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Abstract 22 

Gestational Diabetes Mellitus (GDM), a serious complication during pregnancy which is defined by abnormal 23 

glucose regulation, is commonly treated by diabetic diet and lifestyle changes. While recent findings place the 24 

microbiome as a natural mediator between diet interventions and diverse disease states, its role in GDM is still 25 

unknown. Here, based on observation data from healthy pregnant control group and GDM patients, we 26 

developed a new network approach using patterns of co-abundance of microorganism to construct microbial 27 

networks that represent human-specific information about gut microbiota in different groups. By calculating 28 

network similarity in different groups, we analyze the gut microbiome from 27 GDM subjects collected before 29 

and after two weeks of diet therapy compared with 30 control subjects to identify the health condition of 30 

microbial community balance in GDM subjects. Although the microbial communities remain similar after the 31 

diet phase, we find that the structure of their inter-species co-abundance network is significantly altered, which 32 

is reflected in that the ecological balance of GDM patients was not "healthier" after the diet intervention. In 33 

addition, we devised a method for individualized network analysis of the microbiome, thereby a pattern is 34 

found that individuals with large deviations in microbial networks are usually accompanied by their abnormal 35 

glucose regulation. This approach may help the development of individualized diagnosis strategies and 36 

microbiome-based therapies in the future.  37 

 38 

Author Summary 39 

In this study, we aimed to investigate the role of the gut microbiome in gestational diabetes mellitus (GDM), 40 

a condition that affects pregnant women and is characterized by abnormal glucose regulation. Specifically, we 41 

asked whether and how the gut microbiome is affected by diabetic diet which is commonly used to treat GDM 42 

patients. We developed a new network approach to analyze patterns of co-abundance of microorganisms in 43 

the gut microbiota of GDM patients and healthy pregnant women. Our findings show that although the 44 
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microbial communities remained similar after the diet phase, the structure of their inter-species co-abundance 45 

network was significantly altered, indicating that the ecological balance of GDM patients was not "healthier" 46 

after the diet intervention. Furthermore, we suggest that abnormal glucose regulation is associated with large 47 

network deviations, which could lead to the development of individualized microbiome-based therapies in the 48 

future. Our work highlights the importance of studying the microbiome from a network perspective to better 49 

understand the dynamic interactions among microorganisms in the community balance of the microbiome.  50 
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Introduction 51 

Gestational diabetes mellitus (GDM) refers to glucose intolerance that occurs or is first detected during 52 

pregnancy [1, 2]. GDM appears to be caused by the same physiological and genetic abnormalities as extra-53 

gestational diabetes [3]. It is estimated to affect between 3-9% of pregnant women worldwide and is related 54 

with high rates of serious complications, for example shoulder dystocia and birth injuries, which includes bone 55 

fractures and nerve palsies[3, 4]. Babies born to mothers with GDM may have issues with persistent impaired 56 

glucose tolerance [5], subsequent obesity [6], and impaired intellectual achievements [7]. Furthermore, even 57 

after pregnancy, people with GDM may still have diabetes, which poses a high risk for people with GDM [8, 58 

9]. Common treatments of GDM that aim to reverse hyperglycemia include lifestyle changes and insulin 59 

therapy [10]. Usually, lifestyle changes consist of diet intervention, exercise therapy and blood glucose self-60 

monitoring. Insulin therapy is often used when lifestyle changes fail to control blood glucose levels or when 61 

complications arise with the fetus. 62 

 GDM is a typical metabolic disease that occurs during pregnancy, which may suffer from gut microbiome 63 

disorders. In fact, in recent years, many diseases, not only metabolic diseases, have been found to be closely 64 

related to flora disorders, including Clostridium Difficile infection (CDI) [11], colorectal cancer [12], dietary 65 

choline-induced atherosclerotic heart disease [13] and chronic diseases such as obesity [14]. In some cases, 66 

the change in the microbiome during a disease appears as an abnormal abundance of specific taxa [15]. 67 

However, a disease state can also be associated with a community-wide shift of the microbiome state 68 

(commonly evaluated in terms of PCA or 𝛼- and 𝛽-diversity measures). Such cases represent more general 69 

abnormalities that are linked to the interactions between the species and their ecological balance [16]. One of 70 

the most important factors that can influence microbiome composition is diet [17-19]. For example, the 71 

Mediterranean diet may benefit those with underlying conditions, such as obesity, blood lipids and 72 
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inflammation [20]. Diet interventions may cause community-wide alterations of the microbiome, by affecting 73 

the ecological interactions via promoting or inhibiting microbial growth [21].  74 

Thus it can be seen that understanding the underlying role of the microbiome of GDM patients is essential 75 

in two ways: On the one hand, an altered microbiome can affect their general health state. On the other hand, 76 

the individual composition of the microbiome may be related to the success of dietary interventions. Current 77 

studies of the microbiome in GDM patients have mainly focused on the abundance of specific microbial taxa 78 

