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Abstract 81 

The long-term consequences of cancer or cancer therapy on the patients’ immune 82 

system years after cancer-free survival remain poorly understood. Here, we have 83 

performed an in-depth characterization of the bone marrow ecosystem of multiple 84 

myeloma long-term survivors at initial diagnosis and up to 17 years following cancer-85 

free survival. Using comparative single-cell analyses in combination with molecular, 86 

genomic and functional approaches, we demonstrate that multiple myeloma long-term 87 

survivors display pronounced alterations in their bone marrow microenvironment 88 

associated with impaired immunity. These immunological alterations were frequently 89 

driven by an inflammatory immune circuit fueled by the long-term persistence or 90 

resurgence of residual myeloma cells. Notably, even in the complete absence of any 91 

detectable residual disease for decades, sustained changes in the immune system 92 

were observed, suggesting an irreversible ‘immunological scarring’ caused by the 93 

initial exposure to the cancer and therapy. Collectively, our study provides key insights 94 

into the molecular and cellular bone marrow ecosystem of multiple myeloma long-term 95 

survivors, revealing reversible and irreversible alterations of the immune compartment, 96 

which can serve as diagnostic and predictive tools. 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

Statement of significance 106 

Large-scale single-cell profiling of a unique cohort of multiple myeloma long-term 107 

survivors uncovered that exposure to cancer and its treatment causes both reversible 108 

and irreversible immune alterations associated with impaired immunity. These findings 109 

have far-reaching implications for the understanding of long-term immune alterations 110 

in cancer, which need to be considered also in the context of immune therapeutic 111 

approaches. Furthermore, our study demonstrates how cancer-associated immune 112 

trafficking can be used to predict disease re-initiation in the bone marrow, opening new 113 

avenues for minimally invasive disease monitoring.   114 
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Introduction 115 

The immune system plays a key role in the prevention, development and treatment of 116 

cancer. Powerful immune surveillance mechanisms constantly monitor tissues to 117 

remove potentially cancerous cells. However, malignant tumors can evade immune 118 

control or even hijack immunological processes to propel tumor growth. Notably, the 119 

interaction between the tumor and the immune system induces bidirectional 120 

adaptations. Well studied examples for immunological changes induced by the 121 

continuous exposure to tumor cells include the exhaustion and dysfunction of T cells, 122 

as well as the suppressive polarization of myeloid immune cells, such as tumor 123 

associated macrophages or myeloid-derived suppressor cells [1-5]. In infectious 124 

diseases, irreversible immune dysfunction has been described, long after the infection 125 

has been cleared, a phenomenon termed immunological scarring [6, 7]. However, 126 

whether cancer or cancer treatment may cause similar long-term consequences on the 127 

immune system years after cancer-free survival remains poorly understood. 128 

Multiple Myeloma (MM) is a hematologic neoplasm and is characterized by the clonal 129 

proliferation of malignant plasma cells within the bone marrow (BM). MM provides a 130 

prime example for a disease that depends on the interplay with its tumor 131 

microenvironment [8, 9]. Recent bulk and single-cell genomic efforts dissected the 132 

clonal complexity as well as clonal evolution patterns of MM from precursor stages to 133 

symptomatic disease and upon refractory cancer after multiple therapy lines [10-12]. 134 

While transcriptional stability has been observed in the transition from precursor states 135 

to MM progression, more dynamic shifts within the transcriptome and clonal outgrowth 136 

occurred upon refractory cancer [13]. Besides the genomic evolution of myeloma cells, 137 

substantial changes in the immune and stromal cell composition have been described 138 

across the different MM disease stages promoting an inflammatory BM 139 

microenvironment upon disease progression [8, 14]. Cell-cell interactions within the 140 

BM appear to be crucial to mediate tumor growth in MM highlighting the importance 141 

for a deeper understanding of the tumor ecosystem at different disease stages [15]. 142 

While recent studies on the MM ecosystem focused on disease progression from 143 

precursor stages as well as refractory disease, it remains unclear whether myeloma 144 

and myeloma therapy causes long-term alterations of the immune system years to 145 

decades after progression-free survival. 146 

Despite improved therapy options, MM remains an incurable disease and only a minor 147 

fraction of MM patients experiences long-term survival (LTS) over 7 years after first 148 
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line therapy [16, 17]. Nonetheless, even patients in complete remission (CR) without 149 

detectable measurable residual disease (MRD) may ultimately experience biochemical 150 

progression years after progression-free survival. Previous studies on the LTS 151 

phenomenon in MM focused on quantitative changes in immune cell types [18-20]. 152 

However, the transcriptional evolution patterns of myeloma cells in LTS patients as 153 

well as the long-term molecular adaptations of the BM microenvironment years after 154 

progression-free survival remain unexplored.  155 

Here we have characterized the BM ecosystem of a unique patient group of MM long-156 

term survivors at initial diagnosis (ID) and 7-17 years after first line therapy. Of note, 157 

LTS patients displayed sustained alterations in the immune microenvironment if 158 

compared to age-matched controls. These changes were associated with resurgence 159 

of disease activity but were also detectable in patients that were considered 160 

functionally cured, suggesting both reversible and irreversible long-term 161 

consequences of the disease and therapy. We identified bone marrow infiltrating 162 

inflammatory T cells as part of an inflammatory circuit, propelling these sustained 163 

immune aberrations. Importantly, this disease-associated immune cell trafficking can 164 

be used to reliably track the re-initiation of the disease. 165 
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Results 166 

 167 

The bone marrow ecosystem of multiple myeloma long-term survivor patients 168 

The long-term alterations of the immune system years to decades after a cancer 169 

diagnosis remain unknown. To elucidate the bone marrow ecosystem of LTS cancer 170 

patients, our study included 24 multiple myeloma patients who experienced LTS for 7 171 

to 17 years (median 10.5 years) after first line therapy with standard induction regimen 172 

and high dose therapy followed by autologous stem cell transplantation (Fig.1a, Table 173 

1). Notably, the favorable outcome of these patients could not have been predicted by 174 

state-of-the-art risk stratification tools, as 10 out of 24 patients displayed an 175 

intermediate, or poor prognosis according to the International Staging System (ISS) 176 

[21] and 4 patients even harbored high risk cytogenetic aberrations. Average myeloma 177 

cell infiltration within the BM across all patients at ID was remarkably high (mean 50%). 178 

For 11 of these MM patients with paired longitudinal samples at ID and upon LTS 7-17 179 

years post diagnosis, we performed droplet-based single-cell RNA-sequencing 180 

(scRNAseq) of total BM mononuclear cells. In addition, CD3+ T cells were separately 181 

profiled in all cases by scRNAseq to ensure sufficient coverage of the T cell 182 

compartment, even in the presence of high tumor burden. Bone marrow samples from 183 

three healthy, age-matched donors were included as controls, applying the identical 184 

workflow (Fig.1a, Extended data Fig. 1a). Following data integration, clustering and 185 

dimensionality reduction across experiments, we analyzed 213,200 high-quality BM 186 

cells covering the vast majority of previously described hematopoietic cell types and 187 

cell states of the BM (Fig. 1b, Extended data Fig. 1b). These included plasma cells, all 188 

hematopoietic stem and progenitor cell stages, T cell and natural killer (NK) cell 189 

populations, several dendritic cell and monocyte subpopulations as well as the main 190 

B cell differentiation states.  191 

Comparing immune cell compositions of healthy donors with patients at ID revealed 192 

an expected enrichment for plasma cells and a trend towards higher amounts of cDC1 193 

and NK cells, as well as a depletion of different B cell stages as described by previous 194 

studies (Fig. 1c,d, Extended data Fig. 1c,d) [10, 22]. At the LTS timepoint, the BM 195 

composition was partially normalized, however a significant enrichment of the dendritic 196 

cell compartments cDC1 and cDC2 constituted a unique feature of LTS patients 197 

(Extended data Fig. 1d). Beside changes in the BM cell type composition, we also 198 

observed considerable transcriptional perturbations within many BM-resident cell 199 
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types, reflecting disease-associated adaptations of cellular transcriptomic states 200 

(Fig.1c). To quantify these changes in cellular states associated with ID and LTS, we 201 

made use of DA-seq, a computational tool that measures how much a cell’s 202 

neighborhood is dominated by a certain biological state (see methods). As expected, 203 

a major transcriptomic remodeling from healthy to malignant plasma cells was 204 

observed at ID (Fig.1e,f). In addition, significant transcriptomic changes occurred 205 

within CD14+ monocytes, CD16+ monocytes as well as T and NK cells. Importantly, 206 

while the transcriptomic remodeling of immune cells partially normalized during LTS, 207 

which was in line with a reduced cancer cell burden in the BM, sustained signs of 208 

immune remodeling were maintained even decades after a single therapy line (Fig. 209 

1g). 210 

 211 

Malignant plasma cells frequently persist during long-term survival and display 212 

a transcriptionally stable phenotype 213 

Recent studies reported dynamic transcriptional shifts of malignant plasma cells and 214 

clonal outgrowth during disease courses induced by therapeutic interventions [13]. 215 

However, it remains poorly understood whether plasma cells driving relapse years after 216 

tumor-free survival undergo molecular adaptations in the absence of any therapy 217 

pressure. Moreover, it is unclear whether malignant plasma cells persist in the BM of 218 

LTS patients that are considered functionally cured. 219 

To address these questions, we performed an in-depth analysis of plasma cells to 220 

explore the longitudinal changes of the tumor cell compartment throughout LTS. The 221 

transcriptional heterogeneity of the plasma cell compartment was reflected by patient-222 

specific MM cell clusters and a cluster of putative healthy plasma cells to which all 223 

patients and the healthy controls contributed (Fig. 2a). Patient-specific clusters showed 224 

distinct gene expression patterns in line with published bulk RNA gene expression 225 

signatures, highlighting the diversity of our patient cohort (Extended data Fig. 2.1a) 226 

[23]. As expected, the expanded plasma cell compartment at ID partially normalized 227 

upon LTS. However, some patients still harbored a high fraction of plasma cells at the 228 

LTS state (Fig. 2b). To delineate healthy and malignant plasma cells, we analyzed 229 

copy number aberrations (CNA) using inferCNV (see methods, Extended data Fig. 230 

2.2). Overall, 59 out of 63 CNAs detected by cytogenetics could also be identified by 231 

our single-cell analyses, permitting a clear discrimination between healthy and 232 

malignant plasma cells (Fig. 2c, Extended data Fig. 2.1b,c). Furthermore, plasma cells 233 
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classified as malignant almost exclusively expressed a single immunoglobulin light 234 

chain, whereas plasma cells classified as healthy contained both kappa and lambda 235 

expressing cells, confirming the accuracy of our CNA analyses (Fig. 2d,e, Extended 236 

data Fig. 2.1e). The fraction of malignant plasma cells within the overall plasma cell 237 

pool (termed ‘malignancy score’) was increased in LTS patients that had experienced 238 

a biochemical progression from complete remission (CR) after a long-term remission 239 

phase, hereafter termed non-CR patients (Fig. 2f, Extended data Fig. 2.1d). As 240 

expected, patients that were in clinical CR harbored less or no malignant plasma cells. 241 

