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81 Abstract

82  The long-term consequences of cancer or cancer therapy on the patients’ immune
83 system years after cancer-free survival remain poorly understood. Here, we have
84  performed an in-depth characterization of the bone marrow ecosystem of multiple
85 myeloma long-term survivors at initial diagnosis and up to 17 years following cancer-
86  free survival. Using comparative single-cell analyses in combination with molecular,
87  genomic and functional approaches, we demonstrate that multiple myeloma long-term
88  survivors display pronounced alterations in their bone marrow microenvironment
89  associated with impaired immunity. These immunological alterations were frequently
90 driven by an inflammatory immune circuit fueled by the long-term persistence or
91 resurgence of residual myeloma cells. Notably, even in the complete absence of any
92  detectable residual disease for decades, sustained changes in the immune system
93  were observed, suggesting an irreversible ‘immunological scarring’ caused by the
94 initial exposure to the cancer and therapy. Collectively, our study provides key insights
95 into the molecular and cellular bone marrow ecosystem of multiple myeloma long-term
96  survivors, revealing reversible and irreversible alterations of the immune compartment,
97  which can serve as diagnostic and predictive tools.

98

99

100

101

102

103

104

105

106  Statement of significance

107  Large-scale single-cell profiling of a unique cohort of multiple myeloma long-term
108  survivors uncovered that exposure to cancer and its treatment causes both reversible
109  and irreversible immune alterations associated with impaired immunity. These findings
110  have far-reaching implications for the understanding of long-term immune alterations
111  in cancer, which need to be considered also in the context of immune therapeutic
112 approaches. Furthermore, our study demonstrates how cancer-associated immune
113 trafficking can be used to predict disease re-initiation in the bone marrow, opening new

114 avenues for minimally invasive disease monitoring.
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115 Introduction

116 ~ The immune system plays a key role in the prevention, development and treatment of
117  cancer. Powerful immune surveillance mechanisms constantly monitor tissues to
118 remove potentially cancerous cells. However, malignant tumors can evade immune
119  control or even hijack immunological processes to propel tumor growth. Notably, the
120  interaction between the tumor and the immune system induces bidirectional
121  adaptations. Well studied examples for immunological changes induced by the
122 continuous exposure to tumor cells include the exhaustion and dysfunction of T cells,
123 as well as the suppressive polarization of myeloid immune cells, such as tumor
124  associated macrophages or myeloid-derived suppressor cells [1-5]. In infectious
125 diseases, irreversible immune dysfunction has been described, long after the infection
126  has been cleared, a phenomenon termed immunological scarring [6, 7]. However,
127  whether cancer or cancer treatment may cause similar long-term consequences on the
128 immune system years after cancer-free survival remains poorly understood.

129  Multiple Myeloma (MM) is a hematologic neoplasm and is characterized by the clonal
130  proliferation of malignant plasma cells within the bone marrow (BM). MM provides a
131 prime example for a disease that depends on the interplay with its tumor
132 microenvironment [8, 9]. Recent bulk and single-cell genomic efforts dissected the
133 clonal complexity as well as clonal evolution patterns of MM from precursor stages to
134  symptomatic disease and upon refractory cancer after multiple therapy lines [10-12].
135 While transcriptional stability has been observed in the transition from precursor states
136 to MM progression, more dynamic shifts within the transcriptome and clonal outgrowth
137  occurred upon refractory cancer [13]. Besides the genomic evolution of myeloma cells,
138  substantial changes in the immune and stromal cell composition have been described
139 across the different MM disease stages promoting an inflammatory BM
140  microenvironment upon disease progression [8, 14]. Cell-cell interactions within the
141 BM appear to be crucial to mediate tumor growth in MM highlighting the importance
142  for a deeper understanding of the tumor ecosystem at different disease stages [15].
143  While recent studies on the MM ecosystem focused on disease progression from
144  precursor stages as well as refractory disease, it remains unclear whether myeloma
145 and myeloma therapy causes long-term alterations of the immune system years to
146  decades after progression-free survival.

147  Despite improved therapy options, MM remains an incurable disease and only a minor

148  fraction of MM patients experiences long-term survival (LTS) over 7 years after first
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149 line therapy [16, 17]. Nonetheless, even patients in complete remission (CR) without
150  detectable measurable residual disease (MRD) may ultimately experience biochemical
151 progression years after progression-free survival. Previous studies on the LTS
152 phenomenon in MM focused on quantitative changes in immune cell types [18-20].
153  However, the transcriptional evolution patterns of myeloma cells in LTS patients as
154  well as the long-term molecular adaptations of the BM microenvironment years after
155  progression-free survival remain unexplored.

156  Here we have characterized the BM ecosystem of a unique patient group of MM long-
157  term survivors at initial diagnosis (ID) and 7-17 years after first line therapy. Of note,
158 LTS patients displayed sustained alterations in the immune microenvironment if
159 compared to age-matched controls. These changes were associated with resurgence
160 of disease activity but were also detectable in patients that were considered
161 functionally cured, suggesting both reversible and irreversible long-term
162  consequences of the disease and therapy. We identified bone marrow infiltrating
163 inflammatory T cells as part of an inflammatory circuit, propelling these sustained
164  immune aberrations. Importantly, this disease-associated immune cell trafficking can

165 be used to reliably track the re-initiation of the disease.
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166 Results

167

168  The bone marrow ecosystem of multiple myeloma long-term survivor patients
169  The long-term alterations of the immune system years to decades after a cancer
170  diagnosis remain unknown. To elucidate the bone marrow ecosystem of LTS cancer
171  patients, our study included 24 multiple myeloma patients who experienced LTS for 7
172 to 17 years (median 10.5 years) after first line therapy with standard induction regimen
173 and high dose therapy followed by autologous stem cell transplantation (Fig.1a, Table
174 1). Notably, the favorable outcome of these patients could not have been predicted by
175  state-of-the-art risk stratification tools, as 10 out of 24 patients displayed an
176  intermediate, or poor prognosis according to the International Staging System (ISS)
177  [21] and 4 patients even harbored high risk cytogenetic aberrations. Average myeloma
178  cellinfiltration within the BM across all patients at ID was remarkably high (mean 50%).
179  For 11 of these MM patients with paired longitudinal samples at ID and upon LTS 7-17
180 years post diagnosis, we performed droplet-based single-cell RNA-sequencing
181  (scRNAseq) of total BM mononuclear cells. In addition, CD3+ T cells were separately
182  profiled in all cases by scRNAseq to ensure sufficient coverage of the T cell
183  compartment, even in the presence of high tumor burden. Bone marrow samples from
184  three healthy, age-matched donors were included as controls, applying the identical
185  workflow (Fig.1a, Extended data Fig. 1a). Following data integration, clustering and
186  dimensionality reduction across experiments, we analyzed 213,200 high-quality BM
187  cells covering the vast majority of previously described hematopoietic cell types and
188  cell states of the BM (Fig. 1b, Extended data Fig. 1b). These included plasma cells, all
189  hematopoietic stem and progenitor cell stages, T cell and natural killer (NK) cell
190  populations, several dendritic cell and monocyte subpopulations as well as the main
191 B cell differentiation states.

192  Comparing immune cell compositions of healthy donors with patients at ID revealed
193  an expected enrichment for plasma cells and a trend towards higher amounts of cDC1
194 and NK cells, as well as a depletion of different B cell stages as described by previous
195 studies (Fig. 1c,d, Extended data Fig. 1c,d) [10, 22]. At the LTS timepoint, the BM
196  composition was partially normalized, however a significant enrichment of the dendritic
197  cell compartments cDC1 and cDC2 constituted a unique feature of LTS patients
198 (Extended data Fig. 1d). Beside changes in the BM cell type composition, we also

199 observed considerable transcriptional perturbations within many BM-resident cell
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200 types, reflecting disease-associated adaptations of cellular transcriptomic states
201  (Fig.1c). To quantify these changes in cellular states associated with ID and LTS, we
202 made use of DA-seq, a computational tool that measures how much a cell’'s
203  neighborhood is dominated by a certain biological state (see methods). As expected,
204 a major transcriptomic remodeling from healthy to malignant plasma cells was
205 observed at ID (Fig.1e,f). In addition, significant transcriptomic changes occurred
206  within CD14+ monocytes, CD16+ monocytes as well as T and NK cells. Importantly,
207  while the transcriptomic remodeling of immune cells partially normalized during LTS,
208  which was in line with a reduced cancer cell burden in the BM, sustained signs of
209 immune remodeling were maintained even decades after a single therapy line (Fig.
210 1g).

211

212 Malignant plasma cells frequently persist during long-term survival and display
213  atranscriptionally stable phenotype

214  Recent studies reported dynamic transcriptional shifts of malignant plasma cells and
215  clonal outgrowth during disease courses induced by therapeutic interventions [13].
216  However, it remains poorly understood whether plasma cells driving relapse years after
217  tumor-free survival undergo molecular adaptations in the absence of any therapy
218 pressure. Moreover, it is unclear whether malignant plasma cells persist in the BM of
219 LTS patients that are considered functionally cured.

220 To address these questions, we performed an in-depth analysis of plasma cells to
221  explore the longitudinal changes of the tumor cell compartment throughout LTS. The
222  transcriptional heterogeneity of the plasma cell compartment was reflected by patient-
223 specific MM cell clusters and a cluster of putative healthy plasma cells to which all
224  patients and the healthy controls contributed (Fig. 2a). Patient-specific clusters showed
225  distinct gene expression patterns in line with published bulk RNA gene expression
226  signatures, highlighting the diversity of our patient cohort (Extended data Fig. 2.1a)
227  [23]. As expected, the expanded plasma cell compartment at ID partially normalized
228 upon LTS. However, some patients still harbored a high fraction of plasma cells at the
229 LTS state (Fig. 2b). To delineate healthy and malignant plasma cells, we analyzed
230  copy number aberrations (CNA) using inferCNV (see methods, Extended data Fig.
231  2.2). Overall, 59 out of 63 CNAs detected by cytogenetics could also be identified by
232 our single-cell analyses, permitting a clear discrimination between healthy and

233 malignant plasma cells (Fig. 2c, Extended data Fig. 2.1b,c). Furthermore, plasma cells
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234  classified as malignant almost exclusively expressed a single immunoglobulin light
235  chain, whereas plasma cells classified as healthy contained both kappa and lambda
236  expressing cells, confirming the accuracy of our CNA analyses (Fig. 2d,e, Extended
237 data Fig. 2.1e). The fraction of malignant plasma cells within the overall plasma cell
238 pool (termed ‘malignancy score’) was increased in LTS patients that had experienced
239  a biochemical progression from complete remission (CR) after a long-term remission
240 phase, hereafter termed non-CR patients (Fig. 2f, Extended data Fig. 2.1d). As
241  expected, patients that were in clinical CR harbored less or no malignant plasma cells.
242 Moreover, the fraction of malignant cells defined by CNAs correlated with the result
243  obtained from next generation flow cytometry for detection of measurable residual
244  disease (MRD) (Fig. 2g). Nonetheless, our scRNAseg-based analysis was able to
245  detect malignant plasma cells in patients previously classified as ‘Flow MRD negative’
246 at the LTS state highlighting the potential of single-cell genomics to detect and
247  characterize such rare residual malignant cells.

