

1 **Elevated sleep need in a stress-resilient *Drosophila* species**

2

3 Jessica Yano^{*,1,2}, Ceazar Nave^{*,1}, Katherine Larratt¹, Phia Honey^{1,3}, Cassandra Jingco¹, Makayla
4 Roberts¹, Damion Trotter^{1,2}, Xin He¹, Gazmend Elezi^{4,5}, Julian P. Whitelegge⁴, Sara
5 Wasserman³, Jeffrey M. Donlea^{1,†}

6

7 * equal contributions

8 # To whom correspondence should be addressed. E-mail: jdonlea@ucla.edu

9

10 ¹ Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA
11 90095, USA

12 ² Molecular, Cellular & Integrative Physiology Interdepartmental PhD Program, UCLA, Los
13 Angeles, CA 90095, USA

14 ³ Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA

15 ⁴ Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute for Neuroscience and
16 Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA

17 ⁵ Cotsen Institute of Archaeology, UCLA, Los Angeles, CA 90095, USA

18 **Abstract**

19 Sleep is broadly conserved across the animal kingdom, but can vary widely between
20 species. It is currently unclear which types of selective pressures and sleep regulatory
21 mechanisms influence differences in sleep between species. The fruit fly *Drosophila*
22 *melanogaster* has become a successful model system for examining sleep regulation
23 and function, but little is known about the sleep patterns and need for sleep in many
24 related fly species. Here, we find that *Drosophila mojavensis*, a fly species that has
25 adapted to extreme desert environments, exhibits strong increases in sleep compared
26 to *D. melanogaster*. Long-sleeping *D. mojavensis* show intact sleep homeostasis,
27 indicating that these flies carry an elevated need for sleep. In addition, *D. mojavensis*
28 exhibit altered abundance or distribution of several sleep/wake related
29 neuromodulators and neuropeptides that are consistent with their reduced locomotor
30 activity, and increased sleep. Finally, we find that in a nutrient-deprived environment,
31 the sleep responses of individual *D. mojavensis* are correlated with their survival time.
32 Our results demonstrate that *D. mojavensis* is a novel model for studying organisms
33 with high sleep need, and for exploring sleep strategies that provide resilience in
34 extreme environments.

35 **Results and Discussion**

36 Sleep is widely conserved across the animal kingdom, but the amount of time that individuals
37 spend asleep varies widely among species. While previous studies and meta-analyses have
38 examined physical and life history traits that correlate with interspecies variations in sleep¹⁻⁷,
39 the feasibility of systematic comparisons of sleep across related vertebrate species is limited.
40 In contrast, the *Drosophila* genus provides a diverse range of species, including the genetic
41 model species *D. melanogaster*, many of which can be cultured and behaviorally monitored in
42 standard laboratory conditions⁸. To begin sampling the sleep strategies of *Drosophila* species,
43 we compared sleep in *D. melanogaster* and in the cactophilic species *D. mojavensis*. We show
44 that *D. mojavensis* exhibits increased sleep time across the day and night compared to *D.*
45 *melanogaster*, and that desert-adapted *D. mojavensis* flies respond to sleep loss with a
46 homeostatic increase in sleep drive. We observe several changes in sleep- or wake-related
47 neuromodulator distribution: long-sleeping *D. mojavensis* flies exhibit high levels of serotonin,
48 decreased abundance of wake-promoting octopamine, and reduced numbers of cells
49 expressing the circadian output peptide Pigment Dispersing Factor (PDF). Finally, we examine
50 contributions of elevated sleep to stress resilience in *D. mojavensis* by measuring starvation
51 and dehydration responses. Long-sleeping *D. mojavensis* flies exhibit extended survival during
52 food or food and water deprivation compared to *D. melanogaster*, and individual sleep time of
53 *D. mojavensis* correlates positively with survival time while flies are starved and dehydrated.
54 These results indicate that *D. mojavensis* exhibits an increased need for sleep relative to *D.*
55 *melanogaster*, and that adaptations in sleep may contribute to increased stress resilience in
56 desert-adapted flies.

57

58 *Drosophila melanogaster* has become a popular genetic model system to study sleep and
59 circadian rhythms⁹⁻¹¹. While focus on this model species permits the rapid development and
60 proliferation of genetic tools and mechanistic frameworks, few studies have examined sleep in
61 related species that are adapted to thrive in a variety of environmental conditions. Increased
62 sleep is a behavioral adaptation that is hypothesized to support resistance to nutrient
63 scarcity¹², and artificial selection for starvation resistance in *D. melanogaster* can result in
64 increased sleep time¹³. To test whether similar changes in sleep strategies might correlate with
65 interspecific changes in stress resistance, we compared sleep and starvation/dehydration
66 responses in *D. melanogaster* and the cactophilic species *D. mojavensis* (See **Fig. 1a** for
67 phylogenetic tree, based on ¹⁴). *D. mojavensis* are found in desert regions of Mexico and the
68 southwestern USA and includes four geographically segregated subspecies: *D. moj.*
69 *mojavensis*, *D. moj. baja*, *D. moj. sonorensis*, and *D. moj. wrigleyi* from the Mojave Desert, Baja
70 California, Sonoran Desert, and Santa Catalina Island, respectively¹⁵⁻¹⁷. We measured sleep in
71 all four *D. mojavensis* subspecies and in two wild-type stocks of *D. melanogaster* (*Cs*¹⁸ and
72 *Pcf*¹⁹) using multibeam *Drosophila* activity monitors. Each *D. mojavensis* subspecies exhibits
73 significantly elevated sleep throughout the day and night compared to *D. melanogaster* (**Figs.**
74 **1b-c**). To test whether hypersomnolence in *D. mojavensis* can be attributed to an elevated
75 pressure to maintain sleep and/or to an increased drive to initiate sleep episodes, we
76 quantified the likelihood that a sleeping fly would awaken (P(wake); **Fig. 1d**) or that a waking fly
77 would fall asleep (P(doze); **Fig. 1e**)²⁰. Each of the four *D. mojavensis* subspecies exhibits
78 reduced P(wake) and elevated P(doze) compared to *D. melanogaster*, consistent with both
79 strengthened sleep maintenance and an elevated pressure to fall asleep. Along with increased
80 sleep time, *D. mojavensis* also exhibits reduced waking locomotor activity (**Fig. 1f**), consistent
81 with previous reports²¹. To test for variations in sleep across days, we measured locomotion in

82 *D. moj. mojavensis* flies across a 7-day period and found that daily sleep varies between
83 individuals, but remains stable over time for single flies (**Fig. 1g-h**).
84
85 Because the *D. mojavensis* stocks that we describe above were derived from wild populations
86 more recently than either of our wild-type *D. melanogaster* stocks, we next tested whether fly
87 lines isolated from the wild might sleep more than those reared in lab conditions for longer
88 periods of time. First, we found that independent stocks of *D. moj. mojavensis* and *D. moj. baja*
89 also showed a strong increase in sleep time compared to wild-type *D. melanogaster* (**Fig. 1i**).
90 Next, we examined sleep in a *D. melanogaster* stock that originated from flies collected in the
91 Westwood area of Los Angeles in 2020. *D. melanogaster* that descended from flies caught in
92 Westwood, Los Angeles, CA showed comparable sleep amounts to *Cs* and *Pcf* laboratory
93 strains (**Fig. 1j**). To test the impact of diet on sleep in *D. mojavensis*, we collected freshly
94 eclosed flies and reared them on media that included extract of opuntia cactus, a natural host
95 for desert-adapted *D. mojavensis*. Sleep in *D. mojavensis* remained elevated relative to *D.*
96 *melanogaster* when both species were fed a banana-cactus diet (**Fig. 1k**). In addition to *D.*
97 *mojavensis*, several other closely related fly species, including *D. arizonae*, also localize to
98 deserts of the Southwest USA and Mexico and feed on cactus hosts²² (Denoted in **Fig. 1a** by
99 green arrow). As shown in **Fig. 1l**, *D. arizonae* show comparable amounts of sleep as *D.*
100 *mojavensis*, suggesting that elevated sleep is not exclusive to *D. mojavensis* and could be
101 conserved across related fly species in the Repleta species group that localize to desert
102 regions²³.
103
104 Elevated sleep in a desert-adapted species could indicate at least two possibilities: first, that
105 sleep provides a period of adaptive inactivity during which animals can store metabolic
106 resources and avoid predation⁵, or alternatively, that this species has adapted an elevated

107 need for basic functions that are fulfilled by sleep. To test whether desert-adapted *D.*
108 *mojavensis* maintain an elevated sleep need, we tested whether they respond to mechanical
109 sleep deprivation with a homeostatic rebound to recover lost sleep. Vortex stimuli delivered for
110 3s each minute were sufficient to strongly suppress sleep in *D. moj. mojavensis* (**Fig. 2a**) and in
111 *D. moj. baja* (**Fig. 2b**). Following sleep deprivation, both *D. mojavensis* subspecies showed a
112 recovery period of significantly increased sleep compared to baseline and regained
113 approximately 20-40% of their lost sleep after 24 hours (**Fig. 2c**). In the 24h following
114 deprivation, P(wake) is decreased during daytime sleep on the first recovery day after
115 deprivation, an indication of increased sleep depth (**Extended Data Fig. 1a-b**). Additionally,
116 there was no decrease in locomotor activity per time awake (**Extended Data Figure 1c-d**),
117 indicating that waking locomotor activity was unimpaired by mechanical sleep deprivation.
118 Following the first 24h of recovery, *D. moj. mojavensis* flies reduced their sleep nearly to
119 baseline levels on the second recovery day (**Extended Data Fig. 1e-f**). After finding that *D.*
120 *mojavensis* exhibited a rebound in sleep time after overnight sleep loss, we next probed
121 arousability to test for additional markers of increased sleep depth in recently deprived *D. moj.*
122 *mojavensis*. Flies were either left undisturbed, sleep-deprived for 12h overnight (SD), or sleep-
123 deprived and permitted 24h of recovery (SD+24h) before they were exposed hourly to 60s
124 pulses of blue light. Light pulses were less likely to awaken sleep-deprived flies than rested
125 controls; arousability returned to control levels in SD+24h flies (**Fig. 2d**). After each light pulse,
126 *D. moj. mojavensis* flies in the SD group had a reduced latency to fall back asleep compared to
127 both the control and SD+24h groups (**Fig. 2e**). These results indicate that long-sleeping *D.*
128 *mojavensis* responds to mechanical sleep loss with homeostatic increases both in sleep time
129 and intensity, consistent with the hypothesis that *D. mojavensis* have adapted an increased
130 need for sleep.

