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Abstract
We describe the modeling method for RNA tertiary structures employed by team AIchemy_RNA2
in the 15th Critical Assessment of Protein Structure Prediction (CASP15). The method consists of
the following steps. Firstly, secondary structure information was derived from various
manually-verified sources. With this information, the full length RNA was fragmented into
structural motifs. The structures of each motif were predicted and then assembled into the full
structure. To reduce the searching conformational space, a RNA structure was organized into an
optimal base folding tree. And to further improve the sampling efficiency, the energy surface was
smoothed at high temperatures during the Monte Carlo sampling to make it easier to move
across the energy barrier. The statistical potential energy function BRiQ was employed during
Monte Carlo energy optimization.

1. Introduction

RNA is a special biological macromolecule that can both transfer genetic information and perform
biological functions, including catalysis1,2 and gene regulation2,3. These functions depend on the
specific tertiary structure of RNA4,5, therefore, characterization of RNA structures is of crucial
importance6. Among various methods serving for this purpose, computational modeling of RNA
structures is developing into an important and rapidly-advancing field5,6. Similar to prediction of
protein structures, a variety of approaches have been developed for predicting the RNA 3D
structure7, including homology modeling8,9, fragment assembly10–16, and de novo prediction with
coarse grained models17–20 as well as deep learning methods21–26, following the success of
AlphaFold227. Since 2011, blind tests of RNA structure prediction were carried out in RNA-puzzles
(https://www.rnapuzzles.org) to evaluate the capabilities and limitations of current methods. The
test was introduced to 15th Community Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction (CASP15, https://predictioncenter.org/casp15) for the
first time and received unprecedented attention.

Our team (AIchemy_RNA2) took part in the RNA 3D structure prediction experiment in
CASP15 with the best performance. We followed a classic energy-based strategy to predict RNA
structure, whose performance depends on the accuracy of the energy potential, and the
effectiveness of conformational sampling. In our previous work, we proposed a Backbone
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Rotameric and Quantum mechanical energy scaled base-base knowledge-based potential (BRiQ)
for RNA structure refinement28. Unlike other mostly coarse-grained statistical potentials, the BRiQ
potential is a full-atom potential that includes all bonded and non-bonded interactions. In
addition, Unlike a traditional pairwise all-atom molecular force field such as AMBER29 equipped
with analytic formular, the BRiQ potential is high dimensional in discrete numerical
representations. To optimize this statistical potential, we developed a base folding tree algorithm
to sample the RNA structural space. A number of strategies were employed to reduce the
conformational space and increase the efficiency of sampling. The most important strategy can
be described as divide and conquer: RNA structure motifs were predicted first and then
assembled into the full model for refinement. For some targets, the restraints derived from
homology models were used. The overall pipeline is not yet fully automatic. Manual intervention
is necessary in most cases.

2. Methods

2.1 Overview of the pipeline
In CASP15, we participated in the RNA tertiary structure category with group ID AIchemy_RNA2.
The overview of the prediction pipeline is shown in Figure 1. Starting from the target sequence,
we first performed a Needleman-Wunsch algorithm which align the sequence against the PDB
database to detect homology structure. Then, we attempted various strategies to obtain the
secondary structure of the target sequence, including homology analysis, literature search and
our own energy-based secondary structure prediction program. With reliable secondary structure
information, tertiary structure motifs were identified by human intuition and predicted using
RNA-BRiQ programs. For each structure motif, we generated thousands of decoy models. These
models were clustered using a density based clustering algorithm. Representative models were
selected for the assembling procedure. Finally, the overall structures were optimized using the
RNA-BRiQ program and five models for each target were selected.
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Figure 1. The schematic diagram of the RNA tertiary structure modeling pipeline

2.2 Representation of an RNA molecule
Unlike other coarse-grained methods for RNA structure modeling, BRiQ utilizes a
full-atom representation, except for hydrogen atoms which are treated as a part of
the neighboring heavy atoms. Each residue is composed of three groups: base, ribose
and phosphate. The base is considered as a rigid body consisting of 8-11
non-hydrogen atoms. The position of base atoms are described by a local frame (csres)
defined by atom C1’, N9 and C4 for adenine and guanine or C1’, N1 and C2 for
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cytosine and uracil. The ribose contains 8 atoms: O2’, O3’, and C5’ plus 5 atoms in the
sugar ring. The coordinates in the local frame csres of the base were clustered into
1500 conformers, namely ribose rotamers. Thus, the positions of ribose atoms could
be described by the local frame cs1 and the ribose rotamer type. Unlike the PDB
format, the phosphate group ,considered as a rigid body with 4 atoms (O5’, P, OP1
and OP2), is linked to the atom C3’ in our model, so that the position of phosphate
atoms can be described by two dihedral angles only: C2’-C3’-O3’-P (ε) and
C3’-O3’-P-O5’ (ζ), while the bond lengths and bond angles are fixed. If the PDB
format (link via C5’ atom) was followed, three dihedral angles would be required.

