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Abstract

Gestational Diabetes Mellitus (GDM), a serious complication during pregnancy which is defined by abnormal
glucose regulation, is commonly treated by diabetic diet and lifestyle changes. While recent findings place the
microbiome as a natural mediator between diet interventions and diverse disease states, its role in GDM is still
unknown. Here, based on observation data from healthy pregnant control group and GDM patients, we
developed a new network approach using patterns of co-abundance of microorganism to construct microbial
networks that represent human-specific information about gut microbiota in different groups. By calculating
network similarity in different groups, we analyze the gut microbiome from 27 GDM subjects collected before
and after two weeks of diet therapy compared with 30 control subjects to identify the health condition of
microbial community balance in GDM subjects. Although the microbial communities remain similar after the
diet phase, we find that the structure of their inter-species co-abundance network is significantly altered, which
is reflected in that the ecological balance of GDM patients was not "healthier" after the diet intervention. In
addition, we devised a method for individualized network analysis of the microbiome, thereby a pattern is
found that individuals with large deviations in microbial networks are usually accompanied by their abnormal
glucose regulation. This approach may help the development of individualized diagnosis strategies and

microbiome-based therapies in the future.

Author Summary

In this study, we aimed to investigate the role of the gut microbiome in gestational diabetes mellitus (GDM),
a condition that affects pregnant women and is characterized by abnormal glucose regulation. Specifically, we
asked whether and how the gut microbiome is affected by diabetic diet which is commonly used to treat GDM
patients. We developed a new network approach to analyze patterns of co-abundance of microorganisms in

the gut microbiota of GDM patients and healthy pregnant women. Our findings show that although the
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microbial communities remained similar after the diet phase, the structure of their inter-species co-abundance
network was significantly altered, indicating that the ecological balance of GDM patients was not "healthier"
after the diet intervention. Furthermore, we suggest that abnormal glucose regulation is associated with large
network deviations, which could lead to the development of individualized microbiome-based therapies in the
future. Our work highlights the importance of studying the microbiome from a network perspective to better

understand the dynamic interactions among microorganisms in the community balance of the microbiome.
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Introduction

Gestational diabetes mellitus (GDM) refers to glucose intolerance that occurs or is first detected during
pregnancy [1, 2]. GDM appears to be caused by the same physiological and genetic abnormalities as extra-
gestational diabetes [3]. It is estimated to affect between 3-9% of pregnant women worldwide and is related
with high rates of serious complications, for example shoulder dystocia and birth injuries, which includes bone
fractures and nerve palsies[3, 4]. Babies born to mothers with GDM may have issues with persistent impaired
glucose tolerance [5], subsequent obesity [6], and impaired intellectual achievements [7]. Furthermore, even
after pregnancy, people with GDM may still have diabetes, which poses a high risk for people with GDM [8,
9]. Common treatments of GDM that aim to reverse hyperglycemia include lifestyle changes and insulin
therapy [10]. Usually, lifestyle changes consist of diet intervention, exercise therapy and blood glucose self-
monitoring. Insulin therapy is often used when lifestyle changes fail to control blood glucose levels or when
complications arise with the fetus.

GDM is a typical metabolic disease that occurs during pregnancy, which may suffer from gut microbiome
disorders. In fact, in recent years, many diseases, not only metabolic diseases, have been found to be closely
related to flora disorders, including Clostridium Difficile infection (CDI) [11], colorectal cancer [12], dietary
choline-induced atherosclerotic heart disease [13] and chronic diseases such as obesity [14]. In some cases,
the change in the microbiome during a disease appears as an abnormal abundance of specific taxa [15].
However, a disease state can also be associated with a community-wide shift of the microbiome state
(commonly evaluated in terms of PCA or a- and [-diversity measures). Such cases represent more general
abnormalities that are linked to the interactions between the species and their ecological balance [16]. One of
the most important factors that can influence microbiome composition is diet [17-19]. For example, the

Mediterranean diet may benefit those with underlying conditions, such as obesity, blood lipids and
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inflammation [20]. Diet interventions may cause community-wide alterations of the microbiome, by affecting
the ecological interactions via promoting or inhibiting microbial growth [21].

Thus it can be seen that understanding the underlying role of the microbiome of GDM patients is essential
in two ways: On the one hand, an altered microbiome can affect their general health state. On the other hand,
the individual composition of the microbiome may be related to the success of dietary interventions. Current
studies of the microbiome in GDM patients have mainly focused on the abundance of specific microbial taxa
[22, 23] , but not on the global interaction structure of different taxa. These studies revealed that the
proportions of certain microbes in GDM patients differ from those in healthy subjects [24, 25]. However, at
the microbiome community level, there was no clearly difference in composition and structure of intestinal
microbiome communities between GDM patients and healthy pregnant women at three different stages of
pregnancy through PCoA and a-diversity analysis [1, 26]. Thus, it is still unclear whether alterations of the
community structure of the microbiome play any part in the condition of GDM.

