

1
2
3
4 **Individualized network analysis reveals link between the gut microbiome, diet**
5 **intervention and Gestational Diabetes Mellitus**
6

7 Yimeng Liu¹, Guy Amit^{2,3}, Xiaolei Zhao^{4*}, Na Wu^{5*}, Daqing Li¹, Amir Bashan^{2*}

8
9 ¹ Department of Reliability and Systems Engineering, Beihang University, Beijing, China

0 ² Department of Physics, Bar-Ilan University, Ramat-Gan, Israel

1 ³ Department of Natural Sciences, The Open University of Israel, Raanana, Israel

2 ⁴ Gastroenterology Department, Peking University People's Hospital, Beijing, China

3 ⁵ Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's
4 Hospital, Beijing, China

5
6 * Corresponding author

7 E-mail: xiaoleibeijing07@163.com (XZ); wuna1030@163.com (NW); amir.bashan@biu.ac.il (AB)

2 Abstract

3 Gestational Diabetes Mellitus (GDM), a serious complication during pregnancy which is defined by abnormal
4 glucose regulation, is commonly treated by diabetic diet and lifestyle changes. While recent findings place the
5 microbiome as a natural mediator between diet interventions and diverse disease states, its role in GDM is still
6 unknown. Here, based on observation data from healthy pregnant control group and GDM patients, we
7 developed a new network approach using patterns of co-abundance of microorganism to construct microbial
8 networks that represent human-specific information about gut microbiota in different groups. By calculating
9 network similarity in different groups, we analyze the gut microbiome from 27 GDM subjects collected before
0 and after two weeks of diet therapy compared with 30 control subjects to identify the health condition of
1 microbial community balance in GDM subjects. Although the microbial communities remain similar after the
2 diet phase, we find that the structure of their inter-species co-abundance network is significantly altered, which
3 is reflected in that the ecological balance of GDM patients was not "healthier" after the diet intervention. In
4 addition, we devised a method for individualized network analysis of the microbiome, thereby a pattern is
5 found that individuals with large deviations in microbial networks are usually accompanied by their abnormal
6 glucose regulation. This approach may help the development of individualized diagnosis strategies and
7 microbiome-based therapies in the future.

8

9 Author Summary

0 In this study, we aimed to investigate the role of the gut microbiome in gestational diabetes mellitus (GDM),
1 a condition that affects pregnant women and is characterized by abnormal glucose regulation. Specifically, we
2 asked whether and how the gut microbiome is affected by diabetic diet which is commonly used to treat GDM
3 patients. We developed a new network approach to analyze patterns of co-abundance of microorganisms in
4 the gut microbiota of GDM patients and healthy pregnant women. Our findings show that although the

5 microbial communities remained similar after the diet phase, the structure of their inter-species co-abundance
6 network was significantly altered, indicating that the ecological balance of GDM patients was not "healthier"
7 after the diet intervention. Furthermore, we suggest that abnormal glucose regulation is associated with large
8 network deviations, which could lead to the development of individualized microbiome-based therapies in the
9 future. Our work highlights the importance of studying the microbiome from a network perspective to better
0 understand the dynamic interactions among microorganisms in the community balance of the microbiome.

1 Introduction

2 Gestational diabetes mellitus (GDM) refers to glucose intolerance that occurs or is first detected during
3 pregnancy [1, 2]. GDM appears to be caused by the same physiological and genetic abnormalities as extra-
4 gestational diabetes [3]. It is estimated to affect between 3-9% of pregnant women worldwide and is related
5 with high rates of serious complications, for example shoulder dystocia and birth injuries, which includes bone
6 fractures and nerve palsies [3, 4]. Babies born to mothers with GDM may have issues with persistent impaired
7 glucose tolerance [5], subsequent obesity [6], and impaired intellectual achievements [7]. Furthermore, even
8 after pregnancy, people with GDM may still have diabetes, which poses a high risk for people with GDM [8,
9]. Common treatments of GDM that aim to reverse hyperglycemia include lifestyle changes and insulin
0 therapy [10]. Usually, lifestyle changes consist of diet intervention, exercise therapy and blood glucose self-
1 monitoring. Insulin therapy is often used when lifestyle changes fail to control blood glucose levels or when
2 complications arise with the fetus.

3 GDM is a typical metabolic disease that occurs during pregnancy, which may suffer from gut microbiome
4 disorders. In fact, in recent years, many diseases, not only metabolic diseases, have been found to be closely
5 related to flora disorders, including *Clostridium Difficile* infection (CDI) [11], colorectal cancer [12], dietary
6 choline-induced atherosclerotic heart disease [13] and chronic diseases such as obesity [14]. In some cases,
7 the change in the microbiome during a disease appears as an abnormal abundance of specific taxa [15].
8 However, a disease state can also be associated with a community-wide shift of the microbiome state
9 (commonly evaluated in terms of PCA or α - and β -diversity measures). Such cases represent more general
0 abnormalities that are linked to the interactions between the species and their ecological balance [16]. One of
1 the most important factors that can influence microbiome composition is diet [17-19]. For example, the
2 Mediterranean diet may benefit those with underlying conditions, such as obesity, blood lipids and

3 inflammation [20]. Diet interventions may cause community-wide alterations of the microbiome, by affecting
4 the ecological interactions via promoting or inhibiting microbial growth [21].

5 Thus it can be seen that understanding the underlying role of the microbiome of GDM patients is essential
6 in two ways: On the one hand, an altered microbiome can affect their general health state. On the other hand,
7 the individual composition of the microbiome may be related to the success of dietary interventions. Current
8 studies of the microbiome in GDM patients have mainly focused on the abundance of specific microbial taxa
9 [22, 23], but not on the global interaction structure of different taxa. These studies revealed that the
0 proportions of certain microbes in GDM patients differ from those in healthy subjects [24, 25]. However, at
1 the microbiome community level, there was no clearly difference in composition and structure of intestinal
2 microbiome communities between GDM patients and healthy pregnant women at three different stages of
3 pregnancy through PCoA and α -diversity analysis [1, 26]. Thus, it is still unclear whether alterations of the
4 community structure of the microbiome play any part in the condition of GDM.

5 Considering traditional biological community methods were unsuccessful in fully revealing the changes
6 of the microbiome community of GDM patients, here we wish to instead analyze the microbiome community
7 from the network perspective of co-abundance. To unveiling the complex web of interactions in microbial
8 communities, dynamic ecology and evolutionary processes which drives them are required to be understood
9 [25]. Microbial community structure and their functions are complex because of their dynamic nature,
0 variability in composition, their self-reproduce ability and self-organize ability. Therefore, this complexity can
1 be well represented and modeled as a network[27, 28]. The interactions within microbial communities can be
2 well analyzed through the network method. In addition, the network approach can also be used to analyze the
3 role of microbial communities between disease and health [29], and thus can detect changes in the appropriate
4 ecological balance, helping to identify the health of microbial community balance, and providing additional
5 information about the underlying dynamics. In contrast to traditional microbiome analysis, which focuses on

6 whether the abundance of individual species is within the normal range and detects abnormal abundances, the
7 network analysis method focuses on the balance between species and detects abnormal ecological interactions.

8 Combined with the existing diet intervention strategies, in order to better understand the changes of
9 microbiome in the course of GDM health evaluation and diet intervention, in this study, we propose a new
0 approach which is based on individualized - and group-networks to analyze the changes in microbial
1 communities between subjects with GDM and subjects without GDM (healthy), with and without diet
2 intervention. The community structure and community balance are analyzed and compared with and without
3 diet intervention by network similarity calculation. We reveal the effect of diet intervention on the microbiome
4 of GDM patients and demonstrate the relationship between the network structure of the microbiome and the
5 diagnosis of individual blood glucose. These findings provide support for evaluating the recovery of GDM
6 patients, and contribute to the future personalized microbial-based medicine.

7 **Results**

8 **Data collection and microbiome network analysis**

9 The experimental design of this study consists of observing and collecting data from healthy pregnant
0 women and GDM patients who received diet intervention before and after two weeks, that was not especially
1 designed for this study. The oral glucose tolerance test (OGTT) is performed to all pregnant subjects at the
2 first instance of stool collection. Women with abnormal blood glucose levels during the test were diagnosed
3 with GDM and receive traditional diet intervention. Patients with GDM had their daily calorie intake tailored
4 to their weight by a nutritionist (see Methods). Women with normal blood sugar levels were designated to the
5 control, healthy group. In this observational study, diet intervention was applied by the hospital as part of the
6 routine treatment for GDM patients, while, to mitigate ethical concerns, healthy pregnant women were not
7 recommended any special diet intervention. Dietary intervention for patients with GDM is the suggestion of
8 clinical dietary treatment for patients with GDM. The experimental data was collected during routine treatment

9 of healthy and GDM pregnant women at Peking University People's Hospital (see Methods). Two cohorts of
0 27 patients with GDM and 30 healthy pregnant controls were recruited for this study. All subjects were
1 between 24 and 28 weeks of gestation at the start of the study. The average age of the 30 subjects in the control
2 group was 31.4 years, with an average pre-pregnancy BMI of 21.3 before pregnancy, and an average BMI at
3 sampling of 25. The average age of the 27 patients with GDM was 32.7 years, with an average BMI of 24.1
4 before pregnancy and 27.04 at sampling. 16S rRNA analysis of stool samples collected twice over a two-week
5 interval represents the microbial communities at the operational taxonomic units (OTUs) level. These sample
6 sets are notated as g(W0) and g(W2) for the GDM subjects and h(W0) and h(W2) for the healthy subjects (Fig.
7 1a). GDM patients had diet intervention treatment during these two weeks. Blood glucose levels were
8 collected following the OGTT and routine monitoring. In the first sampling, the OGTT was performed on all
9 subjects, and was used to classify the subjects as either healthy or GDM (Fig. 1b). During the second sampling,
0 after two weeks, normal routine blood glucose monitoring was performed on the GDM group alone (Fig. 1b).