Moreover, the fraction of malignant cells defined by CNAs correlated with the result 242 

obtained from next generation flow cytometry for detection of measurable residual 243 

disease (MRD) (Fig. 2g). Nonetheless, our scRNAseq-based analysis was able to 244 

detect malignant plasma cells in patients previously classified as ‘Flow MRD negative’ 245 

at the LTS state highlighting the potential of single-cell genomics to detect and 246 

characterize such rare residual malignant cells. 247 

The mapping of CNAs in the single-cell data of the plasma cell compartment enabled 248 

us to address the question of how myeloma cells develop throughout the LTS state 249 

upon recurring disease activity. Malignant myeloma cells from the same patient at ID 250 

and LTS shared the highest transcriptional similarity to each other in comparison to 251 

myeloma cells from other patients (Fig. 2c,h). This suggested a high transcriptional 252 

stability of plasma cells upon resurgence of disease activity even after long lasting 253 

remission over years to decades. However, minor adaptations in the transcriptomic 254 

makeup between matched malignant plasma cells at ID and LTS were observed, as 255 

indicated by minor, but specific changes in the UMAP representation (Fig. 2c). To 256 

further study the molecular adaptations of myeloma cells, we focused on 4 patients 257 

with sufficient malignant cells captured for both matching clinical states to reliably 258 

obtain the subclonal composition of the respective patients (Extended data Fig. 2.2). 259 

Notably, we observed a changing subclonal composition which translated into specific 260 

changes of gene expression pattern of published transcriptomic signatures that are 261 

commonly used to categorize transcriptional patterns of myeloma cells (Fig. 2i) [23].  262 

For example, P009 gained a cancer testis antigen (CTA) expression pattern, which is 263 

reported to be associated with a proliferative myeloma disease, whereas P021 lost the 264 

previously expressed NFKB signature upon resurgence of disease (Fig.2i). Together, 265 

our observations demonstrate that malignant plasma cells frequently persist in LTS 266 
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patients and display an overall transcriptionally stable phenotype that is maintained for 267 

decades, while specific transcriptomic adaptions may occur. 268 

 269 

Multiple myeloma long-term survivor patients display sustained signs of 270 

immune remodeling decades after a single therapy line 271 

While specific compositional changes in the BM microenvironment of LTS patients 272 

have been reported, it remains unknown whether these cell types adopt a cellular state 273 

similar to healthy BM cells or maintain signs of their current or past exposure to 274 

malignant plasma cells or therapy. Our initial analyses revealed a major transcriptomic 275 

remodeling of BM-resident immune cells during the disease course, with monocytic, T 276 

and NK cell compartments displaying the most extensive alterations in cell states 277 

besides the plasma cell compartment (Fig.1f). To further investigate these molecular 278 

changes across the clinical states, we first focused on the most remodeled cell 279 

compartment, classical CD14+ monocytic cells (Fig 3a). In line with our global DA-seq 280 

analysis, the majority of monocytes from ID patients clustered separately from 281 

monocytes of healthy donors, reflecting a disease-associated transcriptomic 282 

remodeling. Notably, this remodeling partially normalized in the LTS state, although a 283 

considerable number of monocytes maintained a remodeled state years to decades 284 

after a single, successful therapy line (Fig. 3a). To quantify the transcriptionally 285 

perturbed cells in the diseased states, we introduced a ‘dissimilarity score’ measuring 286 

whether a cell’s neighborhood is dominated either by the healthy or the disease state. 287 

Combining the dissimilarity score with machine learning-based approaches enabled 288 

us to classify cells as ‘healthy-like’ or ‘aberrant-like’ with high accuracy and a low false 289 

prediction rate (see methods). These analyses revealed that classical monocytes from 290 

patients at ID showed a high degree of dissimilarity to healthy monocytes and were 291 

frequently classified as ‘aberrant-like’. Upon LTS, only a partial normalization was 292 

observed, revealing a sustained transcriptional remodeling throughout LTS in a subset 293 

of monocytes (Fig. 3b-c). Of note, this remodeling pattern was associated with 294 

plausible biological processes as demonstrated in the next section.  295 

To investigate whether also other immune cell types display sustained transcriptional 296 

changes in the LTS state, we next focused on the T cell compartment. CD8+ T cell 297 

states were annotated in naive, memory, effector as well as KLRB1+ cells based on 298 

known transcriptomic marker genes (Fig. 3g, Extended data Fig.3a-c). Notably, also in 299 

the CD8+ T cell compartment a sustained transcriptional remodeling was observed 300 
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upon long-term survival (Fig. 3d-f). Moreover, a significant and irreversible depletion 301 

of KLRB1+ CD8+ T cells was observed at the ID state and maintained throughout LTS 302 

(Fig. 3h). 303 

In line with our observations from the classical monocyte and CD8+ T cell 304 

compartments, we observed a remodeling of non-classical CD16+ monocytes, as well 305 

as the CD4+ T and NK cell states at ID, which was partially sustained throughout LTS 306 

(Extended data Fig. 3d-o). Together, our data reveals a major remodeling of cell states 307 

across the majority of bone marrow cell types during active MM disease, which is 308 

sustained in a subset of cells throughout long-term survival. 309 

 310 

An inflammatory circuit underlies immune remodeling during active disease and 311 

long-term survival 312 

To characterize disease-associated molecular programs responsible for the acute 313 

remodeling in the bone marrow ecosystem at ID, we performed a comprehensive gene 314 

set enrichment analysis (GSEA) comparing aberrant-like cell states with cells from 315 

healthy controls within all cell types of the bone marrow that displayed disease-316 

associated remodeling. This analysis revealed a globally up-regulated inflammatory 317 

program (Hallmark TNFA signaling via NFKB and Hallmark inflammatory response) 318 

shared across all remodeled BM cell types, as well as cell type-specific changes (Fig. 319 

4a). In particular, aberrant monocytes acquired a pro-inflammatory phenotype. The 320 

expression of inflammatory genes in monocytes correlated with their dissimilarity to 321 

healthy monocytes, peaked in ID patients and partially reversed throughout LTS (Fig. 322 

4b). However, the remaining ‘aberrant-like’ monocytes in the LTS state specifically 323 

displayed a sustained inflammatory phenotype, suggesting a persistent inflammatory 324 

response of the classical monocyte compartment even decades after the first line 325 

therapy (Fig. 4c). As part of the inflammatory response, ‘aberrant-like’ monocytes 326 

displayed an increased chemokine activity and produced increased levels of 327 

proinflammatory cytokines and chemokines, including CCL3, IL1B and CXCL8, with 328 

the latter two known to support myeloma cell growth and survival (Fig. 4d-e, Extended 329 

data Fig. 4a-e) [24]. Interestingly, the corresponding receptors of CXCL8, CXCR1 and 330 

CXCR2 were mainly expressed on NK cells suggesting a role for CXCL8 in the 331 

regulation and induction of leukocyte migration as reported previously (Extended data 332 

Fig. 4f) [25]. NK cells themselves switched from a cytotoxic to an inflammatory 333 
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phenotype with increased chemokine activity, which was maintained throughout the 334 

LTS state (Fig. 4a,f). 335 

To explore the interaction network between plasma cells and their microenvironmental 336 

cells at ID, we used CellPhoneDB to infer intercellular communications (see methods). 337 

We observed the highest number of interactions between myeloid and plasma cells 338 

(Fig. 4g). Notably, these interactions were significantly increased between remodeled 339 

CD14+ monocytes and plasma cells, suggesting that the remodeled state of CD14+ 340 

monocytes may be mediated by the interaction with plasma cells (Extended data Fig. 341 

4g).  342 

Importantly, remodeled T and NK cells were the main producers of the proinflammatory 343 

master cytokine interferon-gamma (IFNg) both at ID and LTS (Fig. 4h-I, Extended data 344 

Fig. 4m). Moreover, remodeled T and NK cells displayed significantly increased 345 

expression of the inflammatory chemokines CCL3, CCL4 and CCL5, suggesting that 346 

they act as major regulators of the acute and sustained BM inflammation (Extended 347 

data Fig. 4h-j). In line with an increased synthesis of proinflammatory cytokines, 348 

including IFNg, by aberrant lymphocytes, we observed the strongest IFNg response in 349 

aberrant myeloid cells, including CD14+ and CD16+ monocytes as well as cDC2s (Fig. 350 

4a). Notably, the IFN-inducible chemokines CXCL9, CXCL10 and CXCL11 were 351 

mainly expressed by CD16+ monocytes peaking at ID and being maintained at lower 352 

level throughout LTS (Extended data Fig. 4k,l). Aberrant IFNg expressing CD8+ T cells 353 

and NK cells specifically expressed CXCR3, the chemokine receptor mediating 354 

migration towards CXCL9/10/11 sources, which we will elucidate in detail in the next 355 

section (Fig. 4j, Extended data Fig. 4n).  356 

In summary, these data suggest that upon MM disease activity in the BM, inflammatory 357 

signals drive a positive feedback loop with IFNg secretion by aberrant lymphocytes 358 

inducing the release of CXCL9/10/11 from myeloid cells (Extended data Fig. 5a). This 359 

in turn may lead to the recruitment of CXCR3+ inflammatory CD8+ T cells to the BM 360 

(see below) causing an inflammatory circuit which is maintained at a lower level in LTS 361 

patients. 362 

 363 

Bone marrow infiltration of inflammatory T cells is associated with myeloma 364 

burden and serves as an accessible biomarker for disease activity 365 

To characterize the origin and phenotype of disease-associated remodeled immune 366 

populations, we focused on aberrant CD8+ T cells as key producers of inflammatory 367 
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cytokines throughout ID and LTS. Gene expression analyses of the scRNAseq data 368 

revealed the chemokine receptor CXCR3 and the amino acid transporter LAT1 as 369 

accurate biomarkers for a disease-associated inflammatory CD8+ T cell state (Fig.5a-370 

b). To further assess the value of surface CXCR3 expression as a marker for myeloma-371 

associated CD8+ T cells, we subjected BM CXCR3+ and CXCR3- CD8+ T cells from 372 

an independent cohort of 7 MM patients to bulk RNA-sequencing (Extended data Fig. 373 

5b). Importantly, scRNAseq-derived CXCR3 expression was highly overlapping with 374 

both, the single-cell derived gene signature defining aberrant CD8+ T cells (Fig. 5c) 375 

and the bulk RNAseq-derived gene signature for CXCR3+ T cells within the BM (Fig. 376 

5d). This confirms the specificity of surface CXCR3 as biomarker for remodeled 377 

inflammatory T cells.  378 

Next, we performed multiplex immunofluorescence stainings on BM biopsies and 379 

confirmed the co-expression of CXCR3 and LAT1 on CD8+ T cells in MM patients (Fig. 380 

5e). Importantly, the mean expression intensities of CXCR3 as well as LAT1 in CD8+ 381 