Considering traditional biological community methods were unsuccessful in fully revealing the changes
of the microbiome community of GDM patients, here we wish to instead analyze the microbiome community
from the network perspective of co-abundance. To unveiling the complex web of interactions in microbial
communities, dynamic ecology and evolutionary processes which drives them are required to be understood
[25]. Microbial community structure and their functions are complex because of their dynamic nature,
variability in composition, their self-reproduce ability and self-organize ability. Therefore, this complexity can
be well represented and modeled as a network[27, 28]. The interactions within microbial communities can be
well analyzed through the network method. In addition, the network approach can also be used to analyze the
role of microbial communities between disease and health [29], and thus can detect changes in the appropriate
ecological balance, helping to identify the health of microbial community balance, and providing additional

information about the underlying dynamics. In contrast to traditional microbiome analysis, which focuses on
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whether the abundance of individual species is within the normal range and detects abnormal abundances, the
network analysis method focuses on the balance between species and detects abnormal ecological interactions.
Combined with the existing diet intervention strategies, in order to better understand the changes of
microbiome in the course of GDM health evaluation and diet intervention, in this study, we propose a new
approach which is based on individualized - and group-networks to analyze the changes in microbial
communities between subjects with GDM and subjects without GDM (healthy), with and without diet
intervention. The community structure and community balance are analyzed and compared with and without
diet intervention by network similarity calculation. We reveal the effect of diet intervention on the microbiome
of GDM patients and demonstrate the relationship between the network structure of the microbiome and the
diagnosis of individual blood glucose. These findings provide support for evaluating the recovery of GDM
patients, and contribute to the future personalized microbial-based medicine.
Results

Data collection and microbiome network analysis

The experimental design of this study consists of observing and collecting data from healthy pregnant
women and GDM patients who received diet intervention before and after two weeks, that was not especially
designed for this study. The oral glucose tolerance test (OGTT) is performed to all pregnant subjects at the
first instance of stool collection. Women with abnormal blood glucose levels during the test were diagnosed
with GDM and receive traditional diet intervention. Patients with GDM had their daily calorie intake tailored
to their weight by a nutritionist (see Methods). Women with normal blood sugar levels were designated to the
control, healthy group. In this observational study, diet intervention was applied by the hospital as part of the
routine treatment for GDM patients, while, to mitigate ethical concerns, healthy pregnant women were not
recommended any special diet intervention. Dietary intervention for patients with GDM is the suggestion of

clinical dietary treatment for patients with GDM. The experimental data was collected during routine treatment
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of healthy and GDM pregnant women at Peking University People's Hospital (see Methods). Two cohorts of
27 patients with GDM and 30 healthy pregnant controls were recruited for this study. All subjects were
between 24 and 28 weeks of gestation at the start of the study. The average age of the 30 subjects in the control
group was 31.4 years, with an average pre-pregnancy BMI of 21.3 before pregnancy, and an average BMI at
sampling of 25. The average age of the 27 patients with GDM was 32.7 years, with an average BMI of 24.1
before pregnancy and 27.04 at sampling. 16S rRNA analysis of stool samples collected twice over a two-week
interval represents the microbial communities at the operational taxonomic units (OTUs) level. These sample
sets are notated as g(W0) and g(W2) for the GDM subjects and h(W0) and h(W?2) for the healthy subjects (Fig.
la). GDM patients had diet intervention treatment during these two weeks. Blood glucose levels were
collected following the OGTT and routine monitoring. In the first sampling, the OGTT was performed on all
subjects, and was used to classify the subjects as either healthy or GDM (Fig. 1b). During the second sampling,
after two weeks, normal routine blood glucose monitoring was performed on the GDM group alone (Fig. 1b).

Of the original cohort, 7 pregnant women completed the second glucose test.

Fig 1. Description of the experimental setup and data collection process. a) Experimental setup - Subjects include
27 GDM patients and 30 healthy pregnant women as the control group. Samples were collected twice for each subject,
at interval of two weeks. The GDM patients executed diet intervention for two weeks. b) Collection of microbial and
blood glucose information - To collect microbial information, DNA was taken from all subjects through feces, using
16S rDNA sequencing to derive taxonomic classification of microbiome and microbial community. To collect blood
glucose information, 75 gram OGTT was performed on all subjects at the first sampling and routine blood glucose

monitoring was performed on 7 GDM patients at the second sampling.