1 Of the original cohort, 7 pregnant women completed the second glucose test.

2

3 **Fig 1. Description of the experimental setup and data collection process.** a) Experimental setup - Subjects include
4 27 GDM patients and 30 healthy pregnant women as the control group. Samples were collected twice for each subject,
5 at interval of two weeks. The GDM patients executed diet intervention for two weeks. b) Collection of microbial and
6 blood glucose information - To collect microbial information, DNA was taken from all subjects through feces, using
7 16S rDNA sequencing to derive taxonomic classification of microbiome and microbial community. To collect blood
8 glucose information, 75 gram OGTT was performed on all subjects at the first sampling and routine blood glucose
9 monitoring was performed on 7 GDM patients at the second sampling.

0

1 OTUs co-expression networks were reconstructed for the four different sample groups. In our study,

2 network analysis includes two types: group analysis and individual analysis (Fig. 2, see Methods section).
3 Group analysis compares the similarity of microbial networks between two groups of subjects (Fig.2a).
4 Individual analysis measures how much the ecological balance of an individual subject is consistent with the
5 ecological balance of the rest of the subjects in the same group. We estimated the individual's network-impact
6 with a 'leave-one-out' procedure (inspired by the method described in [30]). Specifically, we introduced two
7 ways to evaluate the network-impact of an individual sample. First, we compared the network structure
8 reconstructed from samples without the interested sample and with the interested sample (Fig. 2b). Second,
9 we measured the impact of the interested sample with respect to reference samples indirectly (Fig. 2c). The
0 network analyses were also accompanied by traditional microbial community analysis for the purposes of
1 comparison.

2
3 **Fig 2. Overview of network reconstruction method and evaluation.** For each sample set, a network of pairwise
4 interaction was constructed. Network edges are constructed according to correlation value, and the set of edges were
5 used to evaluate the overlap between networks. a) The method of evaluating the similarity between two different sets.
6 b) The method of evaluating the impact/effect of each individual on the network reconstructed for its group. c) The
7 method of evaluating the impact/effect of each individual on the network reconstructed for the other groups.

8
9 **The microbiome composition in patients with GDM and healthy pregnant
0 subjects**

1 After the OTU filtering procedure, 108 OTUs were left in each group (see Methods section). First, we
2 compare the similarity between different groups by community analysis methods. For the beta diversity
3 analysis, the root Jensen–Shannon divergence is used (rJSD) [31] to calculate the dissimilarity of the different
4 sample sets. For the PCoA analysis, we again use the rJSD metric to calculate the distance distribution between

5 the different sets. It is found that the PCoA of the microbial composition of the healthy subjects and subjects
6 with GDM before and after two weeks of diet intervention shows no significant differences among the four
7 groups in the microbiome community structure (Fig. 3a). For each group, we also calculate the beta diversity,
8 measured as the pairwise distances among all samples in the same group (Fig. 3b). The Wilcoxon rank-sum
9 test shows no apparent significant differences between any two groups ($P\text{-value}>0.05$). This implies that it is
0 also difficult to observe the differences in the microbiome community of pregnant women under the OTU
1 scale using the traditional microbiome community analysis method. In addition, we have systematically tested
2 for diet-related changes, i.e., $G(W0)/G(W2)$ comparisons, in all the individual taxa in our data (species
3 taxonomic level). We have found no individual taxa with a significant differential abundance ($p\text{-value}>0.05$
4 for all taxa, Mann-Whitney U-test with Bonferroni correction for multiple comparisons). Traditional
5 microbiome community analysis methods mainly focus on the differences in microbiome abundance values
6 in individual taxa, but often ignore the interactions between different taxa, which may be capture using
7 network approach.

8

9 **Fig 3. Community analysis of the gut microbiome composition of healthy and GDM patients.** a) Principal
0 Coordinates Analysis (PCoA) plot showing four groups of subjects. The horizontal and vertical coordinates are the first
1 two principal components respectively, and the percentages in parentheses are the percentages of variables that can be
2 explained in terms of principal components. b) Violin plot of beta-diversity among subjects within the same group
3 calculated by rJSD distance. The samples show no apparent significant differences between any two groups of them ($P\text{-}$
4 $\text{value}=0.22, 0.51, 0.38, 0.79, 0.06, 0.15$ separately using the Wilcoxon rank-sum test). The number of samples in healthy
5 group ($h(W0)$ and $h(W2)$) is 30 and the number of samples in GDM group ($g(W0)$ and $g(W2)$) is 27).

6

7 **The stability of the microbial networks**

8 Next, we use the network analysis methods to analyze the networks' stability among the different groups.

9 We first calculate the Jaccard similarity between the microbial networks of the healthy group reconstructed

0 from samples collected at W0 and W2 and compare it to the Jaccard similarity calculated between two shuffled

1 networks. This shuffled model represents two independent networks, while preserving the number of links of

2 the original networks (see Methods). The Jaccard similarity of the healthy group is ~0.2, which is almost 4

3 times higher compared with the similarity between the shuffled networks (~0.05) (Fig. 4b). This represents

4 the consistency level of the network after two weeks for the same group, even without any known perturbation

5 (such as diet intervention). Similarly, the Jaccard similarity calculated between GW0 and GW2 (0.185) is also

6 significantly higher compared with the shuffled model, demonstrating its overall level of stability. This level

7 of stability (about 0.19) may reflect the dynamic of the microbiome during pregnancy or the technical

8 inaccuracy of the network reconstruction procedure and represents a baseline for the following analysis.

9 Importantly, the fact that the Jaccard value of the GDM networks before and after the two weeks is lower

0 compared with the healthy networks is inconclusive since it may be associated either to the GDM condition

1 itself or to the diet intervention.

2

3 **Fig 4. Comparison of the healthy group similarity by network analysis.** a) The consistency of the microbiome

4 network of the GDM group and the healthy group after two weeks are evaluated by comparing the similarity of the

5 GDM group and the healthy group to the null model. b) Comparison between the similarity score for the healthy group

6 and GDM group before and after the two week interval and the score of the groups of null models created using a

7 shuffling procedure (see Methods). In the null mode, the edges between the nodes are randomly shuffled, preserving the

8 overall network size. The similarity score for the unshuffled data is marked with yellow arrow and blue arrow,

9 representing Jaccard similarity between H(W0) and H(W2), G(W0) and G(W2), respectively. H(W0), H(W2), represents

0 the network constructed by h(W0) and h(W2), respectively. H(W0), H(W2), represents the network constructed by h(W0)

1 and $h(W_2)$, respectively. $G(W_0)$, $G(W_2)$, represents the network constructed by $g(W_0)$ and $g(W_2)$, respectively. The
2 significant similarity between the networks calculated for the same subjects after a two weeks interval indicates that
3 they capture a consistent pattern of the inter-species correlations. * indicates $p < 10^{-3}$ calculated as the fraction of
4 shuffled realizations with Jaccard value equal or larger than the observed value.

5

6 **The effects of diet intervention on GDM patients**

7 We next investigate the effects of diet intervention by analyzing the change in the microbiome community
8 balance level of GDM patients after diet intervention and comparing it to the microbiome of the healthy
9 subjects. Analysis was performed both on the community structure and the co-abundance network level. To
0 reduce biases, we do not directly compare the microbiome community balance of GDM patients and healthy
1 subjects before and after the diet intervention, because the differences in results may be due to diet intervention
2 or disease causes. Instead, in order to make a more effective comparison, we evaluate the change in the GDM
3 microbiome indirectly by measuring its similarity to the healthy microbiome, which serves as a reference
4 group (Fig. 5a). For the network analysis method, network similarity calculation is performed to identify the
5 balanced health of the microbial community in GDM patients during diet intervention. Surprisingly, after two
6 weeks of diet intervention, the similarity between the networks of the GDM patients and the healthy patients
7 is significantly reduced (Fig. 5b $P\text{-value} < 10^{-9}$ using the Wilcoxon rank-sum test). Besides the network analysis
8 method, we compare the similarity between different groups by β diversity analysis, too. By calculating rJSD
9 distances of microorganism between different groups samples, we found in contrast that there is no significant
0 differences in the distance between the GDM patients and the healthy community (Fig. 5c, $P\text{-value} > 0.02$ using
1 Wilcoxon rank-sum test).

2

3 **Fig 5. The effects of diet intervention on the gut microbiome as expressed by network and community analysis.**

4 a) The effect of the diet intervention on the microbiome of the GDM patients was evaluated indirectly by comparing it
5 to the reference group of the healthy patients. b) Violin plot of the Jaccard similarity between the networks of the GDM
6 group after diet intervention and the healthy group (shadowed areas) was significantly lower than before the diet (filled
7 areas) (P-value=3.72e-10 and 4.37e-10 using Wilcoxon rank-sum test). In addition, the similarity of H(W0)/G(W0) is
8 significantly higher than the similarity of H(W2)/G(W2) (p-value =3.6e-9 using Wilcoxon rank-sum test). c) Violin plot
9 of the dissimilarity between different groups by community analysis method. Each value represents the average distance
0 (rJSD) calculated between each of the GDM samples and the samples of the reference group (healthy). The samples
1 show only minor variability (P-value=0.1323 and 0.0214 using Wilcoxon rank-sum test).

2

3 These results demonstrate that the microbial communities are altered during the two-week diet
4 intervention period. This change is not captured by traditional beta-diversity analysis or by distance measures
5 but is instead reflected in the ecological networks. Moreover, the direction of the change observed by our
6 ‘indirect comparison’ was counterintuitive. While diet intervention is clinically beneficial to the GDM patients,
7 the underlying ecology of the patients’ microbiome was not ‘healthier’, i.e., it was less similar to the healthy
8 group. In the future we hope to discern whether these changes in the microbial co-abundance correlation have
9 direct causal relations to the health benefits of diet intervention in the GDM patients.

