

1 **Acute pain drives different effects on local and global cortical excitability in motor
2 and prefrontal areas: Insights into interregional and interpersonal differences in
3 pain processing.**

4

5 Enrico De Martino¹, Adenauer Casali², Silvia Casarotto^{3,4}, Gabriel Hassan³, Mario Rosanova³, Thomas
6 Graven-Nielsen¹, Daniel Ciampi de Andrade¹

7 ¹ Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine,
8 Aalborg University, Aalborg, Denmark

9 ² Institute of Science and Technology, Federal University of São Paulo, São Paulo, Brazil

10 ³ Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy

11 ⁴ IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy

12

13 **Keywords**

14 Transcranial magnetic stimulation, thermal pain, cortical activation, local and global cortical
15 excitability, electroencephalogram, TMS-EEG

16

17 **Corresponding author**

18 Daniel Ciampi de Andrade

19 Mailing address: Center for Neuroplasticity and Pain (CNAP),

20 Department of Health Science and Technology,

21 Faculty of Medicine,

22 Aalborg University,

23 Selma Lagerløfs Vej 249, 9260, Gistrup, Denmark

24 Email: dca@hst.aau.dk

25 **ABSTRACT**

26 Pain-related depression of motor cortico-spinal excitability has been explored using transcranial
27 magnetic stimulation (TMS)-based motor evoked potentials. Recently, TMS combined with
28 concomitant high-density electroencephalography (TMS-EEG) enabled cortical excitability (CE)
29 assessments in non-motor areas, offering novel insights into CE changes during pain states. Here,
30 pain-related CE changes were explored in the primary motor cortex (M1) and dorsolateral prefrontal
31 cortex (DLPFC). CE was recorded in 24 healthy participants before (Baseline), during painful heat
32 (Acute Pain), and non-painful warm (Non-noxious warm) stimulation for eight minutes at the right
33 forearm in a randomized sequence, followed by a pain-free stimulation measurement. Local CE was
34 measured as peak-to-peak amplitude of the early latencies of the TMS-evoked potential (<120 ms)
35 on each target. Furthermore, global-mean field power (GMFP) was used to measure global
36 excitability. Relative to the Baseline, Acute Pain induced a decrease of $-9.9 \pm 8.8\%$ in the peak-to-
37 peak amplitude in M1 and $-10.2 \pm 7.4\%$ in DLPFC, while no significant differences were found for Non-
38 noxious warm ($+0.6 \pm 8.0\%$ in M1 and $+3.4 \pm 7.2\%$ in DLPFC; both $P < 0.05$). A reduced GMFP of $-$
39 $9.1 \pm 9.0\%$ was only found in M1 during Acute Pain compared with Non-noxious warm ($P = 0.003$).
40 Participants with the largest reduction in local CE under Acute Pain showed a negative correlation
41 between DLPFC and M1 local CE ($r = -0.769$; $P = 0.006$). Acute experimental pain drove differential
42 pain-related effects on local and global CE changes in motor and non-motor areas at a group level
43 while also revealing different interindividual patterns of CE changes, which can be explored when
44 designing personalized treatment plans.

45

46 **SUMMARY**

47 Cortical motor and prefrontal areas present reduced excitability during acute pain, but they occur
48 in different patterns across individuals and present distinct impacts on global connectivity.

49 **INTRODUCTION**

50 Acute experimental pain studies in healthy individuals have been widely used to investigate
51 mechanisms underlying sensorimotor excitability, revealing an important effect of nociceptive
52 system activation on sensorimotor plasticity [41]. By assessing somatosensory evoked potentials
53 (SEPs) and motor-evoked potentials (MEPs), it has been demonstrated that acute pain inhibited
54 sensorimotor excitability [8,47]. In contrast, intracortical inhibition was reported to be unchanged
55 during acute pain [56] or decreased [23]. However, a major restriction of MEPs and SEPs is that they
56 only allow the investigation of the local sensorimotor cortical excitability (CE) – added to the
57 inherent contribution of spinal/peripheral excitability [52] - making it challenging to obtain a
58 comprehensive picture of non-motor cortical areas responsible for the integration of affective,
59 motivational, and evaluative aspects of pain. Additionally, it remains unknown to which extent CE
60 changes in non-motor regions differ qualitatively from those in the motor cortex and to which
61 degree these local CE changes engage global CE changes by alterations in functional connectivity
62 related to acute pain. Understanding these mechanisms and relationships may shed light on the
63 cortical dynamic changes related to acute pain and how they can be targeted more precisely by
64 therapeutic interventions.