131

132 To further probe responses of *D. mojavensis* to acute sleep loss, we also exposed *D. moj.*
133 *mojavensis* and *D. moj. baja* flies to arousing blue light for 12h overnight (ZT12-0). Overnight
134 blue light disrupted sleep in both desert subspecies and was followed by prolonged rebound
135 during the first recovery day (**Fig. 2f-i**). During light stimulation, *D. moj. mojavensis* lost
136 $83.90 \pm 3.50\%$ (mean \pm SEM, n=35) of their sleep while *D. moj. baja* reduced their sleep by
137 $42.89 \pm 3.74\%$ (mean \pm SEM, n=53) (**Fig. 2h**). Given that overnight light exposure significantly
138 disrupted sleep, we next tested whether acute visual input bidirectionally influences sleep by
139 housing *D. mojavensis* in two days of constant darkness. Both *D. moj. mojavensis* (**Fig. 2j**) and
140 *D. moj. baja* (**Fig. 2k**) significantly increased their sleep when transferred to constant darkness
141 after entrainment in a 12h:12h light-dark schedule. We found that in the absence of day-night
142 light signals, the immediate increase in subjective daytime sleep persists across at least two
143 days (**Fig. 2l**). Previous observations of *D. melanogaster* have found either reduced or
144 unchanged sleep when flies were housed in constant darkness²⁴⁻²⁷, indicating that light-
145 dependent modulation of sleep could be a target of evolutionary adaptation.

146

147 Research over the past 20 years identified several neuromodulators and neuropeptides that
148 influence sleep/wake regulation in *D. melanogaster*²⁷⁻³², but interspecies variation of these
149 signals across fly species is not well-studied. In particular, we hypothesized that hypersomnia
150 in *D. mojavensis* may be correlated with an upregulation of sleep-promoting signals and a
151 decrease in arousal pathways. To identify relevant neuromodulators, we conducted liquid
152 chromatography-mass spectrometry (LC-MS) assays of fly heads from both *D. melanogaster*
153 and *D. mojavensis*. We found that long-sleeping *D. mojavensis* flies from all four subspecies
154 contain a significant increase in serotonin (5-HT) and decrease of octopamine (OA) (**Fig. 3a-b**).
155 No uniform change in dopamine (DA) or histamine (HA) was measured between species (**Fig.**

156 **3c-d)**. 5-HT signaling promotes sleep in *D. melanogaster*^{29,33-35} and in vertebrates³⁶⁻³⁸, while
157 OA, a paralog of norepinephrine³⁹, drives arousal^{30,40}. To examine whether the distribution of
158 other wake-promoting signals might differ between these two fly species, we performed
159 immunostaining for the arousing circadian output peptide Pigment Dispersing Factor (PDF)⁴¹.
160 While *D. melanogaster* brains contain eight PDF-positive neurons in each hemisphere, four s-
161 LNvs and four I-LNvs (**Fig. 3e**), careful analysis reveals inconsistent PDF-expression patterns
162 between *D. melanogaster* and *D. mojavensis* (**Fig. 3f-g**). Specifically, *D. mojavensis* retained
163 three to four PDF-positive I-LNvs, but showed no s-LNv cell bodies or dorsal protocerebrum
164 projections that were labelled with anti-PDF (**Fig. 3f-g, i-j**). A loss of PDF-immunostaining in s-
165 LNvs has also been reported in other *Drosophila* species, indicating that selective pressures
166 may drive reconfiguration of clock circuits as species adapt to different environments⁴²⁻⁴⁵.
167 Together, these results indicate that elevated sleep of desert-adapted *D. mojavensis* correlates
168 with both an increase in sleep-promoting 5-HT and reductions of arousing OA and PDF. To
169 functionally test the role of interspecies variation in neuromodulators, we microinjected *D. moj.*
170 *baja* females with 18.4 nL of either 20mM OA or vehicle control. During the first 24h after OA
171 injections, we found that *D. moj. baja* females showed reduced sleep (**Fig. 3k-l**) and increased
172 locomotor activity (Fig. 3m) compared to vehicle-treated siblings.

173
174 *D. mojavensis* sleeps more than *D. melanogaster* and responds to prolonged waking with
175 increased recovery sleep, indicating that this species may have an increased need for sleep
176 relative to *D. melanogaster*. In their desert habitats, *D. mojavensis* are exposed to
177 environmental stressors, including temperature variations and periods of sparse food and/or
178 water availability. To measure sleep during desert-like temperature fluctuations, we exposed
179 both *D. melanogaster* and *D. mojavensis* flies to daytime temperature ramps that held flies at

180 25°C overnight, then began to progressively increase the temperature across the first 6h of
181 daytime to a peak of 35°C before reducing back to 25°C by lights-off at ZT12. While *D.*
182 *mojavensis* maintained higher amounts of sleep than *D. melanogaster* across most of the day
183 during these conditions (**Fig. 4a**), both species showed a brief decrease in sleep when
184 temperature peaked at 35°C at mid-day. As the temperature decreased afterwards, *D.*
185 *melanogaster* briefly increased their sleep to comparable levels as the desert-adapted *D.*
186 *mojavensis* subspecies. These results indicate that sleep in both species can be altered by
187 variations in temperature, but that *D. mojavensis* flies retain elevated levels of daily sleep under
188 naturalistic daytime temperature conditions.

189

190 To further test the functional relevance of heightened sleep pressure in desert-adapted flies,
191 we also measured sleep and survival while flies were deprived of food alone or both food and
192 water. Both Baja and Mojavensis subspecies of *D. mojavensis* survive longer than wild-type *D.*
193 *melanogaster* when housed in glass tubes with non-nutritive agar media (**Fig. 4b**) or, as
194 previously found, in empty, dry glass tubes (**Fig. 4c**). While wild-type *D. melanogaster*
195 suppress their sleep during food deprivation^{46,47}, *D. mojavensis* instead augment their sleep
196 under these conditions. As shown in **Fig. 4d**, the sampled *D. moj. baja* female population
197 significantly increased their total sleep time from day 2 of food deprivation, suppressing sleep
198 only when lacking both food and water. *D. moj. Mojavensis* sleep responses to food
199 deprivation are similarly increased for the first four days, after which sleep drops to control
200 levels (**Fig. 4g, Extended Data Fig. 2a-b**). Under food deprivation, both Baja and Mojavensis
201 show increased consolidation of sleep, with fewer and longer sleep bouts as compared to
202 controls (**Extended Data Fig. 2c-f**). In contrast to Baja flies, the Mojavensis subspecies also

203 shows increased (day 1) or control levels of sleep (days 2-4) when deprived of both food and
204 water along with increased survival over Baja (**Fig. 4c, Fig. 4g**).

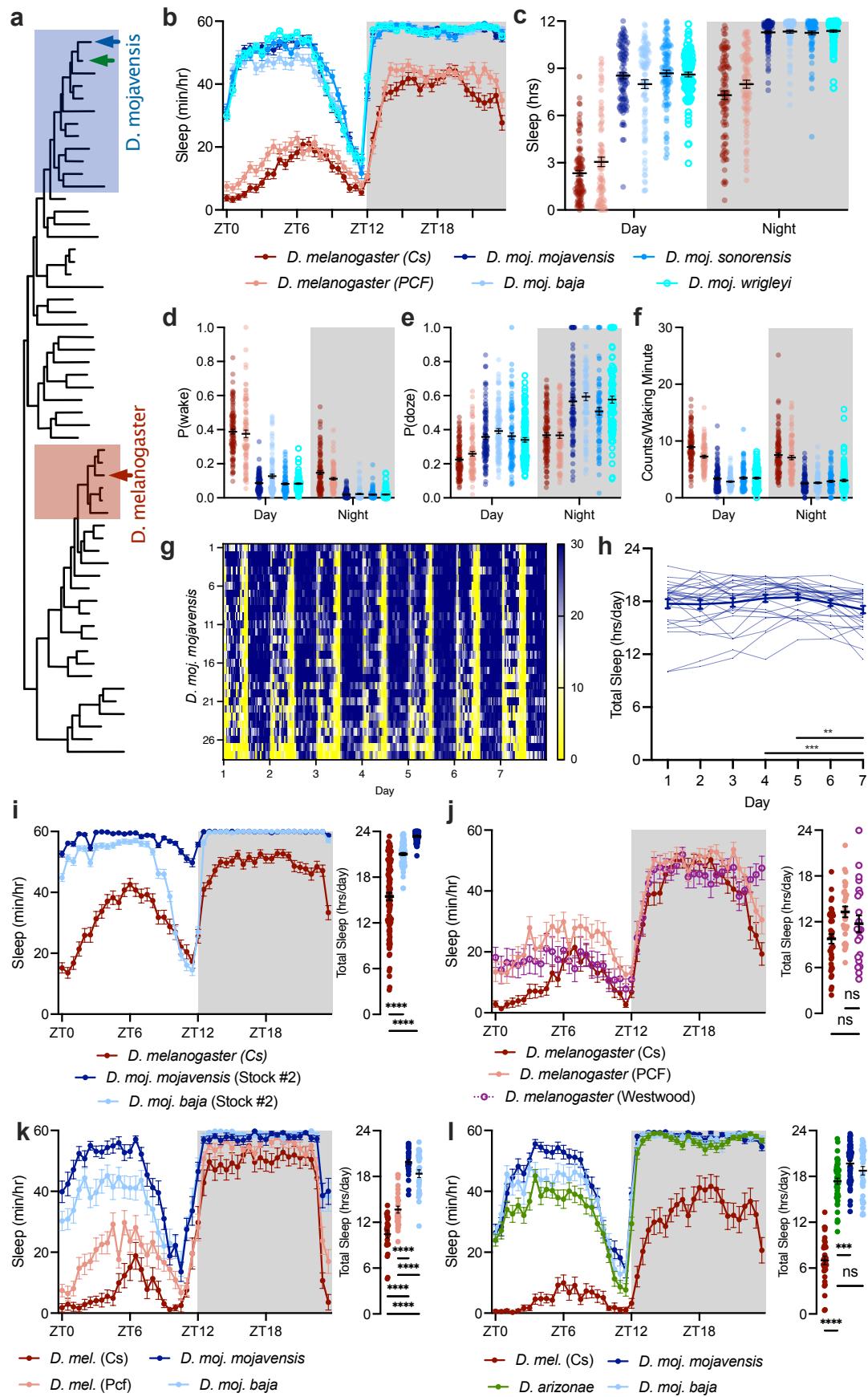
205
206 Our results are consistent with the hypothesis that increased sleep during nutrient deprivation
207 is associated with prolonged survival. Next, we tested this relationship at the individual level by
208 plotting the change in sleep from baseline to starvation day 1 against the survival duration for
209 each individual fly. In **Fig. 4e**, we find no significant relationship between sleep responses on
210 day 1 of food deprivation and survival time for *D. moj. baja*. In contrast, we detect a significant
211 correlation between relative change in sleep on experimental day 1 and survival time for
212 individual *D. moj. baja* flies that are deprived of both food and water (**Fig. 4f**). When we
213 examined variation in the responses of individual *D. moj. mojavensis* flies, we also found a
214 positive relationship between changes in sleep amount and survival duration when *D. moj.*
215 *mojavensis* were either deprived of food (**Fig. 4h**) or of both food and water (**Fig. 4i**). Our
216 findings indicate that individual sleep responses during food and water deprivation (both
217 subspecies) or for food deprivation (*D. moj. mojavensis*) are positively correlated with survival
218 time. Interestingly, food-deprived *D. moj. baja* flies are hyperactive, with increased activity per
219 time awake (**Extended Data Fig. 2g**). Thus, though total wake time is decreased, total activity
220 remains at control levels (**Extended Data Fig. 2h**). In contrast, food-deprived *D. moj.*
221 *mojavensis* flies display no hyperactivity, and total activity is reduced (**Extended Data 2i-j**).
222 Preserved waking energy expenditure in food-deprived *D. moj. baja* might underlie the absence
223 of a correlation between individual sleep increases and increased survival.
224
225 Periods of adaptive sleep loss have been reported in several vertebrate species, especially in
226 birds⁴⁸ and marine mammals^{49,50}. During these periods, it is thought that animals can acutely