[22, 23] , but not on the global interaction structure of different taxa. These studies revealed that the 79 

proportions of certain microbes in GDM patients differ from those in healthy subjects [24, 25]. However, at 80 

the microbiome community level, there was no clearly difference in composition and structure of intestinal 81 

microbiome communities between GDM patients and healthy pregnant women at three different stages of 82 

pregnancy through PCoA and α-diversity analysis [1, 26]. Thus, it is still unclear whether alterations of the 83 

community structure of the microbiome play any part in the condition of GDM.  84 

 Considering traditional biological community methods were unsuccessful in fully revealing the changes 85 

of the microbiome community of GDM patients, here we wish to instead analyze the microbiome community 86 

from the network perspective of co-abundance. To unveiling the complex web of interactions in microbial 87 

communities, dynamic ecology and evolutionary processes which drives them are required to be understood 88 

[25]. Microbial community structure and their functions are complex because of their dynamic nature, 89 

variability in composition, their self-reproduce ability and self-organize ability. Therefore, this complexity can 90 

be well represented and modeled as a network[27, 28]. The interactions within microbial communities can be 91 

well analyzed through the network method. In addition, the network approach can also be used to analyze the 92 

role of microbial communities between disease and health [29], and thus can detect changes in the appropriate 93 

ecological balance, helping to identify the health of microbial community balance, and providing additional 94 

information about the underlying dynamics. In contrast to traditional microbiome analysis, which focuses on 95 
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whether the abundance of individual species is within the normal range and detects abnormal abundances, the 96 

network analysis method focuses on the balance between species and detects abnormal ecological interactions.  97 

 Combined with the existing diet intervention strategies, in order to better understand the changes of 98 

microbiome in the course of GDM health evaluation and diet intervention, in this study, we propose a new 99 

approach which is based on individualized - and group-networks to analyze the changes in microbial 100 

communities between subjects with GDM and subjects without GDM (healthy), with and without diet 101 

intervention. The community structure and community balance are analyzed and compared with and without 102 

diet intervention by network similarity calculation. We reveal the effect of diet intervention on the microbiome 103 

of GDM patients and demonstrate the relationship between the network structure of the microbiome and the 104 

diagnosis of individual blood glucose. These findings provide support for evaluating the recovery of GDM 105 

patients, and contribute to the future personalized microbial-based medicine.  106 

Results 107 

Data collection and microbiome network analysis 108 

The experimental design of this study consists of observing and collecting data from healthy pregnant 109 

women and GDM patients who received diet intervention before and after two weeks, that was not especially 110 

designed for this study. The oral glucose tolerance test (OGTT) is performed to all pregnant subjects at the 111 

first instance of stool collection. Women with abnormal blood glucose levels during the test were diagnosed 112 

with GDM and receive traditional diet intervention. Patients with GDM had their daily calorie intake tailored 113 

to their weight by a nutritionist (see Methods). Women with normal blood sugar levels were designated to the 114 

control, healthy group. In this observational study, diet intervention was applied by the hospital as part of the 115 

routine treatment for GDM patients, while, to mitigate ethical concerns, healthy pregnant women were not 116 

recommended any special diet intervention. Dietary intervention for patients with GDM is the suggestion of 117 

clinical dietary treatment for patients with GDM. The experimental data was collected during routine treatment 118 
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of healthy and GDM pregnant women at Peking University People's Hospital (see Methods). Two cohorts of 119 

27 patients with GDM and 30 healthy pregnant controls were recruited for this study. All subjects were 120 

between 24 and 28 weeks of gestation at the start of the study. The average age of the 30 subjects in the control 121 

group was 31.4 years, with an average pre-pregnancy BMI of 21.3 before pregnancy, and an average BMI at 122 

sampling of 25. The average age of the 27 patients with GDM was 32.7 years, with an average BMI of 24.1 123 

before pregnancy and 27.04 at sampling. 16S rRNA analysis of stool samples collected twice over a two-week 124 

interval represents the microbial communities at the operational taxonomic units (OTUs) level. These sample 125 

sets are notated as g(W0) and g(W2) for the GDM subjects and h(W0) and h(W2) for the healthy subjects (Fig. 126 

1a). GDM patients had diet intervention treatment during these two weeks. Blood glucose levels were 127 

collected following the OGTT and routine monitoring. In the first sampling, the OGTT was performed on all 128 

subjects, and was used to classify the subjects as either healthy or GDM (Fig. 1b). During the second sampling, 129 

after two weeks, normal routine blood glucose monitoring was performed on the GDM group alone (Fig. 1b). 130 

Of the original cohort, 7 pregnant women completed the second glucose test.  131 

 132 

Fig 1. Description of the experimental setup and data collection process. a) Experimental setup - Subjects include 133 

27 GDM patients and 30 healthy pregnant women as the control group. Samples were collected twice for each subject, 134 

at interval of two weeks. The GDM patients executed diet intervention for two weeks. b) Collection of microbial and 135 

blood glucose information - To collect microbial information, DNA was taken from all subjects through feces, using 136 

16S rDNA sequencing to derive taxonomic classification of microbiome and microbial community. To collect blood 137 

glucose information, 75 gram OGTT was performed on all subjects at the first sampling and routine blood glucose 138 

monitoring was performed on 7 GDM patients at the second sampling. 139 

 140 

 OTUs co-expression networks were reconstructed for the four different sample groups. In our study, 141 
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network analysis includes two types: group analysis and individual analysis (Fig. 2, see Methods section). 142 

Group analysis compares the similarity of microbial networks between two groups of subjects (Fig.2a). 143 