0

1 **Associations between ecology of microbial network and abnormal glucose** 2 **patterns**

3 Finally, we study the relationship between the microbiome of individual GDM patients and their blood
4 glucose measures. By analyzing individual microbiomes balance in GDM group, we hope to find out the
5 specificity of individuals in GDM patients and analyze whether this specificity is related to changes in blood
6 glucose, so as to provide support for personalized medicine. We apply microbial network analysis method to

7 evaluate the differences in microbiome balance between each GDM individual and others in GDM patients
8 by calculating the network similarity. While the microbial networks represent the group-average relationships
9 between the microbes, each subject has a unique individual signature of microbial co-abundance relation, and
0 its specific networks can reliably describe individual specific disease states [30]. Using the "individualized
1 network analysis" methodology (see Methods), we analyze the microbial samples of individual subjects based
2 on their microbial network and compare it to the patterns of blood glucose levels from the OGTT and routine
3 blood glucose monitoring. To analyze the pattern of microbial co-abundance community balance in individual
4 subjects, we first perform a 'leave-one-out' procedure which compares between the networks calculated
5 without each patient and the ones calculated with it (Fig. 6a, see Methods). We directly measure the changes
6 in the network structure reconstructed from a cohort of samples after removing the individual sample k of
7 interest before diet intervention. Figure 6a shows that the Jaccard distance of patients number g2, g13 and g23
8 are significantly higher compared with the other patients using the Wilcoxon Signed-Rank Test (P-value=
9 1.18E-05, P-value= 2.35E-05, P-value= 8.30E-06, respectively), suggesting that the community balance of
0 these individuals differ substantially from the others in the group.

1
2 **Fig 6. Analysis of the relationship between microbial system and blood glucose levels.** a) Evaluation of the changes
3 between individual network of each GDM patient and the whole network of all GDM patients by Jaccard dissimilarity
4 score before diet intervention. b) Evaluation of the impact of sample k of GDM patients on the network of all GDM
5 patients by measuring its change with respect to the healthy women by Jaccard distance score before diet intervention.
6 c) Evaluation of the dissimilarity between each individual GDM patient to other GDM patients using the root Jensen–
7 Shannon divergence (rJSD) before diet intervention. d) Evaluation of the dissimilarity between individual GDM patient
8 to healthy women using the rJSD before diet intervention. e) OGTT blood glucose information collected by all GDM
9 patients before diet intervention. f) Evaluation of the changes between individual network of each GDM patient and the

0 whole network of all GDM patients by Jaccard dissimilarity score after diet intervention. g) Evaluation of the impact of
1 sample k of GDM patients on the network of all GDM patients by measuring its change with respect to the healthy
2 women by Jaccard distance score after diet intervention. h) Evaluation of the dissimilarity between each individual
3 GDM patient to other GDM patients using the root Jensen–Shannon divergence (rJSD) after diet intervention. i)
4 Evaluation of the dissimilarity between individual GDM patients to healthy women using the rJSD after diet intervention.
5 j) Routine blood glucose monitoring information collected by 7 GDM patients after diet intervention. The shadow box
6 corresponds to the subject with abnormal blood glucose regulation whose impact is significantly higher than others
7 according to the microbiome network.

8

9 Based on network analysis method, we evaluate the differences in microbiome community balance
0 between the GDM individual and the healthy group. Specifically, when one individual from the GDM group
1 is dropped out, we calculate what extent the similarity level between the networks of the GDM and the healthy
2 groups change (Fig. 6b). The equation in Fig. 2c is used to analyze the network impact of each GDM patients
3 before diet intervention. We choose the healthy group before diet intervention as the reference cohort and
4 evaluate the impact of sample k in GDM patients on the network of its cohort by measuring its change
5 compared to the healthy group before diet intervention. Fig. 6b shows that patients g2 and g23 also exhibit a
6 clear individualized impact using the Wilcoxon Signed-Rank Test (P-value= 3.09E-07, P-value= 8.29E-06,
7 respectively).

8 The differences in microbiome community balance of g2 and g23 can correspond to abnormalities in the
9 blood glucose levels before diet intervention. The blood glucose data measured by OGTT has a repeated
0 pattern across the subjects (Fig. 6e). Fasting blood glucose (b0) is usually the lowest of all other measurements.
1 The blood glucose level after drinking glucose solution for 1h (b60) is the highest, and after 2h (b120), it
2 decreases due to human body regulation, but is still higher than the fasting blood sugar level. Even though all

3 GDM patients have blood sugar values that are higher than the healthy population, some of which seem to
4 stand out within the group, indicating uniquely abnormal blood glucose regulation. For example, for patient
5 number g2, the blood glucose level of patient number g2 gradually increases over time, and the 1-hour blood
6 glucose level increase of patient g23 is exceptionally higher compared with the other patients.

7 Correspondingly, we evaluate the differences in microbiome community balance between the GDM
8 individual and others of patients/healthy after diet intervention (Fig. 6f and 6g). Specifically, patient g2 stood
9 out in the analysis. When we evaluate changes in the similarity level between the networks of the GDM and
0 the healthy group while dropping out g2 from the GDM, we found that the change between microbial networks
1 of the g2 and healthy groups networks after diet intervention was not as large as they were before diet
2 intervention (Fig. 6b). Although the similarity between the microbial network of g2 and that of the healthy
3 group is the same as the similarity between the complete group network and the healthy group at this time-
4 point, the individual microbial network of patient g2 has a very low similarity to the complete group network.

5 After diet intervention, the relationship between microbiome community balance and abnormal blood
6 glucose was still seen. Blood glucose data was measured using routine blood glucose monitoring. In total, 7
7 patients reported self-monitoring of blood glucose levels (Fig. 6j). We find that the 2-hour postprandial of g2
8 is higher than other patients. The abnormalities of g2's blood glucose correlates with the observed phenomena
9 in the microbiome network. This implies that abnormal blood glucose regulation in GDM patients is related
0 to the interactions/ecology of the microbial network. Simply put, the individual network method analysis
1 suggests that the blood glucose regulation level of GDM patients is partially related to its microbial
2 composition.

3 We find rare similar evidence from traditional microbial community analysis method. For each GDM
4 subject, the β diversity analysis is performed by calculating rJSD distances to compare the dissimilarity
5 between this GDM subject and the other GDM subjects (Fig. 6c and h). Additionally, we perform the β

6 diversity analysis by calculating rJSD distances to compare the dissimilarity between this GDM subject and
7 the all healthy subjects (Fig. 6d and i). We found that when applying the microbial community analysis method,
8 there is no apparent significant relationship between the blood glucose regulation level of GDM patients and
9 its microbial. By calculating the differences between the microbial community structure of a specific
0 individual and other individuals' microbial communities' structure both before and after diet intervention, we
1 find that subjects with large differences do not correlate with those with abnormal blood glucose. For example,
2 we find patient g2 is abnormal in blood glucose level. But the microbial community structure of g2 was not
3 significantly different before diet control from that of other individuals using the Wilcoxon Signed-Rank Test
4 (P-value= 0.949). Similarly, when comparing the microbial community structure of a specific individual with
5 that of the healthy group, a similar conclusion is found: no relationship between blood glucose levels and
6 microbial composition is observed using traditional microbial community analysis methods. The microbial
7 community structure of g2 after diet control was not significantly different from that of other individuals using
8 the Wilcoxon Signed-Rank Test (P-value= 0.665).

9 However, the anomaly of the g2 patient does not represent a typical microbiome pattern in the analyzed
0 patients. The microbiomes and microbial networks of patients g5, g9, g14 and g19, which exhibit a similar,
1 but less pronounced, blood glucose anomaly, are not more similar to g2 than the other patients. Further
2 research on larger cohorts is required to test whether there is a common mechanism that links blood glucose
3 and the microbiome.

4

5 **Discussion**

6 Personalized medicine require more precise identification of each individual. In this work, we characterize
7 the microbiome from its network interaction in the individualized level. We analyze the microbiome of patients
8 with GDM and healthy subjects through the lens of network analysis. For the implementation of personalized

9 health management of GDM patients, it is very important to explore individual differences from the
0 perspectives of physiological indicators and living habits. In individual network analysis we found that
1 abnormal glucose regulation is associated with large network deviations, which may lead to the development
2 of individualized microbiome-based therapies in the future. Previous work that analyzed the composition of
3 intestinal bacterial flora at two time-points of subjects under traditional microbiome analysis method
4 concluded that overall bacteria gathered in response to diabetes status, rather than diet intervention. Short-
5 term diet management plays a role in the process of GDM by affecting specific taxa. Short-term dietary
6 management is not an alternative pattern for gut microbial [32]. Here, in contrast, network analysis enabled
7 us to find changes in the dynamic interactions among microorganisms in the community balance of the
8 microbiome that are undetected with traditional approaches.

9 Our goal is to study the *network similarity* between groups, a concept which is fundamentally different
0 from the standard *community similarity*. From the perspective of community similarity, we see no significant
1 difference between the microbiomes of the healthy and the GDM groups, both before and after diet
2 intervention. However, from the perspective of the microbial networks, the diet intervention has a clear effect.
3 Surprisingly, after the diet the microbial networks of the GDM group become less similar to the healthy
4 compared with their state before the diet.

5 We conclude that diet intervention is a treatment that could help GDM to balance their blood glucose to
6 control the disease but does not necessarily benefit the microbial ecological balance. In fact, some treatments
7 do break the balance of the microbial community in order to treat patients. For example, the use of antibiotics,
8 which can speed up treatment, should be avoided to prevent affecting local microbiota, as it may contribute to
9 obesity and type 1 diabetes [32-38].

0 Besides, our research emphasis is to analyze the individual patient. A safer and more effective treatment
1 can be achieved by personalizing the general recommendations [39]. Our study find that abnormal microbiome

2 balance is associated with abnormal glucose regulation. Our method can analyze individual patients through
3 individual network analysis to evaluate the degree of abnormal glucose regulation, which reflects GDM
4 patients' ability to regulate blood sugar after sugar intake. Therefore, according to the different situation of
5 each patient, we could potentially implement more effective and reasonable diet intervention strategy or other
6 treatment that not only rely on the patient's body indicators such as height and weight, but also consider the
7 patient's individual blood glucose regulation level. Based on this study, we can further and better carry out
8 individualized precision medicine for GDM. For example, with a clearer description of the expected effects
9 of diet intervention on GDM patients, we might be able to monitor new patients by comparing their
0 microbiome to representative cohort and checking whether their microbiome evolution trajectory follows the
1 norm.

2 **Materials and Methods**

3 **Subjects and sampling description**

4 Samples were gathered at Peking University People's Hospital during 2017 from 27 patients with GDM
5 and 30 healthy pregnant subjects (control group), who were selected according to their matched age and
6 gestation period. Make sure all subjects are with no antibiotic selection and with no concurrent 83 diseases
7 during the 3 months before sample collection. For each subject, microbial and blood glucose samples were
8 collected twice, in two-week intervals. For patients with GDM, calorie restriction was implemented through
9 daily diet intervention during these two weeks, as described below. For the control group, no calorie control
0 was implemented.