T cells were highly elevated in MM patients compared to B cell Non-Hodgkin lymphoma 382 

and MDS control cohorts, confirming the specific enrichment of aberrant inflammatory 383 

CD8+ T cells in MM (Fig. 5f, Extended data Fig. 5c). Notably, the fraction of detected 384 

aberrant inflammatory CD8+ T cells positively correlated with the number of MUM1+ 385 

plasma cells, suggesting that LAT1 and CXCR3 can serve as a biomarker for both 386 

tumor load and associated remodeling of the BM immune microenvironment (Fig. 5f, 387 

Extended data Fig. 5c).  388 

To explore the origin of remodeled CD8+ T cells, we determined RNA velocities to 389 

predict the future cell state based on ratios of spliced to unspliced mRNAs (see 390 

methods). As reported in previous studies, this analysis revealed the transient and 391 

connected states of the main T cells subsets [26] (Fig. 5g). However, the cluster 392 

comprising aberrant inflammatory T cells marked by LAT1 and CXCR3 expression and 393 

a high dissimilarity score appeared disconnected to the cluster harboring the main 394 

homeostatic BM-resident T cell subsets (Fig. 5g). As described above, CXCR3 is a 395 

chemokine receptor mediating migration towards the chemoattractants CXCL9/10/11, 396 

which are synthesized at increased levels in the BM upon MM (Extended data Fig. 397 

4k,l). These observations point towards a chemokine-mediated infiltration of 398 

inflammatory T cells from the periphery to the BM. To further explore this, we quantified 399 

the CXCR3 expression on CD8+ T cells of paired BM and peripheral blood (PB) 400 

samples from 48 MM patients via flow cytometry (Extended data Fig. 5b). In line with 401 
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our hypothesis, in patients with low tumor burden (<50%), CXCR3+ T cells were mainly 402 

present in the peripheral blood and not in the BM (Fig. 5h). In contrast, in patients with 403 

high tumor burden (>50%) the number of CXCR3+ T cells decreased in PB, while an 404 

increased number of CXCR3+ T cells was observed in the BM, suggesting a tumor-405 

load dependent migration of inflammatory T cells to the BM. 406 

To further validate this finding, we isolated CXCR3+ and CXCR3- CD8+ T cells from 407 

paired PB and BM samples of newly diagnosed MM patients and performed bulk RNA-408 

sequencing, followed by mapping the T cell receptor (TCR) repertoire (Extended data 409 

Fig. 5b). While we did not observe any indication for clonal expansion of inflammatory 410 

CXCR3+ CD8+ T cells (Extended data Fig. 5d), hierarchical clustering based on TCR 411 

repertoire information revealed a striking overlap of the CXCR3+ fractions from PB and 412 

BM for each patient, indicating a close relation between remodeled CD8+ T cells in the 413 

BM with CXCR3+ CD8+ T cells in PB (Fig.5i, Extended data Fig. 5e). In line with this, 414 

the clonotypes of the top 10 clones in CXCR3+ T cells from the PB showed a high 415 

overlap with the top clonotypes in CXCR3+ T cells from BM fraction but not with their 416 

CXCR3- negative counterparts, demonstrating a disease-associated infiltration of 417 

inflammatory T cells from the periphery to the BM (Fig. 5j, Extended data Fig. 5f).  418 

Together, our data reveal that upon MM disease activity, inflammatory CD8+ T cells 419 

are recruited to BM where they serve as key players in the establishment and 420 

maintenance of the sustained inflammatory BM remodeling at ID and LTS (Extended 421 

data Fig. 5a). BM infiltration by inflammatory T cells is associated with myeloma burden 422 

and serves as an accessible biomarker for disease activity that can be measured both 423 

in the BM and the peripheral blood. 424 

 425 

Immune remodeling in LTS patients is associated with future disease 426 

resurgence and impaired immune function even in the absence of measurable 427 

disease 428 

We next investigated the underlying causes of sustained immune alterations in MM 429 

LTS patients. A sustained persistence of malignant plasma cells or a resurgence of the 430 

disease may trigger immune perturbations. To investigate this hypothesis, we 431 

compared the degree of immune cell remodeling as measured by DA-seq-based 432 

prediction scores to the fraction of malignant plasma cells present within the overall 433 

plasma cell pool for each patient. Indeed, microenvironmental immune remodeling was 434 

associated with the proportion of malignant plasma cells present in the bone marrow 435 
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(Fig. 6a). This finding indicated disease burden as an important factor for sustained 436 

immune perturbation in the BM. In line with this, the degree of immune remodeling and 437 

the activity of pathways that are upregulated during the full-blown disease gradually 438 

increased from healthy donors to LTS patients with CR to patients who experienced 439 

relapse from CR (termed non-CR patients), confirming a tumor-burden associated 440 

remodeling (Fig. 6b,c). This step-wise remodeling was consistently observed in the 441 

CD8+ T cell compartment as well as in other immune compartments (Extended data 442 

Fig. 6a-f). Accordingly, CXCR3 expression on CD8+ T cells, which we have identified 443 

as a surrogate marker for disease activity, was correlated with the fraction of malignant 444 

plasma cells present in the BM (Fig. 6d).  445 

Clinical follow-up of LTS patients over the next four years after sample acquisition 446 

revealed that even patients that had been in CR for over a decade may exhibit signs 447 

of relapse while others experience a sustained CR (Extended data Fig. 6g). 448 

Importantly, at time of sample acquisition, the ratio of BM to peripheral blood CXCR3+ 449 

CD8+ T cells determined by flow cytometry in a larger validation cohort (5 healthy 450 

donors, 24 LTS patients and 23 MM patients at ID) gradually increased from healthy 451 

donors via sustained CR and patients losing CR to ID patients, reflecting the respective 452 

disease burden of the different clinical states (Fig. 6e). Moreover, CR patients that will 453 

lose their CR within the next four years, displayed a significantly higher BM to blood 454 

CXCR3+ CD8+ T ratio if compared to patients that will remain in sustained CR (Fig. 455 

6f). In line with an increased CD8+ T cell infiltration into the BM, an increased CD4+ to 456 

CD8+ T cell ratio in the blood was also associated with future relapse from CR during 457 

LTS (Fig. 6g). These data demonstrate that blood measurements can be used as 458 

accessible biomarkers to track environmental perturbations in the BM associated with 459 

future relapse. 460 

Collectively, our findings suggest that perturbations observed in the immune 461 

microenvironment are in part triggered by the sustained presence of malignant plasma 462 

cells or resurgence of the disease in LTS patients. However, even in the absence of 463 

any measurable disease activity at the time of sample acquisition at LTS, as well as 464 

during a 4-year follow-up (sustained CR), the immune remodeling was still apparent, 465 

suggesting long-lasting, irreversible disease or therapy-associated immunological 466 

changes (Fig. 6a-c). In particular, the naïve CD8+ T cell compartment of LTS patients 467 

showed higher expression of an ‘early T cell activation signature’ even in the absence 468 

of any measurable disease activity, pointing towards a chronic pre-activatory state (Fig. 469 
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6h) [27]. A gene within this ‘early activation signature’ was the well-studied surface 470 

marker CD69, expressed on activated human T cells [28]. In line with our previous 471 

findings, CD8+ T cells from patients in CR and ‘sustained’ CR displayed increased 472 

CD69 surface protein levels confirming the persistent long-term imprint on CD8+ T 473 

cells in the absence of disease activity (Fig. 6i). To assess whether these sustained 474 

aberrations also translate into changed T cell functionality, we measured the capacity 475 

of T cells from LTS patients to produce cytokines upon T cell activation. For this, 476 

MACS-sorted CD3+ T cells were stimulated with PMA and Ionomycin, and intracellular 477 

cytokine production (TNFa, IFNg, IL2) was measured as a surrogate parameter for T 478 

cell functionality (Fig. 6j). Notably, stimulated T cells from patients in LTS produced 479 

significant lower amounts of all measured cytokines compared to control samples from 480 

healthy controls and early stage MM patients (Fig. 6k). Of note, the impaired T cell 481 

functionality was also observed in patients with no measurable disease activity and 482 

sustained CR, suggesting a sustained immunological scarring in LTS patients. 483 

Together, our study reveals persistent immune remodeling and impaired T cell 484 

functionality upon LTS even in patients with sustained CR in the absence of any 485 

measurable disease activity.  486 

 487 

Discussion 488 

The long-term consequences of cancer and cancer therapy on the immune system 489 

remain poorly understood. In this study, we have comprehensively investigated the 490 

immune ecosystem in MM LTS patients years to decades after successful first line 491 

therapy. We uncovered that MM long-term survivors display sustained immune 492 

alterations that are associated with the resurgence of the disease and correlated with 493 

disease activity. These disease-associated immune alterations are mediated by an 494 

inflammatory circuit driven by a tumor load-dependent infiltration of inflammatory T 495 

cells into the bone marrow. However, even in the absence of any measurable disease 496 

activity for years to decades, long-term alterations in the bone marrow ecosystem 497 

associated with defective immunity were observed. 498 

Previous studies on immune reconstitution after exposure to cancer or cancer therapy, 499 

including autologous stem cell transplantation, focused on the short-term impact. For 500 

example, Boekhorst et al [29] and Schlenke et al [30] investigated the reconstitution of 501 

the T cell compartment in a mixed cohort of different hematological, as well as solid 502 

tumor patients. Both studies did not observe any signs of functional impairment in T 503 
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cells from PB as measured by standard flow cytometry phenotyping. However, MM 504 

patients were underrepresented in both study cohorts. In a study focusing on short-505 

term consequences of auto-SCT in MM, an impaired cytokine production of the T cell 506 

compartment was observed, concluding that the complete recovery of the immune 507 

system might require more time [31]. However, our study reveals long-term sustained 508 

molecular changes in the immune microenvironment, even in MM patients that were 509 

considered functionally cured, suggesting an irreversible immunological scarring, as 510 

previously described in infectious diseases [6, 7]. While our study focused on 511 

transcriptomic and immunological changes in LTS patients, a recent study identified 512 

clonal hematopoiesis as a common event upon long-term survival of pediatric cancers 513 

[32]. In a subset of Hodgkin Lymphoma survivors, therapy-related STAT3 mutations 514 

were detected that potentially also impact on T cell biology. While our data support a 515 

non-genomic mechanism of sustained changes of the immune system in MM LTS, we 516 

cannot exclude that also genomic aberrations may contribute to some of the 517 

irreversible phenotypes we observed. 518 

Our study revealed a tumor load dependent inflammatory circuit in MM with the release 519 

of CXCL9/10/11 from myeloid cells causing the migration of CXCR3+ inflammatory T 520 

cells from the periphery to the BM, in line with previous reports in the context of cancer 521 

and vaccinations [33-35]. Inflammatory T cells and NK cells in turn act as major drivers 522 

for IFNg-mediated BM changes in a self-propelling circuit. This inflammatory circuit is 523 

initiated at ID and maintained in a subset of immune cells during LTS. Importantly, we 524 

demonstrate that disease-associated T cell trafficking can be used to track and reliably 525 

predict the re-initiation of the disease in LTS patients in the bone marrow by analyzing 526 