65 The development of TMS-compatible electroencephalography (TMS-EEG) technology has recently
66 advanced the possibility of non-invasively probing local and global cortical excitability non-invasively
67 in any cortical area targeted by transcranial magnetic stimulation (TMS) [27]. High-density EEG has
68 been used to probe changes in cortical excitability following TMS of various brain targets [64] in
69 physiological [42] and pathological [54] neurological conditions. These investigations rely on EEG
70 recordings or local and global perturbation responses to single pulses of TMS to discrete cortical
71 targets [49]. The TMS-evoked EEG potentials (TEPs) are reproducible waveforms with latencies
72 before 300 ms generated by averaging EEG recording segments phase-locked to the TMS pulses [28]
73 and provide a reliable measure of the local and global excitability of cortical circuits [4]. Therefore,
74 TMS-EEG could be a valuable tool to study the motor and non-motor CE changes associated with
75 pain, as well as the extent to which pain may modulate the engagement of global responses.

76 Understanding the differences in CE responses to pain is particularly relevant, considering these M1
77 and DLPFC targets are engaged in different steps in pain processing [25,45] and are also targets for
78 therapeutic repetitive TMS [36]. Repetitive TMS to both M1 and DLPFC are known to be effective in

79 some patients with acute and chronic pain but currently lack markers of therapeutic response [36],
80 which could be revealed by exploring the connectivity pattern of these areas on an individual basis.
81 The current study compared for the first time the local CE responses in motor (M1) and non-motor
82 (dorsolateral prefrontal cortex, DLPFC) areas induced by single-pulse TMS during experimentally
83 induced acute heat pain and non-painful warm stimulation in healthy participants. Additionally, the
84 global changes driven by local stimulation were assessed at both cortical targets as a measure of
85 local-to-global connectivity.

86 **METHODS**

87 ***Participants***

88 The current study was conducted at the Center for Neuroplasticity and Pain (CNAP), Aalborg
89 University, Aalborg, Denmark, in October-December 2022. The study was performed according to
90 the Helsinki Declaration, approved by the local ethics committee (Den Videnskabsetiske Komité for
91 Region Nordjylland: N-20220018), and registered at ClinicalTrials.gov (NCT05566444) before the
92 inclusion of participants. For the current repeated-measures analysis of variance (rmANOVA) design,
93 a statistical power assessment using G*Power yielded a sample size estimate of 24 subjects based
94 on the expected local and global CE changes (Power: 0.80, Alpha: 0.05, Effect size: 0.25,
95 corresponding to η^2_{partial} of 0.09 [14]). Twenty-four healthy volunteers were therefore recruited
96 through online advertising, and written informed consent was signed before the commencement of
97 the study. Participants were excluded if they suffered from acute and chronic pain, current and
98 previous neurological, musculoskeletal, mental, and any other illnesses. Participants taking
99 analgesic medication, or any other medication were also excluded. All participants were screened
100 for contraindications to TMS [51], and completed the following questionnaires: Beck Depression
101 Inventory [3], State-Trait Anxiety Inventory [61], Pain Catastrophizing Scale [62]; and Positive and
102 Negative Affective Schedule [65] in order to assess normal mental health and the absence of
103 catastrophic thinking related to pain.

104 ***Experimental protocol***

105 The experiment was conducted in a single experimental session, during which a total of eight TMS-
106 EEG sessions were performed on two cortical areas: DLPFC and M1. Four different conditions were
107 collected: Baseline, Acute pain, Non-painful warm, and Post (Figure 1B). To minimize potential bias,

108 the order of cortical stimulation area (12 had M1 stimulation first) and Acute pain and Non-painful
109 warm conditions (12 had Acute Pain first) were randomized across participants. The time interval
110 between each condition was 5 minutes. A 30-minute interval was also included between M1 and
111 DLPFC stimulation to allow time for finding the cortical spot, optimizing the EEG impedance, and
112 ensuring that participants did not experience any discomfort or hear any clicking sounds during TMS
113 stimulation.

114 ***Thermal assessment and conditioned pain modulation***

115 Individual pain thresholds were assessed using a thermal testing device (Medoc advanced medical
116 systems, Haifa, Israel), with a thermode stimulator probe of 3 x 3 cm placed on the volar region of
117 the right forearm (Figure 1A) and kept in place by medical tape and Velcro. Heat and cold pain
118 thresholds were collected from a starting temperature of 32°C and increased (heat pain thresholds,
119 HPT) or decreased (cold pain thresholds, CPT) by 1° C/s until the subject perceived a painful
120 sensation occurred and pressed a stop button [48]. The interval between each measure was ~30
121 seconds, and the mean of 3 successive measures was used.