OTUs co-expression networks were reconstructed for the four different sample groups. In our study,


https://doi.org/10.1101/2023.05.28.542631
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.28.542631; this version posted May 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

network analysis includes two types: group analysis and individual analysis (Fig. 2, see Methods section).
Group analysis compares the similarity of microbial networks between two groups of subjects (Fig.2a).
Individual analysis measures how much the ecological balance of an individual subject is consistent with the
ecological balance of the rest of the subjects in the same group. We estimated the individual's network-impact
with a ‘leave-one-out’ procedure (inspired by the method described in [30]). Specifically, we introduced two
ways to evaluate the network-impact of an individual sample. First, we compared the network structure
reconstructed from samples without the interested sample and with the interested sample (Fig. 2b). Second,
we measured the impact of the interested sample with respect to reference samples indirectly (Fig. 2c). The
network analyses were also accompanied by traditional microbial community analysis for the purposes of

comparison.

Fig 2. Overview of network reconstruction method and evaluation. For each sample set, a network of pairwise
interaction was constructed. Network edges are constructed according to correlation value, and the set of edges were
used to evaluate the overlap between networks. a) The method of evaluating the similarity between two different sets.
b) The method of evaluating the impact/effect of each individual on the network reconstructed for its group. c) The

method of evaluating the impact/effect of each individual on the network reconstructed for the other groups.

The microbiome composition in patients with GDM and healthy pregnant
subjects

After the OTU filtering procedure, 108 OTUs were left in each group (see Methods section). First, we
compare the similarity between different groups by community analysis methods. For the beta diversity
analysis, the root Jensen—Shannon divergence is used (rJSD) [31] to calculate the dissimilarity of the different

sample sets. For the PCoA analysis, we again use the rJSD metric to calculate the distance distribution between
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the different sets. It is found that the PCoA of the microbial composition of the healthy subjects and subjects
with GDM before and after two weeks of diet intervention shows no significant differences among the four
groups in the microbiome community structure (Fig. 3a). For each group, we also calculate the beta diversity,
measured as the pairwise distances among all samples in the same group (Fig. 3b). The Wilcoxon rank-sum
test shows no apparent significant differences between any two groups (P-value>0.05). This implies that it is
also difficult to observe the differences in the microbiome community of pregnant women under the OTU
scale using the traditional microbiome community analysis method. In addition, we have systematically tested
for diet-related changes, i.e., G(W0)/G(W2) comparisons, in all the individual taxa in our data (species
taxonomic level). We have found no individual taxa with a significant differential abundance (p-value>0.05
for all taxa, Mann-Whitney U-test with Bonferroni correction for multiple comparisons). Traditional
microbiome community analysis methods mainly focus on the differences in microbiome abundance values
in individual taxa, but often ignore the interactions between different taxa, which may be capture using

network approach.

Fig 3. Community analysis of the gut microbiome composition of healthy and GDM patients. a) Principal
Coordinates Analysis (PCoA) plot showing four groups of subjects. The horizontal and vertical coordinates are the first
two principal components respectively, and the percentages in parentheses are the percentages of variables that can be
explained in terms of principal components. b) Violin plot of beta-diversity among subjects within the same group
calculated by rJSD distance. The samples show no apparent significant differences between any two groups of them (P-
value=0.22, 0.51, 0.38, 0.79, 0.06, 0.15 separately using the Wilcoxon rank-sum test). The number of samples in healthy

group (h(W0) and h(W2) is 30 and the number of samples in GDM group (g(W0) and g(W2) is 27).

The stability of the microbial networks
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Next, we use the network analysis methods to analyze the networks' stability among the different groups.
We first calculate the Jaccard similarity between the microbial networks of the healthy group reconstructed
from samples collected at W0 and W2 and compare it to the Jaccard similarity calculated between two shuffled
networks. This shuffled model represents two independent networks, while preserving the number of links of
the original networks (see Methods). The Jaccard similarity of the healthy group is ~0.2, which is almost 4
times higher compared with the similarity between the shuffled networks (~0.05) (Fig. 4b). This represents
the consistency level of the network after two weeks for the same group, even without any known perturbation
(such as diet intervention). Similarly, the Jaccard similarity calculated between GW0 and GW2 (0.185) is also
significantly higher compared with the shuffled model, demonstrating its overall level of stability. This level
of stability (about 0.19) may reflect the dynamic of the microbiome during pregnancy or the technical
inaccuracy of the network reconstruction procedure and represents a baseline for the following analysis.
Importantly, the fact that the Jaccard value of the GDM networks before and after the two weeks is lower
compared with the healthy networks is inconclusive since it may be associated either to the GDM condition

itself or to the diet intervention.