CXCR3 expression on CD8+ T cells and the immune composition (CD4/CD8 T cell 527 

ratio) in the peripheral blood. This highlights how disease associated changes in the 528 

microenvironment might be used in combination with MRD detection methods to 529 

predict resurgence of disease activity. While the detailed contributions of T cell 530 

migration to anti-cancer immunity remains to be investigated, targeting the introduced 531 

inflammatory circuit may offer potential avenues for new therapeutic strategies [36, 37]. 532 

Of note, our study included paired samples of patients experiencing long-term 533 

remission after a single therapy line in the absence of any maintenance therapy for 534 

years. Due to continuous maintenance therapy as the new standard of care, this 535 

patient cohort is not recruitable nowadays and thus displays a unique selection of 536 
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patients to study the long-term consequences of cancer and cancer therapy in absence 537 

of potential biases associated with additional therapies. 538 

Together, our study provides detailed insights into the molecular and cellular bone 539 

marrow ecosystem of MM long-term survivors, thereby revealing reversible and 540 

irreversible disease- and therapy-associated alterations of the immune compartment 541 

which can serve as diagnostic and predictive tools. 542 

  543 
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Materials and Methods 568 

 569 

Human samples 570 

Ethics approval and consent to participate 571 

BM samples from healthy and diseased donors were obtained at Heidelberg University 572 

hospital after informed written consent using ethic application numbers S-480/2011 573 

and S-052/2022. BM aspirates were collected from iliac crest. Healthy BM donors 574 

received financial compensation in some cases. For BM, mononuclear cells (BMMCs) 575 

were isolated by Ficoll (GE Healthcare) density gradient centrifugation and stored in 576 

liquid nitrogen until further use. All experiments involving human samples were 577 

approved by the ethics committee of the Heidelberg University hospital and were in 578 

accordance with the Declaration of Helsinki. 579 

 580 

Flow cytometry 581 

MRD analysis 582 

Flow cytometry for detection of minimal residual disease (MRD) in fresh human BM 583 

samples was performed according to the highly standardized flow cytometry approach 584 

developed and described by the Spanish Myeloma Collaborative Group using a 585 

commercially available EuroFlow 8-color 2-tube MM MRD Kit (Cytognos, Salamanca, 586 

Spain) [38]. Tube one contained multiepitope CD38-FITC, CD56-PE (clone C5.9, 587 

CD45-PerCP-Cyanine5.5 (clone EO1), CD19-PE-Cyanine7 (clone 19-1), CD117-APC 588 

(clone 104D2) and CD81-APC-C750 (clone M38) antibodies. Tube two contained 589 

multiepitope CD38-FITC, CD56-PE (clone C5.9), CD45-PerCP-Cyanine5.5 (clone 590 

EO1), CD19-PE-Cyanine7 (clone 19-1), cytoplasmic polyclonal immunoglobulin (Ig) κ-591 

APC goat and cytoplasmic polyclonal Igλ-APC-C750 antibodies. Drop-in CD27 Brilliant 592 

Violet 510 (clone O323, Biolegend, San Diego, USA) and CD138 Brilliant Violet 421 593 

(clone MI15, BD, Heidelberg, Germany) antibodies were added to tubes one and two. 594 

Measurements were performed on a cell analyzer (BD, Heidelberg, Germany) after 595 

implementation of the EuroFlow Standard Operating Protocol for Instrument Setup and 596 

Compensation in FACSDiva (BD Biosciences, San Jose, CA, USA). Final data analysis 597 

was performed in Infinicyt 2.0 (Cytognos, Salamanca, Spain). An automated gating 598 

and identification tool (Cytognos, Salamanca, Spain) was used to support the 599 

identification of MM cells. Plasma cells were identified based on the co-expression of 600 
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CD38 and CD138 antigens. An aberrant plasma cell expression profile was defined as 601 

CD45-low/negative, CD56-positive, CD19-negative and light chain-restricted. 602 

 603 

Flow cytometry of cryopreserved BM samples 604 

Human BM samples were thawed in a water bath at 37 °C and transferred dropwise 605 

into RPMI-1640 10% FCS. Cells were centrifuged for 5 min at 350 rpm and washed 606 

once with RPMI-1640 10% FCS. Cells were resuspended in FACS buffer (FB) (PBS 607 

5% FCS 0.5 mM EDTA) containing different antibody cocktails (see below) and FcR 608 

blocking reagent (Miltenyi) and incubated for 15 min at 4 °C.  609 

For analysis of CXCR3 expression on CD8+ T cells across different clinical groups, 610 

cells were stained with CD8, CD3, CD45, CD4, CD194, CD196, CD152, CCR10 611 

surface antibodies. For analysis of CD69 expression on CD8+ T cells, cells were 612 

stained with CD8, CD97, CD4, CXCR4, CD26, CD45RO, CD6, CD69, CD98, CD29, 613 

CXCR3, CCR7 and CD3 surface antibodies.  614 

After washing with FB, all experiments were measured on BD FACSFortessa flow 615 

cytometer, equipped with 5 lasers, or BD FACSLyric flow Cytometer, equipped with 616 

three lasers. 617 

 618 

Single-cell RNA sequencing data 619 

BM preparation, staining and sorting for gene expression analysis 620 

Human BM samples were thawed in a water bath at 37 °C and transferred dropwise 621 

into RPMI-1640 10% FCS. Cells were centrifuged for 5 min at 350 rpm and washed 622 

once with RPMI-1640 10% FCS, followed by resuspension in FACS buffer (FB) (PBS 623 

5% FCS 0.5 mM EDTA) containing CD45-PE and CD3-APC and FcR blocking reagent 624 

(Miltenyi) and incubation for 15 min at 4 °C. Cells were washed with FB. To exclude 625 

debris and ensure that actual cells were sorted for droplet-based scRNAseq, cells were 626 

stained with a DNA dye (Vybrant DyeCycle Violet, Thermo Fisher Scientific). For this 627 

purpose, 2.5 µl ml−1 Vybrant dye in cell suspension medium was incubated with 628 

3 × 10^6 cells at 37 °C for 20 min in a water bath. Following the incubation, the cells 629 

were placed on ice and were sorted immediately for each experiment into 15 µl PBS 630 

containing 2% fetal bovine serum. For sorting of total BM cells, single, live cells were 631 

gated and sorted. For sorting of T cells CD45+ CD3+ cells were gated and sorted. 632 

Cells were sorted using a FACSAria Fusion or FACSAria II equipped with 100 µm 633 

nozzles respectively. Sorted cell numbers were confirmed using a LUNA automated 634 
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cell counter (Logos Biosystems). A volume of 33.8 µl of the cell suspension was used 635 

as input without further dilution or processing, with final concentrations around 636 

300 cells per µl.  637 

 638 

Single-cell RNA sequencing and data preprocessing 639 

Single-cell RNA sequencing libraries of BMMCs form healthy controls and MM patients 640 

were generated using 10x Genomics single-cell RNAseq technology (Chromium 641 

Single Cell 3’ Solution v2) according to the manufacturer’s protocol and sequenced on 642 

an Illumina HiSeq4000 (paired end, 26 and 74 bp). Upon sequencing, FASTQ files 643 

were processed and aligned to the human reference genome GRCh38 (GENCODE 644 

v32) using the standard Cellranger pipeline (10x Genomics, v4.0).   645 

  646 

scRNA-seq data analysis 647 

All analyses were performed in R (v4.0.0). The output from the Cellranger pipeline was 648 

combined into one count matrix and further processed and analyzed using the Seurat 649 

framework (v4.0.1, [39]). Parameters are indicated when non-default settings for a 650 

specific function were used. 651 

 652 

Quality control of BM scRNA-seq data 653 

Cells were excluded for downstream analysis if they where of low quality (< 200 UMIs, 654 

< 400 detected features, > 10% mitochondrial counts), were identified as doublets by 655 

library size and expressed features (> 40.000 UMIs, > 6.000 detected features), or if 656 

they did not express cell-type- or -state-specific genes. In addition, decontX()from 657 

the R package celda (v1.4.7, [40]) was used to estimate and remove contaminating 658 

ambient RNA. 659 

 660 

Dimensionality reduction and clustering of BM scRNAseq-data 661 

Gene counts were log-normalized and the top 2000 variable features were identified 662 

and scaled using default parameters of FindVariableFeatures() and 663 

ScaleData(). Dimensionality reduction of the scaled data was performed by principal 664 

component analysis (PCA). The top 50 PCs were then used to build a shared nearest 665 

neighbor graph (SNN, FindNeighbors(dims=1:50)) for Louvain clustering 666 

(FindClusters(resolution=0.7)) and uniform manifold approximation and 667 

projection (RunUMAP(Dims=1:50)) of the data in two-dimensional space. Final 668 
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cluster resolution and annotation was defined by evaluating known marker genes. 669 

Clusters with overlapping gene signatures were merged to reach overall cell-type 670 

resolution (MetaClusters). 671 

In order to achieve a more fine-granular filtering and annotation, each cell-type 672 

(MetaCluster) was subsetted and count matrices were separately processed again 673 

from variable feature selection and re-scaling to dimensionality reduction by PCA and 674 

subsequent clustering and UMAP representation. Clusters with contaminating gene 675 

expression profiles, or aberrantly high mitochondrial and low housekeeping gene 676 

expression were considered as doublets, or low quality, respectively and removed. 677 

Final cell annotation was then transferred back to the global BM count matrix. In 678 

addition, cells from patients treated with maintenance and induction therapy were 679 

removed. 680 

 681 

Copy number analysis 682 

Single-cell copy number analysis was performed using infercnv (v1.6.0, [41]) with 683 

JAGS (v4.3.0, [41]) with JAGS (v4.3.0, [42]). First, we generated a gene ordering file 684 

using a Python script provided by the infercnv developers 685 

(https://github.com/broadinstitute/infercnv/blob/master/scripts/gtf_to_position_file.py, 686 

21 Apr 2021) and excluded all genes that were not part of this file. We only considered 687 

chromosomes 1-22 and, in order to avoid artefacts due to differential immunoglobulin 688 

gene expression, excluded all genes starting with “IGH”, “IGL” or “IGK”. The actual 689 

inferCNV analysis was performed separately for the plasma cells from each patient 690 

and utilized non-normalized decontX-corrected expression values. Plasma cell from 691 

the three healthy donors were used as reference cells. We disabled the filtering 692 

threshold regarding counts per cell and used the arguments “cutoff = 0.1”, 693 

“cluster_by_groups = TRUE”, “cluster_references = FALSE”, “analysis_mode = 694 

‘subclusters’. “tumor_subcluster_pval = 0.05”. “denoise = TRUE”, “noise_logistic = 695 