Figure 2. Representation of an RNA residue, the phosphate group is linked to atom O3’ of ribose

2.3 BRiQ potential and structure sampling
We employed the BRiQ potential to guide ab initiomodeling of structure motifs and
to refine the assembled full model. The BRiQ potential includes the following
interactions: bonded interactions, base pairing and base stacking, hydrogen bonds
between backbone oxygen atoms, the interactions between base and backbone
oxygen atoms, and steric clashes.

Bonded interactions for base, ribose and phosphate groups were described
differently. The base is considered as a rigid body thus, its bonded interaction is
ignored. The ribose is represented by rotamers, whose energies are proportional to
-log(rot). For the phosphate group, the energy includes a special form of the dihedral

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.26.542548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.26.542548
http://creativecommons.org/licenses/by-nc-nd/4.0/


angle energy, which takes into account the coupling between the adjacent three
dihedral angles. Base pairing and base stacking energies are described as 6D
statistical energies with well depths rescaled according to quantum mechanical
calculations. Other polar interactions are described by 3D or 4D statistical terms.
There is also an energy term for steric clashes (without attractive terms in the van
der Waals energy).

To make it easier to move across an energy barrier, we have smoothed the
energy landscape. In conformational sampling, the highest energy barrier originates
from bond breaking and steric clashes. We employed two strategies to reduce the
barrier. First, we replaced the high energy region for chain breaking and steric clashes
by a linear extension. During simulated annealing, we imposed weak penalties for
bond breaking and steric clashes at high temperature and strong penalties at low
temperature. This parameter changes make a more efficient sampling of
conformational space.

The BRiQ potential is coupled with a nucleobase-centric tree (NuTree) algorithm
for conformational sampling, in which each node denotes a residue and each edge
represents the relative position between two local frames of the base, or a SE(3)
transformation. The edges in the NuTree connecting Watson-Crick pairs,
non-Watson-Crick pairs, sequential stacking neighbors, sequential free neighbors, 1-3
non-sequential stacking neighbors and others were considered as different edge
types. Each edge type corresponds to a specific SE(3) transformation space with
different size. The space size for sequential free neighbors is much larger than that
for Watson-Crick pairs and for sequential stacking neighbors. There is no unique
method for constructing a NuTree. In CASP15, many NuTrees were constructed
manually to minimize the conformational space.

Furthermore, we have two types of constraints: those acting on the nodes and
those acting on the edges. These constraints were applied to fix the structure motifs
generated from homologous templates (if any), for example the G-quadruplex in
R1126 and R1136, and the helical regions in large RNA molecules to increase
sampling efficiency, for example, R1138.

2.4 Homology template detection
Firstly, we adopt the Needle-Wunsch algorithm to search the target sequence against
the PDB sequence library. For target R1107 and R1108, we find a hit 4pr6 with
sequence identity of 62.3%, which was employed as the structure template. For
target R1116, template 7lyg can match to 30 nucleotides on 5’ end and 37
nucleotides on 3’ end. As a result, we only predicted the central regions. For target
R1117, we employed template 3fu2 with a sequence identity of 50% and consistent
secondary structure. For synthetic RNAs, we found no templates but detected
ligand binding motifs. Target R1126 contains a 1TU binding motif, whose template is
4kzd. Target R1136 contains a 1TU binding motif and a J93 binding motif, whose
templates are 4kzd and 7eop. Finally, the template for protein-RNA complex R1189
and R1190 is 2mf0. The ligand name helped us to locate the correct ligand binding
motif.
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2.5 Secondary structure determination
In order to achieve best modeling performance, we made our best effort to employ
correct and complete secondary structure as input. For target R1107, R1108, R1116,
R1117, R1189 and R1190, secondary structure information could be derived from
their corresponding templates. For synthetic RNAs, UUCG tetra loops were utilized at
the end of the helixes, which became a cue to infer the secondary structure. For
target R1149, R1156 and the middle region of R1116, the secondary structure came
from the literature30–32, which reported chemical probing results.