248  The mapping of CNAs in the single-cell data of the plasma cell compartment enabled
249  us to address the question of how myeloma cells develop throughout the LTS state
250  upon recurring disease activity. Malignant myeloma cells from the same patient at ID
251 and LTS shared the highest transcriptional similarity to each other in comparison to
252  myeloma cells from other patients (Fig. 2c,h). This suggested a high transcriptional
253  stability of plasma cells upon resurgence of disease activity even after long lasting
254  remission over years to decades. However, minor adaptations in the transcriptomic
255  makeup between matched malignant plasma cells at ID and LTS were observed, as
256 indicated by minor, but specific changes in the UMAP representation (Fig. 2c). To
257  further study the molecular adaptations of myeloma cells, we focused on 4 patients
258  with sufficient malignant cells captured for both matching clinical states to reliably
259  obtain the subclonal composition of the respective patients (Extended data Fig. 2.2).
260  Notably, we observed a changing subclonal composition which translated into specific
261 changes of gene expression pattern of published transcriptomic signatures that are
262 commonly used to categorize transcriptional patterns of myeloma cells (Fig. 2i) [23].
263  For example, PO09 gained a cancer testis antigen (CTA) expression pattern, which is
264  reported to be associated with a proliferative myeloma disease, whereas P021 lost the
265  previously expressed NFKB signature upon resurgence of disease (Fig.2i). Together,

266  our observations demonstrate that malignant plasma cells frequently persist in LTS
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267  patients and display an overall transcriptionally stable phenotype that is maintained for
268 decades, while specific transcriptomic adaptions may occur.

269

270  Multiple myeloma long-term survivor patients display sustained signs of
271  immune remodeling decades after a single therapy line

272 While specific compositional changes in the BM microenvironment of LTS patients
273  have been reported, it remains unknown whether these cell types adopt a cellular state
274  similar to healthy BM cells or maintain signs of their current or past exposure to
275  malignant plasma cells or therapy. Our initial analyses revealed a major transcriptomic
276  remodeling of BM-resident immune cells during the disease course, with monocytic, T
277 and NK cell compartments displaying the most extensive alterations in cell states
278  besides the plasma cell compartment (Fig.1f). To further investigate these molecular
279 changes across the clinical states, we first focused on the most remodeled cell
280 compartment, classical CD14+ monocytic cells (Fig 3a). In line with our global DA-seq
281 analysis, the majority of monocytes from ID patients clustered separately from
282 monocytes of healthy donors, reflecting a disease-associated transcriptomic
283  remodeling. Notably, this remodeling partially normalized in the LTS state, although a
284  considerable number of monocytes maintained a remodeled state years to decades
285  after a single, successful therapy line (Fig. 3a). To quantify the transcriptionally
286  perturbed cells in the diseased states, we introduced a ‘dissimilarity score’ measuring
287  whether a cell’'s neighborhood is dominated either by the healthy or the disease state.
288  Combining the dissimilarity score with machine learning-based approaches enabled
289  us to classify cells as ‘healthy-like’ or ‘aberrant-like’ with high accuracy and a low false
290 prediction rate (see methods). These analyses revealed that classical monocytes from
291 patients at ID showed a high degree of dissimilarity to healthy monocytes and were
292  frequently classified as ‘aberrant-like’. Upon LTS, only a partial normalization was
293  observed, revealing a sustained transcriptional remodeling throughout LTS in a subset
294  of monocytes (Fig. 3b-c). Of note, this remodeling pattern was associated with
295  plausible biological processes as demonstrated in the next section.

296 To investigate whether also other immune cell types display sustained transcriptional
297 changes in the LTS state, we next focused on the T cell compartment. CD8+ T cell
298 states were annotated in naive, memory, effector as well as KLRB1+ cells based on
299  known transcriptomic marker genes (Fig. 3g, Extended data Fig.3a-c). Notably, also in

300 the CD8+ T cell compartment a sustained transcriptional remodeling was observed
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301 upon long-term survival (Fig. 3d-f). Moreover, a significant and irreversible depletion
302 of KLRB1+ CD8+ T cells was observed at the ID state and maintained throughout LTS
303  (Fig. 3h).

304 In line with our observations from the classical monocyte and CD8+ T cell
305 compartments, we observed a remodeling of non-classical CD16+ monocytes, as well
306 asthe CD4+ T and NK cell states at ID, which was partially sustained throughout LTS
307 (Extended data Fig. 3d-0). Together, our data reveals a major remodeling of cell states
308 across the majority of bone marrow cell types during active MM disease, which is
309 sustained in a subset of cells throughout long-term survival.

310

311  An inflammatory circuit underlies immune remodeling during active disease and
312 long-term survival

313 To characterize disease-associated molecular programs responsible for the acute
314 remodeling in the bone marrow ecosystem at ID, we performed a comprehensive gene
315 set enrichment analysis (GSEA) comparing aberrant-like cell states with cells from
316  healthy controls within all cell types of the bone marrow that displayed disease-
317 associated remodeling. This analysis revealed a globally up-regulated inflammatory
318 program (Hallmark TNFA signaling via NFKB and Hallmark inflammatory response)
319 shared across all remodeled BM cell types, as well as cell type-specific changes (Fig.
320 4a). In particular, aberrant monocytes acquired a pro-inflammatory phenotype. The
321 expression of inflammatory genes in monocytes correlated with their dissimilarity to
322  healthy monocytes, peaked in ID patients and partially reversed throughout LTS (Fig.
323  4b). However, the remaining ‘aberrant-like’ monocytes in the LTS state specifically
324  displayed a sustained inflammatory phenotype, suggesting a persistent inflammatory
325 response of the classical monocyte compartment even decades after the first line
326 therapy (Fig. 4c). As part of the inflammatory response, ‘aberrant-like’ monocytes
327 displayed an increased chemokine activity and produced increased levels of
328 proinflammatory cytokines and chemokines, including CCL3, IL1B and CXCLS8, with
329 the latter two known to support myeloma cell growth and survival (Fig. 4d-e, Extended
330 data Fig. 4a-e) [24]. Interestingly, the corresponding receptors of CXCL8, CXCR1 and
331 CXCRZ2 were mainly expressed on NK cells suggesting a role for CXCL8 in the
332 regulation and induction of leukocyte migration as reported previously (Extended data

333  Fig. 4f) [25]. NK cells themselves switched from a cytotoxic to an inflammatory

10
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334  phenotype with increased chemokine activity, which was maintained throughout the
335 LTS state (Fig. 4a,f).

336 To explore the interaction network between plasma cells and their microenvironmental
337 cells at ID, we used CellPhoneDB to infer intercellular communications (see methods).
338 We observed the highest number of interactions between myeloid and plasma cells
339  (Fig. 4g). Notably, these interactions were significantly increased between remodeled
340 CD14+ monocytes and plasma cells, suggesting that the remodeled state of CD14+
341 monocytes may be mediated by the interaction with plasma cells (Extended data Fig.
342 4q).

343  Importantly, remodeled T and NK cells were the main producers of the proinflammatory
344  master cytokine interferon-gamma (/FNg) both at ID and LTS (Fig. 4h-l, Extended data
345 Fig. 4m). Moreover, remodeled T and NK cells displayed significantly increased
346  expression of the inflammatory chemokines CCL3, CCL4 and CCL5, suggesting that
347 they act as major regulators of the acute and sustained BM inflammation (Extended
348 data Fig. 4h-j). In line with an increased synthesis of proinflammatory cytokines,
349 including IFNg, by aberrant lymphocytes, we observed the strongest IFNg response in
350  aberrant myeloid cells, including CD14+ and CD16+ monocytes as well as cDC2s (Fig.
351 4a). Notably, the IFN-inducible chemokines CXCL9, CXCL10 and CXCL11 were
352  mainly expressed by CD16+ monocytes peaking at ID and being maintained at lower
353 level throughout LTS (Extended data Fig. 4k,l). Aberrant IFNg expressing CD8+ T cells
354 and NK cells specifically expressed CXCR3, the chemokine receptor mediating
355  migration towards CXCL9/10/11 sources, which we will elucidate in detail in the next
356  section (Fig. 4j, Extended data Fig. 4n).

357 Insummary, these data suggest that upon MM disease activity in the BM, inflammatory
358 signals drive a positive feedback loop with IFNg secretion by aberrant lymphocytes
359 inducing the release of CXCL9/10/11 from myeloid cells (Extended data Fig. 5a). This
360 in turn may lead to the recruitment of CXCR3+ inflammatory CD8+ T cells to the BM
361 (see below) causing an inflammatory circuit which is maintained at a lower level in LTS
362 patients.

363

364 Bone marrow infiltration of inflammatory T cells is associated with myeloma
365 burden and serves as an accessible biomarker for disease activity

366 To characterize the origin and phenotype of disease-associated remodeled immune

367 populations, we focused on aberrant CD8+ T cells as key producers of inflammatory

11
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368 cytokines throughout ID and LTS. Gene expression analyses of the scRNAseq data
369 revealed the chemokine receptor CXCR3 and the amino acid transporter LAT1 as
370  accurate biomarkers for a disease-associated inflammatory CD8+ T cell state (Fig.5a-
371  b). Tofurther assess the value of surface CXCR3 expression as a marker for myeloma-
372  associated CD8+ T cells, we subjected BM CXCR3+ and CXCR3- CD8+ T cells from
373  an independent cohort of 7 MM patients to bulk RNA-sequencing (Extended data Fig.
374  5b). Importantly, scRNAseqg-derived CXCR3 expression was highly overlapping with
375  both, the single-cell derived gene signature defining aberrant CD8+ T cells (Fig. 5c)
376  and the bulk RNAseq-derived gene signature for CXCR3+ T cells within the BM (Fig.
377 5d). This confirms the specificity of surface CXCR3 as biomarker for remodeled
378 inflammatory T cells.