TRUE”, “HMM = TRUE”, “HMM_type = ‘i6’” and “num_threads = 1” within infercnv’s 696 

function run(). Subsequently, we manually annotated the detected sub-populations 697 

as “healthy”, “malignant” or “unclear” based on the denoised infercnv results. We 698 

additionally determined the major immunoglobulin light chain expressed by malignant 699 

cells in a patient-wise fashion by inspecting the expression of the corresponding genes 700 

(IGKC, IGLC1-7). Afterwards, we refined the malignancy annotation to reduce the 701 

number of cells that were wrongly classified as malignant. To this end, we compared 702 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.27.542555doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.27.542555
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

immunoglobulin light chain gene expression (decontX-corrected and normalised) in 703 

each putatively malignant cell with the corresponding mean expression in its sub-704 

population. If the expression of the patient-specific major light chain gene was less 705 

than half of the corresponding mean expression in the corresponding sub-population 706 

and the expression of another light chain gene was above 1.5 times the corresponding 707 

mean expression in the corresponding sub-population, a cell’s classification was forced 708 

to “healthy”. Copy number heat maps were generated using ComplexHeatmap (v2.6.2, 709 

[43]), circlize (v0.4.13, [44]), scales (v1.1.1, [45]), magick (v2.7.3, [46]) and 710 

imagemagick (v6.9.12, [47]). Only cells from samples that were not obtained during 711 

induction and maintenance treatment are displayed. 712 

 713 

scRNA-seq quality control of T cell data 714 

Cells were kept in the dataset if they had between 500 - 20000 UMIs, between 300 - 715 

4000 detected features and less than 10% mitochondrial reads. Clusters of 716 

contaminating cells including myeloid cells, erythroid progenitors and plasmablasts 717 

were identified based on expression of cell type-specific marker genes. Subsequently, 718 

decontX() from the R package celda (v1.4.7, [40]) was applied on the count matrix 719 

to account for cross-contaminating reads using the contaminating cell types and 720 

remaining T cells as cluster labels. The final Seurat object was filtered to maintain only 721 

T cells and the decontX matrix was used for all subsequent analyses.  722 

 723 

Classification of T cell subsets 724 

A reference dataset was generated from the T cell dataset by annotating cells based 725 

on the normalised decontX matrix (NormalizeData): 726 

CD4: CD4 > 1.5 & CD8A == 0 & CD8B == 0 & TRDC ==0 727 

CD8: (CD8A > 1.5 | CD8B > 1.5) & CD4 == 0 & TRDC ==0 728 

gdT: TRDC > 1.5 & CD8A == 0 & CD8B == 0 & CD4==0 729 

For each of these T cell subsets, dimensionality reduction was performed 730 

((NormalizeData(), FindVariableFeatures(nfeatures=1000), 731 

ScaleData(), RunPCA()) and cells were clustered to define the main cell states 732 

(FindNeighbours(reduction=’pca’.dims=1:20). 733 

FindClusters(resolution=0.4)). The subsets were then merged back into a 734 

combined reference dataset to annotate the complete T cell dataset with SingleR 735 
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(v1.2.4, [48]) taking “pruned.labels” output to split the T cell Seurat object into CD4, 736 

CD8 or gdT cell subsets for further analyses.  737 

 738 

CD8 subset analysis 739 

Dimensionality reduction and clustering was re-run (as above, except 740 

RunUMAP(dims=1:20), FindClusters(resolution=0.5)) as final filtering step 741 

excluding a cluster specific for cycling cells and then repeated to obtain a final version 742 

(as before, except FindClusters(resolution=0.45)). Clusters were annotated 743 

to CD8+ T cell states based on the module score expression for custom gene 744 

signatures, which was added for each cell with AddModuleScore(): naive (genes: 745 

CCR7, TCF7, LEF1, SELL; cluster: 1), effector/central memory (genes: GPR183, 746 

CCR7, SELL, IL7R, CD27, CD28, GZMA, CCL5, S1PR1, GZMK, CXCR4, CXCR3, 747 

CD44; clusters: 2, 3, 5, 7), cytotoxic (genes: EOMES, TBX21, GZMB, PRF1, FASLG, 748 

GZMH, GZMA; cluster: 4). Additionally, cluster 6 was annotated as KLRB1+ T cells 749 

based on the high expression level of the corresponding gene. 750 

 751 

CD4 subset analysis 752 

Similar to the CD8+ T cell dataset, cells were projected into a low dimensional space 753 

and grouped using graph-based clustering (as before, except 754 

FindVariableFeatures(nfeatures=3000), 755 

FindClusters(resolution=0.45)). 756 

 757 

Differential Abundance Analysis 758 

Changes in the composition of the BM microenvironment between the clinical states 759 

were evaluated by log2fold-change difference of each patient’s cell type fraction from 760 

the corresponding healthy control’s mean fraction. For differential compositional 761 

analysis (DPA) of the immune compartment, plasma cells and erythroid progenitors 762 

were excluded prior to calculating each patient’s composition per clinical group, which 763 

were tested for significance using unpaired Wilcoxon rank sum test. 764 

For cluster-independent differential abundance analysis, DA-seq was performed [49]. 765 

The tool computes a multiscale score for each cell based on the k-nearest-766 

neighbourhood for k between 50 and 500. Cells with a multiscale score > 0.95 and < -767 

0.95 were considered as differential abundant. Subsequently, a logistic regression 768 

classifier was trained on the multiscale score to obtain the differential abundant 769 
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clusters which were visualized on the UMAP. A continuous DA-seq score was 770 

calculated by subtracting scaled module scores (AddModuleScore()) for 771 

significantly up- and downregulated genes in differentially abundant cells.  772 

 773 

Dissimilarity analysis and aberrant cell classification 774 

To determine and quantify whether a cell is transcriptionally more similar to healthy 775 

cells or to perturbed counterparts in the disease state, we introduce a ‘dissimilarity 776 

score’. It requires condition labels i (in our case “Healthy” and “ID”), sample labels j 777 

and a data matrix X. The analysis was performed per cell type to account for cell type-778 

specific transcriptional differences. By default, we chose PCA coordinates of n 779 

dimensions as dimension-reduced representation of our data, where n was assessed 780 

by prior MetaCluster analysis. Cells were divided by condition and further sampled to 781 

adjust for equal group sizes. We computed the k = 30 nearest neighbors using the 782 

FNN package (v.1.1.3) to look at the condition distribution for each cell in the dataset. 783 

Dissimilarity was quantified by summing up the neighbors per condition with higher 784 

values meaning more neighboring cells from the diseased state (ID) as compared to 785 

healthy. To adjust for sampling effects, this process was iterated 100 times with 786 

changing seeds. Each cell is assigned the median dissimilarity and the final score is 787 

scaled between 0 and 1 between all conditions. 788 

To allow group-wise comparisons between ‘healthy-like’ cells and most dissimilar, i.e. 789 

‘aberrant-like’ cells among the clinical states, we used the automatic machine learning 790 

software H2O autoML [50]. Initially, each cell was given a ‘state’ label (‘healthy-like’ or 791 

‘aberrant-like’) based on the combination of the ‘clinical state’ (‘Healthy’ or ‘ID’) and the 792 

‘dissimilarity score’. The underlying ‘dissimilarity score’ threshold was defined as 99% 793 

of all cells from the healthy controls being labeled ‘healthy-like’, and applying this 794 

threshold on all patients’ cells. Then, top 500 to 1000 variable genes were computed 795 

for each cell population (see table 2) using Seurat’s FindVariableFeatures(). To 796 

train and validate the models, training (80%) and test (20%) datasets were generated 797 

for each cell population using the createDataPartition() function from the caret 798 

package (v.6.0-91, [51]). To have sufficient numbers of healthy plasma cells for model 799 

training and validation, healthy plasma cells from the ‘Human Cell Atlas’ [52] were 800 

integrated with our dataset applying the Scanorama algorithm with default parameters 801 

on all features [53]. The partitioned datasets were then converted to H2O objects using 802 

the H2O library (H2O R version: 3.36.0.3. H2O cluster version: 3.36.0.3). The function 803 
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h2o.automl() was used for the model training process using the train dataset and 804 

top n variable genes (500 or 1000) as input. Following parameters were set: 805 

max_models = 80 (which computes 82 models due to including the two Stacked 806 

Ensembles as default), max_runtime_secs_per_model = 7200, stopping_rounds = 5 807 

and nfolds= 50 or nfolds = 5 (depending on dataset size). Moreover, a seed was set to 808 

ensure result reproducibility. 809 

The top leader model (see table 2) was selected and used for label prediction on the 810 

respective test dataset. To assess label prediction accuracy for each model, a 811 

confusion matrix was generated and the F1 score calculated using caret’s 812 

confusionMatrix() function. The respective leader model was then used for 813 

classification and label prediction. After running h2o.predict(), additional filtering 814 

thresholds were applied (p0 >= 0.66 and p1 >= 0.66) on the internal probability values 815 

to differentiate between clearly defined (p0 >= 0.66 and p1 >= 0.66) and non-defined 816 

cells. 817 

 818 

Table 2: Input parameters, chosen model and prediction statistics for aberrant cell type 819 

classification using H2O (see methods) 820 
Cell 

population 

VarGenes 

(n) 

Cross- 

validations  

Leader 

model 

Accuracy Precision Recall F1 

score 

CD14+ 
monocytes 

1000 50 StackedEnse
mble_AllMod
els 

0.9877 0.9748 0.9872 0.9809 

CD16+ 
monocytes 

1000 5 StackedEnse
mble_BestOf
Family 

1 1 1 1 

CD8+ T 
cells 

1000 50 StackedEnse
mble_AllMod
els 

0.9773 0.9709 0.9626 0.9667 

CD4+ T 
cells 

1000 50 StackedEnse
mble_AllMod
els 

0.9814 0.9778 0.9795 0.9786 

NK cells 1000 50 StackedEnse
mble_AllMod
els 

0.9876 0.9672 0.9815 0.9743 

Plasma 
cells 

1000 50 StackedEnse
mble_AllMod
els 

0.998 0.9967 0.9935 0.9951 

B cells 1000 5 StackedEnse
mble_BestOf
Family 

0.9764 0.9709 0.9804 0.9756 

pDC 1000 5 StackedEnse
mble_BestOf
Family 

0.9804 0.9411 1 0.9696 

cDC2 500 5 StackedEnse
mble_BestOf
Family 

0.9683 1 0.913 0.9545 

 821 
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Differential gene expression analysis 822 

Differential gene expression analyses were computed using a two-part generalized 823 

linear model implemented in MAST (v1.18.0, [54]). The Hurdle model in MAST 824 

considers the bimodal expression distributions of single-cell data having either a strong 825 

gene expression or zero values (zero-inflation). Normalized decontX corrected data of 826 

the whole human bone marrow or without the cells of ID were used as input. Genes 827 

with less than 10% expression across all libraries were filtered out. For the remaining 828 

genes the hurdle model using the patients, the cell state and CR status was fitted using 829 

the MAST function zlm(). The obtained coefficients for each variance-covariance and 830 

gene were reported with summary(). 831 

 832 

Gene set enrichment analysis 833 

Gmt files containing gene set collections were obtained from Molecular Signatures 834 