Fig 4. Comparison of the healthy group similarity by network analysis. a) The consistency of the microbiome
network of the GDM group and the healthy group after two weeks are evaluated by comparing the similarity of the
GDM group and the healthy group to the null model. b) Comparison between the similarity score for the healthy group
and GDM group before and after the two week interval and the score of the groups of null models created using a
shuffling procedure (see Methods). In the null mode, the edges between the nodes are randomly shuffled, preserving the
overall network size. The similarity score for the unshuffled data is marked with yellow arrow and blue arrow,
representing Jaccard similarity between H(WO0) and H(W2), G(WO0) and G(W2), respectively. H(WO0), H(W2), represents

the network constructed by h(W0) and h(W2), respectively. H(W0), H(W2), represents the network constructed by h(WO0)
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and h(W2), respectively. G(W0), G(W2), represents the network constructed by g(W0) and g(W2), respectively. The
significant similarity between the networks calculated for the same subjects after a two weeks interval indicates that
they capture a consistent pattern of the inter-species correlations. * indicates p < 10™3 calculated as the fraction of

shuffled realizations with Jaccard value equal or larger than the observed value.

The effects of diet intervention on GDM patients

We next investigate the effects of diet intervention by analyzing the change in the microbiome community
balance level of GDM patients after diet intervention and comparing it to the microbiome of the healthy
subjects. Analysis was performed both on the community structure and the co-abundance network level. To
reduce biases, we do not directly compare the microbiome community balance of GDM patients and healthy
subjects before and after the diet intervention, because the differences in results may be due to diet intervention
or disease causes. Instead, in order to make a more effective comparison, we evaluate the change in the GDM
microbiome indirectly by measuring its similarity to the healthy microbiome, which serves as a reference
group (Fig. 5a). For the network analysis method, network similarity calculation is performed to identify the
balanced health of the microbial community in GDM patients during diet intervention. Surprisingly, after two
weeks of diet intervention, the similarity between the networks of the GDM patients and the healthy patients
is significantly reduced (Fig. 5b P-value<10~ using the Wilcoxon rank-sum test). Besides the network analysis
method, we compare the similarity between different groups by [ diversity analysis, too. By calculating rJSD
distances of microorganism between different groups samples, we found in contrast that there is no significant
differences in the distance between the GDM patients and the healthy community (Fig. Sc, P-value>0.02 using

Wilcoxon rank-sum test).

Fig 5. The effects of diet intervention on the gut microbiome as expressed by network and community analysis.
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a) The effect of the diet intervention on the microbiome of the GDM patients was evaluated indirectly by comparing it
to the reference group of the healthy patients. b) Violin plot of the Jaccard similarity between the networks of the GDM
group after diet intervention and the healthy group (shadowed areas) was significantly lower than before the diet (filled
areas) (P-value=3.72e-10 and 4.37e-10 using Wilcoxon rank-sum test). In addition, the similarity of H(W0)/G(WO0) is
significantly higher than the similarity of H(W2)/G(W2) (p-value =3.6e-9 using Wilcoxon rank-sum test). ¢) Violin plot
of the dissimilarity between different groups by community analysis method. Each value represents the average distance
(rJSD) calculated between each of the GDM samples and the samples of the reference group (healthy). The samples

show only minor variability (P-value=0.1323 and 0.0214 using Wilcoxon rank-sum test).

These results demonstrate that the microbial communities are altered during the two-week diet
intervention period. This change is not captured by traditional beta-diversity analysis or by distance measures
but is instead reflected in the ecological networks. Moreover, the direction of the change observed by our
‘indirect comparison’ was counterintuitive. While diet intervention is clinically beneficial to the GDM patients,
the underlying ecology of the patients’ microbiome was not ‘healthier’, i.e., it was less similar to the healthy
group. In the future we hope to discern whether these changes in the microbial co-abundance correlation have

direct casual relations to the health benefits of diet intervention in the GDM patients.

Associations between ecology of microbial network and abnormal glucose
patterns

Finally, we study the relationship between the microbiome of individual GDM patients and their blood
glucose measures. By analyzing individual microbiomes balance in GDM group, we hope to find out the
specificity of individuals in GDM patients and analyze whether this specificity is related to changes in blood

glucose, so as to provide support for personalized medicine. We apply microbial network analysis method to
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evaluate the differences in microbiome balance between each GDM individual and others in GDM patients
by calculating the network similarity. While the microbial networks represent the group-average relationships
between the microbes, each subject has a unique individual signature of microbial co-abundance relation, and
its specific networks can reliably describe individual specific disease states [30]. Using the "individualized
network analysis" methodology (see Methods), we analyze the microbial samples of individual subjects based
on their microbial network and compare it to the patterns of blood glucose levels from the OGTT and routine
blood glucose monitoring. To analyze the pattern of microbial co-abundance community balance in individual
subjects, we first perform a ‘leave-one-out’ procedure which compares between the networks calculated
without each patient and the ones calculated with it (Fig. 6a, see Methods). We directly measure the changes
in the network structure reconstructed from a cohort of samples after removing the individual sample k of
interest before diet intervention. Figure 6a shows that the Jaccard distance of patients number g2, g13 and g23
are significantly higher compared with the other patients using the Wilcoxon Signed-Rank Test (P-value=
1.18E-05, P-value=2.35E-05, P-value= 8.30E-06, respectively), suggesting that the community balance of

these individuals differ substantially from the others in the group.