227 cope with the costs that accumulate from sleep loss. Here, we find that *D. mojavensis* exhibits
228 an opposing behavioral strategy: they chronically show elevated sleep time and consolidation,
229 even during periods of insufficient food. This adaptive strategy is associated with a survival
230 advantage in conditions of hunger or thirst. While additional work is required to identify and
231 characterize functional advantages that are fulfilled by elevated levels of sleep, it is possible
232 that hypersomnia may allow desert-adapted *D. mojavensis* to maintain efficient energy usage⁵¹⁻
233 ⁵³, clearance of metabolic waste^{54,55}, or management of oxidative stress^{56,57}. Alternatively, the
234 increased need for sleep in *D. mojavensis* could offset costs of physiological adaptations made
235 by desert-adapted flies that allow them to feed on cactus diets or to thrive in the desert
236 environment^{16,58-63}. Interestingly, another recent study found that other *Drosophila* species
237 exhibit a range of homeostatic responses to sleep loss⁶⁴, indicating that broad studies of
238 *Drosophila* evolution could uncover species-specific adaptations in sleep need or function. Our
239 characterization of increased sleep time and need in stress-resilient *D. mojavensis* provide a
240 novel model species to examine the adaptive advantage(s) of elevated sleep and to investigate
241 the evolution of sleep regulatory mechanisms across related species.

242 **Acknowledgements**

243 We thank all members of the Donlea lab for many helpful discussions and technical advice.
244 Special thanks to Dr. David Krantz (UCLA) for technical assistance and feedback. We thank Dr.
245 Luciano Matzkin at Arizona State University for sharing wild-caught *D. mojavensis* (*baja*,
246 *mojavensis*, *sonorensis*, and *wrigleyi*). Many thanks to Dr. Orkun Akin (UCLA) for kindly sharing
247 access to his lab's confocal microscope and to Dr. Chris Vecsey (Colgate University) for
248 sharing unpublished updates to SCAMP sleep analysis scripts. CN is supported by the NIH
249 IRACDA program at UCLA NIH K12GM106996. SW is funded by support from NSF-IOS
250 2016188. JMD is funded by support from NIH R01NS105967 and R01NS119905.

251


252 **Author Contributions**

253 J.Y., C.N., K.L, P.H., C.J., M.R., D.T., X.H., and J.M.D performed the experiments and/or
254 analyzed data. G.E. and J.P.W. provided consultations, completed LC-MS experiments, and
255 analyzed the data. S.W. and J.M.D. initially discussed and designed the project. J.M.D.
256 supervised the research. J.Y., C.N., and J.M.D. integrated the data, interpreted the results, and
257 wrote the manuscript. All authors discussed the results and commented on the manuscript.

258

259 **Competing Interests**

260 The authors declare no competing interests.

262 **Figure 1 – Elevated sleep time in desert-dwelling *Drosophila mojavensis***

263 **(a)** Phylogenetic tree of *Drosophila* species, *D. melanogaster* (red) and *D. mojavensis* (blue) are
264 marked with arrows. Based on ¹⁴. Shading represents Melanogaster (red) and Repleta (blue)
265 species groups that include *D. melanogaster* and *D. mojavensis*, respectively.

266 **(b)** 24h sleep timecourse for wild-type *D. melanogaster* (*Cs*, dark red; *Pcf*, light red) and four
267 subspecies of *D. mojavensis* (blue). Two-way repeated measures ANOVA finds a significant
268 genotype-by-time interaction ($F_{(235,27213)}=16.99$, $p<0.0001$).

269 **(c)** Day and night sleep totals for *D. melanogaster* (*Cs*, dark red; *Pcf*, light red) and *D.*
270 *mojavensis* (blues). Two-way repeated measures ANOVA finds a significant genotype-by-time
271 interaction ($F_{(5,577)}=24.981$, $p<0.0001$).

272 **(d-e)** P(wake) **(c)** and P(doze) **(d)** during the day and night for *D. melanogaster* (reds) and *D.*
273 *mojavensis* (blues) stocks. Two-way repeated measures ANOVA detects a significant
274 genotype-by-time interaction for P(wake) ($F_{(5,579)}=75.43$, $p<0.0001$) and for P(doze)
275 ($F_{(5,553)}=5.628$, $p<0.0001$).

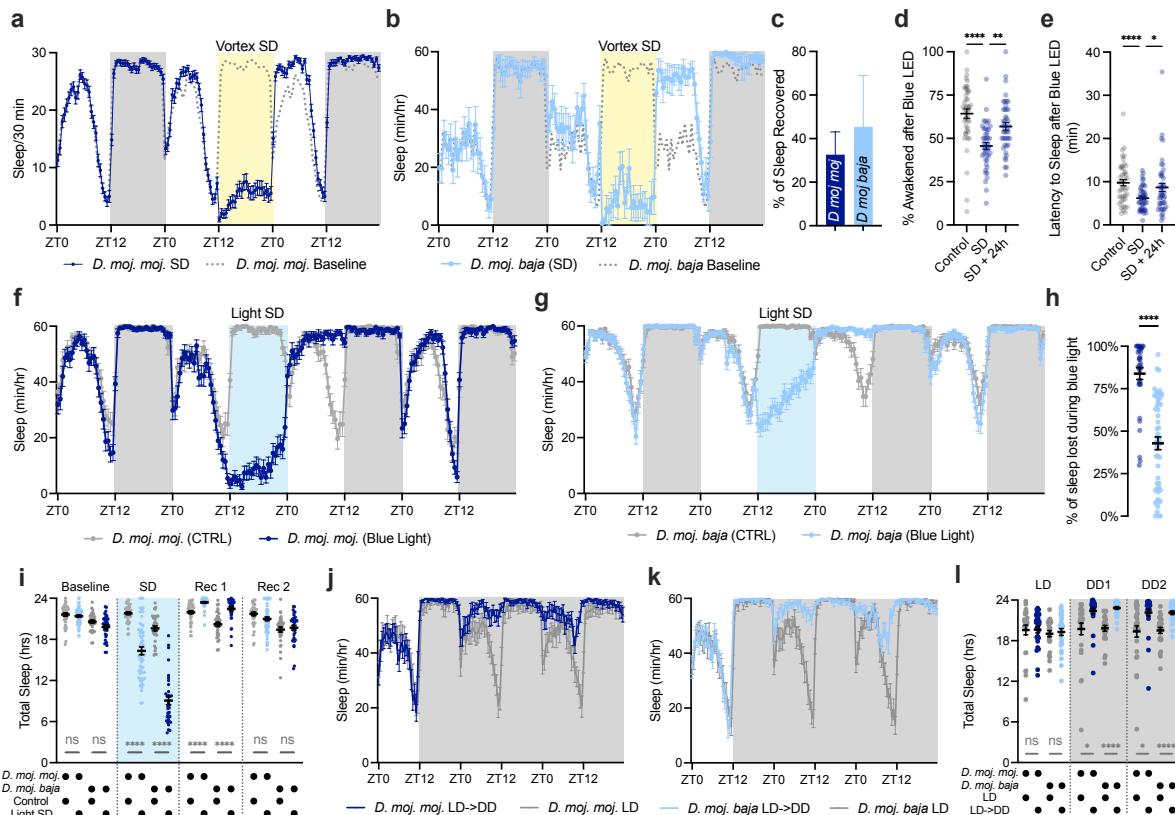
276 **(f)** Waking activity (position movements/waking minute) is decreased in *D. mojavensis*
277 subspecies (blues) relative to *D. melanogaster* (reds). Two-way repeated measures ANOVA
278 finds a significant main effect of genotype ($F_{(5,576)}=139.4$, $p<0.0001$).

279 For panels **(a-f)**, $n= 101$ *Cs*, 82 *Pcf*, 100 *D. moj. moj.*, 100 *D. moj. baja*, 93 *D. moj. sonorensis*,
280 106 *D. moj. wrigleyi*.

281 **(g-h)** Sleep timecourse heatmap **(g)** and daily sleep totals **(h)** for *D. moj. moj.* female flies
282 across a 7-day experiment ($n=28$ flies).

283 **(i)** Sleep timecourse (left) and total daily sleep (right) for Canton-S (red) and additional stocks of
284 *D. moj. moj.* (dark blue) and *D. moj. baja* (light blue). ANOVAs find a significant genotype-by-
285 time interaction in sleep timecourse ($F_{(94,13207)}=40.94$, $p<0.0001$) and main effect of genotype for

286 total daily sleep ($F_{(2, 281)}=178.9$, $p<0.0001$, $n= 96$ *Canton-S*, 96 *D. moj. moj.*, and 92 *D. moj. baja*).