Database (c2.cp.v7.4.symbols.gmt, c5.all.v7.4.symbols.gmt, h.all.v7.4.symbols.gmt, 835 

[55],[56]). To search for enriched terms of cells from patients at initial diagnosis being 836 

classified as ‘aberrant’ compared to ‘healthy’ cells from healthy donors, their average 837 

log2 fold-change among all genes was calculated. Subsequently, genes were sorted 838 

by their average log2 fold-change and used for multilevel GSEA with the fgsea R 839 

package (v1.14.0, [57]). Results were filtered for padj < 0.05 and sorted by their 840 

normalized enrichment score (NES). Significantly enriched gene sets of interest were 841 

further evaluated by calculating a module score for the corresponding gene signature, 842 

or for specified leading-edge genes in each cell using AddModuleScore()in Seurat 843 

and comparing these modules in cell types of interest between the clinical groups. 844 

To systematically assess enriched gene sets between the clinical groups including the 845 

‘complete remission’ status, all gene set collections were combined into one gene 846 

matrix transposed file (gmt) as input for GSEA, which was then performed as stated 847 

above. Top 100 enriched (NES) and significant (p < 0.05) scores were selected per 848 

corresponding cell type, translated into a ModuleScore and tested for significance 849 

between the clinical and CR states using paired Wilcoxon signed rank test. 850 

 851 

GO overrepresentation analysis 852 

To identify enriched terms among the DEGs from the MAST analyses, GO 853 

overrepresentation analysis was performed with the clusterProfiler R package 854 
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(v3.16.1, [58]). The function enricher() was used to run GO analysis based on the 855 

same gmt files as used for GSEA.  856 

 857 

Surfaceome filtering 858 

DEGs from the MAST comparison of aberrant-like cells from patients at initial diagnosis 859 

against healthy-like cells from healthy donors within the memory CD8+ T cell subset 860 

were filtered for surface proteins using Cell Surface Protein Atlas data including 861 

validated surfaceome proteins [59]. Briefly, surface proteins annotated in Table A of 862 

the file http://wlab.ethz.ch/cspa/data/S2_File.xlsx (21 Apr 2021) were filtered for the 863 

category '1 - high confidence' and DEGs were filtered for the intersection with the 864 

remaining gene symbols in the surfaceome table. 865 

 866 

Cell - cell interaction analysis 867 

Cell-cell interactions were inferred with CellphoneDB2.0 [60] using normalized and 868 

decontX corrected count data of the human bone marrow data set. Receptor-ligand 869 

interactions were inferred for mean expression within each cell label cluster as well as 870 

for clusters having the combined information of cell label and DA-Seq information. For 871 

downstream analyses, significant interactions with an adjusted p-value < 0.05 were 872 

considered, which required an expression of receptor and ligand in at least 10% of the 873 

cells per cluster. CellphoneDB2.0 was computed per patient and the significant 874 

interaction counts were grouped over the respected disease subgroups. 875 

 876 

RNA Velocity 877 

To investigate developmental dynamics, scVelo (v0.2.4, [61]) in combination with 878 

Velocyto (v0.17.17, [62]) in Python (v3.9.7) was used. Reads were annotated as 879 

spliced, unspliced and ambiguous. The pipeline was run individually for each sample 880 

and data from resulting loom files were combined. Cells were subsetted based on prior 881 

analysis of CD8+ T cells. Splicing kinetics were recovered using 882 

recover_dynamics() with standard parameters, velocities were computed using 883 

velocity (mode='dynamical') and the velocity graph was calculated by 884 

velocity_graph() with standard parameters. Finally, for visualization, 885 

summarized velocity vectors are plotted using the 886 

velocity_embedding_stream() function in UMAP space in combination with the 887 

dissimilarity score. For plotting of single marker expression velocity() was used.  888 
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Bulk RNA-sequencing and TCR clonotyping 889 

BM preparation, staining and sorting  890 

For sorting of CXCR3+ and CXCR3- cells, BM and PB samples of MM patients were 891 

thawed and processed as described above. Cells were stained with CD3-APCCy7, 892 

CD4-BUV737, CD8-BUV395 and CXCR3-PECy7 antibody. For sorting of CXCR3+ 893 

and CXCR3- cells, single, live CD3+CD4-CD8+ cells were gated and sorted as 894 

CXCR3- or CXCR3+ cells, respectively. 1000 CXCR3+ and CXCR3-CD8+ T cells from 895 

each sample were sorted on FACSAria Fusion equipped with a 100 µm nozzle. 896 

 897 

Bulk RNA-sequencing and gene expression analysis 898 

RNA was isolated using PicoPure RNA Isolation Kit (ThermoFisher), bulk RNA-899 

sequencing libraries were generated using the SMART Seq Stranded Total RNA-Seq 900 

kit (Takara) and sequenced using the Illumina NovaSeq 6000 platform (2 x 100 bp). 901 

Adapter trimming was performed with Skewer (v0.2.2, [63]). Reads were aligned to 902 

human reference GRCh38 using STAR (v2.5.2b, [64]) and gene count tables were 903 

generated using Gencode v.32 annotations. Differential expression between samples 904 

was tested using the R/Bioconductor package DESeq2 (v1.30.1, [65]). Sample origin 905 

(BM vs. PB) was added to the design formula (condition: CXCR3+ vs. CXCR3- CD8+ 906 

T) to retrieve significantly upregulated genes for CXCR3+ CD8+ T cells within the BM 907 

(termed bulkRNA Remodeling Module). 908 

 909 

TCR clonotype analysis 910 

Analysis and quantification of the TCR receptor profiles, statistical analysis, and 911 

visualization were performed using three main tools: MiXCR (v3.0.13, [66]), VDJtools 912 

(v1.2.1, [67]) and immunarch (v0.6.6, [68]). Raw bulk RNA sequencing data of sorted 913 

CD8+ T cells in FASTQ format was used as the input for the TCR clonotype analysis. 914 

Analyze shotgun command of MiXCR was used to align variable (V), diversity (D), 915 

joining (J), and constant (C) genes of T-cell receptors, correct PCR and sequencing 916 

errors, assemble bulk RNA-seq reads by CDR3 region to the reference IMGT [69] 917 

library and export bulk TCR clonotypes. To this end, the default parameters 918 

recommended by the developers for RNA-seq data were used. Basic analysis, 919 

diversity estimation and repertoire overlap analysis modules of VDJtools were then 920 

used for the downstream analysis of the bulk TCR clonotypes provided by the MiXCR 921 

output. For the TCR repertoire clonality comparison between groups, the clonality 922 
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metric was calculated as [1 – normalized Shannon Wiener Diversity Index] [70]. 923 

Significant differences were evaluated by paired Wilcoxon signed rank test. For TCR 924 

repertoire overlap quantification, the Jaccard index was utilized. Hierarchical clustering 925 

of the quantified TCR repertoire overlap was then performed using hclust() function 926 

of the R MASS package. JoinSamples() command of VDJtools were used to 927 

highlight overlapping TCR clonotypes by representative CDR3 amino acid sequence 928 

between CXCR3 status and sample origin (BM, PB) of CD8+ T cells of single patients. 929 

Additionally, the frequency of the top 10 most abundant TCR clonotypes across 930 

different samples was tracked using immunarch. Clonotype tracking was performed by 931 

the representative CDR3 amino acid sequence of TCR clonotypes. 932 

 933 

T cells in vitro cytokine assay 934 

CD3+ T cells were enriched from the BM of 30 MM patients using the Pan T cell 935 

isolation kit with MS columns (both Miltenyi Biotec, Bergisch, Germany). 5 x 105 CD3+ 936 

T cells were plated in 0.5 ml T cell expansion medium (Stemcell Technologies, 937 

Cologne, Germany) with 50 IE/ml IL-2, 1 % Pen/Strep (both from Sigma-Aldrich, 938 

Taufkirchen, German) in 24 well-plates and incubated overnight at 37 °C, 5 % CO2. 939 

On the next day, GolgiStop (0.66 µl/ml) (both BD Biosciences, Heidelberg, Germany) 940 

was added and cells were stimulated with PMA (50 ng/ml) and Ionomycin (1 µg/ml) 941 

(both Sigma-Aldrich, Taufkirchen, Germany). 6 h after incubation, intra-cellular staining 942 

was performed using transcription factor buffer set (BD Biosciences, Heidelberg, 943 

Germany) according to manufacturer`s instructions. Briefly, cells were washed twice 944 

in PBS and stained with cell surface antibodies for 20 min at 4 °C. Subsequently, 945 

antibody-conjugated cells were fixed and permeabilized for intracellular staining before 946 

washed twice with 1x Perm/Wash buffer and stained with antibodies against intra-947 

cellular markers at 4 °C for 45 min. Cells were washed twice with 1x Perm/Wash buffer 948 

and measurements were acquired on cell analyzer FACS Lyrics (BD Bioscience, 949 

Heidelberg, Germany). Controls without PMA and Ionomycin stimulation were included 950 

in this assay. Flow cytometry data were visualized in FlowJo (Treestar). 951 

  952 

Multiplex Immunofluorescence 953 

The frequency, localization and spatial proximity of T cell subpopulations and plasma 954 

cells, as well as their expression of respective markers LAT1 and CXCR3 was 955 

analyzed by multispectral imaging (MSI). Formalin fixed and paraffin embedded 956 
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(FFPE) bone marrow (BM) biopsies of patients with MM (n=33), and control BM tissue 957 

of patients with B cell Non-Hodgkin lymphomas without evidence for BM infiltration 958 

(n=12) and myelodysplastic syndromes were collected between 2017 and 2020 at the 959 

Institute of Pathology of the Medical Faculty of the Martin-Luther University Halle-960 

Wittenberg, Germany. The use of FFPE tissue samples was approved by the Ethical 961 

Committee of the Medical Faculty of the Martin Luther University Halle-Wittenberg, 962 

Halle, Germany (2017-81). The staining procedure was performed as recently 963 

described [71]. The marker panel used for staining included mAb directed against CD3 964 

(Labvision. Germany. clone SP7), CD8 (Abcam, Cambridge, UK, clone SP16), MUM1 965 

(Dako, USA, clone MUM1p), LAT1 (Abcam, Cambridge, UK, clone EPR17573) and 966 

CXCR3 (Abcam, Cambrdige, UK, clone ab133420).  967 

Briefly, all primary mAb were incubated for 30 min. Tyramide signal amplification (TSA) 968 

visualization was performed using the Opal seven-color IHC kit containing fluorophores 969 

Opal 520, Opal 540, Opal 570, Opal 620, and Opal 690 (Perkin Elmer Inc., Waltham, 970 

MA, USA), and DAPI. Stained slides were imaged employing the PerkinElmer Vectra 971 

Polaris platform. Cell segmentation and phenotyping of the cell subpopulations were 972 

performed using the inForm software (PerkinElmer Inc., USA). The frequency of all 973 

immune cell populations analyzed and the cartographic coordinates of each stained 974 

cell type were obtained. The spatial distribution of cell populations was analyzed using 975 

an R script for immune cell enumeration and relationship analysis.  976 

 977 

Data availability statement  978 

Single-cell RNA-seqquencing and bulk RNA-sequencing data are available at the 979 