Fig 6. Analysis of the relationship between microbial system and blood glucose levels. a) Evaluation of the changes
between individual network of each GDM patient and the whole network of all GDM patients by Jaccard dissimilarity
score before diet intervention. b) Evaluation of the impact of sample £ of GDM patients on the network of all GDM
patients by measuring its change with respect to the healthy women by Jaccard distance score before diet intervention.
c) Evaluation of the dissimilarity between each individual GDM patient to other GDM patients using the root Jensen—
Shannon divergence (rJSD) before diet intervention. d) Evaluation of the dissimilarity between individual GDM patient
to healthy women using the rJSD before diet intervention. ) OGTT blood glucose information collected by all GDM

patients before diet intervention. f) Evaluation of the changes between individual network of each GDM patient and the
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whole network of all GDM patients by Jaccard dissimilarity score after diet intervention. g) Evaluation of the impact of
sample k of GDM patients on the network of all GDM patients by measuring its change with respect to the healthy
women by Jaccard distance score after diet intervention. h) Evaluation of the dissimilarity between each individual
GDM patient to other GDM patients using the root Jensen—Shannon divergence (rJSD) after diet intervention. i)
Evaluation of the dissimilarity between individual GDM patients to healthy women using the rJSD after diet intervention.
j) Routine blood glucose monitoring information collected by 7 GDM patients after diet intervention. The shadow box
corresponds to the subject with abnormal blood glucose regulation whose impact is significantly higher than others

according to the microbiome network.

Based on network analysis method, we evaluate the differences in microbiome community balance
between the GDM individual and the healthy group. Specifically, when one individual from the GDM group
is dropped out, we calculate what extent the similarity level between the networks of the GDM and the healthy
groups change (Fig. 6b). The equation in Fig. 2¢ is used to analyze the network impact of each GDM patients
before diet intervention. We choose the healthy group before diet intervention as the reference cohort and
evaluate the impact of sample k in GDM patients on the network of its cohort by measuring its change
compared to the healthy group before diet intervention. Fig. 6b shows that patients g2 and g23 also exhibit a
clear individualized impact using the Wilcoxon Signed-Rank Test (P-value= 3.09E-07, P-value= 8.29E-06,
respectively).

The differences in microbiome community balance of g2 and g23 can correspond to abnormalities in the
blood glucose levels before diet intervention. The blood glucose data measured by OGTT has a repeated
pattern across the subjects (Fig. 6¢). Fasting blood glucose (b0) is usually the lowest of all other measurements.
The blood glucose level after drinking glucose solution for 1h (b60) is the highest, and after 2h (b120), it

decreases due to human body regulation, but is still higher than the fasting blood sugar level. Even though all
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GDM patients have blood sugar values that are higher than the healthy population, some of which seem to
stand out within the group, indicating uniquely abnormal blood glucose regulation. For example, for patient
number g2, the blood glucose level of patient number g2 gradually increases over time, and the 1-hour blood
glucose level increase of patient g23 is exceptionally higher compared with the other patients.

Correspondingly, we evaluate the differences in microbiome community balance between the GDM
individual and others of patients/healthy after diet intervention (Fig. 6f and 6g). Specifically, patient g2 stood
out in the analysis. When we evaluate changes in the similarity level between the networks of the GDM and
the healthy group while dropping out g2 from the GDM, we found that the change between microbial networks
of the g2 and healthy groups networks after diet intervention was not as large as they were before diet
intervention (Fig. 6b). Although the similarity between the microbial network of g2 and that of the healthy
group is the same as the similarity between the complete group network and the healthy group at this time-
point, the individual microbial network of patient g2 has a very low similarity to the complete group network.

After diet intervention, the relationship between microbiome community balance and abnormal blood
glucose was still seen. Blood glucose data was measured using routine blood glucose monitoring. In total, 7
patients reported self-monitoring of blood glucose levels (Fig. 6j). We find that the 2-hour postprandial of g2
is higher than other patients. The abnormalities of g2’s blood glucose correlates with the observed phenomena
in the microbiome network. This implies that abnormal blood glucose regulation in GDM patients is related
to the interactions/ecology of the microbial network. Simply put, the individual network method analysis
suggests that the blood glucose regulation level of GDM patients is partially related to its microbial
composition.