1 Fasting 75 g OGTT is chosen to diagnose the pregnant subjects between 24 and 28 weeks gestation, which
2 is the primary diagnostic method of GDM. The test involved drinking a solution containing 75g glucose, and
3 drawing blood to check glucose levels at 0h and after 1h and 2h. GDM is diagnosed if one or more level(s)
4 elevated. The thresholds for OGTT are 5.1 mmol/L at 0 hour, 10.0 mmol/L at 1 hour and 8.5 mmol/L at 2

5 hours during OGTT, respectively. This thresholds is suggested by the International Association of the Diabetes
6 and Pregnancy Study Groups in 2011.

7 **Diet intervention strategy**

8 The macronutrients (protein, fat and carbohydrate) and caloric consumption of GDM patients were
9 estimated during the two weeks diet intervention in consultation with a nutritionist. Participants were deemed
0 to have complied with the given dietary recommendations when all of the criteria below were met: 35–45%
1 in total energy is carbohydrates, low glycemic index carbohydrates and 20% in total energy is simple
2 carbohydrates. 18–20% in total energy is proteins and 35% in total energy is fats. at least 20–25 g/day for fiber
3 intake, and make sure no alcohol consumption. The recommended daily calories are divided into smaller,
4 multiple meals to protect patients from ketonuria and acidosis because it often occurs due to prolonged fasting.
5 Besides, The nutritionist was contacting with subjects with GDM continuously, through telephone contact
6 every week, to keep them updated on their nutritional status as the study progressed. Besides, the nutritionist
7 instructed patients to monitor blood glucose by themselves at least 4 times a day by finger puncture capillary
8 blood glucose test. To avoid the the gut microbiota composition to be effected by prebiotics/probiotics use,
9 general recommendations were as implemented for the healthy pregnant subjects, making sure no spicy foods
0 and no yogurt intake.

1 **Microbial data extraction method**

2 **DNA Extraction & OTU analysis**

3 Stool samples were frozen as soon as possible after being collected and stored at –80 °C until DNA
4 extraction was performed as described in [40]. Base on the manufacturer's instructions, 200 mg was extracted
5 from each feces sample for DNA extraction by the QIAamp DNA stool Mini kit (Qiagen, Germany). 515F
6 (5'-GTGCCAGCMGCCGCGGTAA -3') and 806R (5'-GGACTACHVGGGTWTCTAAT -3') are used to
7 amplify the V4 region of the 16S rRNA. Each appropriate sized PCR product was purified and then use the

8 HiSeq 2500 genome analyzer (Illumina HiSeq 2500) to perform the 250-bp nucleotide paired-end sequencing.
9 High-quality trimmed reads were aggregated into OTUs by MOTHUR [41], and the recognition rate was 97%.
0 To make sure the phylogeny of the OTUs, using the Greengenes database to BLAST search the longest
1 sequence from each OTU [42] to obtain full-length 16S rRNA gene sequences with well-annotated full-length.

2 **Data pre-processing**

3 Our initial dataset contained 57 subjects with 813 unique OTUs identified. In order to avoid
4 artifactual/spurious associations between non-correlated and low-abundant microbial members in a
5 community, OTUs that were found in less than 10 instances or were found in less than 10% of all subjects
6 were filtered out. The remaining OTUs were used to reconstruct the co-abundance networks. Considering that
7 there will be a large variability in the microbial abundance values, in order to make the calculation results
8 more reliable, the microbial abundance data of each subject is normalized to make the sum of the microbial
9 abundances of each subject equal to 1. Then, the samples was divided into four parts for analysis according to
0 subject type and sampling time, including first sampling data of 30 healthy pregnant women, second sampling
1 data of 30 healthy pregnant women, first sampling data of 27 GDM patients and second sampling data of 27
2 GDM patients.

3 **Network analysis method**

4 **Network reconstruction principle**

5 For the four sample groups of different states ($h(W0)$, $h(W2)$, $g(W0)$, $g(W2)$), we reconstructed the OTUs
6 co-expression binary networks. Each node in the networks represented a single OTU. The edges of the network
7 corresponded to significant correlations between pairs of OTUs. The following processes were applied to
8 reconstruct the networks: (1) For each group, the Pearson correlation for all pairs of OTUs was calculated; (2)
9 non-significant correlations were filtered out using a Z-score test. For each pair of OTU sequences, the samples
0 were randomly shuffled 1000 times and the Pearson correlation coefficient calculated. Then, the Z-score, W ,

1 was calculated according to the following formula:

2

$$W = \frac{C - \text{mean}(C_{\text{shuffle}})}{\text{std}(C_{\text{shuffle}})}, \quad (1)$$

3 where C is the Pearson coefficient of the non-shuffled data, $\text{mean}(C_{\text{shuffle}})$ is the average value of Pearson
4 coefficient of the shuffled data and $\text{std}(C_{\text{shuffle}})$ is the standard deviation value of the Pearson coefficient of the
5 shuffled data. Larger W value means that the correlation is more significant. A value of $W < 1$ was considered
6 a non-significant correlation and filtered out; (3) For each network, a fixed number of 500 edges were defined
7 as the OTU pairs with the highest Pearson correlation values. The reasons and necessity of fixing the size of
8 network are elaborated in the supplementary information (S1 Fig, S2 Fig and S3 Fig). This step was necessary
9 for eliminating the possible bias of the number of edges when comparing the structural similarity between
0 different networks.

1 **Group network analysis**

2 To compare between two groups, networks were reconstructed using all the samples of each group. The
3 similarity between the networks was defined as the overlap between the set of edges, according to the Jaccard
4 index:

5

$$J(A^m, B^n) = \frac{|A^m \cap B^n|}{|A^m \cup B^n|}, \quad (2)$$

6 where A and B are two different sample sets, m and n are the number of subjects in each sample set. A^m and
7 B^n represent the set of edges of the two networks, respectively.

8 **Individualized network-impact**

9 Inspired by the LIONESS method for inference of single-cell gene regulatory networks [43], our network
0 reconstruction method analyzed the *network-impact* of individual GDM patient samples. However, unlike the
1 LIONESS method, our method did not aim to infer the network entirely, but to simply evaluate the impact of
2 a single sample in general. In order to measure how much the ecological balance of individual subject k is

3 consistent with the ecological balance of the rest of the subjects in the same group, its *network-impact* was
4 estimated with a 'leave-one-out' procedure (inspired by the method described in [44]). Specifically, two ways
5 to evaluate the network-impact of an individual sample, k , were introduced.

6 The first way directly measured the change in the network structure reconstructed from a cohort of
7 samples after removing the individual sample of interest. The Jaccard dissimilarity score was calculated,

$$8 J(B^n, B^{n-k}) = 1 - \frac{|B^n \cap B^{n-k}|}{|B^n \cup B^{n-k}|}, \quad (3)$$

9 where B^n represents the network that was reconstructed with all samples and B^{n-k} represents the network that
0 was reconstructed without sample k . Low dissimilarity indicated that the balance between species abundance
1 of sample k tend to follow the same correlation pattern of the entire group, while high dissimilarity suggested
2 that sample k follows a unique correlation pattern.

3 According to Eq. (3), the larger the Jaccard distance, the lower the similarity between the network without
4 the sample k and the network with the sample k . This suggests that this sample k made a significant difference
5 in all samples. When the Jaccard distance is 1, it means that the network without the sample k is completely
6 different from the network with the sample k . Alternatively, when the Jaccard distance is 0, it means that the
7 network without the sample k is exactly the same as the network with the sample k .

8 The second way is an indirect evaluation of the impact of sample k on the network of its cohort by
9 measuring its change with respect to a reference cohort. The change in the Jaccard distance score was
0 calculated

$$1 J(A^m, B^{(n-k)}) - J(A^m, B^n) = \frac{|A^m \cap B^{(n-k)}|}{|A^m \cup B^{(n-k)}|} - \frac{|A^m \cap B^n|}{|A^m \cup B^n|}, \quad (4)$$

2 where A^m represents a network that was reconstructed from the reference cohort. A small (large) change in
3 the distance between networks A and B after removing sample k indicates that k 's abundance profile follows
4 a similar (different) correlation pattern to its cohort.

5 Here, it can be seen from Eq. (4) that when the Jaccard distance value is positive (negative), it indicates
6 that network B after removing sample k is more similar (different) to the reference cohort A, and the sample
7 k is the person who is more different (similar) with the reference cohort than the others.

8

9 Data and network shuffling processes

0 *Data shuffling*: In the network reconstruction process, the significance of each edge was estimated by
1 comparing its associated Pearson correlation value to a set of values calculated for shuffled abundance profiles.

2 Each shuffled abundance profile was reconstructed using a Monte Carlo procedure, by randomly assigning a
3 value for each OTU from the empirical abundance distribution of the same OTU, independently. The shuffled
4 profiles preserve the original relative frequencies of the OTUs while removing any correlations among them.

5 *Network shuffling*: The distance values between networks were compared to distances calculated between
6 shuffled networks, reconstructed with the same number of nodes but with random reassignment of the 500
7 edges.

8

9 Community analysis method

0 In addition to network analysis methods, the microbiome community composition in different groups were
1 compared and analyzed by calculating the β diversity according OTU table. We calculate the dissimilarity of
2 different sample sets by using the root Jensen–Shannon divergence (rJSD) measure [31] to compare the
3 difference between different groups. The root Jensen–Shannon divergence (rJSD) is defined as

4

$$5 \quad \mathbf{D}(\hat{x}, \hat{y}) = D_{rJSD}(\hat{x}, \hat{y}) = \left[\frac{D_{KL}(\hat{x}, m) + D_{KL}(\hat{y}, m)}{2} \right]^{\frac{1}{2}} \quad (5)$$

6 where \hat{x} and \hat{y} are renormalized the relative abundances of only the shared species (set S). $m = \frac{\hat{x} + \hat{y}}{2}$ and
 $D_{KL}(\hat{x}, \hat{y}) = \sum_{i \in S} \hat{x}_i \log \frac{\hat{x}_i}{\hat{y}_i}$ is the Kullback–Leibler divergence between \hat{x} and \hat{y} .