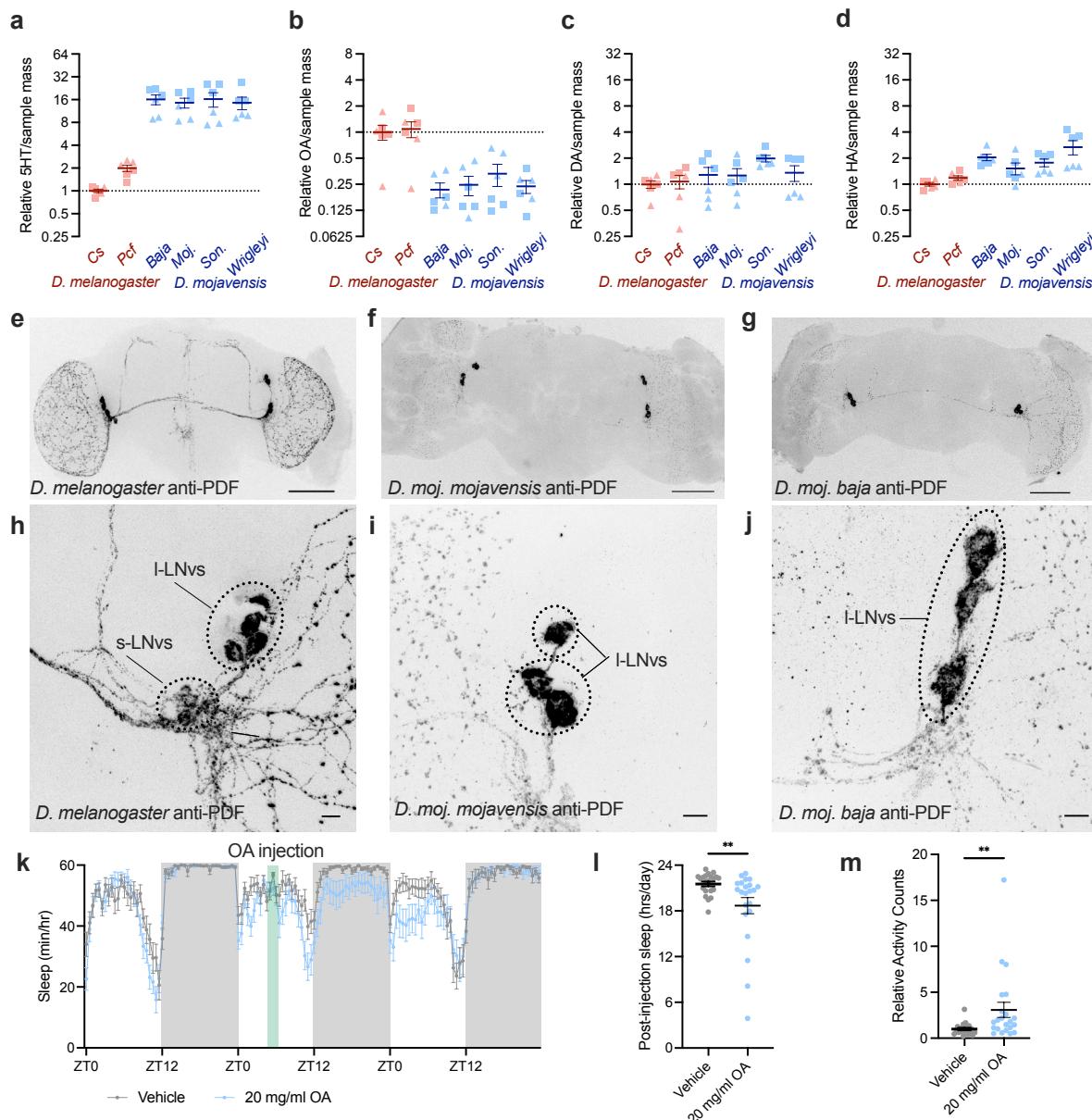

288 **(j)** Sleep timecourse (left) and total daily sleep (right) for *Canton-S* (dark red), *Pcf* (light red), and
289 flies descended from *D. melanogaster* caught in Westwood, Los Angeles (open purple circles).
290 ANOVAs detect a significant genotype-by-time interaction in sleep timecourse ($F_{(94, 3995)}=2.385$,
291 $p<0.0001$) and main effect of genotype for total daily sleep ($F_{(2, 85)}=5.793$, $p=0.0044$, $n= 38$
292 *Canton-S*, 28 *Pcf*, and 22 wild-caught flies).

293 **(k)** Sleep timecourse (left) and total daily sleep (right) for *D. melanogaster* stocks (red) and two
294 *D. mojavensis* subspecies (blue) from flies reared on Banana-Opuntia media. ANOVAs detect
295 significant genotype-by-time interaction for the sleep timecourse ($F_{(141, 4841)}=8.838$, $p<0.0001$)
296 and a significant effect of genotype for total daily sleep ($F_{(3, 103)}=91.08$, $p<0.0001$, $n= 24$ *Canton-*
297 *S*, 27 *Pcf*, 28 *D. moj. moj.*, and 28 *D. moj. baja*).

298 **(l)** Sleep timecourse (left) and total sleep (right) for *D. melanogaster* (red), *D. mojavensis* (blues),
299 and *D. arizonae* (green). ANOVA tests find significant genotype-by-time interaction for sleep
300 timecourse ($F_{(141, 7614)}=6.534$, $p<0.0001$) and a significant effect of genotype for total sleep
301 ($F_{(3, 162)}=148.3$, $p<0.0001$, $n= 31$ *Canton-S*, 53 *D. moj. moj*, 35 *D. moj. baja*, and 47 *D. arizonae*).

302

303



304

305 **Figure 2 – Homeostatic regulation of sleep and arousability in *Drosophila mojavensis***

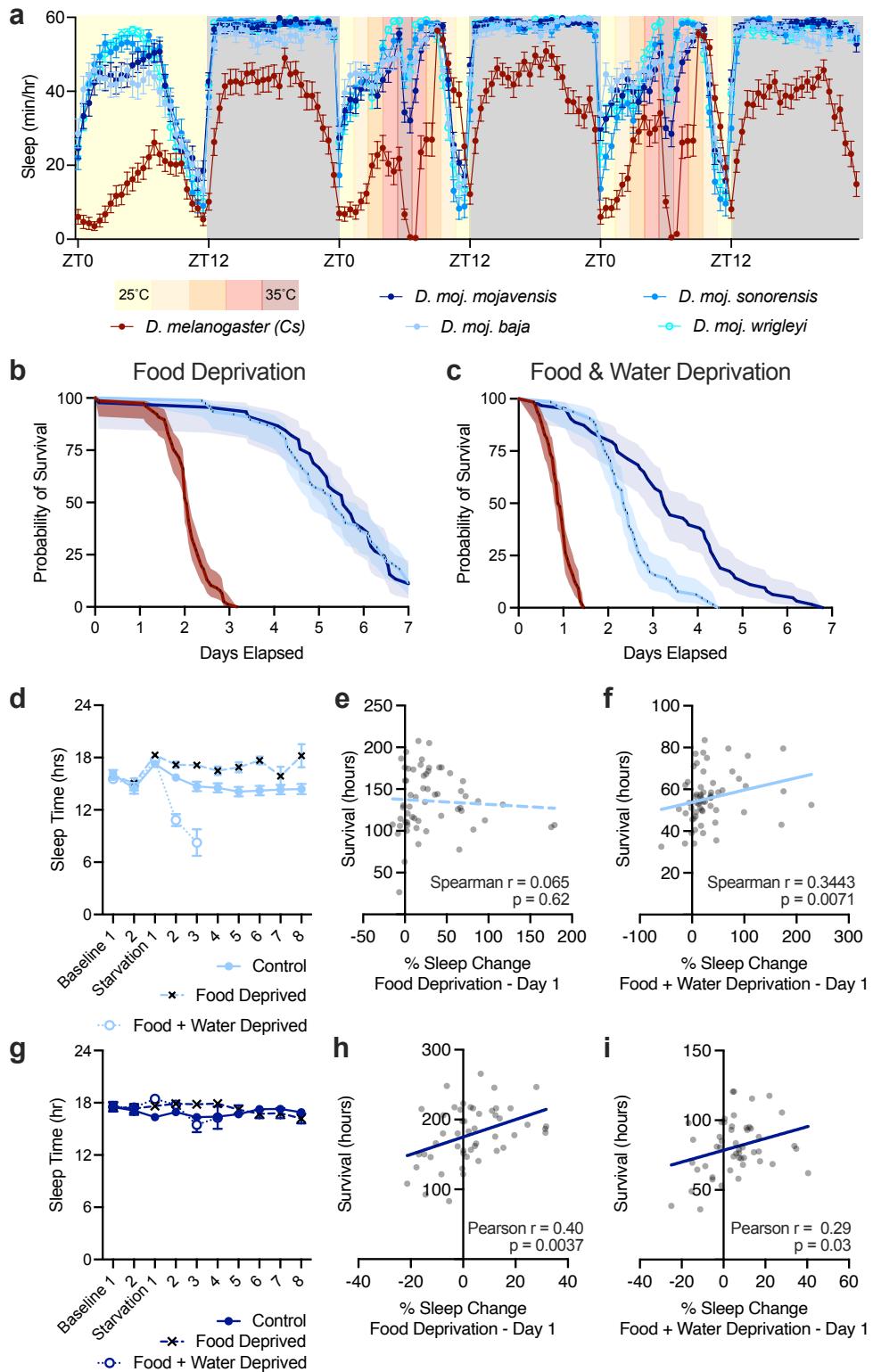
306 **(a-b)** Sleep timecourse of *D. moj. moj.* **(a)** and *D. moj. baja* **(b)** across baseline, overnight
307 mechanical sleep deprivation, and recovery days. Yellow shading indicates time of sleep
308 deprivation. Dotted gray lines show baseline sleep patterns replotted on deprivation and
309 recovery days for visual comparison (n= 77 flies in **a**, 38 in **b**).
310 **(c)** Percentage of sleep recovered within 24h of recovery from mechanical sleep deprivation. *D.*
311 *moj. moj.* shown in dark blue, *D. moj. baja* in light blue. (n= 77 for *D. moj. moj.* and 38 for *D.*
312 *moj. baja* and flies/group).
313 **(d)** Portion of sleeping *D. moj. mojavensis* flies awakened by 60s pulses of blue light. Individual
314 data points represent group mean response rate from individual hourly light exposure trials.
315 One-way repeated measures ANOVA finds a significant effect of condition ($F_{(1.874, 80.56)}=15.41$,
316 $p<0.0001$, n=44 trials/group).