2.6 Motif assignment and prediction
We employed a simple strategy to assign motifs according to the secondary structure.
For a continuous helix, we retrained two base pairs at each end and eliminated the
middle region, so that the whole structure was split into discontinuous motifs. For
some special cases, ligand binding motifs in targets R1126 and R1136 were identified
from the corresponding template, and kissing loops in targets R1126 and R1138 were
identified manually. Using the RNA-BRiQ program, we generated about 2000 models
for each motif and then selected top 20% low energy models, which were then
submitted to the structure clustering program. Here, we employed one example to
illustrate the details of motif structure modeling.

The most frequent motif in CASP15 is the helix hinge motif, which appears in
target R1126, R1128, R1136, R1138, R1149 and R1156. It’s a recurrent motif in native
structures and is a key unit for constructing synthetic RNAs. The sequences of this
motif vary in different targets, but they have the same secondary structure and
similar 3D structures. Before the start of Monte Carlo sampling, a NuTree is
constructed first. The topology of NuTree is not unique, and different NuTrees tend
to sample a different structural space. For example, in Figure 2, we constructed two
different NuTrees for the helix hinge motif. For each NuTree, we generated 2000
decoy models. These models can be grouped into four clusters, models generated by
NuTreeA tend to fold into conformation 1 and models generated by NuTreeB tend to
fold into conformation 3. For other more complex motifs (e.g., the kissing loop in
target R1136 and R1138), we construct the NuTree manually. Proper NuTrees are
critical for improving sampling efficiency.
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Figure 3. An example of assignment and prediction of the helix hinge motif. (A) The example
sequence and secondary structure of the motif. (B) The topologies of two different NuTrees,
NuTreeA and NuTreeB for the same sequence. (C) The representative conformations of the four
clusters modeled from the NuTrees. These clusters are named after their numbering. (D) The
population percentage of each cluster modeled from NuTreeA and NuTreeB, respectively.

2.7 Motif assembling and refinement
The time complexity of our sampling algorithm is O(n^3). The computing time rises
sharply when the sequence length increases above 50 nucleotides. Therefore, we
splited the complete molecule into motifs, predicted the structure of motifs and
performed assembling. The boundaries of the motifs are in the helix region. Thus, we
made the assembling by aligning the local frame of the residues in helix. When the
motif has multiple conformations, such as the four states of the helix hinge motif
discussed above, we iterated over all possible combinations and generated different
starting models for final refinement. For those large RNAs with multiple motifs, the
assembly process is hierarchical, small motifs assembled to large fragments and large
fragments assembled to the complete model.

We employed the BRiQ program for final refinement of the assembled structures.
In addition to the standard refinement protocol, we included additional constraints
to reduce the searching space. There were two types of constraints, those acting on
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the nodes to fix global coordinates and those acting on the edges to fix relative
orientations. In target R1107, R1108 and R1116, the regions that match the structure
templates were fixed. In target R1107, R1126 and R1136, the ligand binding motifs
were fixed.

3. Results and discussion

3.1 Overall ranking
When we ranked the performance of different methods based on combined Z-scores,
our method is in the leading position. Among the 12 RNA targets in CASP15, six
targets (R1107, R1108, R1126, R1128, R1136 and R1138) were ranked first based on
the root-mean-squared distance (RMSD). Two additional targets R1117 and R1156
were only slightly worse than the best models from Chen’s group and GeneSilico,
respectively. We capture the correct topology of target R1149, but RMSD was a little
higher than other groups. Targets R1189 and R1190 were protein-RNA complexes. All
models were beyond 15Å RMSD and, thus, the performance ranking for these two
targets is not suitable. We did not perform well on targets R1116 as discussed below.

3.2 Model accuracy
Here, we go through all targets to review what went right and what went wrong.

For target R1107 and R1108, the X-Ray crystal structures of these two RNAs are
homo-dimers, with two monomers connected by four base pairs at position 23-26.
Our prediction did not restore the correct dimer state, base 22C and base 37G
formed a wrong base pair, causing the conformation of this hairpin loop to deviate
from the natural state.