Individual analysis measures how much the ecological balance of an individual subject is consistent with the 144 

ecological balance of the rest of the subjects in the same group. We estimated the individual's network-impact 145 

with a `leave-one-out’ procedure (inspired by the method described in [30]). Specifically, we introduced two 146 

ways to evaluate the network-impact of an individual sample. First, we compared the network structure 147 

reconstructed from samples without the interested sample and with the interested sample (Fig. 2b). Second, 148 

we measured the impact of the interested sample with respect to reference samples indirectly (Fig. 2c). The 149 

network analyses were also accompanied by traditional microbial community analysis for the purposes of 150 

comparison.  151 

 152 

Fig 2. Overview of network reconstruction method and evaluation. For each sample set, a network of pairwise 153 

interaction was constructed. Network edges are constructed according to correlation value, and the set of edges were 154 

used to evaluate the overlap between networks. a) The method of evaluating the similarity between two different sets. 155 

b) The method of evaluating the impact/effect of each individual on the network reconstructed for its group. c) The 156 

method of evaluating the impact/effect of each individual on the network reconstructed for the other groups. 157 

 158 

The microbiome composition in patients with GDM and healthy pregnant 159 

subjects 160 

After the OTU filtering procedure, 108 OTUs were left in each group (see Methods section). First, we 161 

compare the similarity between different groups by community analysis methods. For the beta diversity 162 

analysis, the root Jensen–Shannon divergence is used (rJSD) [31] to calculate the dissimilarity of the different 163 

sample sets. For the PCoA analysis, we again use the rJSD metric to calculate the distance distribution between 164 
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the different sets. It is found that the PCoA of the microbial composition of the healthy subjects and subjects 165 

with GDM before and after two weeks of diet intervention shows no significant differences among the four 166 

groups in the microbiome community structure (Fig. 3a). For each group, we also calculate the beta diversity, 167 

measured as the pairwise distances among all samples in the same group (Fig. 3b). The Wilcoxon rank-sum 168 

test shows no apparent significant differences between any two groups (P-value>0.05). This implies that it is 169 

also difficult to observe the differences in the microbiome community of pregnant women under the OTU 170 

scale using the traditional microbiome community analysis method. In addition, we have systematically tested 171 

for diet-related changes, i.e., G(W0)/G(W2) comparisons, in all the individual taxa in our data (species 172 

taxonomic level). We have found no individual taxa with a significant differential abundance (p-value>0.05 173 

for all taxa, Mann-Whitney U-test with Bonferroni correction for multiple comparisons). Traditional 174 

microbiome community analysis methods mainly focus on the differences in microbiome abundance values 175 

in individual taxa, but often ignore the interactions between different taxa, which may be capture using 176 

network approach.   177 

  178 

Fig 3. Community analysis of the gut microbiome composition of healthy and GDM patients. a) Principal 179 

Coordinates Analysis (PCoA) plot showing four groups of subjects. The horizontal and vertical coordinates are the first 180 

two principal components respectively, and the percentages in parentheses are the percentages of variables that can be 181 

explained in terms of principal components. b) Violin plot of beta-diversity among subjects within the same group 182 

calculated by rJSD distance. The samples show no apparent significant differences between any two groups of them (P-183 

value=0.22, 0.51, 0.38, 0.79, 0.06, 0.15 separately using the Wilcoxon rank-sum test). The number of samples in healthy 184 

group (h(W0) and h(W2) is 30 and the number of samples in GDM group (g(W0) and g(W2) is 27). 185 

 186 

The stability of the microbial networks 187 
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Next, we use the network analysis methods to analyze the networks' stability among the different groups. 188 

We first calculate the Jaccard similarity between the microbial networks of the healthy group reconstructed 189 

from samples collected at W0 and W2 and compare it to the Jaccard similarity calculated between two shuffled 190 

networks. This shuffled model represents two independent networks, while preserving the number of links of 191 

the original networks (see Methods). The Jaccard similarity of the healthy group is ~0.2, which is almost 4 192 

times higher compared with the similarity between the shuffled networks (~0.05) (Fig. 4b). This represents 193 

the consistency level of the network after two weeks for the same group, even without any known perturbation 194 

(such as diet intervention). Similarly, the Jaccard similarity calculated between GW0 and GW2 (0.185) is also 195 

significantly higher compared with the shuffled model, demonstrating its overall level of stability. This level 196 

of stability (about 0.19) may reflect the dynamic of the microbiome during pregnancy or the technical 197 

inaccuracy of the network reconstruction procedure and represents a baseline for the following analysis. 198 

Importantly, the fact that the Jaccard value of the GDM networks before and after the two weeks is lower 199 

compared with the healthy networks is inconclusive since it may be associated either to the GDM condition 200 

itself or to the diet intervention. 201 

 202 

Fig 4. Comparison of the healthy group similarity by network analysis. a) The consistency of the microbiome 203 

network of the GDM group and the healthy group after two weeks are evaluated by comparing the similarity of the 204 