379  Next, we performed multiplex immunofluorescence stainings on BM biopsies and
380 confirmed the co-expression of CXCR3 and LAT71 on CD8+ T cells in MM patients (Fig.
381  5e). Importantly, the mean expression intensities of CXCR3 as well as LAT1 in CD8+
382 T cells were highly elevated in MM patients compared to B cell Non-Hodgkin lymphoma
383 and MDS control cohorts, confirming the specific enrichment of aberrant inflammatory
384 CD8+ T cells in MM (Fig. 5f, Extended data Fig. 5c). Notably, the fraction of detected
385 aberrant inflammatory CD8+ T cells positively correlated with the number of MUM1+
386 plasma cells, suggesting that LAT1 and CXCR3 can serve as a biomarker for both
387  tumor load and associated remodeling of the BM immune microenvironment (Fig. 5f,
388 Extended data Fig. 5c).

389 To explore the origin of remodeled CD8+ T cells, we determined RNA velocities to
390 predict the future cell state based on ratios of spliced to unspliced mMRNAs (see
391 methods). As reported in previous studies, this analysis revealed the transient and
392  connected states of the main T cells subsets [26] (Fig. 5g). However, the cluster
393  comprising aberrant inflammatory T cells marked by LAT7 and CXCR3 expression and
394  a high dissimilarity score appeared disconnected to the cluster harboring the main
395 homeostatic BM-resident T cell subsets (Fig. 5g). As described above, CXCR3 is a
396 chemokine receptor mediating migration towards the chemoattractants CXCL9/10/11,
397  which are synthesized at increased levels in the BM upon MM (Extended data Fig.
398 4k,l). These observations point towards a chemokine-mediated infiltration of
399 inflammatory T cells from the periphery to the BM. To further explore this, we quantified
400 the CXCR3 expression on CD8+ T cells of paired BM and peripheral blood (PB)
401 samples from 48 MM patients via flow cytometry (Extended data Fig. 5b). In line with
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402  our hypothesis, in patients with low tumor burden (<50%), CXCR3+ T cells were mainly
403  present in the peripheral blood and not in the BM (Fig. 5h). In contrast, in patients with
404  high tumor burden (>50%) the number of CXCR3+ T cells decreased in PB, while an
405 increased number of CXCR3+ T cells was observed in the BM, suggesting a tumor-
406 load dependent migration of inflammatory T cells to the BM.

407  To further validate this finding, we isolated CXCR3+ and CXCR3- CD8+ T cells from
408 paired PB and BM samples of newly diagnosed MM patients and performed bulk RNA-
409  sequencing, followed by mapping the T cell receptor (TCR) repertoire (Extended data
410  Fig. 5b). While we did not observe any indication for clonal expansion of inflammatory
411 CXCR3+ CD8+ T cells (Extended data Fig. 5d), hierarchical clustering based on TCR
412  repertoire information revealed a striking overlap of the CXCR3+ fractions from PB and
413  BM for each patient, indicating a close relation between remodeled CD8+ T cells in the
414  BM with CXCR3+ CD8+ T cells in PB (Fig.5i, Extended data Fig. 5e). In line with this,
415  the clonotypes of the top 10 clones in CXCR3+ T cells from the PB showed a high
416  overlap with the top clonotypes in CXCR3+ T cells from BM fraction but not with their
417 CXCR3- negative counterparts, demonstrating a disease-associated infiltration of
418 inflammatory T cells from the periphery to the BM (Fig. 5j, Extended data Fig. 5f).

419  Together, our data reveal that upon MM disease activity, inflammatory CD8+ T cells
420 are recruited to BM where they serve as key players in the establishment and
421  maintenance of the sustained inflammatory BM remodeling at ID and LTS (Extended
422  data Fig. 5a). BM infiltration by inflammatory T cells is associated with myeloma burden
423  and serves as an accessible biomarker for disease activity that can be measured both
424  in the BM and the peripheral blood.

425

426 Immune remodeling in LTS patients is associated with future disease
427  resurgence and impaired immune function even in the absence of measurable
428 disease

429  We next investigated the underlying causes of sustained immune alterations in MM
430 LTS patients. A sustained persistence of malignant plasma cells or a resurgence of the
431 disease may trigger immune perturbations. To investigate this hypothesis, we
432  compared the degree of immune cell remodeling as measured by DA-seq-based
433  prediction scores to the fraction of malignant plasma cells present within the overall
434  plasma cell pool for each patient. Indeed, microenvironmental immune remodeling was

435  associated with the proportion of malignant plasma cells present in the bone marrow
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436  (Fig. 6a). This finding indicated disease burden as an important factor for sustained
437  immune perturbation in the BM. In line with this, the degree of immune remodeling and
438 the activity of pathways that are upregulated during the full-blown disease gradually
439 increased from healthy donors to LTS patients with CR to patients who experienced
440 relapse from CR (termed non-CR patients), confirming a tumor-burden associated
441 remodeling (Fig. 6b,c). This step-wise remodeling was consistently observed in the
442  CD8+ T cell compartment as well as in other immune compartments (Extended data
443  Fig. 6a-f). Accordingly, CXCR3 expression on CD8+ T cells, which we have identified
444  as a surrogate marker for disease activity, was correlated with the fraction of malignant
445  plasma cells present in the BM (Fig. 6d).

446  Clinical follow-up of LTS patients over the next four years after sample acquisition
447  revealed that even patients that had been in CR for over a decade may exhibit signs
448 of relapse while others experience a sustained CR (Extended data Fig. 6g).
449  Importantly, at time of sample acquisition, the ratio of BM to peripheral blood CXCR3+
450 CD8+ T cells determined by flow cytometry in a larger validation cohort (5 healthy
451 donors, 24 LTS patients and 23 MM patients at ID) gradually increased from healthy
452  donors via sustained CR and patients losing CR to ID patients, reflecting the respective
453  disease burden of the different clinical states (Fig. 6e). Moreover, CR patients that will
454  lose their CR within the next four years, displayed a significantly higher BM to blood
455 CXCR3+ CD8+ T ratio if compared to patients that will remain in sustained CR (Fig.
456  6f). Inline with an increased CD8+ T cell infiltration into the BM, an increased CD4+ to
457  CD8+ T cell ratio in the blood was also associated with future relapse from CR during
458 LTS (Fig. 6g). These data demonstrate that blood measurements can be used as
459  accessible biomarkers to track environmental perturbations in the BM associated with
460  future relapse.

461  Collectively, our findings suggest that perturbations observed in the immune
462  microenvironment are in part triggered by the sustained presence of malignant plasma
463  cells or resurgence of the disease in LTS patients. However, even in the absence of
464  any measurable disease activity at the time of sample acquisition at LTS, as well as
465  during a 4-year follow-up (sustained CR), the immune remodeling was still apparent,
466  suggesting long-lasting, irreversible disease or therapy-associated immunological
467 changes (Fig. 6a-c). In particular, the naive CD8+ T cell compartment of LTS patients
468 showed higher expression of an ‘early T cell activation signature’ even in the absence

469  of any measurable disease activity, pointing towards a chronic pre-activatory state (Fig.
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470  6h) [27]. A gene within this ‘early activation signature’ was the well-studied surface
471  marker CDG69, expressed on activated human T cells [28]. In line with our previous
472  findings, CD8+ T cells from patients in CR and ‘sustained’ CR displayed increased
473  CDG69 surface protein levels confirming the persistent long-term imprint on CD8+ T
474  cells in the absence of disease activity (Fig. 6i). To assess whether these sustained
475  aberrations also translate into changed T cell functionality, we measured the capacity
476  of T cells from LTS patients to produce cytokines upon T cell activation. For this,
477  MACS-sorted CD3+ T cells were stimulated with PMA and lonomycin, and intracellular
478  cytokine production (TNFa, IFNg, IL2) was measured as a surrogate parameter for T
479  cell functionality (Fig. 6j). Notably, stimulated T cells from patients in LTS produced
480  significant lower amounts of all measured cytokines compared to control samples from
481  healthy controls and early stage MM patients (Fig. 6k). Of note, the impaired T cell
482  functionality was also observed in patients with no measurable disease activity and
483  sustained CR, suggesting a sustained immunological scarring in LTS patients.
484  Together, our study reveals persistent immune remodeling and impaired T cell
485  functionality upon LTS even in patients with sustained CR in the absence of any
486  measurable disease activity.

487

488 Discussion

489  The long-term consequences of cancer and cancer therapy on the immune system
490  remain poorly understood. In this study, we have comprehensively investigated the
491 immune ecosystem in MM LTS patients years to decades after successful first line
492  therapy. We uncovered that MM long-term survivors display sustained immune
493  alterations that are associated with the resurgence of the disease and correlated with
494  disease activity. These disease-associated immune alterations are mediated by an
495  inflammatory circuit driven by a tumor load-dependent infiltration of inflammatory T
496 cells into the bone marrow. However, even in the absence of any measurable disease
497  activity for years to decades, long-term alterations in the bone marrow ecosystem
498  associated with defective immunity were observed.

499  Previous studies on immune reconstitution after exposure to cancer or cancer therapy,
500 including autologous stem cell transplantation, focused on the short-term impact. For
501 example, Boekhorst et al [29] and Schlenke et al [30] investigated the reconstitution of
502 the T cell compartment in a mixed cohort of different hematological, as well as solid

503  tumor patients. Both studies did not observe any signs of functional impairment in T
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504 cells from PB as measured by standard flow cytometry phenotyping. However, MM
505 patients were underrepresented in both study cohorts. In a study focusing on short-
506 term consequences of auto-SCT in MM, an impaired cytokine production of the T cell
507 compartment was observed, concluding that the complete recovery of the immune
508  system might require more time [31]. However, our study reveals long-term sustained
509  molecular changes in the immune microenvironment, even in MM patients that were
510  considered functionally cured, suggesting an irreversible immunological scarring, as
511  previously described in infectious diseases [6, 7]. While our study focused on
512  transcriptomic and immunological changes in LTS patients, a recent study identified
513  clonal hematopoiesis as a common event upon long-term survival of pediatric cancers
514 [32]. In a subset of Hodgkin Lymphoma survivors, therapy-related STAT3 mutations
515  were detected that potentially also impact on T cell biology. While our data support a
516  non-genomic mechanism of sustained changes of the immune system in MM LTS, we
517 cannot exclude that also genomic aberrations may contribute to some of the
518 irreversible phenotypes we observed.