European Genome-phenome Archive (EGA) under accession number 980 

EGAS00001006980. 981 

  982 
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 1151 
Figure 1. The bone marrow ecosystem of multiple myeloma long-term survivor patients.  1152 
Also see extended data Figure 1. 1153 
(a) Overview of the study design and experimental layout. (b) Global UMAP representation of scRNAseq 1154 
data of paired human BM samples from 11 MM long-term survivor patients at initial diagnosis (ID) and 1155 
long-term survival (LTS), as well as 3 healthy, age-matched controls. (c) Global UMAP split by clinical 1156 
groups. The density and distribution of cells is color-coded. Grey represents all remaining cells. (d) 1157 
Changes in cell type abundancies between ID or LTS in comparison to healthy donors (e) Global UMAP 1158 
highlighting differentially abundant cells (red) determined by DA-Seq at initial diagnosis as compared to 1159 
cells from healthy controls. (f) Fractions of differentially abundant cells (DA-cells) compared to all cells 1160 
per cell type and patient at initial diagnosis. Benjamini-Hochberg (BH) adjusted significant differences 1161 
(p < 0.05) evaluated by unpaired two-sided Wilcoxon rank sum test are highlighted. (g) Fractions of 1162 
differentially abundant cells (DA-Seq) compared to all cells per patient within ID, LTS or healthy controls 1163 
(Healthy). Dots represent sample means. BH corrected p-values from unpaired (Healthy/ID, 1164 
Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-sum tests are shown. 1165 
Abbreviations: HSCs: hematopoietic stem cells, MEP: megakaryocyte-erythrocyte progenitors, MyeloP: 1166 
myeloid progenitors, cDC1/2: conventional dendritic cells 1/2, pDCs: plasmacytoid dendritic cells, NK: 1167 
natural killer cells, MSCs: mesenchymal stromal cells; ID: initial diagnosis, LTS: long-term survival.  1168 
Box plots: center line, median; box limits, first and third quartile; whiskers, smallest/largest value no 1169 
further than 1.5*IQR from corresponding hinge.  1170 
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 1171 
Figure 2. Malignant plasma cells frequently persist during long-term survival and display a stable 1172 
transcriptional phenotype.  1173 
Also see extended data Figures 2.1 and 2.2. 1174 
(a) UMAP embedding of BM plasma cell (PC) compartment colored by patient. (b) PC fraction of total 1175 
BM cells summarized by patient and compared between clinical groups (Healthy, ID, LTS). Dots indicate 1176 
PC fraction of total BM cells for each sample. Significance was tested by unpaired Wilcoxon rank sum 1177 
test. (c) Split UMAP of PCs by clinical groups (ID, LTS) highlighting their malignancy annotation (healthy, 1178 
malignant) derived from inferCNV. Remaining cells from the respective other state are grayed out. (d) 1179 
PC UMAP highlighting the dominant immunoglobulin light chain expression (Kappa: green; Lambda: 1180 
red). (e) Representative scatter plots showcasing the immunoglobulin expression (highest lambda chain 1181 
(IGLC) and kappa chain (IGKC)) of healthy (green) and malignant (violet) PCs. (f) Malignancy score 1182 
(malignant PC fraction of total PCs) per patient at ID and LTS. Large dots indicate malignant PC fraction 1183 
of total BM cells for each sample. Significance was tested by paired Wilcoxon signed rank test. (g) 1184 
Correlation of malignancy score derived from Next Generation Flow MRD (number of Light Chain 1185 
restricted plasma cells/all plasma cells) on y-axis with malignancy score derived from inferCNV analysis 1186 
(number of malignant cells/all plasma cells) on x-axis. Spearman’s Rho and the significance level of 1187 
correlation are indicated. (h) Euclidean distance of malignant plasma cells between ID and LTS within 1188 
the same patient compared to the Euclidean distance of malignant plasma cells at ID and the respective 1189 
nearest neighbor within top 30 principal components. Dots indicate the average Euclidean distance of 1190 
each sample. Patients with less than 2 cells within one of the clinical states were excluded. Significance 1191 
was tested by paired Wilcoxon signed rank test. (i) Heatmap showing average expression patterns 1192 
(module scores; scaled by row) of known bulk RNA signatures [23] per patient and clinical state. 1193 
Abbreviations: PC: plasma cells; ID: initial diagnosis; LTS: long-term survival; IGLC: immunoglobulin 1194 
light chain; LC: lambda chain; KC: kappa chain. Box plots: center line, median; box limits, first and third 1195 
quartile; whiskers, smallest/largest value no further than 1.5*IQR from corresponding hinge.  1196 
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 1197 
Figure 3. Multiple myeloma long-term survivor patients display sustained signs of immune 1198 
remodeling decades after a single therapy line.  1199 
Also see extended data Figure 3. 1200 
(a) UMAP of CD14+ monocytes from the BM dataset split by clinical groups. Cells are colored by the 1201 
density (top row), dissimilarity score (middle row) and dissimilarity-based classification into aberrant-1202 
like, healthy-like and undefined cell states (bottom row). Cells from the respective other clinical states 1203 
are depicted in grey. (b) Distribution of the dissimilarity score by clinical group summarizing the 1204 
remodeling of CD14+ monocytes. Large dots indicate sample means. Benjamini-Hochberg adjusted p-1205 
values from unpaired (Healthy/ID, Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-sum tests 1206 
are shown. (c) Bar plot summarizing fractions of predicted cell states by clinical group from a. (d) UMAP 1207 
of CD8+ T cells split by clinical groups. Cells are colored by the density (top row), dissimilarity score 1208 
(middle row) and dissimilarity-based classification into aberrant-like, healthy-like and undefined cell 1209 
states (bottom row). Cells from the corresponding other clinical states are shown in a grayscale. (e) 1210 
Distribution of the dissimilarity score by clinical group summarizing the remodeling of CD8+ T cells. 1211 
Large dots indicate sample means. Benjamini-Hochberg adjusted p-values from unpaired (Healthy/ID, 1212 
Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-sum tests are shown. (f) Bar plot 1213 
summarizing fractions of predicted cell states by clinical group from d. (g) UMAP of CD8+ T cells, 1214 
classified into naïve, memory, cytotoxic and KLRB1+ subsets. (h) Bar plot summarizing fractions of cell 1215 
subsets by clinical group from g.  1216 
Abbreviations: BM: bone marrow; ID: initial diagnosis; LTS: long-term survival. 1217 
Bar plots: Error bars indicate the standard error of the mean (SEM); Box plots: center line, median; box 1218 
limits, first and third quartile; whiskers, smallest/largest value no further than 1.5*IQR from 1219 
corresponding hinge.  1220 
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 1221 
Figure 4. An inflammatory circuit underlies immune remodeling during active disease and long-1222 
term survival. 1223 
See also extended data Figure 4. 1224 
(a) Gene set enrichment analysis performed independently in different cell subsets from the total bone 1225 
marrow and T cell datasets. Aberrant cells from patients at initial diagnosis (ID) were compared against 1226 
cells from healthy donors. Selected gene sets from MSigDb Hallmark, MSigDB C2, MSigDB C5 are 1227 
shown. Benjamini-Hochberg adjusted p-values are encoded by dot size, colors represent normalized 1228 
enrichment scores (NES). Stars mark significant enrichment of the selected gene sets. (b) Left, 1229 
correlation between Hallmark Inflammatory Response module score and dissimilarity score in CD14+ 1230 
monocytes. The cell density is represented by color. Spearman’s Rho and the significance level of 1231 
correlation are indicated. Right, distribution of the Hallmark Inflammatory Response module score by 1232 
clinical group. Benjamini-Hochberg adjusted p-values from unpaired (Healthy/ID, Healthy/LTS) and 1233 
paired (ID/LTS) two-sided Wilcoxon rank-sum tests are shown. (c) Boxplots showing Hallmark 1234 
Inflammatory Response module score (see b) in CD14+ monocytes split by clinical group and cell state 1235 
prediction. The dashed line highlights the mean module score within the healthy control group.  1236 
Significant differences between aberrant and healthy cells were tested by comparing the respective 1237 
sample means with paired two-sided Wilcoxon rank-sum tests. (d) Mean CXCL8 expression at initial 1238 
diagnosis in the different BM cell types. (e) Boxplots of mean CXCL8 expression in CD14+ monocytes 1239 
split by clinical group and cell state prediction. The dashed line represents the mean CXCL8 expression 1240 
within CD14+ monocytes of the healthy controls.  Significant differences between aberrant and healthy 1241 
cells were tested by comparing the respective sample means with paired two-sided Wilcoxon rank-sum 1242 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.27.542555doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.27.542555
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