122 Endogenous modulation of pain was assessed by conditioned pain modulation (CPM). According to
123 CPM recommendations [66], participants immersed the left hand in a bucket of water and ice at ~4°
124 C for up to 60 seconds (cold pressor test) to feel moderately intense pain (~7 on 10 on a 0-10
125 numerical rating scale, in which 0 indicates no pain and 10 indicates the most imaginable severe
126 pain). Immediately after they withdrew their hand, HPT was reassessed. CPM was calculated as a
127 difference from the HPT before conditioning (HPT during conditioning - HPT before conditioning).

128 ***Acute pain and Non-painful warm stimulation***

129 Participants were instructed to determine the intensity of the thermode stimulator probe required
130 to cause moderately intense heat pain (Acute Pain) and an innocuous warm sensation (Non-painful
131 Warm) during the TMS-EEG measurements (Figure 1A). Starting from the HPT, the temperature of
132 the probe was increased in steps of 1 degree Celsius. Participants were asked to indicate when they
133 perceived moderately intense heat pain, defined as a 5 out of 10 on a numerical rating scale, where
134 0 represents no pain and 10 represents the most severe pain imaginable. The value for Acute Pain
135 conditions used during TMS-EEG data collection corresponded to temperatures between 44 and
136 46°C. A temperature between 39 and 41°C (below HPT) was used to induce the innocuous warm

137 sensation. For Baseline and Post measurements, the thermode stimulator probe of 32°C (skin
138 temperature) was used to avoid any thermal sensation (Figure 1A).

139 ***TMS-EEG recording***

140 Single-pulse TMS was delivered using a biphasic stimulator (Magstim Super Rapid² Plus¹, Magstim
141 Co. Ltd, Dyfed, United Kingdom) and a figure-of-eight shaped coil (70 mm, Double Air Film Coil). To
142 record TEPs, a TMS-compatible passive electrode cap with 63 electrodes (EASYCAP GmbH,
143 Etterschlag, Germany) was placed according to the 10-5 system with the Cz electrode orientated to
144 the vertex of the head. The ground electrode was placed halfway between the eyebrows. The
145 electrode impedance was carefully monitored to ensure it remained below 5 kΩ. Raw recordings
146 were sampled at a rate of 4800 Hz by a high-performance amplifier (g.Hlamp EEG amplifier, g.tec-
147 medical engineering GmbH, Schiedlberg, Austria) and online referenced to an additional forehead
148 electrode (electrode 64). Two electrodes were also used to record the electrooculogram (EOG)
149 laterally to the eyes (F9 and F10 electrodes). To mitigate the auditory responses to the click
150 generated by the TMS coil from interfering with the TEPs, a TMS-click sound masking toolbox (TAAC,
151 [53]) was utilized, and the participants wore noise-cancelling in-ear headphones (Shure SE215-CL-E
152 Sound Isolating, Shure Incorporated, United States). To mitigate the somatosensory sensation
153 produced by the TMS coil and EEG electrode movement artefacts, two net caps (GVB-geliMED
154 GmbH, Ginsterweg Bad Segeberg, Germany) with a plastic stretch wrap handle film were applied to
155 the EEG cap.

156 A navigated brain stimulation system (Brainsight TMS Neuronavigation, Rogue Research Inc.,
157 Montréal, Canada) was used to calibrate the participant's head and TMS coil position using an
158 optical-tracking system. To aid in localizing the M1 and DLPFC targets, a 3D reconstruction of the
159 brain was generated by the navigated brain stimulation system using template MRI from Brainsight
160 software (Rogue Research) scaled to the participant's head. To identify the M1 target, the first dorsal
161 interosseus (FDI) muscle over the left hemisphere was located in the proximity of the hand knob of
162 the central sulcus [44], and the largest motor-evoked potential recorded by electromyographic
163 electrodes was set as a "hot spot". The rMT was established as the TMS intensity necessary to elicit
164 MEPs greater than 50 µV in 5 of 10 trials delivering pulses at a minimum of 0.2 Hz, as measured from
165 the FDI muscle electromyography [52]. The MEPs elicited in the FDI muscle were recorded with
166 surface disposable silver/silver chloride adhesive electrodes (Ambu Neuroline 720, Ballerup,

167 Denmark) parallel to the muscle fibers. A reference electrode was mounted on the ulnar styloid
168 process. An intensity of 90% of the resting motor threshold (rMT) was applied for the M1 TEPs to
169 avoid sensory-feedback contamination [21].