8

9

0

1 **Data availability:**

2 The original datasets for this study can be found in the Genome Sequence Archive
3 (<https://ngdc.cncb.ac.cn/gsa/>), the accession code is: CRA004782. The studied OTU table could be found on
4 GitHub at (<https://github.com/YimengLiu9425/code/tree/master>).

5

6 **Code availability:**

7 The Python code used in this study can be found on GitHub
8 (<https://github.com/YimengLiu9425/code/tree/master>).

9 **Acknowledgements**

0 This work was supported by the Peking University People's Hospital Scientific Research Development
1 Funds(grant no.RDY2019-29), the National Natural Science Foundation of China (grant 32070116) and
2 Maternal and Infant Nutrition & Care Research Fund of the Institute of Nutrition and Nursing of Biostime
3 (grant no. 2015-Z-20). A.B. thanks the German-Israeli Foundation for Scientific Research and Development
4 (grant No. I-1523-500.15/2021), the Israel Science Foundation (grant No. 1258/21), and the Azrieli
5 Foundation for supporting this research.

6

7 **Authors contribution**

8 N.W. performed the data collection. X.Z. and N.W. performed sequencing management. Y.L. and A.B.
9 developed the methodology and analyzed the data. Y.L., G.A., D.L. and A.B. wrote the manuscript. All authors
0 discussed the results and reviewed the manuscript.

1

2

3

Ethics declarations

4 The authors declare no competing interests.

5

6 This study was approved by the Conjoint Health Research Ethics Board of Peking University 74 People's
7 Hospital, and informed consent forms were signed by all of the subjects in this study. All experiments were
8 performed in accordance with the approved 76 guidelines and regulations.

9

0 Declaration of interests

1 The authors declare no competing interests.

2

3 Inclusion and diversity statement

4 We support inclusive, diverse, and equitable conduct of research

5

6 Reference

7 [1]. Crusell MK et al. Gestational diabetes is associated with change in the gut microbiota composition in
8 third trimester of pregnancy and postpartum. *Microbiome*. 2018 Dec;6:1-9.

9 [2]. American Diabetes Association. Gestational diabetes mellitus. *Diabetes care*. 2004; 27: S88.

0 [3]. Donovan, P.J. & McIntyre, H.D. Drugs for gestational diabetes. *Aust. Prescr*. 2010; 33, 141-144.

1 [4]. Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS. Effect of treatment of
2 gestational diabetes mellitus on pregnancy outcomes. *New England journal of medicine*. 2005 Jun
3 16;352(24):2477-86.

4 [5]. Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in adolescent offspring of

5 diabetic mothers: relationship to fetal hyperinsulinism. *Diabetes care*. 1995 May 1;18(5):611-7.

6 [6]. Pettitt DJ, Bennett PH, Knowler WC, Robert Baird H, Aleck KA. Gestational diabetes mellitus and
7 impaired glucose tolerance during pregnancy: long-term effects on obesity and glucose tolerance in the
8 offspring. *Diabetes*. 1985 Jun 1;34(Supplement_2):119-22.

9 [7]. Rizzo TA, Metzger BE, Dooley SL, Cho NH. Early malnutrition and child neurobehavioral development:
0 insights from the study of children of diabetic mothers. *Child development*. 1997 Feb;68(1):26-38.

1 [8]. Buchanan TA, Xiang AH. Gestational diabetes mellitus. *The Journal of clinical investigation*. 2005 Mar
2 1;115(3):485-91.

3 [9]. O'Sullivan JB. The Boston gestational diabetes studies: review and perspectives. In: *Carbohydrate*
4 *Metabolism in Pregnancy and the Newborn*· IV. London: Springer-Verlag London Press; 1989. p. 287-94.

5 [10]. Alwan N, Tuffnell DJ, West J. Treatments for gestational diabetes. *Cochrane database of systematic*
6 *reviews*. 2009(3).

7 [11]. Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by *Clostridium*
8 *difficile*. *Gastroenterology*. 2014 May 1;146(6):1547-53.

9 [12]. Arthur JC, Jobin C. The struggle within: microbial influences on colorectal cancer. *Inflammatory bowel*
0 *diseases*. 2011 Jan 1;17(1):396-409..

1 [13]. Wang Z et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. *Nature*. 2011
2 Apr 7;472(7341):57-63.

3 [14]. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. *Nature*. 2009 Jan 22;457(7228):480-
4 4.

5 [15]. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. *Current opinion in*
6 *gastroenterology*. 2015 Jan;31(1):69.

7 [16]. Sanz Y, Olivares M, Moya-Pérez Á, Agostoni C. Understanding the role of gut microbiome in metabolic
8 disease risk. *Pediatric research*. 2015 Jan;77(1):236-44.

9 [17]. David, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome. *Nature*. 2014 Jan
0 23;505(7484):559-63.

1 [18]. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut

2 microbiome: a metagenomic analysis in humanized gnotobiotic mice. *Science translational medicine.*
3 2009 Nov 11;1(6):6ra14-.

4 [19]. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. *British Journal of Nutrition.* 2015
5 Jan;113(S1):S1-5.

6 [20]. Lopez-Legarrea P, Fuller NR, Martinez JA, Caterson ID, Zulet MA. The influence of Mediterranean,
7 carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and
8 associated inflammatory state. *Asia Pacific journal of clinical nutrition.* 2014 Sep;23(3):360-8.

9 [21]. Ponzo V, Fedele D, Goitre I, Leone F, Lezo A, Monzeglio C, Finocchiaro C, Ghigo E, Bo S. Diet-gut
0 microbiota interactions and gestational diabetes mellitus (GDM). *Nutrients.* 2019 Feb 3;11(2):330.

1 [22]. Cortez, R.V. et al. Microbiome and its relation to gestational diabetes. *Endocrine.* 2019 May 15;64:254-
2 64.

3 [23]. Kuang, Y.S. et al. Connections between the human gut microbiome and gestational diabetes mellitus.
4 *Gigascience.* 2017 Aug;6(8):gix058.

5 [24]. Bassols, Judit. et al. Gestational diabetes is associated with changes in placental microbiota and
6 microbiome. *Pediatric research.* 2016 Dec;80(6):777-84.

7 [25]. Konopka A. What is microbial community ecology?. *The ISME journal.* 2009 Nov;3(11):1223-30.

8 [26]. Zheng, Wei. et al. Gestational diabetes mellitus is associated with reduced dynamics of gut microbiota
9 during the first half of pregnancy. *MSystems.* 2020 Apr 28;5(2):e00109-20.

0 [27]. Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network
1 perspective. *Trends in microbiology.* 2017 Mar 1;25(3):217-28.

2 [28]. Matchado MS, Lauber M, Reitmeier S, Kacprowski T, Baumbach J, Haller D, List M. Network analysis
3 methods for studying microbial communities: A mini review. *Computational and structural biotechnology
4 journal.* 2021 Jan 1;19:2687-98.

5 [29]. Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network
6 perspective. *Trends in microbiology.* 2017 Mar 1;25(3):217-28.

7 [30]. Liu X, Wang Y, Ji H, Aihara K, Chen L. Personalized characterization of diseases using sample-specific
8 networks. *Nucleic acids research.* 2016 Dec 15;44(22):e164-.

9 [31]. Bashan, A., et al. Universality of human microbial dynamics. *Nature*. 2016 Jun 9;534(7606):259-62.

0 [32]. Na Wu, et al. The gut microbial signature of gestational diabetes mellitus and the association with diet
1 intervention. *Frontiers in Cellular and Infection Microbiology*. 2022 Jan 14;11:800865.

2 [33]. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. *Science*. 2016 Apr
3 29;352(6285):544-5.

4 [34]. Cox L.M. et al. Altering the intestinal microbiota during a critical developmental window has lasting
5 metabolic consequences. *Cell*. 2014 Aug 14;158(4):705-21.

6 [35]. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. *Nature*. 2012
7 Aug 30;488(7413):621-6.

8 [36]. Livanos, A.E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1
9 diabetes in mice. *Nature microbiology*. 2016 Aug 22;1(11):1-3.

0 [37]. Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of
1 childhood overweight and central adiposity. *International journal of obesity*. 2014 Oct;38(10):1290-8.

2 [38]. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term
3 antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. *PloS one*.
4 2010 Mar 24;5(3):e9836.

5 [39]. Zmora N, Zeevi D, Korem T, Segal E, Elinav E. Taking it personally: personalized utilization of the human
6 microbiome in health and disease. *Cell host & microbe*. 2016 Jan 13;19(1):12-20.

7 [40]. Wu, N., et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. *Microbial ecology*.
8 2013 Aug;66:462-70.

9 [41]. Schloss, P.D., et al. Introducing mothur: open-source, platform-independent, community-supported
0 software for describing and comparing microbial communities. *Applied and environmental
1 microbiology*. 2009 Dec 1;75(23):7537-41.

2 [42]. DeSantis, T.Z., et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench
3 compatible with ARB. *Applied and environmental microbiology*. 2006 Jul;72(7):5069-72.

4 [43]. Kuijjer ML, Tung MG, Yuan G, Quackenbush J, Glass K. Estimating sample-specific regulatory networks.
5 *Iscience*. 2019 Apr 26;14:226-40.

6 [44]. Kuntz TM, Gilbert JA. Introducing the microbiome into precision medicine. Trends in pharmacological
7 sciences. 2017 Jan 1;38(1):81-91.