For target R1116, there was a large deviation between our predicted model and
the X-Ray crystal structure, the deviation came from the difference between
alternative conformations of the helix hinge motif. When we made this prediction,
we did not realize that structure sampling results could be dominated by the NuTree
topology. As a result, the default NuTree led us to the wrong conformation.

For target R1117, the model we predicted is very close to the natural structure,
with an RMSD of 2.27Å, but one base (the cytosine at position 12) was not correctly
predicted. In the native structure, the 12C forms a hydrogen bond to O6 atom of
guanine at position 3, while in our predicted model, the 12C formed a hydrogen
bond to the ribose O2’ atom of position 29. This error caused our predicted model to
be slightly worse than that of Chen’s group.

For the four synthetic RNAs, there was no obvious error in our predictions. The
RMSDs between predicted models and native structures were ranged from 4.3Å to
8.7Å. Our prediction accuracy was much higher than those of all other groups.

For target R1149 and R1156, the topologies were determined by the helix hinge
motif. This time we constructed different kinds of NuTrees manually, and tested all
combinations of motif conformations. Our energy function could not tell the
difference between these decoys, but at least one of them match to the native
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structure well with an RMSD of 10.5Å and 7.6Å.
Currently, our program cannot handle the complex structure of protein and RNA,

target R1189 and R1190 were modeled poorly.

Figure 4. Comparison of native structure and our predicted model, the native structure was
shown in cyan or on the left, predicted model was shown in magenta or on the right. (A) Target
R1107, the hairpin loop related to dimerization was not predicted well. (B) Target R1116, the
topology of helix hinge was wrong. (C) Target R1117, the orientation of cytosine at position 12
was wrong in our predicted model. (D) Target R1128, this target was well predicted. (E) Target
R1149, one of our predicted model match to the native structure with RMSD of 10.5Å (F) Target
R1156, the native structure has multiple conformations, this is the best aligned prediction, with
RMSD of 7.6Å.

4. Conclusions
In this work, we have described our pipeline to model the RNA tertiary structures in
CASP15. The performance of the pipeline relies on i) the reduction of conformational
space brought by the hierarchical modeling framework and proper NuTrees built for
motifs, so that it was possible to reach a correct topology in limited time; ii) the high
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accuracy of the BRiQ potential, which provided advantage especially when target
topologies were predicted well by multiple groups. However, the pipeline has not
been fully automated that human intuition still plays an important role throughout
the pipeline. Additionally, the BRiQ potential is currently inadequate for modeling of
protein-RNA complexes. These shortages are awaiting further compliments and we
still have a long way to pave for a universal high-resolution modeling method for RNA
tertiary structures.

Acknowledgement
We would like to thank Limin Sheng, Liangzhen Zheng, Minzhi Lin for the support to the project.
YZ gratefully acknowledges that the High Performance Computing Cluster at Shenzhen Bay
Laboratory was involved in completing this research. He also would like to thank the support of
National Key Research and Development Program of China(NO.2021YFF1200400) and the Major
Program of Shenzhen Bay Laboratory S201101001, and Shenzhen Science and Technology
Program [KQTD20170330155106581].

Conflicts of interest
The authors declare no competing interests.

References
1. Pyle, A. M. Ribozymes: A Distinct Class of Metalloenzymes. Science 261, 709–714
(1993).
2. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of
gene expression without proteins. Nat Rev Genet 8, 776–790 (2007).
3. Rinn, J. L. & Chang, H. Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev.
Biochem. 81, 145–166 (2012).
4. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of
structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 20,
474–489 (2019).
5. Xu, B. et al. Recent advances in RNA structurome. Sci. China Life Sci. 65,
1285–1324 (2022).
6. Zhang, J. Advances and opportunities in RNA structure experimental
determination and computational modeling. Nature Methods 15 (2022).
7. Somarowthu, S. Progress and Current Challenges in Modeling Large RNAs.
Journal of Molecular Biology 428, 736–747 (2016).
8. Rother, M., Rother, K., Puton, T. & Bujnicki, J. M. ModeRNA: a tool for
comparative modeling of RNA 3D structure. Nucleic Acids Research 39, 4007–4022
(2011).
9. Watkins, A. M., Rangan, R. & Das, R. Chapter Nine - Using Rosetta for RNA
homology modeling. in Methods in Enzymology (ed. Hargrove, A. E.) vol. 623
177–207 (Academic Press, 2019).
10. Das, R. & Baker, D. Automated de novo prediction of native-like RNA tertiary
structures. Proceedings of the National Academy of Sciences 104, 14664–14669