170 The DLPFC target was determined according to Mylius et al. 2013 in the middle frontal gyrus, and
171 the stimulator intensity was set to 110% of the rMT of the FDI muscle [44]. To ensure the presence
172 of a detectable TEP in both cortical targets, a real-time visualization tool (rt-TEP) was applied [11],
173 which allowed slight adjustment of the TMS coil orientation across participants to minimize
174 unwanted artefacts and ensured a minimum of 6 μ V in the early peak-to-peak amplitude response
175 in the average of 20 trials in the closest EEG electrode to DLPFC and M1 targets. The navigated brain
176 stimulation system and rt-TEP were applied in real-time during the entire study to monitor the
177 location of the TMS coil (within 3 mm of the cortical targets) and the highest signal-to-noise ratio in
178 the EEG recordings. In each condition (Baseline, Acute Pain, Non-noxious Warm, and Post), about
179 160-180 pulses (\sim 8 min of TMS stimulation) were delivered with an interstimulus interval randomly
180 jittered between 2600 and 3400 ms to avoid any significant reorganization/plasticity processes
181 interfering with longitudinal TMS/EEG measurements [12]. During TMS stimulation, participants sat
182 on an ergonomic chair with eyes open, looking at a fixation point on a wall. TEPs obtained from the
183 stimulation of M1 and DLPFC waves were similar to those previously reported in clinical guidelines
184 [64] (Figure 2).

185 ***TMS-EEG data processing***

186 Data were analyzed using Matlab R2019b (The MathWorks, Inc., Natick, MA, United States). All EEG
187 recordings were split into epochs between \pm 800 ms around the TMS trigger. The TMS artefact was
188 removed from all the EEG recordings replacing the recording between -2 and 6 ms from the TMS
189 pulse with the time interval before the stimulation [15]. Bad epochs and channels containing noise,
190 eye blinks, eye movements or muscle artefacts were visually inspected and rejected. The epochs
191 were band-pass filtered (2 ± 80 Hz, Butterworth, 3rd order [21]) and down sampled to 1200 Hz.
192 Channels were re-referenced to the average reference, and the four conditions (Baseline, Acute
193 Pain, Non-painful warm and Post) were concatenated into a single trial. In this concatenated trial,
194 independent component analysis (ICA, EEGLAB runica function [38]) was applied to remove any
195 residual artefacts [50]. Then, epochs were segmented again in a time window of \pm 600 ms, and the

196 concatenated trial was separated into the original four conditions (Baseline, Acute Pain, Non-painful
197 warm and Post). Bad channels were interpolated using spherical splines [18].

198 Representing the local CE, the following parameters were extracted from the averaged artefact-free
199 waveforms. The positive to negative peak-to-peak amplitude of the early component of TMS-evoked
200 potentials (within 120 ms) were measured from the electrodes adjacent to the TMS stimulation site
201 (C3, C1, Cp3, and CP1 electrodes were used for M1 cortical area and F3, F1, Fc3 and Fc1 electrodes
202 were used for DLPFC cortical area) (Figure 3A and 4A). This early component is the highest
203 reproducible across participants, and it is less affected by somatosensory or auditory responses [46].
204 This evoked component was comprised of a positive component between 25 and 50 ms (P30)
205 followed by a negative deflection between 80 and 120 ms (N100) for M1 cortical area and a positive
206 component between 15 and 30 ms (P25) followed by a negative deflection between 35 and 55 ms
207 (N45) for DLPFC cortical area [64]. The positive and negative peaks and latency were extracted from
208 each electrode and the measures from the four electrodes were averaged. Additionally, the peak-
209 to-peak slope was calculated as the ratio between peak-to-peak amplitude and peak-to-peak
210 interval (peak-to-peak amplitude/peak-to-peak interval). Based on animal studies, peak-to-peak
211 amplitude and slope represent markers of synaptic strength [26]. Furthermore, the amplitudes and
212 latencies of each peak-to-peak component were extracted to evaluate local cortical excitability
213 according to clinical guidelines [64]. The percentage change from Baseline was calculated for the
214 statistical analysis.

215 For assessment of the global CE response, the global-mean field power (GMFP) was calculated as
216 the root-mean-squared value of the signal across all electrodes in the 6-300 ms time interval after
217 TMS stimulation (Figure 5). The GMFP estimates the amplitude dependence of the overall brain
218 response [29] and allows the evaluation of the global cortical activity induced by the TMS
219 stimulation as well as the indirect measurement of the connectivity degree between the stimulated
220 target and distant brain areas [21]. In all cases, percentage change from baseline was used for
221 comparisons between conditions.