317 (e) Mean sleep latency of *D. moj. mojavensis* flies after hourly 60s pulses of blue light is
318 reduced after mechanical sleep deprivation. Individual data points represent group mean sleep
319 latency after individual hourly light exposure trials. One-way repeated measures ANOVA finds
320 a significant effect of condition ($F_{(1,730,74,40)}=7.342$, $p=0.002$, $n=44$ trials/group).
321 (f-g) Sleep timecourse of *D. moj. mojavensis* (f) and *D. moj. baja* females (g) during baseline,
322 overnight blue light exposure, and two recovery days. Blue shading shows the time of
323 overnight light stimulation. Gray traces represent undisturbed controls and blues depict sleep
324 for flies exposed to blue light from ZT12-24 on day 2. Two-way repeated measures ANOVAs
325 find significant time-by-condition interactions for (f) ($F_{(191,12606)}=33.98$, $p<0.0001$, $n=33$ control,
326 35 Light SD) and for (g) ($F_{(191,16999)}=15.98$, $p<0.0001$, $n=38$ control, 53 Light SD).
327 (h) Percentage of sleep lost during 12h of overnight blue light exposure in *D. moj. moj.* (dark
328 blue) and *D. moj. baja* (light blue). Unpaired T-test $t=7.593$, $df=86$, $p<0.0001$, $n=35$ *D. moj.*
329 *moj.*, 53 *D. moj. baja*.
330 (i) Daily sleep totals for groups shown in (f) and (g). Two-way repeated measures ANOVA finds
331 a group-by-day interaction ($F_{(9,465)}=97.60$, $p<0.0001$, $n=33$ Control *D. moj. moj.*, 35 Light SD *D.*
332 *moj. moj.*, 38 Control *D. moj. baja*, 53 Light SD *D. moj. baja*).
333 (j-k) Sleep timecourses for *D. moj. moj.* (j) and *D. moj. baja* (k) during one day of 12h:12h light-
334 dark followed by two days in constant darkness. Gray traces show controls that remain on
335 12h:12h LD schedule, groups transferred to darkness depicted in blues. Two-way ANOVAs find
336 significant group-by-time interactions for (j) ($F_{(143,7436)}=6.694$, $p<0.0001$, $n=26$ LD, 28 LD->DD
337 flies/group) and (k) ($F_{(143,7293)}=10.40$, $p<0.0001$, $n=25$ LD, 28 LD->DD flies/group).
338 (l) Total daily sleep for groups shown in (j) and (k). Two-way repeated measures ANOVA finds
339 a significant group-by-day interaction ($F_{(6,206)}=12.02$, $p<0.0001$, $n=26$ *D. moj. moj.* LD, 28 *D.*
340 *moj. moj.* LD->DD, 25 LD *D. moj. baja*, 28 LD->DD *D. moj. baja*).

341

342 **Figure 3 – Interspecies variation of sleep- and wake-regulatory modulators between *D.*
343 *melanogaster* and *D. mojavensis***

344 **(a-d)** Relative LC-MS/MS quantification of 5-HT **(a)**, octopamine **(b)**, dopamine **(c)**, and
345 histamine **(d)** in heads of *D. melanogaster* wild-type stocks (reds) and *D. mojavensis*
346 subspecies (blues). Data represent two independent experiments, each with three biological
347 replicates per group (n=~100 heads/biological replicate; squares represent data from Expt #1,
348 triangles are from Expt #2). One-way ANOVAs find a significant effect of genotype for 5-HT


349 ($F_{(5,30)}=10.26$, $p<0.0001$), octopamine ($F_{(5,30)}=9.488$, $p<0.0001$), and histamine ($F_{(5,30)}=5.950$,
350 $p=0.0006$), but no significant effect of genotype for dopamine ($F_{(5,30)}=2.465$, $p=0.055$).

351 **(e-g)** Immunostaining for PDF in wild-type Cs *D. melanogaster* **(e)**, *D. moj. mojavensis* **(f)**, and
352 *D. moj. baja* **(g)**. Scale bars = 100 μ m.

353 **(h-j)** PDF immunostaining of lateral-ventral neurons at 63x magnification in *D. melanogaster* **(h)**,
354 *D. moj. mojavensis* **(i)**, and *D. moj. baja* **(j)**. Dotted lines indicate the immuno-detected LNV
355 subtypes (large or small LNV). Scale bars = 10 μ m.

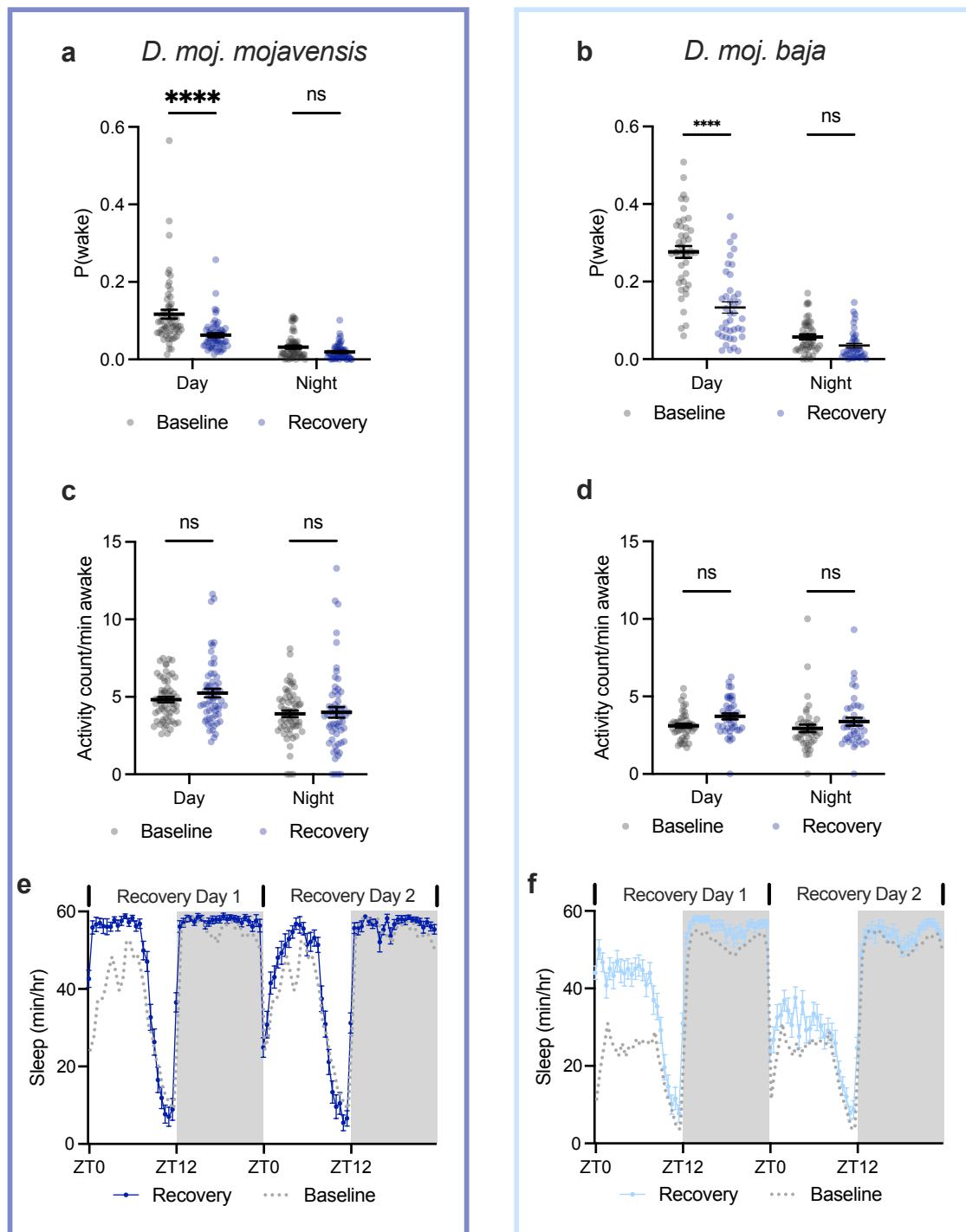
356 **(k)** Sleep time course for *D. moj. baja* flies that were microinjected with 18.4 nL of 20mM
357 Octopamine (blue) or vehicle (gray). Green shading denotes the time of OA injection. Two-way
358 repeated measures ANOVA finds a significant time-by-treatment interaction ($F_{(143,5863)}=1.651$,
359 $p<0.0001$).

360 **(l-m)** Total sleep **(l)** and normalized activity counts **(m)** during 24h post-injection for groups
361 shown in **(k)**. At least one distribution in **(l)** and **(m)** fail D'Agostino & Pearson test for Normality;
362 Mann-Whitney tests find $U= 125$, $p=0.0092$ for **(l)** and $U=110.5$, $p=0.0051$ for **(m)**.
363 For **(k-m)**, $n= 21$ vehicle control and 22 OA-injected flies.

364

365 **Figure 4 – Sleep responses of *D. mojavensis* to nutrient deprivation correlate with**
366 **survival time**

367 **(a)** Sleep time courses for *D. melanogaster* (Cs; red) and *D. mojavensis* (blues) flies that were
368 housed at 25°C for one baseline day, then exposed to a temperature ramp from 25°C to 35°C
369 and back to 25°C during the daytime (ZT0-12). Two-way repeated measures ANOVA finds a
370 significant time-by-strain interaction ($F_{(568, 26412)}=9.054$, $p<0.0001$, $n= 40$ Cs, 39 *D. moj. moj.*, 35
371 *D. moj. baja*, 35 *D. moj. sonorensis*, 42 *D. moj. wrigleyi*).