GDM group and the healthy group to the null model. b) Comparison between the similarity score for the healthy group 205 

and GDM group before and after the two week interval and the score of the groups of null models created using a 206 

shuffling procedure (see Methods). In the null mode, the edges between the nodes are randomly shuffled, preserving the 207 

overall network size. The similarity score for the unshuffled data is marked with yellow arrow and blue arrow, 208 

representing Jaccard similarity between H(W0) and H(W2), G(W0) and G(W2), respectively. H(W0), H(W2), represents 209 

the network constructed by h(W0) and h(W2), respectively. H(W0), H(W2), represents the network constructed by h(W0) 210 
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and h(W2), respectively. G(W0), G(W2), represents the network constructed by g(W0) and g(W2), respectively. The 211 

significant similarity between the networks calculated for the same subjects after a two weeks interval indicates that 212 

they capture a consistent pattern of the inter-species correlations. * indicates 𝑝 < 10!" calculated as the fraction of 213 

shuffled realizations with Jaccard value equal or larger than the observed value. 214 

 215 

The effects of diet intervention on GDM patients 216 

We next investigate the effects of diet intervention by analyzing the change in the microbiome community 217 

balance level of GDM patients after diet intervention and comparing it to the microbiome of the healthy 218 

subjects. Analysis was performed both on the community structure and the co-abundance network level. To 219 

reduce biases, we do not directly compare the microbiome community balance of GDM patients and healthy 220 

subjects before and after the diet intervention, because the differences in results may be due to diet intervention 221 

or disease causes. Instead, in order to make a more effective comparison, we evaluate the change in the GDM 222 

microbiome indirectly by measuring its similarity to the healthy microbiome, which serves as a reference 223 

group (Fig. 5a). For the network analysis method, network similarity calculation is performed to identify the 224 

balanced health of the microbial community in GDM patients during diet intervention. Surprisingly, after two 225 

weeks of diet intervention, the similarity between the networks of the GDM patients and the healthy patients 226 

is significantly reduced (Fig. 5b P-value<10-9 using the Wilcoxon rank-sum test). Besides the network analysis 227 

method, we compare the similarity between different groups by β diversity analysis, too. By calculating rJSD 228 

distances of microorganism between different groups samples, we found in contrast that there is no significant 229 

differences in the distance between the GDM patients and the healthy community (Fig. 5c, P-value>0.02 using 230 

Wilcoxon rank-sum test).  231 

 232 

Fig 5. The effects of diet intervention on the gut microbiome as expressed by network and community analysis. 233 
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a) The effect of the diet intervention on the microbiome of the GDM patients was evaluated indirectly by comparing it 234 

to the reference group of the healthy patients. b) Violin plot of the Jaccard similarity between the networks of the GDM 235 

group after diet intervention and the healthy group (shadowed areas) was significantly lower than before the diet (filled 236 

areas) (P-value=3.72e-10 and 4.37e-10 using Wilcoxon rank-sum test). In addition, the similarity of H(W0)/G(W0) is 237 

significantly higher than the similarity of H(W2)/G(W2) (p-value =3.6e-9	using Wilcoxon rank-sum test). c) Violin plot 238 

of the dissimilarity between different groups by community analysis method. Each value represents the average distance 239 

(rJSD) calculated between each of the GDM samples and the samples of the reference group (healthy). The samples 240 

show only minor variability (P-value=0.1323 and 0.0214 using Wilcoxon rank-sum test). 241 

 242 

These results demonstrate that the microbial communities are altered during the two-week diet 243 

intervention period. This change is not captured by traditional beta-diversity analysis or by distance measures 244 

but is instead reflected in the ecological networks. Moreover, the direction of the change observed by our 245 

‘indirect comparison’ was counterintuitive. While diet intervention is clinically beneficial to the GDM patients, 246 

the underlying ecology of the patients’ microbiome was not ‘healthier’, i.e., it was less similar to the healthy 247 

group. In the future we hope to discern whether these changes in the microbial co-abundance correlation have 248 

direct casual relations to the health benefits of diet intervention in the GDM patients.  249 

 250 

Associations between ecology of microbial network and abnormal glucose 251 

patterns   252 

Finally, we study the relationship between the microbiome of individual GDM patients and their blood 253 

glucose measures. By analyzing individual microbiomes balance in GDM group, we hope to find out the 254 

specificity of individuals in GDM patients and analyze whether this specificity is related to changes in blood 255 

glucose, so as to provide support for personalized medicine. We apply microbial network analysis method to 256 
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evaluate the differences in microbiome balance between each GDM individual and others in GDM patients 257 

by calculating the network similarity. While the microbial networks represent the group-average relationships 258 

between the microbes, each subject has a unique individual signature of microbial co-abundance relation, and 259 

its specific networks can reliably describe individual specific disease states [30]. Using the "individualized 260 

network analysis" methodology (see Methods), we analyze the microbial samples of individual subjects based 261 

on their microbial network and compare it to the patterns of blood glucose levels from the OGTT and routine 262 

blood glucose monitoring. To analyze the pattern of microbial co-abundance community balance in individual 263 

subjects, we first perform a ‘leave-one-out’ procedure which compares between the networks calculated 264 

without each patient and the ones calculated with it (Fig. 6a, see Methods). We directly measure the changes 265 

in the network structure reconstructed from a cohort of samples after removing the individual sample k of 266 

interest before diet intervention. Figure 6a shows that the Jaccard distance of patients number g2, g13 and g23 267 

are significantly higher compared with the other patients using the Wilcoxon Signed-Rank Test (P-value= 268 