We find rare similar evidence from traditional microbial community analysis method. For each GDM
subject, the B diversity analysis is performed by calculating rJSD distances to compare the dissimilarity

between this GDM subject and the other GDM subjects (Fig. 6¢ and h). Additionally, we perform the 3
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diversity analysis by calculating rJSD distances to compare the dissimilarity between this GDM subject and
the all healthy subjects (Fig. 6d and i). We found that when applying the microbial community analysis method,
there is no apparent significant relationship between the blood glucose regulation level of GDM patients and
its microbial. By calculating the differences between the microbial community structure of a specific
individual and other individuals' microbial communities’ structure both before and after diet intervention, we
find that subjects with large differences do not correlate with those with abnormal blood glucose. For example,
we find patient g2 is abnormal in blood glucose level. But the microbial community structure of g2 was not
significantly different before diet control from that of other individuals using the Wilcoxon Signed-Rank Test
(P-value= 0.949). Similarly, when comparing the microbial community structure of a specific individual with
that of the healthy group, a similar conclusion is found: no relationship between blood glucose levels and
microbial composition is observed using traditional microbial community analysis methods. The microbial
community structure of g2 after diet control was not significantly different from that of other individuals using
the Wilcoxon Signed-Rank Test (P-value= 0.665).

However, the anomaly of the g2 patient does not represent a typical microbiome pattern in the analyzed
patients. The microbiomes and microbial networks of patients g5, g9, gl4 and g19, which exhibit a similar,
but less pronounced, blood glucose anomaly, are not more similar to g2 than the other patients. Further
research on larger cohorts is required to test whether there is a common mechanism that links blood glucose

and the microbiome.

Discussion

Personalized medicine require more precise identification of each individual. In this work, we characterize
the microbiome from its network interaction in the individualized level. We analyze the microbiome of patients

with GDM and healthy subjects through the lens of network analysis. For the implementation of personalized
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health management of GDM patients, it is very important to explore individual differences from the
perspectives of physiological indicators and living habits. In individual network analysis we found that
abnormal glucose regulation is associated with large network deviations, which may lead to the development
of individualized microbiome-based therapies in the future. Previous work that analyzed the composition of
intestinal bacterial flora at two time-points of subjects under traditional microbiome analysis method
concluded that overall bacteria gathered in response to diabetes status, rather than diet intervention. Short-
term diet management plays a role in the process of GDM by affecting specific taxa. Short-term dietary
management is not an alternative pattern for gut microbial [32]. Here, in contrast, network analysis enabled
us to find changes in the dynamic interactions among microorganisms in the community balance of the
microbiome that are undetected with traditional approaches.

Our goal is to study the network similarity between groups, a concept which is fundamentally different
from the standard community similarity. From the perspective of community similarity, we see no significant
difference between the microbiomes of the healthy and the GDM groups, both before and after diet
intervention. However, from the perspective of the microbial networks, the diet intervention has a clear effect.
Surprisingly, after the diet the microbial networks of the GDM group become less similar to the healthy
compared with their state before the diet.

We conclude that diet intervention is a treatment that could help GDM to balance their blood glucose to
control the disease but does not necessarily benefit the microbial ecological balance. In fact, some treatments
do break the balance of the microbial community in order to treat patients. For example, the use of antibiotics,
which can speed up treatment, should be avoided to prevent affecting local microbiota, as it may contribute to
obesity and type 1 diabetes [32-38].

Besides, our research emphasis is to analyze the individual patient. A safer and more effective treatment

can be achieved by personalizing the general recommendations [39]. Our study find that abnormal microbiome
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balance is associated with abnormal glucose regulation. Our method can analyze individual patients through
individual network analysis to evaluate the degree of abnormal glucose regulation, which reflects GDM
patients’ ability to regulate blood sugar after sugar intake. Therefore, according to the different situation of
each patient, we could potentially implement more effective and reasonable diet intervention strategy or other
treatment that not only rely on the patient's body indicators such as height and weight, but also consider the
patient's individual blood glucose regulation level. Based on this study, we can further and better carry out
individualized precision medicine for GDM. For example, with a clearer description of the expected effects
of diet intervention on GDM patients, we might be able to monitor new patients by comparing their
microbiome to representative cohort and checking whether their microbiome evolution trajectory follows the
norm.
Materials and Methods
Subjects and sampling description

Samples were gathered at Peking University People's Hospital during 2017 from 27 patients with GDM
and 30 healthy pregnant subjects (control group), who were selected according to their matched age and
gestation period. Make sure all subjects are with no antibiotic selection and with no concurrent 83 diseases
during the 3 months before sample collection. For each subject, microbial and blood glucose samples were
collected twice, in two-week intervals. For patients with GDM, calorie restriction was implemented through
daily diet intervention during these two weeks, as described below. For the control group, no calorie control
was implemented.