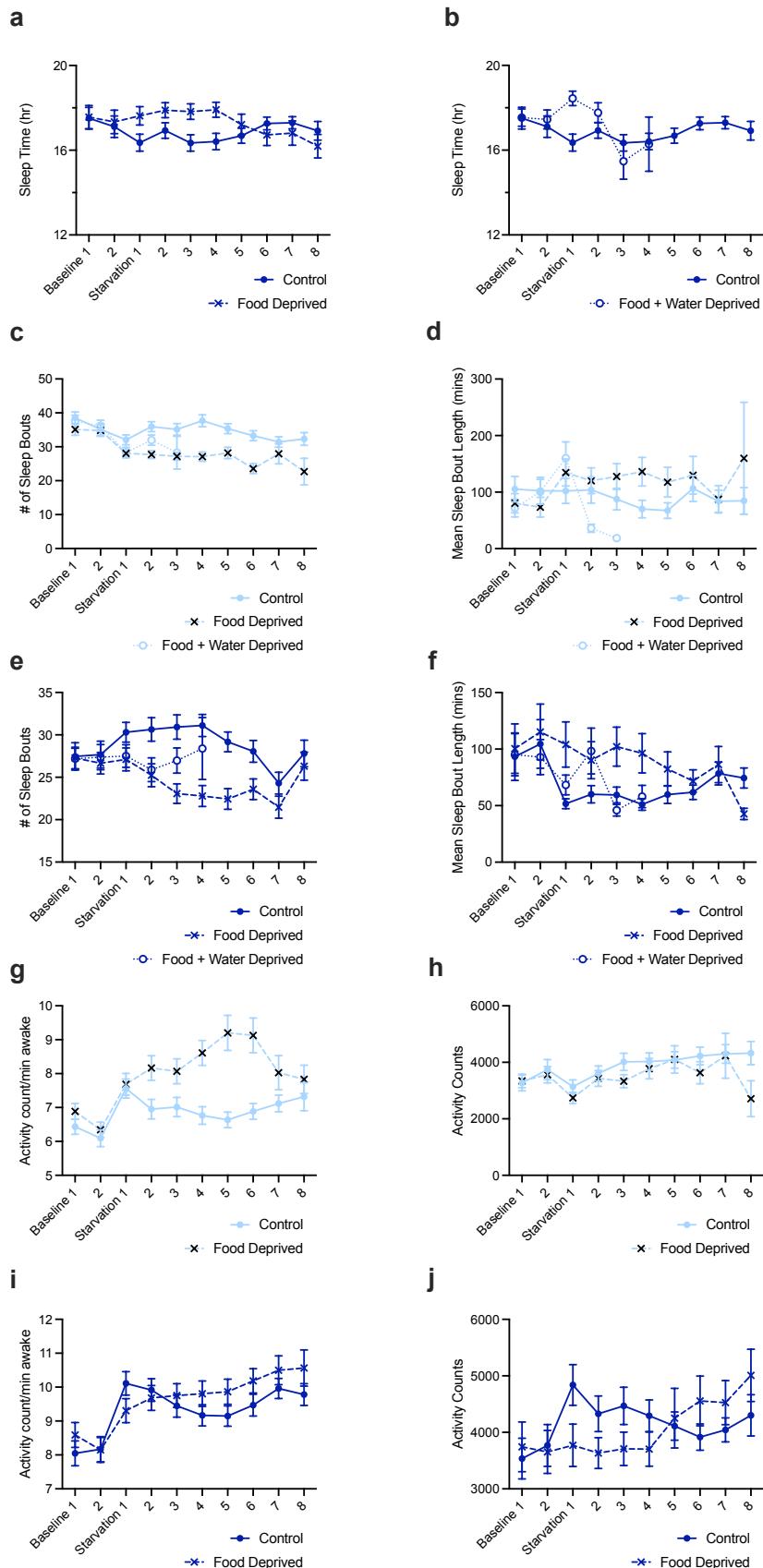

372 **(b-c)** Survival times for *D. melanogaster* (Cs; red) and *D. mojavensis* (blues) females when
373 housed on starvation agar **(b)** or dry tubes **(c)**. Mantel-Cox test finds significant effects for **(b)**
374 ($\chi^2=250.6$, $df=2$, $p<0.0001$, $n= 70$ Cs, 45 *D. moj. moj.*, 77 *D. moj. baja*) and for **(c)** ($\chi^2=232.6$,
375 $df=2$, $p<0.0001$, $n= 64$ Cs, 63 *D. moj. moj.*, 64 *D. moj. baja*).

376 **(d)** Daily sleep time for *D. moj. baja* flies during two days of baseline conditions that were then
377 fed standard fly media (closed blue circles), 1% agar in water (black crosses), or dry tubes
378 (open circles). Mixed-effects analysis finds significant effects of condition ($p=0.0005$) and time
379 ($p<0.0001$), $n = 63$ control, 63 food deprived, and 64 food and water deprived flies at beginning
380 of experiment.

381 **(e-f)** Individual changes in sleep time on food deprivation day 1 **(e)** or food and water
382 deprivation day 1 **(f)** plotted against survival during food deprivation for individual *D. moj. baja*
383 females. At least one distribution in **(e)** and **(f)** failed the D'Agostino and Spearman test for
384 Normality. A significant Spearman correlation was detected for food and water deprivation **(f**; r
385 $= 0.3443$, $p=0.0071$, $n=60$ flies), but not for food deprivation **(e**; $r= 0.065$, $p=0.62$, $n=60$ flies).

386 **(g)** Daily sleep time for *D. moj. moj.* flies during two days of baseline followed by feeding either
387 standard fly media (closed circles), 1% agar in water (black crosses), or dry tubes (open
388 circles). Mixed-effects analysis detected no effect of condition ($p=0.7986$), but a significant
389 effect of time ($p=0.0396$), $n = 56$ control, 53 food deprived, 54 food and water deprived flies at
390 the beginning of the experiment.

391 **(h-i)** Changes in individual sleep time of *D. moj. moj.* on day one of food deprivation **(h)** or food
392 and water deprivation **(i)** plotted against survival time. A significant Pearson correlation was
393 found for both food deprivation **(h;** $r=0.40$, $p<0.0037$, $n=50$ flies) and food and water
394 deprivation **(i;** $r=0.29$, $p=0.03$, $n=50$ flies).



395

396 **Extended Data Figure 1 - Sleep and activity parameters following sleep deprivation**

397 **(a-b)** P(wake) for *D. moj. mojavensis* **(a)** and *D. moj. baja* **(b)** during baseline (gray) and first
398 recovery day (blue) after overnight vortex sleep deprivation. Two-way repeated measures

399 ANOVAs find significant day-by-time interaction for **(a)** $F_{(1,58)}=17.08$, $p=0.0001$, $n=59$ flies and
400 **(b)** $F_{(1,36)}=39.14$, $p<0.0001$, $n=40$ flies/group.
401 **(c-d)** Activity counts/waking minute for *D. moj. mojavensis* **(c)** and *D. moj. baja* **(d)** during
402 baseline (gray) and first recovery day after vortex sleep deprivation (blue). Two-way repeated
403 measures ANOVA find no significant main effect of day for **(c)** $F_{(1,58)}=1.061$, $p=0.31$, $n=59$ flies,
404 but do find a significant effect of day for **(d)** $F_{(1,42)}=5.509$, $p=0.0237$, $n=40$ flies/group.
405 **(e-f)** Sleep timecourses during two days of recovery following overnight sleep deprivation in *D.*
406 *moj. mojavensis* **(e)** or *D. moj. baja* **(f)**. Sleep traces from 24h of baseline replotted in gray,
407 recovery days shown in blues.
408

410 **Extended Data Figure 2 - Sleep and activity parameters during food deprivation**

411 **(a-b)** Daily sleep totals for *D. moj. mojavensis* flies that were fed **(a-b**, filled circles), food
412 deprived **(a**, crosses), or food and water deprived **(b**, open circles). Data are replotted from **Fig.**
413 **4g** for visualization, See legend of **Fig. 4g** for mixed effects results, n= 56 control, 53 food
414 deprived, 54 food and water deprived.

415 **(c-d)** Sleep bout number **(c)** and sleep bout lengths **(d)** for groups of *D. moj. baja* shown in **Fig.**
416 **4d**. Mixed effects analysis effect of condition for **(c)** $F_{(2,189)}=9.459$, $p=0.0001$ and for **(d)**
417 $F_{(2,189)}=0.7335$, $p=0.4816$, n=63 control, 63 food deprived and 64 food and water deprived
418 flies/group.

419 **(e-f)** Sleep bout number **(e)** and sleep bout lengths **(f)** for groups of *D. moj. mojavensis* shown
420 in **Fig. 4g**. Mixed effects analysis effect of condition for **(e)** $F_{(2,163)}=5.511$, $p=0.0048$ and for **(f)**
421 $F_{(2,163)}=2.922$, $p=0.0566$, n= 56 control, 53 food deprived, 54 food and water deprived flies.

422 **(g-h)** Mean counts/waking minute **(g)** and total activity counts **(h)** for *D. moj. baja* flies shown in
423 **Fig. 4d**. Mixed effects analysis effect of condition for **(g)** $F_{(2,189)}=16.39$, $p<0.0001$ and for **(h)**
424 $F_{(2,189)}=17.36$, $p<0.0001$, n=63 flies/group.

425 **(i-j)** Mean counts/waking minute **(i)** and total activity counts **(j)** for *D. moj. mojavensis* flies
426 shown in **Fig. 4g**. Mixed effects analysis effect of condition for **(g)** $F_{(2,163)}=0.2880$, $p=0.7501$ and
427 for **(h)** $F_{(2,163)}=0.01571$, $p=0.98$, n= 56 control and 53 food deprived flies.

428

429 **Methods**

430 **Fly Rearing and Stocks**

431 Fly stocks were cultured on standard cornmeal molasses media (per 1L H₂O: 12 g agar, 29 g
432 Red Star yeast, 71 g cornmeal, 92 g molasses, 16mL methyl paraben 10% in EtOH, 10mL
433 propionic acid 50% in H₂O) at 25°C with 60% relative humidity and entrained to a daily 12h
434 light, 12h dark schedule. Experiments with Banana-Opuntia media used a recipe from the
435 National *Drosophila* Species Stock Center (NDSSC; Cornell University): per 1L H₂O: 14.16g
436 agar, 27.5 g yeast, 2.23g methyl paraben, 137.5g blended bananas, 95g Karo Syrup, 30g
437 Liquid Malt Extract, 22.33g 100% EtOH, 2.125g powdered opuntia cactus.