1.18E-05，P-value= 2.35E-05，P-value= 8.30E-06, respectively), suggesting that the community balance of 269 

these individuals differ substantially from the others in the group.  270 

 271 

Fig 6. Analysis of the relationship between microbial system and blood glucose levels. a) Evaluation of the changes 272 

between individual network of each GDM patient and the whole network of all GDM patients by Jaccard dissimilarity 273 

score before diet intervention. b) Evaluation of the impact of sample k of GDM patients on the network of all GDM 274 

patients by measuring its change with respect to the healthy women by Jaccard distance score before diet intervention. 275 

c) Evaluation of the dissimilarity between each individual GDM patient to other GDM patients using the root Jensen–276 

Shannon divergence (rJSD) before diet intervention. d) Evaluation of the dissimilarity between individual GDM patient 277 

to healthy women using the rJSD before diet intervention. e) OGTT blood glucose information collected by all GDM 278 

patients before diet intervention. f) Evaluation of the changes between individual network of each GDM patient and the 279 
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whole network of all GDM patients by Jaccard dissimilarity score after diet intervention. g) Evaluation of the impact of 280 

sample k of GDM patients on the network of all GDM patients by measuring its change with respect to the healthy 281 

women by Jaccard distance score after diet intervention. h) Evaluation of the dissimilarity between each individual 282 

GDM patient to other GDM patients using the root Jensen–Shannon divergence (rJSD) after diet intervention. i) 283 

Evaluation of the dissimilarity between individual GDM patients to healthy women using the rJSD after diet intervention. 284 

j) Routine blood glucose monitoring information collected by 7 GDM patients after diet intervention. The shadow box 285 

corresponds to the subject with abnormal blood glucose regulation whose impact is significantly higher than others 286 

according to the microbiome network.  287 

 288 

Based on network analysis method, we evaluate the differences in microbiome community balance 289 

between the GDM individual and the healthy group. Specifically, when one individual from the GDM group 290 

is dropped out, we calculate what extent the similarity level between the networks of the GDM and the healthy 291 

groups change (Fig. 6b). The equation in Fig. 2c is used to analyze the network impact of each GDM patients 292 

before diet intervention. We choose the healthy group before diet intervention as the reference cohort and 293 

evaluate the impact of sample k in GDM patients on the network of its cohort by measuring its change 294 

compared to the healthy group before diet intervention. Fig. 6b shows that patients g2 and g23 also exhibit a 295 

clear individualized impact using the Wilcoxon Signed-Rank Test (P-value= 3.09E-07，P-value= 8.29E-06, 296 

respectively).  297 

The differences in microbiome community balance of g2 and g23 can correspond to abnormalities in the 298 

blood glucose levels before diet intervention. The blood glucose data measured by OGTT has a repeated 299 

pattern across the subjects (Fig. 6e). Fasting blood glucose (b0) is usually the lowest of all other measurements. 300 

The blood glucose level after drinking glucose solution for 1h (b60) is the highest, and after 2h (b120), it 301 

decreases due to human body regulation, but is still higher than the fasting blood sugar level. Even though all 302 
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GDM patients have blood sugar values that are higher than the healthy population, some of which seem to 303 

stand out within the group, indicating uniquely abnormal blood glucose regulation. For example, for patient 304 

number g2, the blood glucose level of patient number g2 gradually increases over time, and the 1-hour blood 305 

glucose level increase of patient g23 is exceptionally higher compared with the other patients. 306 

Correspondingly, we evaluate the differences in microbiome community balance between the GDM 307 

individual and others of patients/healthy after diet intervention (Fig. 6f and 6g). Specifically, patient g2 stood 308 

out in the analysis. When we evaluate changes in the similarity level between the networks of the GDM and 309 

the healthy group while dropping out g2 from the GDM, we found that the change between microbial networks 310 

of the g2 and healthy groups networks after diet intervention was not as large as they were before diet 311 

intervention (Fig. 6b). Although the similarity between the microbial network of g2 and that of the healthy 312 

group is the same as the similarity between the complete group network and the healthy group at this time-313 

point, the individual microbial network of patient g2 has a very low similarity to the complete group network.  314 

After diet intervention, the relationship between microbiome community balance and abnormal blood 315 

glucose was still seen. Blood glucose data was measured using routine blood glucose monitoring. In total, 7 316 

patients reported self-monitoring of blood glucose levels (Fig. 6j). We find that the 2-hour postprandial of g2 317 

is higher than other patients. The abnormalities of g2’s blood glucose correlates with the observed phenomena 318 

in the microbiome network. This implies that abnormal blood glucose regulation in GDM patients is related 319 

to the interactions/ecology of the microbial network. Simply put, the individual network method analysis 320 

suggests that the blood glucose regulation level of GDM patients is partially related to its microbial 321 

composition. 322 

We find rare similar evidence from traditional microbial community analysis method. For each GDM 323 

subject, the β diversity analysis is performed by calculating rJSD distances to compare the dissimilarity 324 

between this GDM subject and the other GDM subjects (Fig. 6c and h). Additionally, we perform the β 325 
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diversity analysis by calculating rJSD distances to compare the dissimilarity between this GDM subject and 326 

the all healthy subjects (Fig. 6d and i). We found that when applying the microbial community analysis method, 327 

there is no apparent significant relationship between the blood glucose regulation level of GDM patients and 328 

its microbial. By calculating the differences between the microbial community structure of a specific 329 

individual and other individuals' microbial communities’ structure both before and after diet intervention, we 330 

find that subjects with large differences do not correlate with those with abnormal blood glucose. For example, 331 

we find patient g2 is abnormal in blood glucose level. But the microbial community structure of g2 was not 332 

significantly different before diet control from that of other individuals using the Wilcoxon Signed-Rank Test 333 