8

9 **Supporting information**

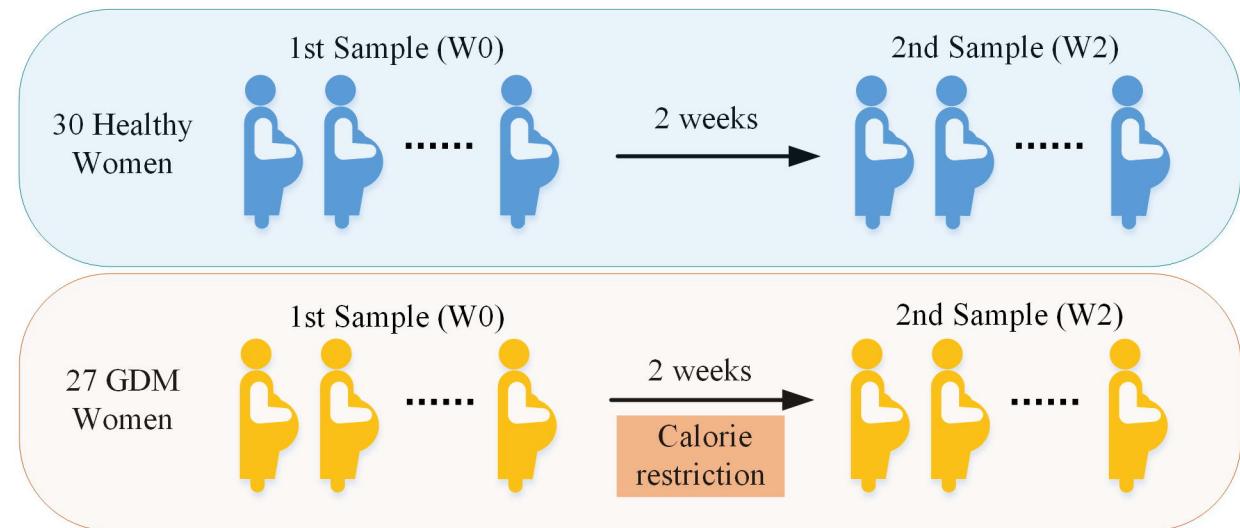
0 **S1 Fig. The size of the microbial networks of the healthy group and GDM patients before and after diet**
1 **interventions under different W threshold.** The corresponding network size of different groups is different though the
2 threshold is fixed.

3 **S2 Fig. Jaccard similarity between the GDM group and healthy group with unfixed network size for**
4 **different threshold values, W.** The green curve shows the GDM group compared with the healthy group two
5 weeks earlier, and the red curve shows the GDM group compared with the healthy group two weeks later. The
6 solid dots indicate the comparison between the GDM group and the healthy group before the dietary
7 intervention, and the hollow dots indicate the comparison between the GDM group and the healthy group after
8 the dietary intervention. The dark curve is the real data result, and the light curve is the shuffled network result.

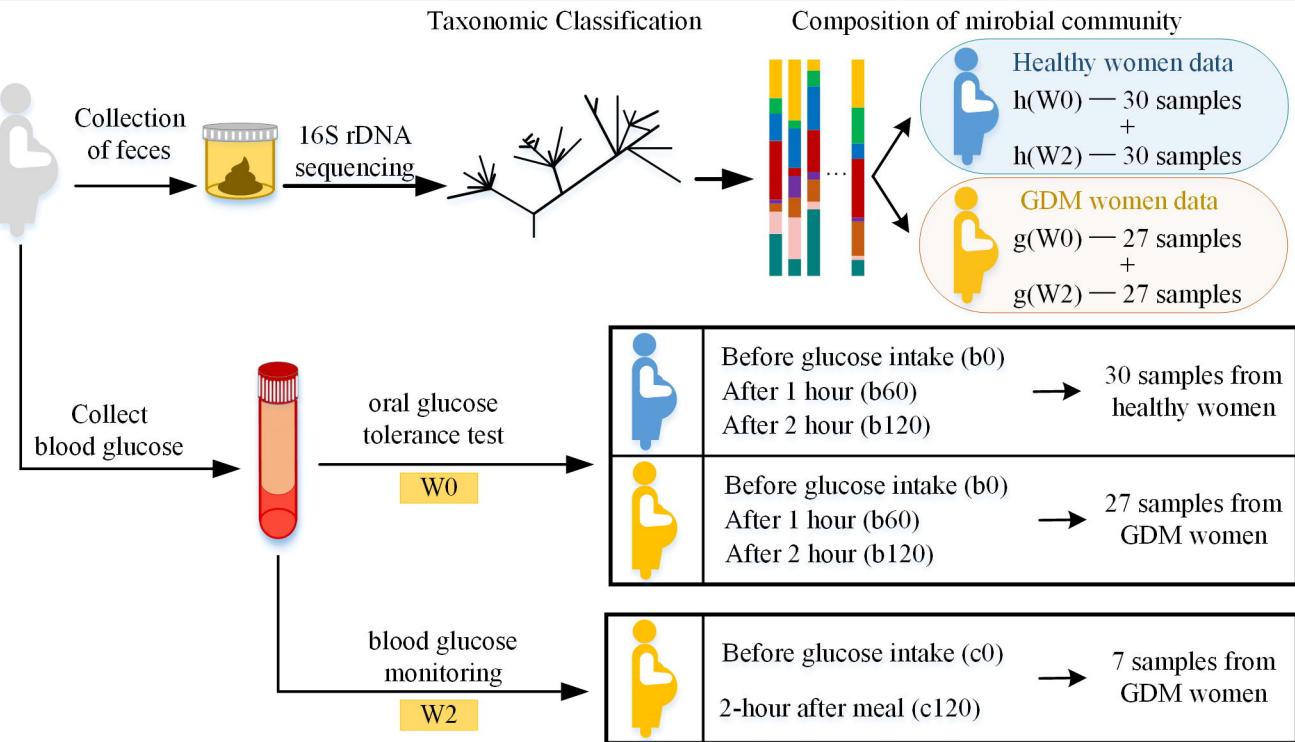
9 **S3 Fig. Violin plot of Jaccard similarity between the GDM group and healthy group with fixed network**
0 **size under different fix number.** When different number of links are fixed, the pattern is still stable in most
1 cases.

2

a) Experimental setup



b) Collection of microbial and blood glucose information



Step I : Network reconstruction

Step II : Network comparison

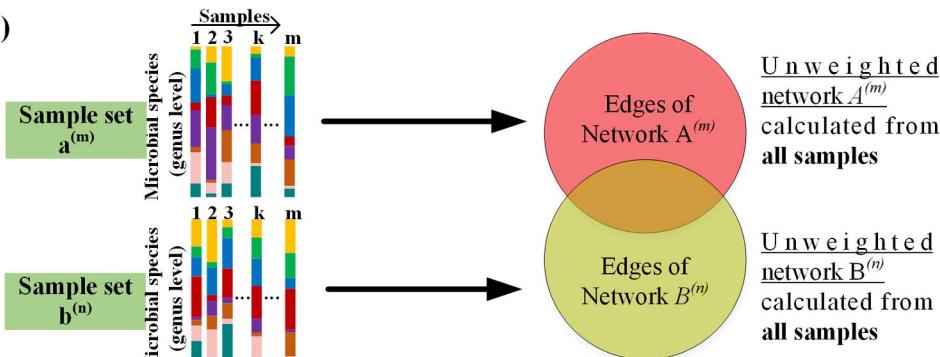
Reconstruct Network

- (1) Pearson correlation, $\rho_{i,j}$
- (2) Significant test $W_{i,j} > 1$

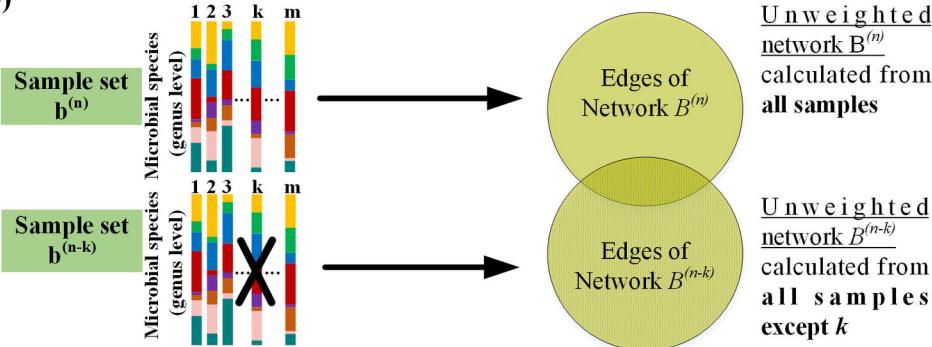
Network Comparison

Top 500 edges with highest $\rho_{i,j}$

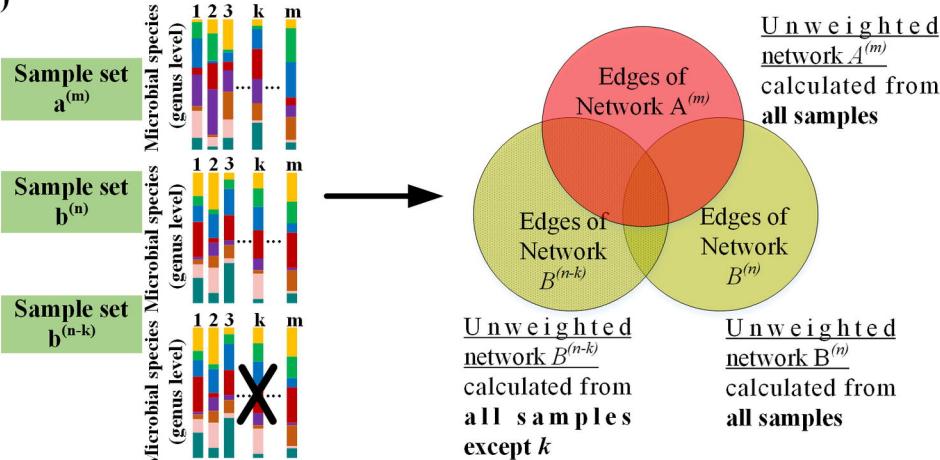
a)



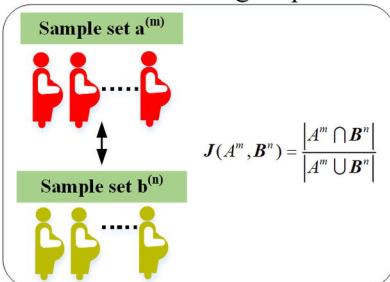
b)



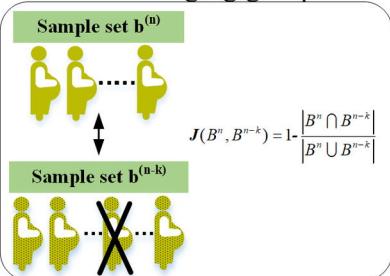
c)