519  Our study revealed a tumor load dependent inflammatory circuit in MM with the release
520  of CXCL9/10/11 from myeloid cells causing the migration of CXCR3+ inflammatory T
521  cells from the periphery to the BM, in line with previous reports in the context of cancer
522 and vaccinations [33-35]. Inflammatory T cells and NK cells in turn act as major drivers
523  for IFNg-mediated BM changes in a self-propelling circuit. This inflammatory circuit is
524 initiated at ID and maintained in a subset of immune cells during LTS. Importantly, we
525 demonstrate that disease-associated T cell trafficking can be used to track and reliably
526  predict the re-initiation of the disease in LTS patients in the bone marrow by analyzing
527 CXCRS3 expression on CD8+ T cells and the immune composition (CD4/CD8 T cell
528  ratio) in the peripheral blood. This highlights how disease associated changes in the
529  microenvironment might be used in combination with MRD detection methods to
530 predict resurgence of disease activity. While the detailed contributions of T cell
531  migration to anti-cancer immunity remains to be investigated, targeting the introduced
532 inflammatory circuit may offer potential avenues for new therapeutic strategies [36, 37].
533  Of note, our study included paired samples of patients experiencing long-term
534  remission after a single therapy line in the absence of any maintenance therapy for
535 years. Due to continuous maintenance therapy as the new standard of care, this

536  patient cohort is not recruitable nowadays and thus displays a unique selection of
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patients to study the long-term consequences of cancer and cancer therapy in absence
of potential biases associated with additional therapies.

Together, our study provides detailed insights into the molecular and cellular bone
marrow ecosystem of MM long-term survivors, thereby revealing reversible and
irreversible disease- and therapy-associated alterations of the immune compartment

which can serve as diagnostic and predictive tools.
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568 Materials and Methods
569

570  Human samples

571  Ethics approval and consent to participate

572  BM samples from healthy and diseased donors were obtained at Heidelberg University
573  hospital after informed written consent using ethic application numbers S-480/2011
574 and S-052/2022. BM aspirates were collected from iliac crest. Healthy BM donors
575  received financial compensation in some cases. For BM, mononuclear cells (BMMCs)
576  were isolated by Ficoll (GE Healthcare) density gradient centrifugation and stored in
577  liquid nitrogen until further use. All experiments involving human samples were
578 approved by the ethics committee of the Heidelberg University hospital and were in
579  accordance with the Declaration of Helsinki.

580

581 Flow cytometry

582  MRD analysis

583  Flow cytometry for detection of minimal residual disease (MRD) in fresh human BM
584  samples was performed according to the highly standardized flow cytometry approach
585 developed and described by the Spanish Myeloma Collaborative Group using a
586  commercially available EuroFlow 8-color 2-tube MM MRD Kit (Cytognos, Salamanca,
587  Spain) [38]. Tube one contained multiepitope CD38-FITC, CD56-PE (clone C5.9,
588  CDA45-PerCP-Cyanine5.5 (clone EO1), CD19-PE-Cyanine7 (clone 19-1), CD117-APC
589 (clone 104D2) and CD81-APC-C750 (clone M38) antibodies. Tube two contained
590  multiepitope CD38-FITC, CD56-PE (clone C5.9), CD45-PerCP-Cyanine5.5 (clone
591 EO1), CD19-PE-Cyanine7 (clone 19-1), cytoplasmic polyclonal immunoglobulin (Ig) k-
592 APC goat and cytoplasmic polyclonal IgA-APC-C750 antibodies. Drop-in CD27 Brilliant
593  Violet 510 (clone 0323, Biolegend, San Diego, USA) and CD138 Brilliant Violet 421
594  (clone MI15, BD, Heidelberg, Germany) antibodies were added to tubes one and two.
595 Measurements were performed on a cell analyzer (BD, Heidelberg, Germany) after
596  implementation of the EuroFlow Standard Operating Protocol for Instrument Setup and
597  Compensation in FACSDiva (BD Biosciences, San Jose, CA, USA). Final data analysis
598 was performed in Infinicyt 2.0 (Cytognos, Salamanca, Spain). An automated gating
599 and identification tool (Cytognos, Salamanca, Spain) was used to support the

600 identification of MM cells. Plasma cells were identified based on the co-expression of
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601 CD38 and CD138 antigens. An aberrant plasma cell expression profile was defined as
602  CD45-low/negative, CD56-positive, CD19-negative and light chain-restricted.
603

604 Flow cytometry of cryopreserved BM samples

605 Human BM samples were thawed in a water bath at 37 °C and transferred dropwise
606 into RPMI-1640 10% FCS. Cells were centrifuged for 5min at 350 rpm and washed
607 once with RPMI-1640 10% FCS. Cells were resuspended in FACS buffer (FB) (PBS
608 5%FCS 0.5mM EDTA) containing different antibody cocktails (see below) and FcR
609  blocking reagent (Miltenyi) and incubated for 15 min at 4 °C.

610 For analysis of CXCR3 expression on CD8+ T cells across different clinical groups,
611 cells were stained with CD8, CD3, CD45, CD4, CD194, CD196, CD152, CCR10
612  surface antibodies. For analysis of CD69 expression on CD8+ T cells, cells were
613  stained with CD8, CD97, CD4, CXCR4, CD26, CD45R0O, CD6, CD69, CD98, CD29,
614 CXCRS3, CCRY7 and CD3 surface antibodies.

615  After washing with FB, all experiments were measured on BD FACSFortessa flow
616 cytometer, equipped with 5 lasers, or BD FACSLyric flow Cytometer, equipped with
617 three lasers.

618

619  Single-cell RNA sequencing data

620 BM preparation, staining and sorting for gene expression analysis

621 Human BM samples were thawed in a water bath at 37 °C and transferred dropwise
622 into RPMI-1640 10% FCS. Cells were centrifuged for 5min at 350 rpm and washed
623  once with RPMI-1640 10% FCS, followed by resuspension in FACS buffer (FB) (PBS
624 5%FCS 0.5mM EDTA) containing CD45-PE and CD3-APC and FcR blocking reagent
625  (Miltenyi) and incubation for 15 min at 4 °C. Cells were washed with FB. To exclude
626 debris and ensure that actual cells were sorted for droplet-based scRNAseq, cells were
627 stained with a DNA dye (Vybrant DyeCycle Violet, Thermo Fisher Scientific). For this
628 purpose, 2.5pulml-1 Vybrant dye in cell suspension medium was incubated with
629 3 x 1076 cells at 37 °C for 20 min in a water bath. Following the incubation, the cells
630 were placed on ice and were sorted immediately for each experiment into 15 ul PBS
631 containing 2% fetal bovine serum. For sorting of total BM cells, single, live cells were
632 gated and sorted. For sorting of T cells CD45+ CD3+ cells were gated and sorted.
633  Cells were sorted using a FACSAria Fusion or FACSAria Il equipped with 100 um

634  nozzles respectively. Sorted cell numbers were confirmed using a LUNA automated
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635  cell counter (Logos Biosystems). A volume of 33.8 ul of the cell suspension was used
636 as input without further dilution or processing, with final concentrations around
637 300 cells per pl.

638

639  Single-cell RNA sequencing and data preprocessing

640  Single-cell RNA sequencing libraries of BMMCs form healthy controls and MM patients
641 were generated using 10x Genomics single-cell RNAseq technology (Chromium
642  Single Cell 3’ Solution v2) according to the manufacturer’s protocol and sequenced on
643 an lllumina HiSeq4000 (paired end, 26 and 74 bp). Upon sequencing, FASTQ files
644  were processed and aligned to the human reference genome GRCh38 (GENCODE
645  v32) using the standard Cellranger pipeline (10x Genomics, v4.0).

646

647 scRNA-seq data analysis

648  All analyses were performed in R (v4.0.0). The output from the Cellranger pipeline was
649 combined into one count matrix and further processed and analyzed using the Seurat
650 framework (v4.0.1, [39]). Parameters are indicated when non-default settings for a
651  specific function were used.

652

653  Quality control of BM scRNA-seq data

654  Cells were excluded for downstream analysis if they where of low quality (< 200 UMIs,

655 <400 detected features, > 10% mitochondrial counts), were identified as doublets by
656 library size and expressed features (> 40.000 UMIs, > 6.000 detected features), or if
657 they did not express cell-type- or -state-specific genes. In addition, decontX( )from
658 the R package celda (v1.4.7, [40]) was used to estimate and remove contaminating
659 ambient RNA.

660

661  Dimensionality reduction and clustering of BM scRNAseq-data

662  Gene counts were log-normalized and the top 2000 variable features were identified
663 and scaled using default parameters of FindvariableFeatures() and
664 ScaleData().Dimensionality reduction of the scaled data was performed by principal
665 component analysis (PCA). The top 50 PCs were then used to build a shared nearest
666 neighbor graph (SNN, FindNeighbors(dims=1:50)) for Louvain clustering
667 (FindClusters(resolution=0.7)) and uniform manifold approximation and

668 projection (RunUMAP(Dims=1:50)) of the data in two-dimensional space. Final
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669 cluster resolution and annotation was defined by evaluating known marker genes.
670 Clusters with overlapping gene signatures were merged to reach overall cell-type
671  resolution (MetaClusters).

672 In order to achieve a more fine-granular filtering and annotation, each cell-type
673  (MetaCluster) was subsetted and count matrices were separately processed again
674  from variable feature selection and re-scaling to dimensionality reduction by PCA and
675 subsequent clustering and UMAP representation. Clusters with contaminating gene
676  expression profiles, or aberrantly high mitochondrial and low housekeeping gene
677 expression were considered as doublets, or low quality, respectively and removed.
678  Final cell annotation was then transferred back to the global BM count matrix. In
679  addition, cells from patients treated with maintenance and induction therapy were
680 removed.