438

439 Canton-S were provided by Dr. Gero Miesenböck (University of Oxford) and *Pcf* were shared
440 by Dr. Mark Frye (UCLA). Primary stocks of *D. moj. mojavensis*, *D. moj. baja*, *D. moj. wrigleyi*,
441 and *D. moj. sonorensis* were a gift from Dr. Luciano Matzkin (University of Arizona), and
442 additional stocks of *D. moj. mojavensis* and *D. moj. baja* were shared by Dr. Paul Garrity
443 (Brandeis University). *D. arizonae* flies (SKU: 15081-1271.36) were ordered from the NDSSC.
444 Wild caught *D. melanogaster* descended from a single pair of flies trapped in Los Angeles, CA
445 in spring, 2020.

446

447 **Behavior**

448 4-8 day old female flies were housed individually in borosilicate glass tubes (65mm length,
449 5mm diameter) containing fly food coated with paraffin wax at one end and a foam plug in the
450 other. Locomotor activity was recorded using DAM5M or DAM5H multibeam *Drosophila*
451 Activity Monitors from Trikinetics Inc. (Waltham MA, USA) and sleep was analyzed in Matlab
452 (MathWorks Inc) with the SCAMP script package⁶⁵. Locomotor activity was measured as the

453 number of movements between beams per one-minute bins. Periods of sleep were defined by
454 at least 5 minutes with no change in position within the multibeam activity monitors.

455

456 **Sleep Deprivation and Arousalability**

457 Sleep deprivations were performed mechanically by mounting DAM5M activity monitors onto
458 platform vortexers (VWR 58816-115). Individual tubes were plugged with food at one end and
459 3D-printed PLA plastic caps at the other. Monitors were vortexed at an intensity of 2.5g for 3-
460 second pulses every minute through the duration of the 12-hour dark period. Arousalability was
461 tested in a darkened incubator with 60 seconds of blue light (luminance 0.048 Lv) every hour
462 for 24 hours following sleep deprivation.

463

464 **Food- and Water- Deprivation Assays**

465 All flies were put in DAM5H activity monitors on standard food for baseline recording. After 2-3
466 days, control flies were transferred to tubes containing fresh food, food-deprived flies to tubes
467 containing a 1% agar gel, and food-and-water-deprived flies to empty tubes plugged with
468 foam at both ends. Flies immobile for at least 24 hours were defined as dead and data
469 subsequent to their last full day alive was removed from analysis.

470

471 **Pharmacological Microinjections**

472 4-8 day old female flies were loaded into behavior tubes and monitored in DAM5M Activity
473 Monitors to obtain baseline sleep and locomotor activity under 12h light: 12h dark (25°C). After
474 1-2 days of baseline in DAM5M monitors, flies housed in borosilicate tubes were placed on ice
475 for anesthetization prior to injection using Drummond Nanoject II. For injection of exogenous
476 neuromodulators, the anteriormost ocelli of *D. mojavensis baja* were injected with 18.4nl of
477 20mg/mL of Octopamine (Sigma-Aldrich, Catalog # 00250). For each round of injections, new

478 OA is solubilized using Schneider's *Drosophila* Medium with L-Glutamine (Genesee Scientific,
479 Catalog # 25-515). Following each individual injection, flies are returned back into individual
480 borosilicate tubes, and placed in respective DAM5M Activity Monitors to continue sleep and
481 activity surveillance for >48h.

482

483 **Immunohistochemistry**

484 Female *D. melanogaster* and *D. mojavensis* were reared in 12h light:12h dark schedule at 25° C
485 in normal fly food. Individual fly brains were dissected 5-7 days post-eclosion between a ZT0-
486 ZT3 window to minimize time-of-day variation to antibody targets. All dissections, antibody
487 staining, and preparation for imaging were carried out in the exact same manner to minimize
488 variability when comparing between species. Flies are anesthetized using ice. Brains were
489 dissected in chilled 1X PBS then placed in 4.0% paraformaldehyde/1X PBS (PFA) for 30 mins.
490 in room temperature on a benchtop rotator. PFA from brains were removed by washing with
491 1.0% Triton-X in 1X PBS 3 times for 10 mins. each. Once brains were free of PFA, the brains
492 were placed in 1x Sodium Citrate (10mM, pH=6.0, 15 mins. at 80° C) for antigen retrieval.
493 Brains were then placed in a blocking buffer (5.0% normal goat serum in 0.5% Triton-X/1X
494 PBS) and incubated at room temperature for 1.5h on a rotator. Brains were incubated with one
495 the following primary antibodies (diluted using blocking buffer): 1:1000 Mouse anti-PDF
496 (Developmental Studies Hybridoma Bank). Primary antibodies were incubated for two days in
497 4°C. After incubation, brains we're washed using 0.5% Triton-X in 1X PBS five times, 10 mins.
498 each. Fly brains were then incubated in AlexaFluor secondary antibodies (1:1000 Goat anti-
499 Mouse AlexaFluor 633nm; Molecular Probes) overnight at 4°C. Brains were washed using 0.5%
500 Triton-X in 1X PBS five times, 10 mins. After washing, brains were mounted on glass slides in
501 Vectashield mounting media, sealed with a coverslip and nail polish. Brains were imaged using
502 a Zeiss LSM 880 laser scanning confocal microscope using a z-slice thickness of 1um and

503 saved as CZI files. Maximum intensity projections were created from CZI files using
504 FIJI/ImageJ (<https://imagej.net/software/fiji/>)⁶⁶.

505

506 **Neurochemical Quantifications**

507 Sample preparation protocol

508 The samples containing fly brains stored at -80°C are treated with 99.9/1 Water/Formic Acid.
509 An internal standard (IS) of each targeted compound was added to every sample to account for
510 compound loss during sample processing. The samples are vortexed, homogenized for 30 sec
511 in a bead beater using 2.0 mm zirconia beads, and centrifuged at 16.000xg for 5 min. The
512 supernatant is transferred to new microcentrifuge test tubes and dried in a vacuum
513 concentrator. The samples are reconstituted in 40 µl of water, vortexed, and centrifuged. The
514 supernatant is transferred to HPLC vials and 10 µl is injected to an HPLC - triple quadrupole
515 mass spectrometer system for analysis.

516 Liquid Chromatography-Tandem Mass Spectrometry LC-MS

517 A targeted LC-MS/MS assay was developed for each compound using the multiple reaction
518 monitoring (MRM) acquisition method on a triple quadrupole mass spectrometer (6460, Agilent
519 Technologies) coupled to an HPLC system (1290 Infinity, Agilent Technologies) with an
520 analytical reversed phase column (GL Sciences, Phenyl 2 µm 150 x 2.1 mm UP). The HPLC
521 method utilized a mobile phase constituted of solvent A (100/0.1, v/v, Water/Formic Acid) and
522 solvent B (100/0.1, v/v, Acetonitrile/Formic Acid) and a gradient was used for the elution of the
523 compounds (min/%B: 0/0, 10/0, 25/75, 27/0, 35/0). The mass spectrometer was operated in
524 positive ion mode and fragment ions originating from each compound was monitored at
525 specific LC retention times to ensure specificity and accurate quantification in the complex
526 biological samples (Octopamine OA 159-136, Histamine HA 112-95, Dopamine DA 154-137,

527 Serotonin 5HT 177-160). The standard curve was made by plotting the known concentration
528 for each analyte of interest (CDN Isotopes) against the ratio of measured chromatographic
529 peak areas corresponding to the analyte over that of the labeled standards. The trendline
530 equation was then used to calculate the absolute concentrations of each compound in fly brain
531 tissue.

532

533 **Statistical Analysis**

534 Statistical tests were completed as described in the figure legends using Prism 9 (GraphPad
535 Software, Boston MA, USA). Statistical comparisons primarily consist of one- or two-way
536 ANOVAs followed by pairwise Holm-Sidak's multiple comparisons test when experiments
537 include at least three experimental groups or two-tailed Student's T-test for experiments that
538 include two groups. All data figures pool individual data points from at least two independent
539 replicates.

540 **References**

541

542 1. Lesku, J. A., II, T. C. R., Amlaner, C. J. & Lima, S. L. A Phylogenetic Analysis of Sleep
543 Architecture in Mammals: The Integration of Anatomy, Physiology, and Ecology. *Am Nat* 168,
544 441–453 (2006).

545 2. ROTH, T. C., LESKU, J. A., AMLANER, C. J. & LIMA, S. L. A phylogenetic analysis of the
546 correlates of sleep in birds. *J Sleep Res* 15, 395–402 (2006).

547 3. Siegel, J. M. Clues to the functions of mammalian sleep. *Nature* 437, 1264–1271 (2005).

548 4. Siegel, J. M. Sleep under evolutionarily relevant conditions. *Sleep Med* 67, 244–245 (2020).

549 5. Siegel, J. M. Sleep viewed as a state of adaptive inactivity. *Nat Rev Neurosci* 10, 747–753
550 (2009).

551 6. Campbell, S. S. & Tobler, I. Animal sleep: a review of sleep duration across phylogeny.
552 *Neuroscience and biobehavioral reviews* 8, 269–300 (1984).

553 7. Tobler, I. Evolution and Comparative Physiology of Sleep in Animals. in 21–30 (Springer New
554 York, 1988). doi:10.1007/978-1-4614-7599-6_2.

555 8. O'Grady, P. M. & DeSalle, R. Phylogeny of the Genus *Drosophila*. *Genetics* 209, 1–25 (2018).

556 9. Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in
557 *Drosophila melanogaster*. *Science* 287, 1834–1837 (2000).

558 10. Hendricks, J. C. *et al.* Rest in *Drosophila* is a sleep-like state. *Neuron* 25, 129–138 (2000).

559 11. Konopka, R. J. & Benzer, S. Clock mutants of *Drosophila melanogaster*. *Proc National
560 Acad Sci* 68, 2112–2116 (1971).

561 12. Siegel, J. M. Do all animals sleep? *Trends Neurosci* 31, 208–213 (2008).

562 13. Masek, P. *et al.* Altered regulation of sleep and feeding contributes to starvation resistance
563 in *Drosophila melanogaster*. *J Exp Biol* 217, 3122–3132 (2014).

564 14. Keesey, I. W. *et al.* Inverse resource allocation between vision and olfaction across the
565 genus *Drosophila*. *Nat Commun* 10, 1162 (2019).