(P-value= 0.949). Similarly, when comparing the microbial community structure of a specific individual with 334 

that of the healthy group, a similar conclusion is found: no relationship between blood glucose levels and 335 

microbial composition is observed using traditional microbial community analysis methods. The microbial 336 

community structure of g2 after diet control was not significantly different from that of other individuals using 337 

the Wilcoxon Signed-Rank Test (P-value= 0.665).  338 

However, the anomaly of the g2 patient does not represent a typical microbiome pattern in the analyzed 339 

patients. The microbiomes and microbial networks of patients g5, g9, g14 and g19, which exhibit a similar, 340 

but less pronounced, blood glucose anomaly, are not more similar to g2 than the other patients. Further 341 

research on larger cohorts is required to test whether there is a common mechanism that links blood glucose 342 

and the microbiome. 343 

 344 

Discussion  345 

Personalized medicine require more precise identification of each individual. In this work, we characterize 346 

the microbiome from its network interaction in the individualized level. We analyze the microbiome of patients 347 

with GDM and healthy subjects through the lens of network analysis. For the implementation of personalized 348 
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health management of GDM patients, it is very important to explore individual differences from the 349 

perspectives of physiological indicators and living habits. In individual network analysis we found that 350 

abnormal glucose regulation is associated with large network deviations, which may lead to the development 351 

of individualized microbiome-based therapies in the future. Previous work that analyzed the composition of 352 

intestinal bacterial flora at two time-points of subjects under traditional microbiome analysis method 353 

concluded that overall bacteria gathered in response to diabetes status, rather than diet intervention. Short-354 

term diet management plays a role in the process of GDM by affecting specific taxa. Short-term dietary 355 

management is not an alternative pattern for gut microbial [32]. Here, in contrast, network analysis enabled 356 

us to find changes in the dynamic interactions among microorganisms in the community balance of the 357 

microbiome that are undetected with traditional approaches. 358 

Our goal is to study the network similarity between groups, a concept which is fundamentally different 359 

from the standard community similarity. From the perspective of community similarity, we see no significant 360 

difference between the microbiomes of the healthy and the GDM groups, both before and after diet 361 

intervention. However, from the perspective of the microbial networks, the diet intervention has a clear effect. 362 

Surprisingly, after the diet the microbial networks of the GDM group become less similar to the healthy 363 

compared with their state before the diet. 364 

We conclude that diet intervention is a treatment that could help GDM to balance their blood glucose to 365 

control the disease but does not necessarily benefit the microbial ecological balance. In fact, some treatments 366 

do break the balance of the microbial community in order to treat patients. For example, the use of antibiotics, 367 

which can speed up treatment, should be avoided to prevent affecting local microbiota, as it may contribute to 368 

obesity and type 1 diabetes [32-38].  369 

Besides, our research emphasis is to analyze the individual patient. A safer and more effective treatment 370 

can be achieved by personalizing the general recommendations [39]. Our study find that abnormal microbiome 371 
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balance is associated with abnormal glucose regulation. Our method can analyze individual patients through 372 

individual network analysis to evaluate the degree of abnormal glucose regulation, which reflects GDM 373 

patients’ ability to regulate blood sugar after sugar intake. Therefore, according to the different situation of 374 

each patient, we could potentially implement more effective and reasonable diet intervention strategy or other 375 

treatment that not only rely on the patient's body indicators such as height and weight, but also consider the 376 

patient's individual blood glucose regulation level. Based on this study, we can further and better carry out 377 

individualized precision medicine for GDM. For example, with a clearer description of the expected effects 378 

of diet intervention on GDM patients, we might be able to monitor new patients by comparing their 379 

microbiome to representative cohort and checking whether their microbiome evolution trajectory follows the 380 

norm. 381 

Materials and Methods 382 

Subjects and sampling description 383 

Samples were gathered at Peking University People's Hospital during 2017 from 27 patients with GDM 384 

and 30 healthy pregnant subjects (control group), who were selected according to their matched age and 385 

gestation period. Make sure all subjects are with no antibiotic selection and with no concurrent 83 diseases 386 

during the 3 months before sample collection. For each subject, microbial and blood glucose samples were 387 

collected twice, in two-week intervals. For patients with GDM, calorie restriction was implemented through 388 

daily diet intervention during these two weeks, as described below. For the control group, no calorie control 389 

was implemented. 390 

Fasting 75 g OGTT is chosen to diagnose the pregnant subjects between 24 and 28 weeks gestation, which 391 

is the primary diagnostic method of GDM. The test involved drinking a solution containing 75g glucose, and 392 