681

682 Copy number analysis

683  Single-cell copy number analysis was performed using infercnv (v1.6.0, [41]) with
684 JAGS (v4.3.0, [41]) with JAGS (v4.3.0, [42]). First, we generated a gene ordering file
685  using a Python script  provided by the infercnv  developers
686  (https://github.com/broadinstitute/infercnv/blob/master/scripts/gtf_to_position_file.py,

687 21 Apr 2021) and excluded all genes that were not part of this file. We only considered
688 chromosomes 1-22 and, in order to avoid artefacts due to differential immunoglobulin
689 gene expression, excluded all genes starting with “/IGH”, “IGL” or “IGK”. The actual
690 inferCNV analysis was performed separately for the plasma cells from each patient
691 and utilized non-normalized decontX-corrected expression values. Plasma cell from
692 the three healthy donors were used as reference cells. We disabled the filtering

693  threshold regarding counts per cell and used the arguments “cutoff = 0.1”,

694  “cluster_by groups = TRUE", “cluster_references = FALSE”, “analysis_mode
695  ‘subclusters’. “tumor_subcluster_pval = 0.05". “denoise = TRUE”, “noise_logistic
696 TRUE”, “HMM = TRUE”, “HMM_type = ‘i6"” and “num_threads = 1” within infercnv’s

697  function run (). Subsequently, we manually annotated the detected sub-populations

698 as “healthy”, “malignant” or “unclear” based on the denoised infercnv results. We
699 additionally determined the major immunoglobulin light chain expressed by malignant
700 cells in a patient-wise fashion by inspecting the expression of the corresponding genes
701  (IGKC, IGLC1-7). Afterwards, we refined the malignancy annotation to reduce the

702  number of cells that were wrongly classified as malignant. To this end, we compared
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703  immunoglobulin light chain gene expression (decontX-corrected and normalised) in
704  each putatively malignant cell with the corresponding mean expression in its sub-
705  population. If the expression of the patient-specific major light chain gene was less
706  than half of the corresponding mean expression in the corresponding sub-population
707  and the expression of another light chain gene was above 1.5 times the corresponding
708  mean expression in the corresponding sub-population, a cell’s classification was forced
709  to “healthy”. Copy number heat maps were generated using ComplexHeatmap (v2.6.2,
710  [43]), circlize (v0.4.13, [44]), scales (v1.1.1, [45]), magick (v2.7.3, [46]) and
711  imagemagick (v6.9.12, [47]). Only cells from samples that were not obtained during
712 induction and maintenance treatment are displayed.

713

714 scRNA-seq quality control of T cell data

715 Cells were kept in the dataset if they had between 500 - 20000 UMIls, between 300 -

716 4000 detected features and less than 10% mitochondrial reads. Clusters of

717  contaminating cells including myeloid cells, erythroid progenitors and plasmablasts
718  were identified based on expression of cell type-specific marker genes. Subsequently,
719  decontX () from the R package celda (v1.4.7, [40]) was applied on the count matrix
720  to account for cross-contaminating reads using the contaminating cell types and
721  remaining T cells as cluster labels. The final Seurat object was filtered to maintain only
722 T cells and the decontX matrix was used for all subsequent analyses.

723

724  Classification of T cell subsets

725 A reference dataset was generated from the T cell dataset by annotating cells based
726  on the normalised decontX matrix (NormalizeData):

727 CD4:CD4>1.5& CD8A==0&CD8B ==0 & TRDC ==

728 CD8: (CD8A>1.5|CD8B > 1.5) & CD4 == 0 & TRDC ==

729 gdT: TRDC > 1.5 & CD8A == 0 & CD8B == 0 & CD4==0

730 For each of these T cell subsets, dimensionality reduction was performed
731 ((NormalizeData(), FindvVariableFeatures(nfeatures=1000),
732 ScaleData(), RunPCA()) and cells were clustered to define the main cell states
733 (FindNeighbours(reduction='pca’.dims=1:20).

734 FindClusters(resolution=0.4)). The subsets were then merged back into a

735 combined reference dataset to annotate the complete T cell dataset with SingleR
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736  (v1.2.4, [48]) taking “pruned.labels” output to split the T cell Seurat object into CD4,
737  CD8 or gdT cell subsets for further analyses.

738

739  CD8 subset analysis

740  Dimensionality reduction and clustering was re-run (as above, except
741 RunUMAP(dims=1:20), FindClusters(resolution=0.5)) as final filtering step
742  excluding a cluster specific for cycling cells and then repeated to obtain a final version
743  (as before, except FindClusters(resolution=0.45)). Clusters were annotated
744 to CD8+ T cell states based on the module score expression for custom gene
745  signatures, which was added for each cell with AddModuleScore(): naive (genes:
746  CCR7, TCF7, LEF1, SELL; cluster: 1), effector/central memory (genes: GPR183,
747  CCR7, SELL, IL7R, CD27, CD28, GZMA, CCL5, S1PR1, GZMK, CXCR4, CXCRS3,
748  CD44; clusters: 2, 3, 5, 7), cytotoxic (genes: EOMES, TBX21, GZMB, PRF1, FASLG,
749  GZMH, GZMA,; cluster: 4). Additionally, cluster 6 was annotated as KLRB1+ T cells
750  based on the high expression level of the corresponding gene.

751

752  CD4 subset analysis

753  Similar to the CD8+ T cell dataset, cells were projected into a low dimensional space
754 and grouped using graph-based clustering (as before, except
755 FindVariableFeatures(nfeatures=3000),

756  FindClusters(resolution=0.45)).

757

758  Differential Abundance Analysis

759  Changes in the composition of the BM microenvironment between the clinical states
760  were evaluated by log2fold-change difference of each patient’s cell type fraction from
761  the corresponding healthy control’'s mean fraction. For differential compositional
762  analysis (DPA) of the immune compartment, plasma cells and erythroid progenitors
763  were excluded prior to calculating each patient’'s composition per clinical group, which
764  were tested for significance using unpaired Wilcoxon rank sum test.

765  For cluster-independent differential abundance analysis, DA-seq was performed [49].
766  The tool computes a multiscale score for each cell based on the k-nearest-
767  neighbourhood for k between 50 and 500. Cells with a multiscale score > 0.95 and < -
768  0.95 were considered as differential abundant. Subsequently, a logistic regression

769 classifier was trained on the multiscale score to obtain the differential abundant
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770  clusters which were visualized on the UMAP. A continuous DA-seq score was
771  calculated by subtracting scaled module scores (AddModuleScore()) for
772 significantly up- and downregulated genes in differentially abundant cells.

773

774  Dissimilarity analysis and aberrant cell classification

775  To determine and quantify whether a cell is transcriptionally more similar to healthy
776  cells or to perturbed counterparts in the disease state, we introduce a ‘dissimilarity
777  score’. It requires condition labels i (in our case “Healthy” and “ID”), sample labels j
778 and a data matrix X. The analysis was performed per cell type to account for cell type-
779  specific transcriptional differences. By default, we chose PCA coordinates of n
780 dimensions as dimension-reduced representation of our data, where n was assessed
781 by prior MetaCluster analysis. Cells were divided by condition and further sampled to
782  adjust for equal group sizes. We computed the k = 30 nearest neighbors using the
783  FNN package (v.1.1.3) to look at the condition distribution for each cell in the dataset.
784  Dissimilarity was quantified by summing up the neighbors per condition with higher
785  values meaning more neighboring cells from the diseased state (ID) as compared to
786  healthy. To adjust for sampling effects, this process was iterated 100 times with
787  changing seeds. Each cell is assigned the median dissimilarity and the final score is
788  scaled between 0 and 1 between all conditions.

789  To allow group-wise comparisons between ‘healthy-like’ cells and most dissimilar, i.e.
790  ‘aberrant-like’ cells among the clinical states, we used the automatic machine learning
791  software H20 autoML [50]. Initially, each cell was given a ‘state’ label (‘healthy-like’ or
792  ‘aberrant-like’) based on the combination of the ‘clinical state’ (‘Healthy’ or ‘ID’) and the
793  ‘dissimilarity score’. The underlying ‘dissimilarity score’ threshold was defined as 99%
794  of all cells from the healthy controls being labeled ‘healthy-like’, and applying this
795  threshold on all patients’ cells. Then, top 500 to 1000 variable genes were computed
796  for each cell population (see table 2) using Seurat’s FindvariableFeatures(). To
797  train and validate the models, training (80%) and test (20%) datasets were generated
798  for each cell population using the createDataPartition() function from the caret
799  package (v.6.0-91, [51]). To have sufficient numbers of healthy plasma cells for model
800 training and validation, healthy plasma cells from the ‘Human Cell Atlas’ [52] were
801 integrated with our dataset applying the Scanorama algorithm with default parameters
802  on all features [53]. The partitioned datasets were then converted to H20 objects using
803  the H20 library (H20 R version: 3.36.0.3. H20 cluster version: 3.36.0.3). The function
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804 h2o.automl () was used for the model training process using the train dataset and
805 top n variable genes (500 or 1000) as input. Following parameters were set:
806 ~max_models = 80 (which computes 82 models due to including the two Stacked
807 Ensembles as default), max_runtime_secs_per_model = 7200, stopping_rounds = 5
808 and nfolds= 50 or nfolds = 5 (depending on dataset size). Moreover, a seed was set to
809  ensure result reproducibility.

810  The top leader model (see table 2) was selected and used for label prediction on the
811 respective test dataset. To assess label prediction accuracy for each model, a
812  confusion matrix was generated and the F1 score calculated using caret’s
813 confusionMatrix() function. The respective leader model was then used for
814  classification and label prediction. After running h2o.predict (), additional filtering
815 thresholds were applied (p0 >= 0.66 and p1 >= 0.66) on the internal probability values
816  to differentiate between clearly defined (p0 >= 0.66 and p1 >= 0.66) and non-defined
817  cells.

818

819 Table 2: Input parameters, chosen model and prediction statistics for aberrant cell type

820 classification using H20 (see methods)

Cell VarGenes | Cross- Leader Accuracy | Precision | Recall | F1
population | (n) validations | model score
CD14+ 1000 50 StackedEnse | 0.9877 0.9748 0.9872 | 0.9809
monocytes mble_AllMod
els
CD16+ 1000 5 StackedEnse | 1 1 1 1
monocytes mble_BestOf
Family
CD8+ T 1000 50 StackedEnse | 0.9773 0.9709 0.9626 | 0.9667
cells mble_AllMod
els
CD4+ T 1000 50 StackedEnse | 0.9814 0.9778 0.9795 | 0.9786
cells mble_AllMod
els
NK cells 1000 50 StackedEnse | 0.9876 0.9672 0.9815 | 0.9743
mble_AllMod
els
Plasma 1000 50 StackedEnse | 0.998 0.9967 0.9935 | 0.9951
cells mble_AllMod
els
B cells 1000 5 StackedEnse | 0.9764 0.9709 0.9804 | 0.9756
mble_BestOf
Family
pDC 1000 5 StackedEnse | 0.9804 0.9411 1 0.9696
mble_BestOf
Family
cDC2 500 5 StackedEnse | 0.9683 1 0.913 | 0.9545
mble_BestOf
Family

821
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822  Differential gene expression analysis

823  Differential gene expression analyses were computed using a two-part generalized
824 linear model implemented in MAST (v1.18.0, [54]). The Hurdle model in MAST
825  considers the bimodal expression distributions of single-cell data having either a strong
826  gene expression or zero values (zero-inflation). Normalized decontX corrected data of
827  the whole human bone marrow or without the cells of ID were used as input. Genes
828  with less than 10% expression across all libraries were filtered out. For the remaining
829  genes the hurdle model using the patients, the cell state and CR status was fitted using
830 the MAST function z1m( ). The obtained coefficients for each variance-covariance and
831 gene were reported with summary ().