222 ***Statistical analysis***

223 The Statistical Package for Social Sciences (SPSS, version 25; IBM, Chicago, United States) was used
224 for statistical analysis. Results were presented as means and standard deviation, with a two-sided

225 5% significance level set for statistical significance. All parameters were assessed by visually
226 examining histograms and Shapiro–Wilk tests. The Greenhouse–Geisser approach was used to
227 correct violations of sphericity. Repeated measure ANOVAs with Condition (Acute Pain, Non-painful
228 warm, and Post) as within-subject factors were used to analyze the percentage changes from the
229 Baseline of peak-to-peak amplitude, slope, amplitudes, and latencies of the TEPs (for M1 P30 and
230 N100 and for DLPFC P25 and N45) and GMFP in M1 and DLPFC. Effect sizes (partial eta squared:
231 η^2_{partial}) were calculated in the statistical analysis [35]. Post hoc pairwise analyses were performed
232 with Bonferroni-corrected multiple comparisons and corresponding 95% confidence intervals
233 (95%CI) were generated when appropriate.

234 To determine whether different local cortical responses during Acute Pain differed among
235 individuals, Pearson's correlation analyses were conducted on the percentage changes from the
236 Baseline of the peak-to-peak TEPs during Acute Pain in DLPFC and M1 cortical areas. The largest
237 peak-to-peak TEP from the electrode closest to the stimulation site was selected from each
238 individual participant (selected EEG channel for single participant for DLPFC: F1 n = 14; F3 n = 8; Fc1
239 n = 2; selected channel for single participant for M1: C3: n = 13; C1 n = 6; Cp3 n = 5). Furthermore,
240 correlations were specifically performed on participants falling below the 1st quartile in their peak-
241 to-peak responses in DLPFC and M1 cortical areas. Pearson's correlation analyses investigated the
242 relationship between CPM, HTP, CPT and percentage changes of peak-to-peak TEP relative to
243 Baseline. Finally, Pearson's correlation analyses investigated the relationship between depression,
244 anxiety, PANAS and pain catastrophizing and percentage changes of peak-to-peak TEP relative to
245 Baseline.

246 RESULTS

247 Data were successfully collected from 12 men and 12 women (Table 1). All psychological
248 questionnaire-based parameters were within the normal ranges [3,61,62,65], as well as HPT, CPT,
249 and CPM responses [17] (Table 1). During the TEPs recording, the participants rated the perceived
250 pain as 5.1 ± 1.3 during DLPFC stimulation and 5.0 ± 1.2 during M1 stimulation on the NRS in the Acute
251 Pain condition and zero in the other conditions.

252 ***M1 local excitability and pain***

253 The grand averages of TEPs obtained from the TMS stimulation of the left M1 cortical area during
254 the four conditions are shown in Figure 3A. The intensity used on M1 during the EEG recording was
255 $58.0 \pm 9.5\%$ (rMT of the FDI muscle was $64.3 \pm 9.5\%$). The average number of artefact-free epochs
256 used to calculate the TEPs was 150 ± 11 at Baseline, 154 ± 13 at Acute Pain, 150 ± 11 at Non-noxious
257 warm, and 149 ± 12 at Post condition.

258 The rmANOVA showed a significant effect of Condition for the peak-to-peak amplitude (Figure 3B;
259 $F_{(2,46)} = 5.01$; $P = 0.010$; $\eta^2_{\text{partial}} = 0.19$). Post-hoc tests revealed a difference between Acute Pain (-
260 $9.9 \pm 8.3\%$) and Non-noxious warm ($0.6 \pm 8.0\%$, $P = 0.037$) and between Acute Pain and Post condition
261 ($0.6 \pm 5.3\%$, $P = 0.036$). Similarly, the rmANOVA showed a significant effect of Condition for the peak-
262 to-peak slope ($F_{(2,46)} = 5.42$; $P = 0.008$; $\eta^2_{\text{partial}} = 0.19$). Post-hoc testing revealed a difference between
263 Acute Pain ($-10.3 \pm 8.4\%$) and Non-noxious warm ($0.6 \pm 5.8\%$, $P = 0.034$) and between Acute Pain and
264 Post condition ($0.7 \pm 4.3\%$, $P = 0.049$).