drawing blood to check glucose levels at 0h and after 1h and 2h. GDM is diagnosed if one or more level(s) 393 

elevated. The thresholds for OGTT are 5.1 mmol/L at 0 hour, 10.0 mmol/L at 1 hour and 8.5 mmol/L at 2 394 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.28.542631doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.28.542631
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

hours during OGTT, respectively. This thresholds is suggested by the International Association of the Diabetes 395 

and Pregnancy Study Groups in 2011.  396 

Diet intervention strategy 397 

The macronutrients (protein, fat and carbohydrate) and caloric consumption of GDM patients were 398 

estimated during the two weeks diet intervention in consultation with a nutritionist. Participants were deemed 399 

to have complied with the given dietary recommendations when all of the criteria below were met: 35–45% 400 

in total energy is carbohydrates, low glycemic index carbohydrates and 20% in total energy is simple 401 

carbohydrates. 18–20% in total energy is proteins and 35% in total energy is fats. at least 20–25 g/day for fiber 402 

intake, and make sure no alcohol consumption. The recommended daily calories are divided into smaller, 403 

multiple meals to protect patients from ketonuria and acidosis because it often occurs due to prolonged fasting. 404 

Besides, The nutritionist was contacting with subjects with GDM continuously, through telephone contact 405 

every week, to keep them updated on their nutritional status as the study progressed. Besides, the nutritionist 406 

instructed patients to monitor blood glucose by themselves at least 4 times a day by finger puncture capillary 407 

blood glucose test. To avoid the the gut microbiota composition to be effected by prebiotics/probiotics use, 408 

general recommendations were as implemented for the healthy pregnant subjects, making sure no spicy foods 409 

and no yogurt intake.  410 

Microbial data extraction method 411 

DNA Extraction & OTU analysis  412 

Stool samples were frozen as soon as possible after being collected and stored at −80 °C until DNA 413 

extraction was performed as described in [40]. Base on the manufacturer's instructions, 200 mg was extracted 414 

from each feces sample for DNA extraction by the QIAamp DNA stool Mini kit (Qiagen, Germany). 515F 415 

(5’-GTGCCAGCMGCCGCGGTAA -3’) and 806R (5’-GGACTACHVGGGTWTCTAAT -3’) are used to 416 

amplify the V4 region of the 16S rRNA. Each appropriate sized PCR product was purified and then use the 417 
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HiSeq 2500 genome analyzer (Illumina HiSeq 2500) to perform the 250-bp nucleotide paired-end sequencing. 418 

High-quality trimmed reads were aggregated into OTUs by MOTHUR [41], and the recognition rate was 97%. 419 

To make sure the phylogeny of the OTUs, using the Greengenes database to BLAST search the longest 420 

sequence from each OTU [42] to obtain full-length 16S rRNA gene sequences with well-annotated full-length.  421 

Data pre-processing  422 

Our initial dataset contained 57 subjects with 813 unique OTUs identified. In order to avoid 423 

artifactual/spurious associations between non-correlated and low-abundant microbial members in a 424 

community, OTUs that were found in less than 10 instances or were found in less than 10% of all subjects 425 

were filtered out. The remaining OTUs were used to reconstruct the co-abundance networks. Considering that 426 

there will be a large variability in the microbial abundance values, in order to make the calculation results 427 

more reliable, the microbial abundance data of each subject is normalized to make the sum of the microbial 428 

abundances of each subject equal to 1. Then, the samples was divided into four parts for analysis according to 429 

subject type and sampling time, including first sampling data of 30 healthy pregnant women, second sampling 430 

data of 30 healthy pregnant women, first sampling data of 27 GDM patients and second sampling data of 27 431 

GDM patients. 432 

Network analysis method 433 

Network reconstruction principle 434 

For the four sample groups of different states (h(W0), h(W2), g(W0), g(W2)), we reconstructed the OTUs 435 

co-expression binary networks. Each node in the networks represented a single OTU. The edges of the network 436 

corresponded to significant correlations between pairs of OTUs. The following processes were applied to 437 

reconstruct the networks: (1) For each group, the Pearson correlation for all pairs of OTUs was calculated; (2) 438 

non-significant correlations were filtered out using a Z-score test. For each pair of OTU sequences, the samples 439 

were randomly shuffled 1000 times and the Pearson correlation coefficient calculated. Then, the Z-score, W, 440 
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was calculated according to the following formula: 441 

,                                      (1) 442 

where C is the Pearson coefficient of the non-shuffled data, mean(Cshuffle) is the average value of Pearson 443 

coefficient of the shuffled data and std(Cshuffle) is the standard deviation value of the Pearson coefficient of the 444 

shuffled data. Larger W value means that the correlation is more significant. A value of W < 1 was considered 445 

a non-significant correlation and filtered out; (3) For each network, a fixed number of 500 edges were defined 446 

as the OTU pairs with the highest Pearson correlation values. The reasons and necessity of fixing the size of 447 

network are elaborated in the supplementary information (S1 Fig, S2 Fig and S3 Fig). This step was necessary 448 

for eliminating the possible bias of the number of edges when comparing the structural similarity between 449 

different networks. 450 

Group network analysis 451 

To compare between two groups, networks were reconstructed using all the samples of each group. The 452 

similarity between the networks was defined as the overlap between the set of edges, according to the Jaccard 453 

index: 454 

,                                     (2) 455 

where A and B are two different sample sets, m and n are the number of subjects in each sample set. Am and 456 