Fasting 75 g OGTT is chosen to diagnose the pregnant subjects between 24 and 28 weeks gestation, which
is the primary diagnostic method of GDM. The test involved drinking a solution containing 75¢g glucose, and
drawing blood to check glucose levels at Oh and after 1h and 2h. GDM is diagnosed if one or more level(s)

elevated. The thresholds for OGTT are 5.1 mmol/L at 0 hour, 10.0 mmol/L at 1 hour and 8.5 mmol/L at 2
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hours during OGTT, respectively. This thresholds is suggested by the International Association of the Diabetes
and Pregnancy Study Groups in 2011.
Diet intervention strategy

The macronutrients (protein, fat and carbohydrate) and caloric consumption of GDM patients were
estimated during the two weeks diet intervention in consultation with a nutritionist. Participants were deemed
to have complied with the given dietary recommendations when all of the criteria below were met: 35-45%
in total energy is carbohydrates, low glycemic index carbohydrates and 20% in total energy is simple
carbohydrates. 18-20% in total energy is proteins and 35% in total energy is fats. at least 20-25 g/day for fiber
intake, and make sure no alcohol consumption. The recommended daily calories are divided into smaller,
multiple meals to protect patients from ketonuria and acidosis because it often occurs due to prolonged fasting.
Besides, The nutritionist was contacting with subjects with GDM continuously, through telephone contact
every week, to keep them updated on their nutritional status as the study progressed. Besides, the nutritionist
instructed patients to monitor blood glucose by themselves at least 4 times a day by finger puncture capillary
blood glucose test. To avoid the the gut microbiota composition to be effected by prebiotics/probiotics use,
general recommendations were as implemented for the healthy pregnant subjects, making sure no spicy foods
and no yogurt intake.
Microbial data extraction method
DNA Extraction & OTU analysis

Stool samples were frozen as soon as possible after being collected and stored at —80 °C until DNA
extraction was performed as described in [40]. Base on the manufacturer's instructions, 200 mg was extracted
from each feces sample for DNA extraction by the QIAamp DNA stool Mini kit (Qiagen, Germany). 515F
(5’-GTGCCAGCMGCCGCGGTAA -3’) and 806R (5’-GGACTACHVGGGTWTCTAAT -3’) are used to

amplify the V4 region of the 16S rRNA. Each appropriate sized PCR product was purified and then use the
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HiSeq 2500 genome analyzer (Illumina HiSeq 2500) to perform the 250-bp nucleotide paired-end sequencing.
High-quality trimmed reads were aggregated into OTUs by MOTHUR [41], and the recognition rate was 97%.
To make sure the phylogeny of the OTUs, using the Greengenes database to BLAST search the longest
sequence from each OTU [42] to obtain full-length 16S rRNA gene sequences with well-annotated full-length.
Data pre-processing

Our initial dataset contained 57 subjects with 813 unique OTUs identified. In order to avoid
artifactual/spurious associations between non-correlated and low-abundant microbial members in a
community, OTUs that were found in less than 10 instances or were found in less than 10% of all subjects
were filtered out. The remaining OTUs were used to reconstruct the co-abundance networks. Considering that
there will be a large variability in the microbial abundance values, in order to make the calculation results
more reliable, the microbial abundance data of each subject is normalized to make the sum of the microbial
abundances of each subject equal to 1. Then, the samples was divided into four parts for analysis according to
subject type and sampling time, including first sampling data of 30 healthy pregnant women, second sampling
data of 30 healthy pregnant women, first sampling data of 27 GDM patients and second sampling data of 27
GDM patients.
Network analysis method
Network reconstruction principle

For the four sample groups of different states (h(W0), h(W2), g(WO0), g(W2)), we reconstructed the OTUs
co-expression binary networks. Each node in the networks represented a single OTU. The edges of the network
corresponded to significant correlations between pairs of OTUs. The following processes were applied to
reconstruct the networks: (1) For each group, the Pearson correlation for all pairs of OTUs was calculated; (2)
non-significant correlations were filtered out using a Z-score test. For each pair of OTU sequences, the samples

were randomly shuffled 1000 times and the Pearson correlation coefficient calculated. Then, the Z-score, 17,
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was calculated according to the following formula:

C- mean(Cghu{ﬂe )
Std (Cshu[ﬂe )

) (M

where C is the Pearson coefficient of the non-shuffled data, mean(Cspe) is the average value of Pearson
coefficient of the shuffled data and std(Cisnpe) is the standard deviation value of the Pearson coefficient of the
shuffled data. Larger W value means that the correlation is more significant. A value of W < 1 was considered
a non-significant correlation and filtered out; (3) For each network, a fixed number of 500 edges were defined
as the OTU pairs with the highest Pearson correlation values. The reasons and necessity of fixing the size of
network are elaborated in the supplementary information (S1 Fig, S2 Fig and S3 Fig). This step was necessary
for eliminating the possible bias of the number of edges when comparing the structural similarity between
different networks.
Group network analysis

To compare between two groups, networks were reconstructed using all the samples of each group. The
similarity between the networks was defined as the overlap between the set of edges, according to the Jaccard

index:

|Am an

J(4",B") = ; ()

where 4 and B are two different sample sets, m and n are the number of subjects in each sample set. 4” and
B" represent the set of edges of the two networks, respectively.
Individualized network-impact

Inspired by the LIONESS method for inference of single-cell gene regulatory networks [43], our network
reconstruction method analyzed the network-impact of individual GDM patient samples. However, unlike the
LIONESS method, our method did not aim to infer the network entirely, but to simply evaluate the impact of

a single sample in general. In order to measure how much the ecological balance of individual subject & is
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consistent with the ecological balance of the rest of the subjects in the same group, its network-impact was
estimated with a ‘leave-one-out’ procedure (inspired by the method described in [44]). Specifically, two ways
to evaluate the network-impact of an individual sample, k&, were introduced.