566 15. Markow, T. A. Sexual Isolation among Populations of *Drosophila mojavensis*. *Evolution* 45,
567 1525 (1991).

568 16. Guillén, Y. *et al.* Genomics of Ecological Adaptation in Cactophilic *Drosophila*. *Genome Biol
569 Evol* 7, 349–366 (2015).

570 17. Etges, W. J. Evolutionary genomics of host plant adaptation: insights from *Drosophila*. *Curr*
571 *Opin Insect Sci* 36, 96–102 (2019).

572 18. Beadle, G. W., Tatum, E. L. & Clancy, C. W. DEVELOPMENT OF EYE COLORS IN
573 DROSOPHILA: PRODUCTION OF v + HORMONE BY FAT BODIES. *Biological Bulletin* 77, 407–
574 414 (1939).

575 19. Cheng, K. Y., Colbath, R. A. & Frye, M. A. Olfactory and Neuromodulatory Signals Reverse
576 Visual Object Avoidance to Approach in *Drosophila*. [https://www.cell.com/current-biology/fulltext/S0960-9822\(19\)30543-3?rss=yes](https://www.cell.com/current-biology/fulltext/S0960-9822(19)30543-3?rss=yes) (2019).

578 20. Wiggin, T. D. *et al.* Covert sleep-related biological processes are revealed by probabilistic
579 analysis in *Drosophila*. *P Natl Acad Sci Usa* 201917573 (2020) doi:10.1073/pnas.1917573117.

580 21. Gibbs, A. G., Fukuzato, F. & Matzkin, L. M. Evolution of water conservation mechanisms in
581 *Drosophila*. *J Exp Biol* 206, 1183–1192 (2003).

582 22. REED, L. K., NYBOER, M. & MARKOW, T. A. Evolutionary relationships of *Drosophila*
583 *mojavensis* geographic host races and their sister species *Drosophila arizonae*. *Mol Ecol* 16,
584 1007–1022 (2007).

585 23. Pfeiler, E. Genetic Diversity and Demographic History in the Cactophilic *Drosophila repleta*
586 Species Group (Diptera: Drosophilidae) in North America Inferred from Mitochondrial DNA
587 Barcodes. *J Hered* 110, 34–45 (2018).

588 24. Cirelli, C. *et al.* Reduced sleep in *Drosophila* Shaker mutants. *Nature* 434, 1087–1092
589 (2005).

590 25. Joiner, W. J., Crocker, A., White, B. H. & Sehgal, A. Sleep in *Drosophila* is regulated by
591 adult mushroom bodies. *Nature* 441, 757–760 (2006).

592 26. Chung, B. Y., Kilman, V. L., Keath, J. R., Pitman, J. L. & Allada, R. The GABA Receptor
593 RDL Acts in Peptidergic PDF Neurons to Promote Sleep in *Drosophila*. *Current Biology* 19,
594 386–390 (2009).

595 27. Kume, K., Kume, S., Park, S. K., Hirsh, J. & Jackson, F. R. Dopamine is a regulator of
596 arousal in the fruit fly. *J Neurosci* 25, 7377–7384 (2005).

597 28. Andretic, R., Swinderen, B. van & Greenspan, R. J. Dopaminergic Modulation of Arousal in
598 *Drosophila*. *Curr Biol* 15, 1165–1175 (2005).

599 29. Yuan, Q., Joiner, W. J. & Sehgal, A. A Sleep-Promoting Role for the *Drosophila* Serotonin
600 Receptor 1A. *Curr Biol* 16, 1051–1062 (2006).

601 30. Crocker, A. & Sehgal, A. Octopamine Regulates Sleep in *Drosophila* through Protein Kinase
602 A-Dependent Mechanisms. *J Neurosci* 28, 9377–9385 (2008).

603 31. Parisky, K. M. *et al.* PDF Cells Are a GABA-Responsive Wake-Promoting Component of the
604 Drosophila Sleep Circuit. *Neuron* 60, 672–682 (2008).

605 32. Shang, Y. *et al.* Short neuropeptide F is a sleep-promoting inhibitory modulator. *Neuron* 80,
606 171–183 (2013).

607 33. Liu, C. *et al.* A Serotonin-Modulated Circuit Controls Sleep Architecture to Regulate
608 Cognitive Function Independent of Total Sleep in Drosophila. *Current Biology* 29, 3635–
609 3646.e5 (2019).

610 34. Knapp, E. M. *et al.* Mutation of the *Drosophila melanogaster* serotonin transporter dSERT
611 impacts sleep, courtship, and feeding behaviors. *Plos Genet* 18, e1010289 (2022).

612 35. Qian, Y. *et al.* Sleep homeostasis regulated by 5HT2b receptor in a small subset of neurons
613 in the dorsal fan-shaped body of Drosophila. *Elife* 6, 1717 (2017).

614 36. Frank, M. G., Stryker, M. P. & Tecott, L. H. Sleep and Sleep Homeostasis in Mice Lacking
615 the 5-HT2c Receptor. *Neuropsychopharmacol* 27, 869–873 (2002).

616 37. Oikonomou, G. *et al.* The Serotonergic Raphe Promote Sleep in Zebrafish and Mice.
617 *Neuron* 103, 686–701.e8 (2019).

618 38. Lee, D. A. *et al.* Neuropeptide VF neurons promote sleep via the serotonergic raphe. *Elife* 9,
619 e54491 (2020).

620 39. Roeder, T. Octopamine in invertebrates. *Prog Neurobiol* 59, 533–561 (1999).

621 40. Crocker, A., Shahidullah, M., Levitan, I. B. & Sehgal, A. Identification of a neural circuit that
622 underlies the effects of octopamine on sleep:wake behavior. *Neuron* 65, 670–681 (2010).

623 41. Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene
624 mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian
625 rhythms in Drosophila. *Cell* 99, 791–802 (1999).

626 42. Beauchamp, M. *et al.* Closely Related Fruit Fly Species Living at Different Latitudes Diverge
627 in Their Circadian Clock Anatomy and Rhythmic Behavior. *J Biol Rhythm* 33, 602–613 (2018).

628 43. Menegazzi, P. *et al.* Adaptation of Circadian Neuronal Network to Photoperiod in High-
629 Latitude European Drosophilids. *Curr Biol* 27, 833–839 (2017).

630 44. Hermann, C. *et al.* The circadian clock network in the brain of different *Drosophila* species.
631 *J Comp Neurol* 521, 367–388 (2013).

632 45. Kauranen, H. *et al.* Flies in the North. *J Biol Rhythm* 27, 377–387 (2012).

633 46. Thimgan, M. S., Suzuki, Y., Seugnet, L., Gottschalk, L. & Shaw, P. J. The perilipin
634 homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning
635 impairments following sleep loss. *Plos Biol* 8, e1000466 (2010).

636 47. Keene, A. C. *et al.* Clock and cycle Limit Starvation-Induced Sleep Loss in *Drosophila*. *Curr
637 Biol* 20, 1209–1215 (2010).

638 48. Lesku, J. A. *et al.* Adaptive Sleep Loss in Polygynous Pectoral Sandpipers. *Science* 337,
639 1654–1658 (2012).

640 49. Lyamin, O. I. *et al.* Fur Seals Suppress REM Sleep for Very Long Periods without
641 Subsequent Rebound. *Curr Biol* 28, 2000-2005.e2 (2018).

642 50. Lyamin, O., Pryaslova, J., Lance, V. & Siegel, J. Continuous activity in cetaceans after birth.
643 *Nature* 435, 1177–1177 (2005).

644 51. Markwald, R. R. *et al.* Impact of insufficient sleep on total daily energy expenditure, food
645 intake, and weight gain. *Proc National Acad Sci* 110, 5695–5700 (2013).

646 52. Stahl, B. A., Slocumb, M. E., Chaitin, H., DiAngelo, J. R. & Keene, A. C. Sleep-dependent
647 modulation of metabolic rate in *Drosophila*. *Sleep* (2017) doi:10.1093/sleep/zsx084.

648 53. Knutson, K. L., Spiegel, K., Penev, P. & Cauter, E. V. The metabolic consequences of sleep
649 deprivation. *Sleep Med Rev* 11, 163–178 (2007).

650 54. Xie, L. *et al.* Sleep drives metabolite clearance from the adult brain. *Science* 342, 373–377
651 (2013).

652 55. Bedont, J. L. *et al.* Chronic sleep loss sensitizes *Drosophila melanogaster* to nitrogen
653 stress. *Curr Biol* (2023) doi:10.1016/j.cub.2023.03.008.

654 56. Hill, V. M. *et al.* A bidirectional relationship between sleep and oxidative stress in
655 *Drosophila*. *Plos Biol* 16, e2005206 (2018).

656 57. Vaccaro, A. *et al.* Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen
657 Species in the Gut. *Cell* 181, 1307-1328.e15 (2020).

658 58. Krebs, R. A. A comparison of Hsp70 expression and thermotolerance in adults and larvae
659 of three *Drosophila* species. *Cell Stress Chaperon* 4, 243 (1999).

660 59. Matzkin, L., Watts, T. D. & Markow, T. A. Desiccation Resistance in Four *Drosophila*
661 Species: Sex and Population Effects. *Fly* 1, 268–273 (2007).

662 60. Frank, M. R. & Fogleman, J. C. Involvement of cytochrome P450 in host-plant utilization by
663 Sonoran Desert *Drosophila*. *Proc National Acad Sci* 89, 11998–12002 (1992).

664 61. Cázares-García, D., Loustalot-Laclette, M. R., Markow, T. A. & Winkler, R. Lipidomic
665 profiles of *Drosophila melanogaster* and cactophilic fly species: models of human metabolic
666 diseases. *Integr Biol* 9, 885–891 (2017).

667 62. Stratman, R. & Markow, T. A. Resistance to thermal stress in desert *Drosophila*. *Funct Ecol*
668 12, 965–970 (1998).

669 63. Fellows, D. P. & Heed, W. B. Factors Affecting Host Plant Selection in Desert-Adapted
670 Cactiphilic *Drosophila*. *Ecology* 53, 850–858 (1972).

671 64. Joyce, M. *et al.* Divergent evolution of sleep homeostasis. *bioRxiv* (2023).

672 65. Donelson, N. C. *et al.* High-resolution positional tracking for long-term analysis of
673 *Drosophila* sleep and locomotion using the “tracker” program. *Plos One* 7, e37250 (2012).

674 66. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods*
675 9, 676–682 (2012).

676