265 Analyzing the P30 and N100 separately, the rmANOVA only revealed a significant effect of Condition
266 for the P30 amplitude ($F_{(2,46)} = 7.01$; $P = 0.002$; $\eta^2_{\text{partial}} = 0.23$), but no effect for the N100 ($F_{(2,46)} =$
267 2.45 ; $P = 0.098$; $\eta^2_{\text{partial}} = 0.10$). Post-hoc tests revealed a difference in P30 amplitude between Acute
268 Pain ($-11.9 \pm 10.4\%$) and Non-noxious warm ($6.3 \pm 11.0\%$, $P = 0.003$) and between Acute Pain and Post
269 condition ($6.4 \pm 11.0\%$, $P = 0.006$). No significant difference was found for P30 and N100 latencies
270 (both $F_{(2,46)} < 3$; $P > 0.05$; $\eta^2_{\text{partial}} \leq 0.10$). The individual data for M1 stimulation and non-normalized
271 parameters are reported in the supplementary material (Supplementary Figures 1 and 2, Tables 1
272 and 2).

273 ***DLPFC local excitability and pain***

274 The grand averages of TEPs obtained from the TMS stimulation of the left DLPFC cortical area are
275 shown in Figure 4A. The intensity used on DLPFC during the EEG recording was $70.7 \pm 10.5\%$ of TMS
276 stimulator output. The average number of artefact-free epochs used to calculate the TEPs for DLPFC
277 was 145 ± 18 at Baseline, 151 ± 18 at Acute Pain, 150 ± 18 at non-noxious warm, and 149 ± 23 at
278 Post condition. The rmANOVA showed a significant effect of Condition for the peak-to-peak
279 amplitude ($F_{(2,46)} = 4.82$; $P = 0.013$; $\eta^2_{\text{partial}} = 0.17$). Post-hoc test revealed a difference between Acute
280 Pain ($-10.2 \pm 7.4\%$) and Non-noxious warm ($3.5 \pm 7.2\%$, $P = 0.030$), but no significant difference was

281 found between Acute Pain and Post condition ($-5.2 \pm 10.4\%$, $P = 0.540$, Figure 4B). The rmANOVA also
282 showed a significant effect of Condition for the peak-to-peak slope ($F_{(2,46)} = 5.94$; $P = 0.005$; $\eta^2_{\text{partial}} =$
283 0.21). Post-hoc tests revealed a difference between Acute Pain ($-8.9 \pm 8.7\%$) and Non-noxious warm
284 ($6.9 \pm 12.8\%$, $P = 0.026$), and between Acute Pain and Post condition ($8.7 \pm 13.1\%$, $P = 0.018$).
285 When the amplitude of P25 and N45 was separately analyzed, the rmANOVA revealed a significant
286 effect of Condition for P25 ($F_{(2,46)} = 4.48$; $P = 0.017$; $\eta^2_{\text{partial}} = 0.16$), but no effect for N45 ($F_{(2,46)} = 0.14$;
287 $P = 0.871$; $\eta^2_{\text{partial}} = 0.01$). Post-hoc tests for the P25 showed a difference between Acute Pain ($-$
288 $16.7 \pm 8.9\%$) and Non-noxious warm ($0.3 \pm 8.7\%$) ($P = 0.001$), but no difference was found between
289 Acute Pain and Post ($-13.8 \pm 15.2\%$, $P = 0.969$). No significant difference was found for P25 and N45
290 latencies (both $F_{(2,46)} < 3$; $P > 0.05$; $\eta^2_{\text{partial}} \leq 0.12$). The individual data and non-normalized
291 parameters are reported in the supplementary material (Supplementary Figures 1 and 2, Tables 1
292 and 3).

293 **Correlations of local excitability changes during pain**

294 No significant correlation was found between changes in peak-to-peak TEP amplitude under Acute
295 Pain between M1 and the DLPFC ($r = -0.131$; $P = 0.543$, Figure 6A). The visual inspection of individual
296 patient data showed that most healthy participants had reduced peak-to-peak amplitudes in either
297 M1 or the DLPFC. A subsequent correlation analysis of the participants with intense peak-to-peak
298 reduction (below the 1st quartile ($N=11$)) revealed a negative correlation between DLPFC and M1
299 change in amplitude during acute pain ($r = -0.769$; $P = 0.006$) (Figure 6B), indicating that in almost
300 50% of healthy individuals, Acute Pain induced marked changes in local CE in one of the two targets,
301 while only one participant had major amplitude decreases concomitantly in both targets (Figure 6C).

302 No correlations were found between CPM, HTP, CPT and the percentage change during Acute Pain
303 relative to the Baseline in peak-to-peak amplitude in DLPFC (all $P > 0.05$) and M1 (all $P > 0.05$) cortical
304 area. No correlations were found between questionnaires and the percentage change during Acute
305 Pain relative to the Baseline in peak-to-peak amplitude in DLPFC and M1 (all $P > 0.05$).