832

833  Gene set enrichment analysis

834  Gmt files containing gene set collections were obtained from Molecular Signatures
835 Database (c2.cp.v7.4.symbols.gmt, c5.all.v7.4.symbols.gmt, h.all.v7.4.symbols.gmt,
836  [55],[56]). To search for enriched terms of cells from patients at initial diagnosis being
837 classified as ‘aberrant’ compared to ‘healthy’ cells from healthy donors, their average
838 log2 fold-change among all genes was calculated. Subsequently, genes were sorted
839 by their average log2 fold-change and used for multilevel GSEA with the fgsea R
840 package (v1.14.0, [57]). Results were filtered for padj < 0.05 and sorted by their
841 normalized enrichment score (NES). Significantly enriched gene sets of interest were
842  further evaluated by calculating a module score for the corresponding gene signature,
843  or for specified leading-edge genes in each cell using AddModuleScore ()in Seurat
844  and comparing these modules in cell types of interest between the clinical groups.
845  To systematically assess enriched gene sets between the clinical groups including the
846  ‘complete remission’ status, all gene set collections were combined into one gene
847  matrix transposed file (gmt) as input for GSEA, which was then performed as stated
848 above. Top 100 enriched (NES) and significant (p < 0.05) scores were selected per
849  corresponding cell type, translated into a ModuleScore and tested for significance
850  between the clinical and CR states using paired Wilcoxon signed rank test.

851

852 GO overrepresentation analysis

853 To identify enriched terms among the DEGs from the MAST analyses, GO

854  overrepresentation analysis was performed with the clusterProfiler R package
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855  (v3.16.1, [58]). The function enricher () was used to run GO analysis based on the
856 same gmt files as used for GSEA.
857

858  Surfaceome filtering

859 DEGs from the MAST comparison of aberrant-like cells from patients at initial diagnosis
860  against healthy-like cells from healthy donors within the memory CD8+ T cell subset
861  were filtered for surface proteins using Cell Surface Protein Atlas data including
862  validated surfaceome proteins [59]. Briefly, surface proteins annotated in Table A of
863  the file http://wlab.ethz.ch/cspa/data/S2_File.xIsx (21 Apr 2021) were filtered for the
864  category '1 - high confidence' and DEGs were filtered for the intersection with the
865 remaining gene symbols in the surfaceome table.

866

867  Cell - cell interaction analysis

868  Cell-cell interactions were inferred with CellphoneDB2.0 [60] using normalized and
869  decontX corrected count data of the human bone marrow data set. Receptor-ligand
870  interactions were inferred for mean expression within each cell label cluster as well as
871  for clusters having the combined information of cell label and DA-Seq information. For
872  downstream analyses, significant interactions with an adjusted p-value < 0.05 were
873  considered, which required an expression of receptor and ligand in at least 10% of the
874  cells per cluster. CellphoneDB2.0 was computed per patient and the significant
875 interaction counts were grouped over the respected disease subgroups.

876

877 RNA Velocity

878  To investigate developmental dynamics, scVelo (v0.2.4, [61]) in combination with
879  Velocyto (v0.17.17, [62]) in Python (v3.9.7) was used. Reads were annotated as
880  spliced, unspliced and ambiguous. The pipeline was run individually for each sample
881 and data from resulting loom files were combined. Cells were subsetted based on prior
882 analysis of CD8+ T cells. Splicing kinetics were recovered using
883 recover dynamics() with standard parameters, velocities were computed using
884 velocity (mode='dynamical') and the velocity graph was calculated by
885 velocity graph() with standard parameters. Finally, for visualization,
886  summarized velocity vectors are plotted using the
887 velocity embedding stream() function in UMAP space in combination with the

888  dissimilarity score. For plotting of single marker expression velocity () was used.
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889  Bulk RNA-sequencing and TCR clonotyping

890  BM preparation, staining and sorting

891  For sorting of CXCR3+ and CXCR3- cells, BM and PB samples of MM patients were
892  thawed and processed as described above. Cells were stained with CD3-APCCy7,
893 CD4-BUV737, CD8-BUV395 and CXCR3-PECy7 antibody. For sorting of CXCR3+
894 and CXCRS3- cells, single, live CD3+CD4-CD8+ cells were gated and sorted as
895 CXCR3- or CXCR3+ cells, respectively. 1000 CXCR3+ and CXCR3-CD8+ T cells from
896  each sample were sorted on FACSAria Fusion equipped with a 100 um nozzle.

897

898  Bulk RNA-sequencing and gene expression analysis

899 RNA was isolated using PicoPure RNA Isolation Kit (ThermoFisher), bulk RNA-
900 sequencing libraries were generated using the SMART Seq Stranded Total RNA-Seq

901 kit (Takara) and sequenced using the lllumina NovaSeq 6000 platform (2 x 100 bp).
902  Adapter trimming was performed with Skewer (v0.2.2, [63]). Reads were aligned to
903  human reference GRCh38 using STAR (v2.5.2b, [64]) and gene count tables were
904 generated using Gencode v.32 annotations. Differential expression between samples
905 was tested using the R/Bioconductor package DESeq2 (v1.30.1, [65]). Sample origin
906 (BM vs. PB) was added to the design formula (condition: CXCR3+ vs. CXCR3- CD8+
907 T) to retrieve significantly upregulated genes for CXCR3+ CD8+ T cells within the BM
908  (termed bulkRNA Remodeling Module).

909

910 TCR clonotype analysis

911 Analysis and quantification of the TCR receptor profiles, statistical analysis, and
912  visualization were performed using three main tools: MiXCR (v3.0.13, [66]), VDJtools
913  (v1.2.1, [67]) and immunarch (v0.6.6, [68]). Raw bulk RNA sequencing data of sorted
914 CD8+ T cells in FASTQ format was used as the input for the TCR clonotype analysis.
915  Analyze shotgun command of MiXCR was used to align variable (V), diversity (D),
916 joining (J), and constant (C) genes of T-cell receptors, correct PCR and sequencing
917 errors, assemble bulk RNA-seq reads by CDR3 region to the reference IMGT [69]
918 library and export bulk TCR clonotypes. To this end, the default parameters
919 recommended by the developers for RNA-seq data were used. Basic analysis,
920 diversity estimation and repertoire overlap analysis modules of VDJtools were then
921 used for the downstream analysis of the bulk TCR clonotypes provided by the MiXCR

922  output. For the TCR repertoire clonality comparison between groups, the clonality
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923 metric was calculated as [1 — normalized Shannon Wiener Diversity Index] [70].
924  Significant differences were evaluated by paired Wilcoxon signed rank test. For TCR
925  repertoire overlap quantification, the Jaccard index was utilized. Hierarchical clustering
926  of the quantified TCR repertoire overlap was then performed using hclust () function
927 of the R MASS package. JoinSamples() command of VDJtools were used to
928  highlight overlapping TCR clonotypes by representative CDR3 amino acid sequence
929  between CXCR3 status and sample origin (BM, PB) of CD8+ T cells of single patients.
930 Additionally, the frequency of the top 10 most abundant TCR clonotypes across
931 different samples was tracked using immunarch. Clonotype tracking was performed by
932  the representative CDR3 amino acid sequence of TCR clonotypes.

933

934 T cells in vitro cytokine assay

935 CD3+ T cells were enriched from the BM of 30 MM patients using the Pan T cell
936 isolation kit with MS columns (both Miltenyi Biotec, Bergisch, Germany). 5 x 10° CD3+
937 T cells were plated in 0.5 ml T cell expansion medium (Stemcell Technologies,
938 Cologne, Germany) with 50 IE/ml IL-2, 1 % Pen/Strep (both from Sigma-Aldrich,
939  Taufkirchen, German) in 24 well-plates and incubated overnight at 37 °C, 5 % CO..
940  On the next day, GolgiStop (0.66 ul/ml) (both BD Biosciences, Heidelberg, Germany)
941 was added and cells were stimulated with PMA (50 ng/ml) and lonomycin (1 pg/ml)
942  (both Sigma-Aldrich, Taufkirchen, Germany). 6 h after incubation, intra-cellular staining
943 was performed using transcription factor buffer set (BD Biosciences, Heidelberg,
944  Germany) according to manufacturer's instructions. Briefly, cells were washed twice
945 in PBS and stained with cell surface antibodies for 20 min at 4 °C. Subsequently,
946  antibody-conjugated cells were fixed and permeabilized for intracellular staining before
947  washed twice with 1x Perm/Wash buffer and stained with antibodies against intra-
948  cellular markers at 4 °C for 45 min. Cells were washed twice with 1x Perm/Wash buffer
949  and measurements were acquired on cell analyzer FACS Lyrics (BD Bioscience,
950 Heidelberg, Germany). Controls without PMA and lonomycin stimulation were included
951 in this assay. Flow cytometry data were visualized in FlowJo (Treestar).

952

953  Multiplex Immunofluorescence

954  The frequency, localization and spatial proximity of T cell subpopulations and plasma
955 cells, as well as their expression of respective markers LAT1 and CXCR3 was

956 analyzed by multispectral imaging (MSI). Formalin fixed and paraffin embedded
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957 (FFPE) bone marrow (BM) biopsies of patients with MM (n=33), and control BM tissue
958  of patients with B cell Non-Hodgkin lymphomas without evidence for BM infiltration
959  (n=12) and myelodysplastic syndromes were collected between 2017 and 2020 at the
960 Institute of Pathology of the Medical Faculty of the Martin-Luther University Halle-
961  Wittenberg, Germany. The use of FFPE tissue samples was approved by the Ethical
962  Committee of the Medical Faculty of the Martin Luther University Halle-Wittenberg,
963 Halle, Germany (2017-81). The staining procedure was performed as recently
964  described [71]. The marker panel used for staining included mAb directed against CD3
965 (Labvision. Germany. clone SP7), CD8 (Abcam, Cambridge, UK, clone SP16), MUM1
966 (Dako, USA, clone MUM1p), LAT1 (Abcam, Cambridge, UK, clone EPR17573) and
967 CXCRS3 (Abcam, Cambrdige, UK, clone ab133420).

968  Briefly, all primary mAb were incubated for 30 min. Tyramide signal amplification (TSA)
969  visualization was performed using the Opal seven-color IHC kit containing fluorophores
970  Opal 520, Opal 540, Opal 570, Opal 620, and Opal 690 (Perkin Elmer Inc., Waltham,
971  MA, USA), and DAPI. Stained slides were imaged employing the PerkinElmer Vectra
972  Polaris platform. Cell segmentation and phenotyping of the cell subpopulations were
973  performed using the inForm software (PerkinElmer Inc., USA). The frequency of all
974  immune cell populations analyzed and the cartographic coordinates of each stained
975  cell type were obtained. The spatial distribution of cell populations was analyzed using
976  an R script for immune cell enumeration and relationship analysis.