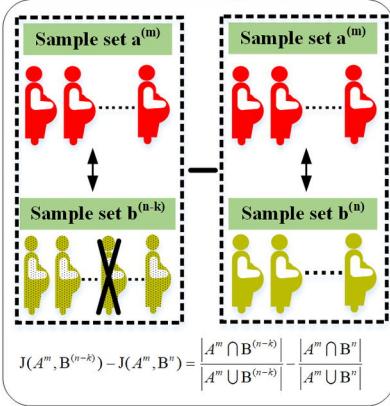
Score for groups

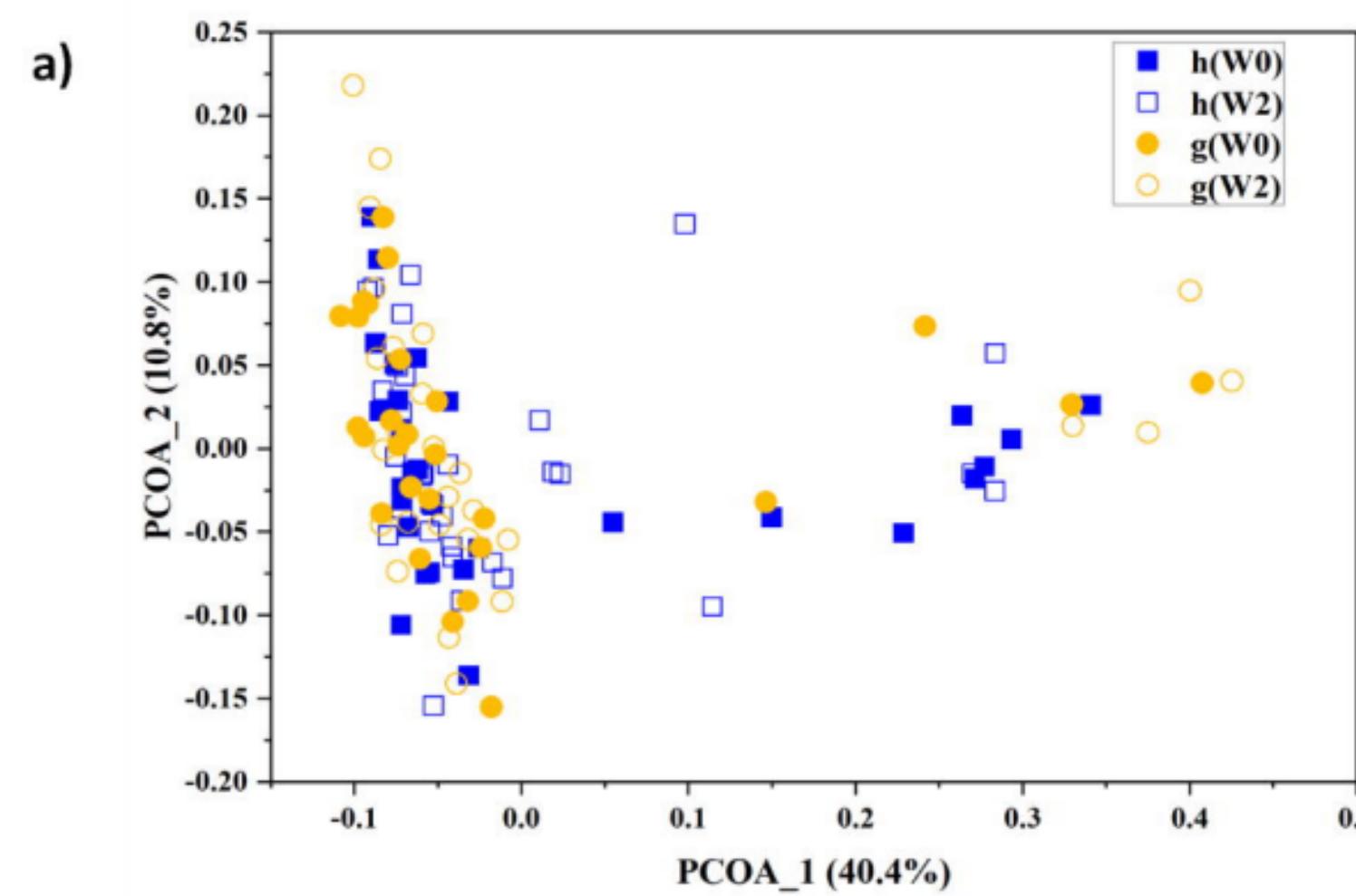
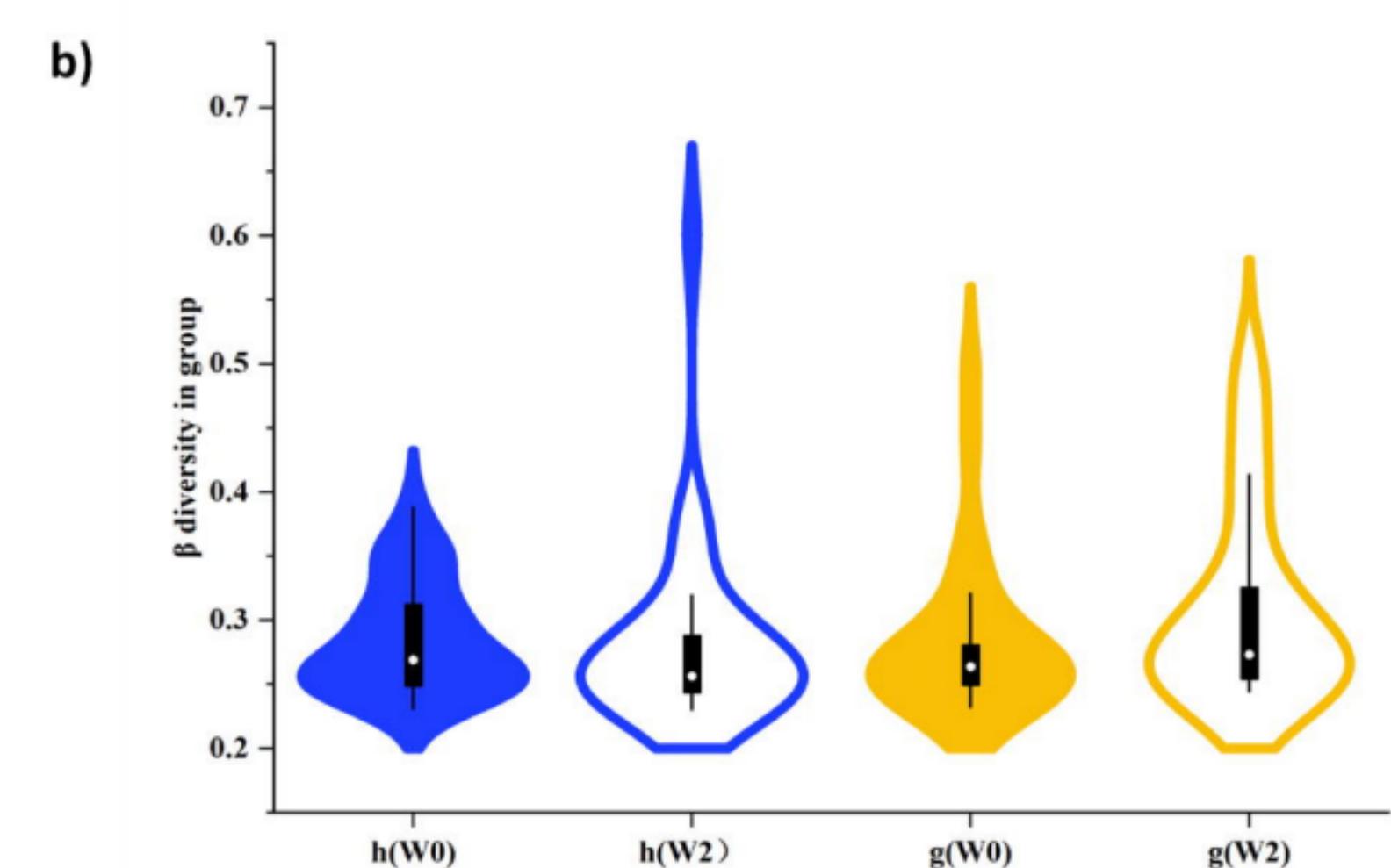