306 **Global responses during pain**

307 For the M1, the rmANOVA of the global mean field power showed a significant Condition effect
308 ($F_{(2,46)} = 5.48$; $P = 0.007$; $\eta^2_{\text{partial}} = 0.19$). Post-hoc tests revealed a difference between Acute Pain ($-$
309 $9.1 \pm 8.9\%$) and Non-noxious warm ($8.1 \pm 10.4\%$, $P = 0.003$), but no significant difference was found

310 between Acute Pain and Post condition (-1.3±10.3%, $P = 0.301$, Figure 5C). No significant effect of
311 Condition was found ($F_{(2,46)} = 1.46$; $P = 0.242$; $\eta^2_{\text{partial}} = 0.06$) for DLPFC (Figure 5F). The individual
312 data and non-normalized GMFP for DLPFC and M1 are reported in the supplementary material
313 (Supplementary Figure 2 and Table 1).

314 **DISCUSSION**

315 The present results provided novel insight into local and global CE changes in motor and non-motor
316 areas in acute experimental pain. The findings revealed that the decrease in CE during acute pain in
317 M1 and the DLPFC was primarily influenced by the first positive component of the TMS-evoked EEG
318 response and that participants with the greatest reduction in peak-to-peak percentage change in
319 the DLPFC were not the same presenting the largest decreases in the sensorimotor cortex. Only M1
320 appeared to be engaged in a significant global reduction in cortical excitability during acute pain,
321 suggesting differential local-to-global dynamics between these two areas during acute experimental
322 pain.

323 ***Decrease in local cortical excitability***

324 Previous attempts to measure CE during acute pain were performed by assessing MEP recorded
325 from the upper limb and face muscles [8,47]. Since CE obtained by MEPs represents a cumulative
326 measure of excitability across cortico-cortical, cortico-motoneuronal, and spinal motoneuron
327 synapses, alterations at spinal and peripheral levels could potentially contribute to the MEPs
328 reduction in previous studies [8,47]. In the current study, subthreshold intensities were used to
329 stimulate M1 during acute experimental pain. The reduction of the local CE responses indicates a
330 localized reduction in the cortico-cortical excitability at the motor cortex level or in its local
331 surrounding cortical-subcortical networks [5]. Notably, the current study showed a specific
332 reduction of the P30 amplitude (the first positive component of the M1 response to TMS), which
333 was previously correlated to MEPs response, at least in threshold intensities [39]. The origin of P30
334 is only partially known, and it has been suggested to reflect the activity of the ipsilateral premotor
335 [20] and supplementary motor areas [37] since 5Hz rTMS over the hand area of M1 increases this
336 peak [20] and has a metabolic effect on premotor and supplementary motor areas [60].
337 Furthermore, an increased P30 amplitude has been described in patients with progressive
338 myoclonus epilepsy [29], which supports the possibility that the P30 has a motor/premotor origin.

339 Finally, the administration of the voltage-gated sodium channel blocker carbamazepine can
340 suppress P30 in healthy participants, indicating a reduction of motor CE [16]. Together with previous
341 studies, the current results suggest that nociceptive inputs, but not warm, reduce motor excitability,
342 as well as the surrounding motor areas, as part of the central plastic changes related to pain.

343 Inhibitory effects were also found when left DLPFC was probed during acute pain (reduction in the
344 peak-to-peak amplitude and P25 amplitude), pointing towards an analogous local reduction of CE
345 in the prefrontal cortex. In previous studies, peak-to-peak amplitude and slope in the local electrical
346 response of neurons have been linked to a buildup of CE and synaptic strength in the left frontal
347 cortex [10,26]. This association was clear when, after a night of sleep deprivation, peak-to-peak
348 amplitude and slope increased significantly in healthy participants, being subsequently rebalanced
349 after a night of undisturbed sleep recovery [26]. The increased CE was confirmed in vitro and in vivo
350 animal experiments during wakefulness [9]. Additionally, electroconvulsive therapy increased the
351 peak-to-peak amplitude and slope of the electrical response of neurons in the left frontal cortex
352 excitability in patients affected by severe major depression [10], suggesting normalized frontal CE in
353 patients with dysfunctional limbic-cortical pathways [43]. Notably, in the current study, P25 (the first
354 positive component of the TEP after probing the DLPFC) was affected by acute pain and not by
355 warm. This positive component from DLPFC stimulation has been related to frontal CE since
356 intermittent theta-burst stimulation to DLPFC decreased the amplitude of this TEP component in
357 healthy individuals [19]. In addition to mood disorders, the left DLPFC is also known to play a critical
358 role in pain appraisal and detection [57]. According to neuroimaging studies, acute and chronic pain
359 conditions are commonly associated with reduced left DLPFC structure and function [2], reflecting
360 probably a hypo-metabolic state [58]. By contrast, pain-relief interventions, such as therapeutic
361 high-frequency left DLPFC repetitive TMS, can reverse this reduced function, and, have been applied
362 as a modulatory strategy to experimentally induced pain [40,63], post-surgical pain [6,7] and chronic
363 pain [59]. Together with previous studies, the current findings indicate that nociceptive synaptic
364 transmission modulates the left prefrontal activity towards reduced CE compared to the warm
365 control condition.