977

978 Data availability statement

979  Single-cell RNA-seqquencing and bulk RNA-sequencing data are available at the
980 European Genome-phenome Archive (EGA) under accession number
981 EGAS00001006980.

982
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Figure 1. The bone marrow ecosystem of multiple myeloma long-term survivor patients.
Also see extended data Figure 1.
(a) Overview of the study design and experimental layout. (b) Global UMAP representation of scRNAseq
data of paired human BM samples from 11 MM long-term survivor patients at initial diagnosis (ID) and
long-term survival (LTS), as well as 3 healthy, age-matched controls. (¢) Global UMAP split by clinical
groups. The density and distribution of cells is color-coded. Grey represents all remaining cells. (d)
Changes in cell type abundancies between ID or LTS in comparison to healthy donors (e) Global UMAP
highlighting differentially abundant cells (red) determined by DA-Seq at initial diagnosis as compared to
cells from healthy controls. (f) Fractions of differentially abundant cells (DA-cells) compared to all cells
per cell type and patient at initial diagnosis. Benjamini-Hochberg (BH) adjusted significant differences
(p < 0.05) evaluated by unpaired two-sided Wilcoxon rank sum test are highlighted. (g) Fractions of
differentially abundant cells (DA-Seq) compared to all cells per patient within ID, LTS or healthy controls
(Healthy). Dots represent sample means. BH corrected p-values from unpaired (Healthy/ID,
Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-sum tests are shown.

Abbreviations: HSCs: hematopoietic stem cells, MEP: megakaryocyte-erythrocyte progenitors, MyeloP:
myeloid progenitors, cDC1/2: conventional dendritic cells 1/2, pDCs: plasmacytoid dendritic cells, NK:
natural killer cells, MSCs: mesenchymal stromal cells; ID: initial diagnosis, LTS: long-term survival.
Box plots: center line, median; box limits, first and third quartile; whiskers, smallest/largest value no
further than 1.5*IQR from corresponding hinge.
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Figure 2. Malignant plasma cells frequently persist during long-term survival and display a stable
transcriptional phenotype.

Also see extended data Figures 2.1 and 2.2.

(a) UMAP embedding of BM plasma cell (PC) compartment colored by patient. (b) PC fraction of total
BM cells summarized by patient and compared between clinical groups (Healthy, ID, LTS). Dots indicate
PC fraction of total BM cells for each sample. Significance was tested by unpaired Wilcoxon rank sum
test. (¢) Split UMAP of PCs by clinical groups (ID, LTS) highlighting their malignancy annotation (healthy,
malignant) derived from inferCNV. Remaining cells from the respective other state are grayed out. (d)
PC UMAP highlighting the dominant immunoglobulin light chain expression (Kappa: green; Lambda:
red). (e) Representative scatter plots showcasing the immunoglobulin expression (highest lambda chain
(IGLC) and kappa chain (IGKC)) of healthy (green) and malignant (violet) PCs. (f) Malignancy score
(malignant PC fraction of total PCs) per patient at ID and LTS. Large dots indicate malignant PC fraction
of total BM cells for each sample. Significance was tested by paired Wilcoxon signed rank test. (g)
Correlation of malignancy score derived from Next Generation Flow MRD (number of Light Chain
restricted plasma cells/all plasma cells) on y-axis with malignancy score derived from inferCNV analysis
(number of malignant cells/all plasma cells) on x-axis. Spearman’s Rho and the significance level of
correlation are indicated. (h) Euclidean distance of malignant plasma cells between ID and LTS within
the same patient compared to the Euclidean distance of malignant plasma cells at ID and the respective
nearest neighbor within top 30 principal components. Dots indicate the average Euclidean distance of
each sample. Patients with less than 2 cells within one of the clinical states were excluded. Significance
was tested by paired Wilcoxon signed rank test. (i) Heatmap showing average expression patterns
(module scores; scaled by row) of known bulk RNA signatures [23] per patient and clinical state.
Abbreviations: PC: plasma cells; ID: initial diagnosis; LTS: long-term survival; IGLC: immunoglobulin
light chain; LC: lambda chain; KC: kappa chain. Box plots: center line, median; box limits, first and third
quartile; whiskers, smallest/largest value no further than 1.5*IQR from corresponding hinge.
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Figure 3. Multiple myeloma long-term survivor patients display sustained signs of immune
remodeling decades after a single therapy line.
Also see extended data Figure 3.

(a) UMAP of CD14+ monocytes from the BM dataset split by clinical groups. Cells are colored by the
density (top row), dissimilarity score (middle row) and dissimilarity-based classification into aberrant-
like, healthy-like and undefined cell states (bottom row). Cells from the respective other clinical states
are depicted in grey. (b) Distribution of the dissimilarity score by clinical group summarizing the
remodeling of CD14+ monocytes. Large dots indicate sample means. Benjamini-Hochberg adjusted p-
values from unpaired (Healthy/ID, Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-sum tests
are shown. (c) Bar plot summarizing fractions of predicted cell states by clinical group from a. (d) UMAP
of CD8+ T cells split by clinical groups. Cells are colored by the density (top row), dissimilarity score
(middle row) and dissimilarity-based classification into aberrant-like, healthy-like and undefined cell
states (bottom row). Cells from the corresponding other clinical states are shown in a grayscale. (e)
Distribution of the dissimilarity score by clinical group summarizing the remodeling of CD8+ T cells.
Large dots indicate sample means. Benjamini-Hochberg adjusted p-values from unpaired (Healthy/ID,
Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-sum tests are shown. (f) Bar plot
summarizing fractions of predicted cell states by clinical group from d. (g) UMAP of CD8+ T cells,
classified into naive, memory, cytotoxic and KLRB1+ subsets. (h) Bar plot summarizing fractions of cell
subsets by clinical group from g.

Abbreviations: BM: bone marrow; ID: initial diagnosis; LTS: long-term survival.

Bar plots: Error bars indicate the standard error of the mean (SEM); Box plots: center line, median; box
limits, first and third quartile; whiskers, smallest/largest value no further than 1.5*IQR from
corresponding hinge.
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1222 Figure 4. An inflammatory circuit underlies immune remodeling during active disease and long-
1223 term survival.

1224  See also extended data Figure 4.

1225  (a) Gene set enrichment analysis performed independently in different cell subsets from the total bone
1226  marrow and T cell datasets. Aberrant cells from patients at initial diagnosis (ID) were compared against
1227  cells from healthy donors. Selected gene sets from MSigDb Hallmark, MSigDB C2, MSigDB C5 are
1228 shown. Benjamini-Hochberg adjusted p-values are encoded by dot size, colors represent normalized
1229  enrichment scores (NES). Stars mark significant enrichment of the selected gene sets. (b) Left,
1230 correlation between Hallmark Inflammatory Response module score and dissimilarity score in CD14+
1231 monocytes. The cell density is represented by color. Spearman’s Rho and the significance level of
1232 correlation are indicated. Right, distribution of the Hallmark Inflammatory Response module score by
1233 clinical group. Benjamini-Hochberg adjusted p-values from unpaired (Healthy/ID, Healthy/LTS) and
1234 paired (ID/LTS) two-sided Wilcoxon rank-sum tests are shown. (c) Boxplots showing Hallmark
1235 Inflammatory Response module score (see b) in CD14+ monocytes split by clinical group and cell state
1236  prediction. The dashed line highlights the mean module score within the healthy control group.
1237 Significant differences between aberrant and healthy cells were tested by comparing the respective
1238  sample means with paired two-sided Wilcoxon rank-sum tests. (d) Mean CXCL8 expression at initial
1239  diagnosis in the different BM cell types. (e) Boxplots of mean CXCL8 expression in CD14+ monocytes
1240  split by clinical group and cell state prediction. The dashed line represents the mean CXCL8 expression
1241  within CD14+ monocytes of the healthy controls. Significant differences between aberrant and healthy
1242 cells were tested by comparing the respective sample means with paired two-sided Wilcoxon rank-sum
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1243 tests. (f) NK cytotoxicity module score in the NK cell subset summarized by clinical group. Benjamini-
1244  Hochberg adjusted p-values from unpaired (Healthy/ID, Healthy/LTS) and paired (ID/LTS) two-sided
1245  Wilcoxon rank-sum tests are shown. (g) Predicted number of interactions between plasma cells and
1246  immune cells from the BM at initial diagnosis derived by CellPhoneDB (see methods). (h) Mean
1247 interferon-gamma (IFNG) expression at initial diagnosis in different BM cell types. (i, j) Boxplots of IFNG
1248 (i) and CXCR3 (j) expression in CD8+ T cells split by clinical group and cell state prediction. Mean
1249  expression levels of CD8+ T cells from healthy controls are highlighted by dashed line. Significant
1250 differences between aberrant and healthy cells were tested by comparing the respective sample means
1251  with paired two-sided Wilcoxon rank-sum tests.

1252 Abbreviations: CD14/CD16_M: CD14+/CD16+ monocytes; cDC: conventional dendritic cells; pDC:
1253  plasmacytoid dendritic cells; CD4/CD8_T: CD4+/CD8+ T cells; NK: natural killer cells

1254 Box plots: center line, median; box limits, first and third quartile; whiskers, smallest/largest value no
1255  further than 1.5*IQR from corresponding hinge.
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1257  Figure 5. Bone marrow infiltration of inflammatory T cells is associated with myeloma burden

1258 and serves as an accessible biomarker for disease activity.