The first way directly measured the change in the network structure reconstructed from a cohort of

samples after removing the individual sample of interest. The Jaccard dissimilarity score was calculated,

|B” NB"*

J(B",B"")=1- , (3)

where B" represents the network that was reconstructed with all samples and B"* represents the network that
was reconstructed without sample &. Low dissimilarity indicated that the balance between species abundance
of sample £ tend to follow the same correlation pattern of the entire group, while high dissimilarity suggested
that sample & follows a unique correlation pattern.

According to Eq. (3), the larger the Jaccard distance, the lower the similarity between the network without
the sample & and the network with the sample k. This suggests that this sample k£ made a significant difference
in all samples. When the Jaccard distance is 1, it means that the network without the sample & is completely
different from the network with the sample £. Alternatively, when the Jaccard distance is 0, it means that the
network without the sample £ is exactly the same as the network with the sample £.

The second way is an indirect evaluation of the impact of sample k on the network of its cohort by
measuring its change with respect to a reference cohort. The change in the Jaccard distance score was

calculated

A" ﬂB(”"‘)| |A'” ﬂB”|
4" UB" )] lamuB

J(A" BU) = (4" B") = : (4)

where A™ represents a network that was reconstructed from the reference cohort. A small (large) change in
the distance between networks A and B after removing sample & indicates that k's abundance profile follows

a similar (different) correlation pattern to its cohort.
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Here, it can be seen from Eq. (4) that when the Jaccard distance value is positive (negative), it indicates
that network B after removing sample k is more similar (different) to the reference cohort A, and the sample

k is the person who is more different (similar) with the reference cohort than the others.

Data and network shuffling processes

Data shuffling: In the network reconstruction process, the significance of each edge was estimated by
comparing its associated Pearson correlation value to a set of values calculated for shuffled abundance profiles.
Each shuffled abundance profile was reconstructed using a Monte Carlo procedure, by randomly assigning a
value for each OTU from the empirical abundance distribution of the same OTU, independently. The shuftled
profiles preserve the original relative frequencies of the OTUs while removing any correlations among them.
Network shuffling: The distance values between networks were compared to distances calculated between
shuffled networks, reconstructed with the same number of nodes but with random reassignment of the 500

edges.

Community analysis method

In addition to network analysis methods, the microbiome community composition in different groups were
compared and analyzed by calculating the B diversity according OTU table. We calculate the dissimilarity of
different sample sets by using the root Jensen—Shannon divergence (rJSD) measure [31] to compare the

difference between different groups. The root Jensen-Sahnnon divergence (rJSD) is defined as

1
. n . n D, (x,m)+D,, (y,m) |2
D0.31=D,1 | P Da o) 5
where % and j are renormalized the relative abundances of only the shared species (set S). m = Y and

Dy (5, 9) =) % log2 is the Kullback—Leibler divergence between £ and 7.
1€, y

i
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Data availability:

The original datasets for this study can be found in the Genome Sequence Archive
(https://ngdc.cncb.ac.cn/gsa/), the accession code is: CRA004782. The studied OTU table could be found on

GitHub at (https://github.com/Yimengl.iu9425/code/tree/master).

Code availability:

The Python code used in this study can be found on GitHub

(https://github.com/YimengLiu9425/code/tree/master).
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Supporting information

S1 Fig. The size of the microbial networks of the healthy group and GDM patients before and after diet
interventions under different W threshold. The corresponding network size of different groups is different though the
threshold is fixed.

S2 Fig. Jaccard similarity between the GDM group and healthy group with unfixed network size for
different threshold values, W. The green curve shows the GDM group compared with the healthy group two
weeks earlier, and the red curve shows the GDM group compared with the healthy group two weeks later. The
solid dots indicate the comparison between the GDM group and the healthy group before the dietary
intervention, and the hollow dots indicate the comparison between the GDM group and the healthy group after
the dietary intervention. The dark curve is the real data result, and the light curve is the shuffled network result.
S3 Fig. Violin plot of Jaccard similarity between the GDM group and healthy group with fixed network
size under different fix number. When different number of links are fixed, the pattern is still stable in most

cascs.
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