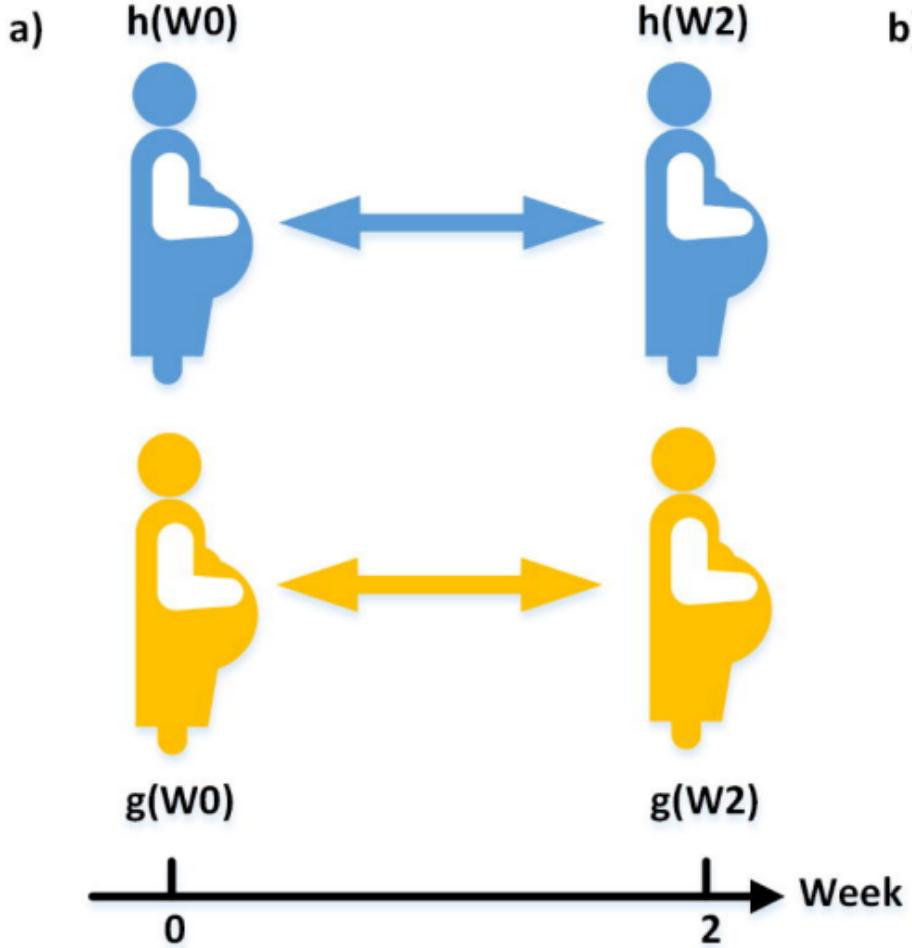
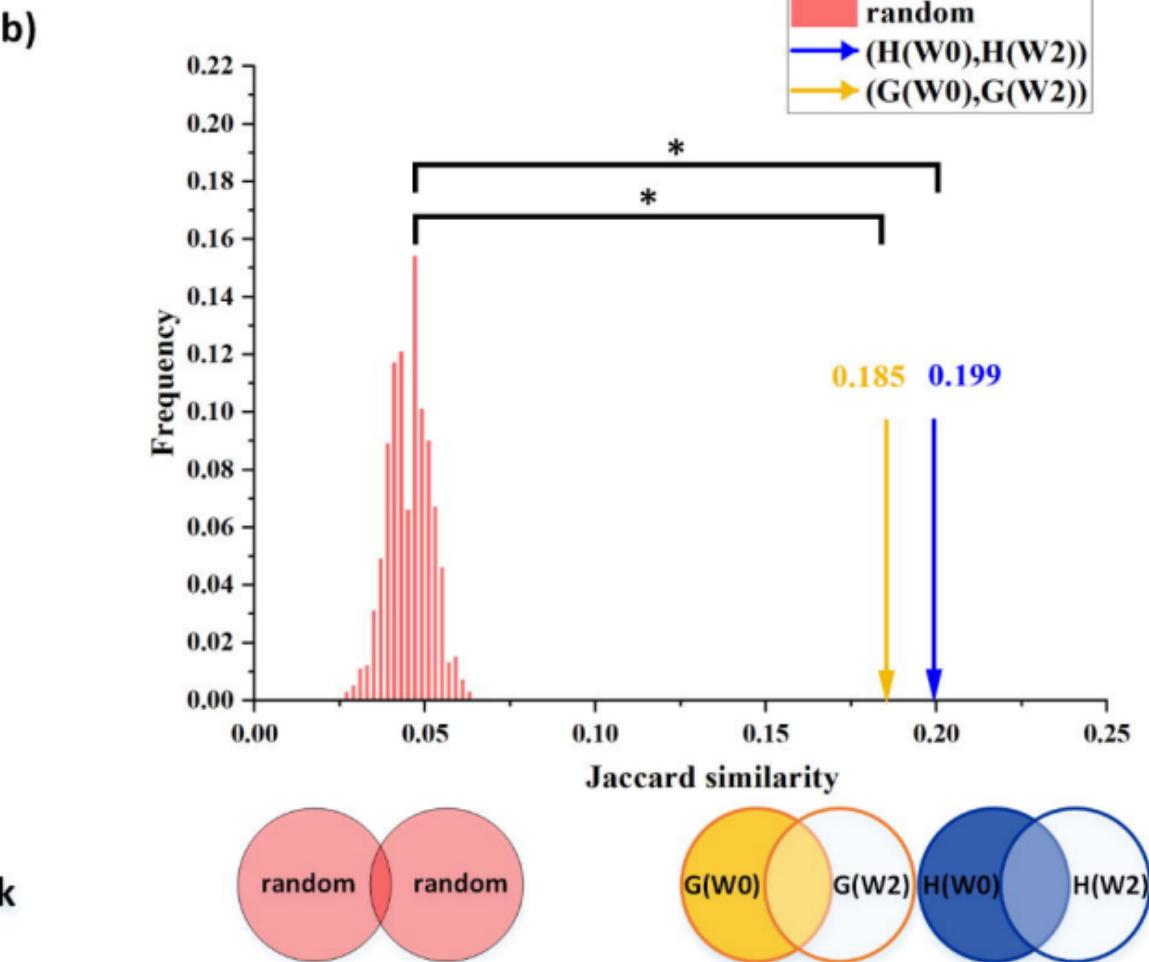
Score for individual sample k in belonging group



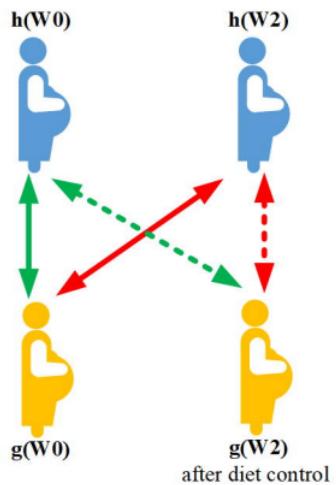
Scores for individual sample k with other groups



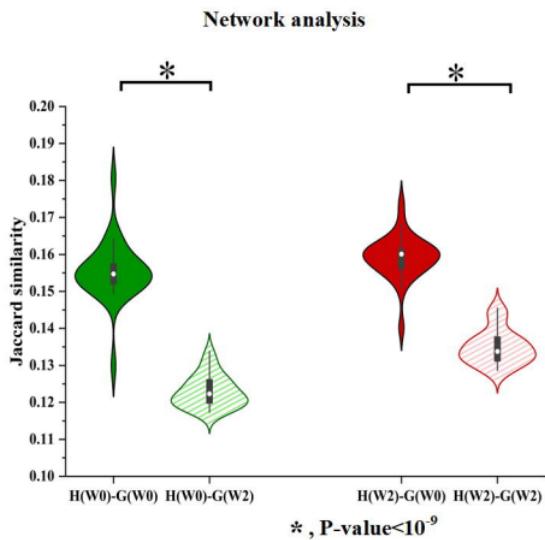




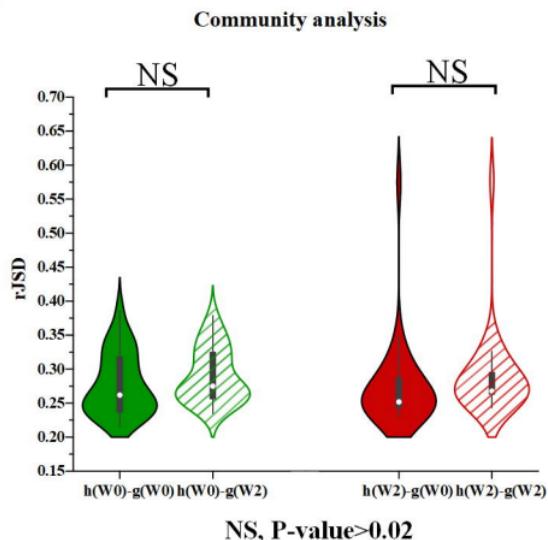
a)



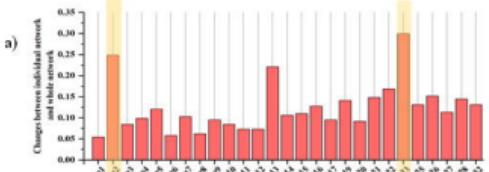
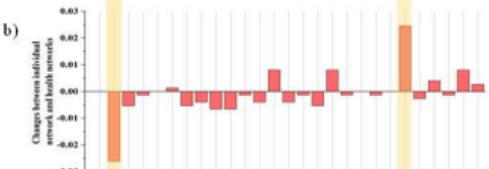
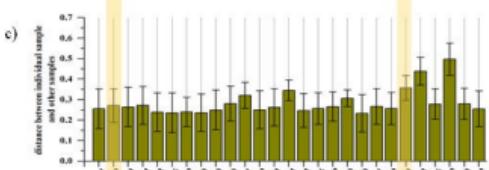
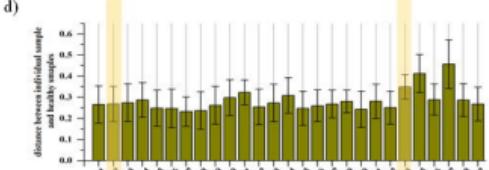
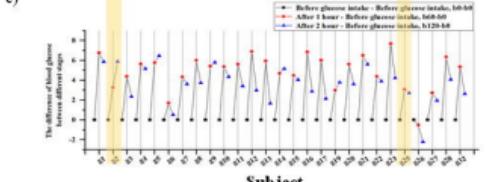
b)



c)

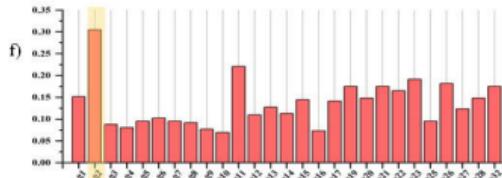
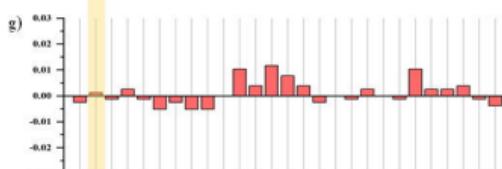
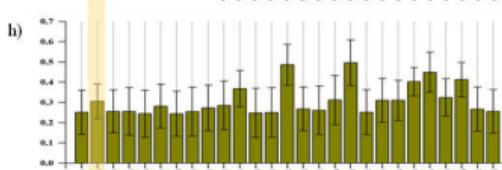
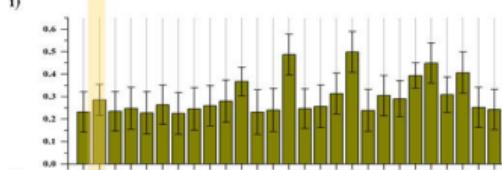
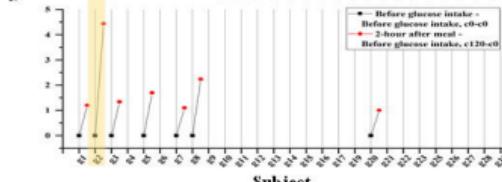


Before diet control



Network analysis

After diet control



Community analysis

Blood glucose tolerance test