1259  See also extended data Figure 5.

1260  (a-d) UMAP of CD8+ T cells (derived from T cell dataset) with highlighted expression of CXCR3 (a) and
1261  LAT1 (b) split between cells from healthy donors and patients at initial diagnosis; and highlighted ‘scRNA
1262  Remodeling Score’ (derived from MAST analysis of scRNAseq data: healthy versus aberrant CD8+ T
1263  cells) (c) and ‘bulkRNA Remodeling Score’ (derived from DESeq2 analysis of FACS isolated CXCR3+
1264  versus CXCR3- CD8+ T cells) (d). (e) Multiplex immunofluorescence images illustrating expression of
1265  MUM?1 on plasma cells as well as CXCR3 and LAT1 on CD8+ T cells in a representative BM area of a
1266 MM patient (examples of CD8+ T cells co-expressing LAT7 and CXCR3 are highlighted by arrows). (f)
1267  Left, CXCR3 mean expression intensity (MEI) on BM CD8 T cells of MM patients and B Non-Hodgkin
1268 lymphoma and MDS patients as controls, Benjamini-Hochberg adjusted p-values from unpaired two-
1269  sided Wilcoxon rank-sum tests are shown; Right, Spearman correlation of the fraction of CXCR3+ T
1270 cells of all T cells with tumor burden measured by fraction of MUM1+ plasma cells in the BM. (g) UMAP
1271  of CD8+ T cells with highlighted velocities (arrows), dissimilarity score (yellow), and imputed CXCR3
1272  and LAT1 expression. (h) Fraction of CXCR3+ CD8+ T cells in peripheral blood (PB) and bone marrow
1273 (BM) in patients with low to intermediate tumor burden (<50% plasma cells) versus patients with high
1274  tumor burden (>50% plasma cells) as determined by BM cytology. Significant differences between
1275 patients with low to intermediate and high tumor burden were tested by comparing the respective sample
1276  means with unpaired Wilcoxon rank sum test. (i) Hierarchical clustering of FACS-isolated CD8+ T cells
1277 (+/- CXCR3) from BM and PB of 3 MM patients by shared clonotypes of T cell receptor (TCR) repertoire
1278 using Jaccard index of repertoire similarity. (j) Clonotype tracking by representative CDR3 amino acid
1279 sequence of shared clonotypes between the top 10 most abundant TCR clonotypes from CXCR3+ (top
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1280  row) and CXCR3- (bottom row) peripheral blood (PB) CD8+ T cells across CXCR3+ or CXCR3- CD8+
1281 T cell subsets in PB and BM. Two representative patients are shown (see also extended data Figure 5).
1282  Amino acid clonotype sequences are shown as labels.

1283  Abbreviations: FACS: fluorescence activated cell sorting; BM: bone marrow; PB: peripheral blood; IF:
1284  immunofluorescence; MEI: mean expression intensity; MDS: myelodysplastic syndrome; ASCT:
1285 autologous stem cell transplantation; MFI: mean fluorescence intensity; TCR: T cell receptor.
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1287  Figure 6. Immune remodeling in LTS patients is associated with future disease resurgence and
1288  defective immune function even in the absence of measurable disease.

1289  Also see extended data Figure 6.

1290 (a) Correlation of the malignant plasma cell fraction of all plasma cells (CNV-based malignancy score)
1291 and the degree of remodeling (as quantified by the mean DA-seq score). Scores are ranked by the
1292 mean expression. Each dot represents the ranked DA-seq score across immune cells and the
1293 corresponding CNV malignancy score. Spearman’s Rho and the significance level of correlation are
1294  indicated. Colors represent clinical groups. (b) Distribution of the dissimilarity score (small dots) by
1295  clinical group with LTS patients split into patients with complete remission (CR) and patients with
1296  biochemical progression (non-CR) patients within the CD8+ T compartment. Large dots indicate sample
1297 means. Sustained CR patients are highlighted in red. Benjamini-Hochberg adjusted p-values from
1298 unpaired two-sided Wilcoxon rank-sum tests are shown. (¢) Mean module scores of top 100 upregulated
1299  pathways (ID vs. Healthy) between clinical groups in CD8+ T cells. Benjamini-Hochberg adjusted p-
1300  values from paired one-tailed Wilcoxon signed rank test are highlighted. (d) Correlation between mean
1301 CXCR3 expression in CD8+ T cells per patient and the malignant plasma cell fraction of all plasma cells
1302  per patient (CNV-based malignancy score); Spearman’s Rho and the significance level of correlation
1303  are indicated. (e) Correlation between the ratio of BM to PB CXCR3+ CD8+ T cells as measured by flow
1304  cytometry and cytological plasma cell count in the BM per sample. Individual patients are highlighted as
1305 dots. Clinical groups are highlighted by color. Spearman’s Rho and the significance level of correlation
1306  are indicated. (f) Comparison of the BM to PB ratio of CXCR3+ CD8+ T cells between patients that
1307 experienced sustained CR or lost the CR state during a 4-year clinical follow up (losing CR) quantified
1308 by flow cytometry. Individual patients are highlighted as dots. Mean ratio of healthy controls is
1309 highlighted by dashed line. Significance was tested by unpaired Wilcoxon rank sum test. (g) Comparison
1310  of CD4+ to CD8+ T cell ratios between patients with sustained CR versus patients losing CR within
1311  peripheral blood quantified by flow cytometry. Individual patients are highlighted as dots. Significance is
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shown for unpaired Wilcoxon rank sum test. (h) Boxplot of module scores for the CD8 early activation
gene signature from [27] in naive CD8+ T cells. Data is summarized and statistically tested as described
in b. (i) Mean CD69 expression in CD8+ T cells measured by flow cytometry and compared between
healthy controls, CR and Non-CR patients that experienced LTS. Patients in sustained CR are
highlighted in red. Significance was tested using two-sided, unpaired Wilcoxon rank sum test and
corrected according to Benjamini-Hochberg. (j) Study design scheme of the in vitro T cell cytokine assay.
CD3+ T cells from 19 LTS patients and 10 controls were isolated by FACS and stimulated with PMA
and lonomycin. Intracellular cytokine production was assessed by flow cytometry. (k) Quantification of
intracellular CD3+ T cell cytokine expression of IFNg, TNFa and IL2 from LTS patients and controls as
determined by flow cytometry. Patients in sustained CR are highlighted in red. Significant differences
between controls and LTS patients were tested by comparing the respective sample means with
unpaired Wilcoxon rank sum test.

Abbreviations: ID: initial diagnosis; LTS: long-term survival; CR: complete remission; BM: bone marrow;
PB: peripheral blood; FACS: fluorescence activated cell sorting.
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Number Patient Gender Age MM Type CRAB criteria Time after  Stage Cytogenetics Cytology: Induction Pre- Conditioni Maintenance, Post-ASCT Relapse Sustai
ID (M/F) ASCT (1sS) % PCin treatment ASCT ng duration (in response from CRin ned CR
(years) BM respon years after 2018 (years til
se ASCT) after ASCT) 2022
1 P0O18 M 68 18G kappa bone disease 14 | standard 5% 3x VAD NA 2x Mel 200 interferon, 8 CR 7 No
2 P0O10 M 73 1gG lambda bone disease, 11 | standard 30% 3x VAD PR 2x Mel 200  thalidomide, 2 CR 3 No
anemia
3 P020 F 71 1gA/IgG bone disease, 10 1] standard 90% 3x VAD VGPR 2x Mel 200  thalidomide, 1 CR 8 No
lambda anemia
4 P0O0O1 F 69 1gG kappa bone disease 9.5 | standard 15% 3x VAD PR 1x Mel 200 thalidomide, 2 CR 9 No
5 P021 F 73 1gG kappa bone disease 9 1l high risk (del17p) 50% 3x PAD VGPR 2x Mel 200  bortezomib, 2 CR 7 No
6 P0O17 M 77 1gG kappa bone disease 10 | standard 10% 3x VAD PR 1x Mel 200 thalidomide, 1 CR 10 No
7 P0O13 M 73 18G kappa anemia 9 | standard 20% 3x PAD VGPR 2x Mel 200 none CR 6 No
8 P0O09 F 56 IgA lambda bone disease 9 | high risk (del 17p) 60% 3x PAD VGPR 2x Mel 200  bortezomib, 2 CR 6 No
9 P0O15 F 67 1gA kappa anemia 9 | standard 80% 3x TAD VGPR 1x Mel 200 None VGPR n.a. No
10 P025 M 54 BJ kappa bone disease 15 NA NA NA 3x VAD NA 2x Mel 200 interferon, 2 CR n.a. No
11 P022 F 58 18G kappa bone disease 14 1l NA 60% 3x TAD NA 2x Mel 200  thalidomide, 4 CR n.a. No
12 P003 M 69 1gG kappa bone disease 14 I standard 80% 3x TAD PR 2x Mel 200 thalidomide, 4 CR n.a. Yes
13 P004 M 70 IgA lambda bone disease 9 1l high risk (del 17p) 100% 3x PAD nCR 2x Mel 200  bortezomib, 2 CR n.a. No
14 PO16 F 65 BJ kappa bone disease 11 | standard 20% 3x PAD VGPR 2x Mel 200  bortezomib, 2 CR n.a. Yes
15 P023 F 79 IgA lambda bone disease 14 | standard 30% 3x VAD CR 2x Mel 200 interferon, NA CR n.a. Yes
16 PO11 F 58 1gG kappa bone disease 17 NA NA 80% 4x VID NA 2x Mel 200 interferon, 13 CR n.a. Yes
17 P0O05 M 59 18G kappa renal failure, 12 1l standard 20% 3x VAD PR 2x Mel 200 interferon, NA CR n.a. Yes
anemia
18 P002 M 65 1gG lambda bone disease 11 | standard 70% 3x VAD VGPR 2x Mel 200  thalidomide, 2 CR n.a. No
19 P007 M 75 IgA lambda bone disease 11 | standard 80% 3x PAD VGPR 2x Mel 200  bortezomib, 2 CR n.a. Yes
20 P012 F 61 1gG kappa bone disease 11 I standard 30% 3x VAD PR 1x Mel 200 thalidomide, 3 CR n.a. Yes
21 P006 M 55 18G kappa bone disease 10 Il high risk (gain 50% 3x PAD VGPR 2x Mel 200  bortezomib, 2 CR n.a. Yes
1921)
22 P024 M 68 1gG lambda renal failure 9.5 ] high rigk (t4;14) 80% 3x PAD VGPR 2x Mel 200  bortezomib, 2 CR n.a. No
23 P014 M 60 1gG kappa bone disease, 9 | standard 30% 3x TAD CR 1x Mel 200 None CR n.a. Yes
hypercalcemia
24 P026 F 46 1gG lambda bone disease 7 1l standard 50% 3x VCD PR 2x Mel 200  lenalidomide, CR n.a. No
1

Table 1: Characteristics of patients with Multiple Myeloma in LTR: Patients highlighted in yellow were subjected to single cell RNA sequencing analysis, Abbreviations: PID:
PatientID; ASCT= autologous stem cell transplantation; BM= bone marrow; CR= Complete remission; Mel = melphalan; NA = not available; n.a. not applicable; PC = plasma cells;
PR= partial response; PAD= bortezomib — doxorubicin- dexamethasone; TAD = thalidomide- doxorubicin- dexamethasone; VAD= vincristine — doxorubicin — dexamethasone;
VCD= bortezomib- cyclophosphamide- dexamethasone; VID= vincristine — ifosfamide — dexamethasone; VGPR= very good partial response
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