
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a Apoptotic cells: a dataset containing 15,311 images with one stain-free, bright-field (BF) and a
fluorescent channel (FL).

b Synapse formation: a dataset containing 5,221 images with one stain-free channel (BF) and
seven fluorescent channels, namely Antibody (Ab), CD18, F-actin, MHCII, CD3, P-CD3¢ and
Live/Dead.

¢ White blood cells: a dataset containing 2,9994 images with three stain-free channels, two
bright fields (BF1 & BF2), a dark-field (DF), and nine stained channels including CD15, SigL8,
CD14, CD19, CD3, CD45, CD4, CD56, and CDS8.
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Figure 3: PXPermute robustly identifies the most important channels.

Each dataset's channel importance is depicted and normalized between zero and one. The
higher the values, the more important the channels. The error bars are based on a five-fold
cross-validation scheme. Channels marked with (*) indicate that those channels have been
identified as the most important channels in previous works.
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Figure 4: PXPermute outperforms other methods in identifying the correct channel
ranking based on a remove-and-retrain procedure.

The remove-and-retrain based on the channel ranking is performed on the apoptotic cells (2
channels), synapse formation (8 channels), and white blood cells (12 channels) datasets. In
each case, the channels are ascendingly sorted according to their predicted importance score,
from the least important channel to the most important. Then the channels are iteratively
removed from the dataset, from the least important to the most important channel. After each
removal, the classification model was retrained on the dataset containing the subset of channels
to perform the same classification task as before. Methods with better rankings would stay
higher throughout the plot. PXPermute performed better in finding the optimal channel rankings
than other methods.
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Figure 5: PXPermute finds an optimal channel selection that performs similarly to using
all the channels.
For the synapse formation (a) and white blood cells datasets (b), the model was trained on the
stain-free channels (lower bound), stain-free + top-3 channels identified by PXPermute, and all
channels (upper bound). PXPermute rankings lead to fewer stainings (3 out of 7 in a, 3 out of 8
in b) without a significant loss in performance.
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Supplementary Figure 1: Baseline methods for channel importance measurement and
comparison with PXPermute.
a. Schematic of channel-wise occlusion. In the first step, a performance metric M, (such as

accuracy or F1-score) is calculated per class cl. Then each channel ch is occluded with 0, and
the performance per class cl is calculated as Mflh Finally, the difference between the original

performance and the permuted one is calculated. These differences are averaged and yield the
channel importance
b. Adaptation of pixel-wise interpretability method for channel importance. For each method, the
pixel importance for each sample is calculated. Then the median of the pixel importance per
channel is calculated. The aggregation of these values over the whole dataset is considered as
channel importance.
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Supplementary Figure 2: Average channel importance per method
Average value of normalized feature importance for each channel and method per dataset. The
values in the heatmaps show the average values in Fig. 3.
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