tests. (f) NK cytotoxicity module score in the NK cell subset summarized by clinical group. Benjamini-1243 
Hochberg adjusted p-values from unpaired (Healthy/ID, Healthy/LTS) and paired (ID/LTS) two-sided 1244 
Wilcoxon rank-sum tests are shown. (g) Predicted number of interactions between plasma cells and 1245 
immune cells from the BM at initial diagnosis derived by CellPhoneDB (see methods). (h) Mean 1246 
interferon-gamma (IFNG) expression at initial diagnosis in different BM cell types. (i, j) Boxplots of IFNG 1247 
(i) and CXCR3 (j) expression in CD8+ T cells split by clinical group and cell state prediction. Mean 1248 
expression levels of CD8+ T cells from healthy controls are highlighted by dashed line. Significant 1249 
differences between aberrant and healthy cells were tested by comparing the respective sample means 1250 
with paired two-sided Wilcoxon rank-sum tests. 1251 
Abbreviations: CD14/CD16_M: CD14+/CD16+ monocytes; cDC: conventional dendritic cells; pDC: 1252 
plasmacytoid dendritic cells; CD4/CD8_T: CD4+/CD8+ T cells; NK: natural killer cells 1253 
Box plots: center line, median; box limits, first and third quartile; whiskers, smallest/largest value no 1254 
further than 1.5*IQR from corresponding hinge.  1255 
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 1256 
Figure 5. Bone marrow infiltration of inflammatory T cells is associated with myeloma burden 1257 
and serves as an accessible biomarker for disease activity.  1258 
See also extended data Figure 5. 1259 
(a-d) UMAP of CD8+ T cells (derived from T cell dataset) with highlighted expression of CXCR3 (a) and 1260 
LAT1 (b) split between cells from healthy donors and patients at initial diagnosis; and highlighted ‘scRNA 1261 
Remodeling Score’ (derived from MAST analysis of scRNAseq data: healthy versus aberrant CD8+ T 1262 
cells) (c) and ‘bulkRNA Remodeling Score’ (derived from DESeq2 analysis of FACS isolated CXCR3+ 1263 
versus CXCR3- CD8+ T cells) (d). (e) Multiplex immunofluorescence images illustrating expression of 1264 
MUM1 on plasma cells as well as CXCR3 and LAT1 on CD8+ T cells in a representative BM area of a 1265 
MM patient (examples of CD8+ T cells co-expressing LAT1 and CXCR3 are highlighted by arrows). (f) 1266 
Left, CXCR3 mean expression intensity (MEI) on BM CD8 T cells of MM patients and B Non-Hodgkin 1267 
lymphoma and MDS patients as controls, Benjamini-Hochberg adjusted p-values from unpaired two-1268 
sided Wilcoxon rank-sum tests are shown; Right, Spearman correlation of the fraction of CXCR3+ T 1269 
cells of all T cells with tumor burden measured by fraction of MUM1+ plasma cells in the BM. (g) UMAP 1270 
of CD8+ T cells with highlighted velocities (arrows), dissimilarity score (yellow), and imputed CXCR3 1271 
and LAT1 expression. (h) Fraction of CXCR3+ CD8+ T cells in peripheral blood (PB) and bone marrow 1272 
(BM) in patients with low to intermediate tumor burden (<50% plasma cells) versus patients with high 1273 
tumor burden (>50% plasma cells) as determined by BM cytology. Significant differences between 1274 
patients with low to intermediate and high tumor burden were tested by comparing the respective sample 1275 
means with unpaired Wilcoxon rank sum test. (i) Hierarchical clustering of FACS-isolated CD8+ T cells 1276 
(+/- CXCR3) from BM and PB of 3 MM patients by shared clonotypes of T cell receptor (TCR) repertoire 1277 
using Jaccard index of repertoire similarity. (j) Clonotype tracking by representative CDR3 amino acid 1278 
sequence of shared clonotypes between the top 10 most abundant TCR clonotypes from CXCR3+ (top 1279 
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row) and CXCR3- (bottom row) peripheral blood (PB) CD8+ T cells across CXCR3+ or CXCR3- CD8+ 1280 
T cell subsets in PB and BM. Two representative patients are shown (see also extended data Figure 5). 1281 
Amino acid clonotype sequences are shown as labels. 1282 
Abbreviations: FACS: fluorescence activated cell sorting; BM: bone marrow; PB: peripheral blood; IF: 1283 
immunofluorescence; MEI: mean expression intensity; MDS: myelodysplastic syndrome; ASCT: 1284 
autologous stem cell transplantation; MFI: mean fluorescence intensity; TCR: T cell receptor.  1285 
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 1286 
Figure 6. Immune remodeling in LTS patients is associated with future disease resurgence and 1287 
defective immune function even in the absence of measurable disease.  1288 
Also see extended data Figure 6. 1289 
(a) Correlation of the malignant plasma cell fraction of all plasma cells (CNV-based malignancy score) 1290 
and the degree of remodeling (as quantified by the mean DA-seq score). Scores are ranked by the 1291 
mean expression. Each dot represents the ranked DA-seq score across immune cells and the 1292 
corresponding CNV malignancy score. Spearman’s Rho and the significance level of correlation are 1293 
indicated. Colors represent clinical groups. (b) Distribution of the dissimilarity score (small dots) by 1294 
clinical group with LTS patients split into patients with complete remission (CR) and patients with 1295 
biochemical progression (non-CR) patients within the CD8+ T compartment. Large dots indicate sample 1296 
means. Sustained CR patients are highlighted in red. Benjamini-Hochberg adjusted p-values from 1297 
unpaired two-sided Wilcoxon rank-sum tests are shown. (c) Mean module scores of top 100 upregulated 1298 
pathways (ID vs. Healthy) between clinical groups in CD8+ T cells. Benjamini-Hochberg adjusted p-1299 
values from paired one-tailed Wilcoxon signed rank test are highlighted. (d) Correlation between mean 1300 
CXCR3 expression in CD8+ T cells per patient and the malignant plasma cell fraction of all plasma cells 1301 
per patient (CNV-based malignancy score); Spearman’s Rho and the significance level of correlation 1302 
are indicated. (e) Correlation between the ratio of BM to PB CXCR3+ CD8+ T cells as measured by flow 1303 
cytometry and cytological plasma cell count in the BM per sample. Individual patients are highlighted as 1304 
dots. Clinical groups are highlighted by color. Spearman’s Rho and the significance level of correlation 1305 
are indicated. (f) Comparison of the BM to PB ratio of CXCR3+ CD8+ T cells between patients that 1306 
experienced sustained CR or lost the CR state during a 4-year clinical follow up (losing CR) quantified 1307 
by flow cytometry. Individual patients are highlighted as dots. Mean ratio of healthy controls is 1308 
highlighted by dashed line. Significance was tested by unpaired Wilcoxon rank sum test. (g) Comparison 1309 
of CD4+ to CD8+ T cell ratios between patients with sustained CR versus patients losing CR within 1310 
peripheral blood quantified by flow cytometry. Individual patients are highlighted as dots. Significance is 1311 
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shown for unpaired Wilcoxon rank sum test. (h) Boxplot of module scores for the CD8 early activation 1312 
gene signature from [27] in naive CD8+ T cells. Data is summarized and statistically tested as described 1313 
in b. (i) Mean CD69 expression in CD8+ T cells measured by flow cytometry and compared between 1314 
healthy controls, CR and Non-CR patients that experienced LTS. Patients in sustained CR are 1315 
highlighted in red. Significance was tested using two-sided, unpaired Wilcoxon rank sum test and 1316 
corrected according to Benjamini-Hochberg. (j) Study design scheme of the in vitro T cell cytokine assay. 1317 
CD3+ T cells from 19 LTS patients and 10 controls were isolated by FACS and stimulated with PMA 1318 
and Ionomycin. Intracellular cytokine production was assessed by flow cytometry. (k) Quantification of 1319 
intracellular CD3+ T cell cytokine expression of IFNg, TNFa and IL2 from LTS patients and controls as 1320 
determined by flow cytometry. Patients in sustained CR are highlighted in red. Significant differences 1321 
between controls and LTS patients were tested by comparing the respective sample means with 1322 
unpaired Wilcoxon rank sum test. 1323 
Abbreviations: ID: initial diagnosis; LTS: long-term survival; CR: complete remission; BM: bone marrow; 1324 
PB: peripheral blood; FACS: fluorescence activated cell sorting.1325 
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Table 1: Characteristics of patients with Multiple Myeloma in LTR: Patients highlighted in yellow were subjected to single cell RNA sequencing analysis,  Abbreviations: PID: 
PatientID; ASCT= autologous stem cell transplantation; BM= bone marrow; CR= Complete remission; Mel = melphalan; NA = not available; n.a. not applicable; PC = plasma cells; 
PR= partial response; PAD= bortezomib – doxorubicin- dexamethasone; TAD = thalidomide- doxorubicin- dexamethasone; VAD= vincristine – doxorubicin – dexamethasone; 
VCD= bortezomib- cyclophosphamide- dexamethasone; VID= vincristine – ifosfamide – dexamethasone; VGPR= very good partial response 

Number Patient 
ID 

Gender 
(M/F) 

Age MM Type CRAB criteria Time after  
ASCT 

(years) 

Stage 
(ISS) 

Cytogenetics Cytology: 
% PC in 

BM 

Induction 
treatment 

Pre-
ASCT 

respon
se 

Conditioni
ng 

Maintenance, 
duration (in 
years after 

ASCT)  

Post-ASCT 
response 

Relapse 
from CR in 
2018 (years 
after ASCT) 

Sustai
ned CR 

til 
2022 

1 P018 M 68 IgG kappa bone disease 14 I standard 5% 3x VAD NA 2x Mel 200 interferon, 8  CR 7 No 

2 P010 M 73 IgG lambda bone disease, 
anemia 

11 I standard 30% 3x VAD PR 2x Mel 200 thalidomide, 2  CR 3 No 

3 P020 F 71 IgA/IgG 
lambda 

bone disease, 
anemia 

10 III standard 90% 3x VAD VGPR 2x Mel 200 thalidomide, 1 CR 8 No 

4 P001 F 69 IgG kappa bone disease 9.5 I standard 15% 3x VAD PR 1x Mel 200 thalidomide, 2 CR 9 No 

5 P021 F 73 IgG kappa bone disease 9 II high risk (del17p) 50% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR 7 No 

6 P017 M 77 IgG kappa bone disease 10 I standard 10% 3x VAD PR 1x Mel 200 thalidomide, 1 CR 10 No 

7 P013 M 73 IgG kappa anemia 9 I standard 20% 3x PAD VGPR 2x Mel 200 none CR 6 No 

8 P009 F 56 IgA lambda bone disease 9 I high risk (del 17p) 60% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR 6 No 

9 P015 F 67 IgA kappa anemia 9 I standard 80% 3x TAD VGPR 1x Mel 200 None VGPR n.a. No 

10 P025 M 54 BJ kappa bone disease 15 NA NA NA 3x VAD NA 2x Mel 200 interferon, 2 CR n.a. No 

11 P022 F 58 IgG kappa bone disease 14 II NA 60% 3x TAD NA 2x Mel 200 thalidomide, 4 CR n.a. No 

12 P003 M 69 IgG kappa bone disease 14 III standard 80% 3x TAD PR 2x Mel 200 thalidomide, 4 CR n.a. Yes 

13 P004 M 70 IgA lambda bone disease 9 II high risk (del 17p) 100% 3x PAD nCR 2x Mel 200 bortezomib, 2 CR n.a. No 

14 P016 F 65 BJ kappa bone disease 11 I standard 20% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR n.a. Yes 

15 P023 F 79 IgA lambda bone disease 14 I standard 30% 3x VAD CR 2x Mel 200 interferon, NA CR n.a. Yes 

16 P011 F 58 IgG kappa bone disease 17 NA NA 80% 4x VID NA 2x Mel 200 interferon, 13 CR n.a. Yes 

17 P005 M 59 IgG kappa renal failure, 
anemia 

12 II standard 20% 3x VAD PR 2x Mel 200 interferon, NA CR n.a. Yes 

18 P002 M 65 IgG lambda bone disease 11 I standard 70% 3x VAD VGPR 2x Mel 200 thalidomide, 2 CR n.a. No 

19 P007 M 75 IgA lambda bone disease 11 I standard 80% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR n.a. Yes 

20 P012 F 61 IgG kappa bone disease 11 III standard 30% 3x VAD PR 1x Mel 200 thalidomide, 3 CR n.a. Yes 

21 P006 M 55 IgG kappa bone disease 10 II high risk (gain 
1q21) 

50% 3x PAD VGPR 2x Mel 200 bortezomib, 2  CR n.a. Yes 

22 P024 M 68 IgG lambda renal failure 9.5 III high risk (t4;14) 80% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR n.a. No 

23 P014 M 60 IgG kappa bone disease,  
hypercalcemia 

9 I standard 30% 3x TAD CR 1x Mel 200 None CR n.a. Yes 

24 P026 F 46 IgG lambda bone disease 7 II standard 50% 3x VCD PR 2x Mel 200 lenalidomide, 
1 

CR n.a. No 
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