Bn represent the set of edges of the two networks, respectively. 457 

Individualized network-impact 458 

Inspired by the LIONESS method for inference of single-cell gene regulatory networks [43], our network 459 

reconstruction method analyzed the network-impact of individual GDM patient samples. However, unlike the 460 

LIONESS method, our method did not aim to infer the network entirely, but to simply evaluate the impact of 461 

a single sample in general. In order to measure how much the ecological balance of individual subject k is 462 
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consistent with the ecological balance of the rest of the subjects in the same group, its network-impact was 463 

estimated with a `leave-one-out’ procedure (inspired by the method described in [44]). Specifically, two ways 464 

to evaluate the network-impact of an individual sample, k, were introduced.  465 

 The first way directly measured the change in the network structure reconstructed from a cohort of 466 

samples after removing the individual sample of interest. The Jaccard dissimilarity score was calculated,  467 

,                                 (3) 468 

where Bn represents the network that was reconstructed with all samples and Bn-k represents the network that 469 

was reconstructed without sample k. Low dissimilarity indicated that the balance between species abundance 470 

of sample k tend to follow the same correlation pattern of the entire group, while high dissimilarity suggested 471 

that sample k follows a unique correlation pattern.  472 

According to Eq. (3), the larger the Jaccard distance, the lower the similarity between the network without 473 

the sample k and the network with the sample k. This suggests that this sample k made a significant difference 474 

in all samples. When the Jaccard distance is 1, it means that the network without the sample k is completely 475 

different from the network with the sample k. Alternatively, when the Jaccard distance is 0, it means that the 476 

network without the sample k is exactly the same as the network with the sample k. 477 

The second way is an indirect evaluation of the impact of sample k on the network of its cohort by 478 

measuring its change with respect to a reference cohort. The change in the Jaccard distance score was 479 

calculated 480 

,                         (4) 481 

where 𝐴! represents a network that was reconstructed from the reference cohort. A small (large) change in 482 

the distance between networks A and B after removing sample k indicates that k's abundance profile follows 483 

a similar (different) correlation pattern to its cohort.  484 
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Here, it can be seen from Eq. (4) that when the Jaccard distance value is positive (negative), it indicates 485 

that network B after removing sample k is more similar (different) to the reference cohort A, and the sample 486 

k is the person who is more different (similar) with the reference cohort than the others.  487 

 488 

Data and network shuffling processes 489 

Data shuffling: In the network reconstruction process, the significance of each edge was estimated by 490 

comparing its associated Pearson correlation value to a set of values calculated for shuffled abundance profiles. 491 

Each shuffled abundance profile was reconstructed using a Monte Carlo procedure, by randomly assigning a 492 

value for each OTU from the empirical abundance distribution of the same OTU, independently. The shuffled 493 

profiles preserve the original relative frequencies of the OTUs while removing any correlations among them. 494 

Network shuffling: The distance values between networks were compared to distances calculated between 495 

shuffled networks, reconstructed with the same number of nodes but with random reassignment of the 500 496 

edges. 497 

 498 

Community analysis method 499 

In addition to network analysis methods, the microbiome community composition in different groups were 500 

compared and analyzed by calculating the β diversity according OTU table. We calculate the dissimilarity of 501 

different sample sets by using the root Jensen–Shannon divergence (rJSD) measure [31] to compare the 502 

difference between different groups. The root Jensen-Sahnnon divergence (rJSD) is defined as 503 

                            (5) 504 

where  and  are renormalized the relative abundances of only the shared species (set S).  and 505 

 is the Kullback–Leibler divergence between  and .  506 
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 508 

 509 

 510 

Data availability:  511 

The original datasets for this study can be found in the Genome Sequence Archive 512 

(https://ngdc.cncb.ac.cn/gsa/), the accession code is: CRA004782. The studied OTU table could be found on 513 

GitHub at (https://github.com/YimengLiu9425/code/tree/master). 514 

 515 

Code availability: 516 

The Python code used in this study can be found on GitHub 517 

(https://github.com/YimengLiu9425/code/tree/master).  518 
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Supporting information 639 

S1 Fig. The size of the microbial networks of the healthy group and GDM patients before and after diet 640 

interventions under different W threshold. The corresponding network size of different groups is different though the 641 

threshold is fixed.  642 

S2 Fig. Jaccard similarity between the GDM group and healthy group with unfixed network size for 643 

different threshold values, W. The green curve shows the GDM group compared with the healthy group two 644 

weeks earlier, and the red curve shows the GDM group compared with the healthy group two weeks later. The 645 

solid dots indicate the comparison between the GDM group and the healthy group before the dietary 646 

intervention, and the hollow dots indicate the comparison between the GDM group and the healthy group after 647 

the dietary intervention. The dark curve is the real data result, and the light curve is the shuffled network result. 648 

S3 Fig. Violin plot of Jaccard similarity between the GDM group and healthy group with fixed network 649 

size under different fix number. When different number of links are fixed, the pattern is still stable in most 650 

cases. 651 

 652 
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