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.26.542548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.26.542548
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2007).
11. Das, R., Karanicolas, J. & Baker, D. Atomic accuracy in predicting and designing
noncanonical RNA structure. Nat Methods 7, 291–294 (2010).
12. Watkins, A. M. & Das, R. FARFAR2: Improved de novo Rosetta prediction of
complex global RNA folds. http://biorxiv.org/lookup/doi/10.1101/764449 (2019)
doi:10.1101/764449.
13. Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic
Acids Research 40, e112 (2012).
14. Zhao, Y. et al. Automated and fast building of three-dimensional RNA structures.
Sci Rep 2, 734 (2012).
15. Zhang, Y., Wang, J. & Xiao, Y. 3dRNA: Building RNA 3D structure with improved
template library. Computational and Structural Biotechnology Journal 18, 2416–2423
(2020).
16. Parisien, M. & Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure
from sequence data. Nature 452, 51–55 (2008).
17. Xu, X., Zhao, P. & Chen, S.-J. Vfold: A Web Server for RNA Structure and Folding
Thermodynamics Prediction. PLOS ONE 9, e107504 (2014).
18. Boniecki, M. J. et al. SimRNA: a coarse-grained method for RNA folding
simulations and 3D structure prediction. Nucleic Acids Research 44, e63 (2016).
19. Sharma, S., Ding, F. & Dokholyan, N. V. iFoldRNA: three-dimensional RNA
structure prediction and folding. Bioinformatics 24, 1951–1952 (2008).
20. Jonikas, M. A. et al. Coarse-grained modeling of large RNA molecules with
knowledge-based potentials and structural filters. RNA 15, 189–199 (2009).
21. Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373,
1047–1051 (2021).
22. Feng, C. et al. Accurate de novo prediction of RNA 3D structure with transformer
network. 2022.10.24.513506 Preprint at https://doi.org/10.1101/2022.10.24.513506
(2022).
23. Pearce, R., Omenn, G. S. & Zhang, Y. De Novo RNA Tertiary Structure Prediction
at Atomic Resolution Using Geometric Potentials from Deep Learning.
2022.05.15.491755 Preprint at https://doi.org/10.1101/2022.05.15.491755 (2022).
24. Baek, M., McHugh, R., Anishchenko, I., Baker, D. & DiMaio, F. Accurate prediction
of nucleic acid and protein-nucleic acid complexes using RoseTTAFoldNA.
2022.09.09.507333 Preprint at https://doi.org/10.1101/2022.09.09.507333 (2022).
25. Li, Y., Zhang, C., Feng, C., Freddolino, P. L. & Zhang, Y. Integrating end-to-end
learning with deep geometrical potentials for ab initio RNA structure prediction.
2022.12.30.522296 Preprint at https://doi.org/10.1101/2022.12.30.522296 (2022).
26. Shen, T. et al. E2Efold-3D: End-to-End Deep Learning Method for accurate de
novo RNA 3D Structure Prediction. Preprint at
https://doi.org/10.48550/arXiv.2207.01586 (2022).
27. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold.
Nature 596, 583–589 (2021).
28. Xiong, P., Wu, R., Zhan, J. & Zhou, Y. Pairing a high-resolution statistical potential
with a nucleobase-centric sampling algorithm for improving RNA model refinement.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.26.542548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.26.542548
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nat Commun 12, 2777 (2021).
29. Case, D. A. et al. The Amber biomolecular simulation programs. Journal of
Computational Chemistry 26, 1668–1688 (2005).
30. Barton, D. J., O’Donnell, B. J. & Flanegan, J. B. 5′ cloverleaf in poliovirus RNA is a
cis-acting replication element required for negative-strand synthesis. EMBO J 20,
1439–1448 (2001).
31. Miao, Z., Tidu, A., Eriani, G. & Martin, F. Secondary structure of the SARS-CoV-2
5’-UTR. RNA Biology 18, 447–456 (2021).
32. Chen, S.-C. & Olsthoorn, R. C. L. Group-specific structural features of the
5′-proximal sequences of coronavirus genomic RNAs. Virology 401, 29–41 (2010).

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.26.542548doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.26.542548
http://creativecommons.org/licenses/by-nc-nd/4.0/