366 A key finding of the current study was that decreases in M1 and DLPFC local CE were significant and
367 present at similar magnitudes but did not correlate. After individual assessment of each
368 participant's response profile, it was clear that those exhibiting the most significant decrease in

369 peak-to-peak decrease at DLPFC were distinct from those with the largest reduction at M1
370 stimulation. In fact, about 50% of participants were either polarized to M1 or to DLPFC as the main
371 reduction in excitability site and in this subgroup comprising more than half of the participants, a
372 high negative correlation was found between M1 and DLPFC changes during acute pain. This finding
373 suggests a non-uniform interindividual cortical response to acute pain in healthy people, with some
374 individuals presenting changes in a cognitive-evaluative network hub (DLPFC), and others in a
375 sensorimotor one (M1). This is a novel finding that may help reveal the grounds for the
376 interindividual differences in pain perception and treatment response also seen in patients [24].
377 Current pain treatment strategies primarily follow a "one-size-fits-all" approach, wherein patients
378 receive the same treatment regardless of their individual characteristics. As a result, a significant
379 number of patients remain resistant to treatment, with up to 50% of chronic pain sufferers
380 experiencing symptoms despite optimal medical care [1]. TMS-EEG may present a promising non-
381 invasive electrophysiological method to investigate cortical function during pain [22].

382 ***Globally, not all targets are equal***

383 The current study found a decrease in global CE during acute pain only when probing M1, but this
384 was not found significant for the DLPFC. M1 and the DLPFC have different structural and functional
385 connectivity profiles and are hubs in different brain networks. These differences can be appraised
386 in the dynamics of M1 activity propagations after a probing pulse to M1: after the engagement of
387 the stimulation target, activity spreads to more postero-lateral locations, via corticocortical volleys
388 from M1 to the somatosensory areas, and to the opposite hemisphere, via the corpus callosum or
389 subcortical pathways [33]. Differently, the left DLPFC TMS activates the site of stimulation as well as
390 the opposite prefrontal cortex [30,34]. Previous research has also shown that TMS delivered over
391 M1 at rest results in a larger global response compared to DLPFC when using the same TMS intensity
392 [31,34]. This difference is even more pronounced when TMS to M1 is delivered above the rMT [31]
393 due to peripheral nerve stimulation at suprathreshold intensities [32]. In the current study, higher
394 TMS intensity was used to stimulate the DLPFC (110% of the FDI rMT) compared to M1 (90% of the
395 FDI rMT) to produce a clear and reproducible cortical response for DLPFC stimulation. Additionally,
396 baseline normalizations were used so that the intrinsic baseline activation threshold between
397 targets would be compensated for. And still, only M1 showed significant global CE reduction during

398 acute pain compared to non-noxious stimulation. This is an original finding that highlights qualitative
399 changes in the extent to which M1 connectivity is affected by acute pain.

400 ***Limitations***

401 The results of the current study should be interpreted in consideration of its limitations. First, the
402 CE responses induced by TMS can be contaminated by auditory and somatosensory responses [4,13].
403 To minimize this, we included control conditions with warm or no stimulation and compared
404 differences based on changes from baseline values. More importantly, only earlier and local peaks
405 (below 120 ms) were assessed, as auditory and somatosensory responses mainly impact the 100-
406 200 ms range despite optimal measures to minimize them [46]. For the GMFP, the time interval
407 analyzed was from 6 to 300 ms after the TMS stimulation to assess the entire CE and the excitability
408 of remote cortical regions. Since only GMFP from M1 was reduced during acute pain, it is possible
409 to exclude the contribution of potential non-specific effects, such as decreases in arousal, attention,
410 and reduced auditory or somatosensory responses. Secondly, this study did not assess the saliency
411 of the non-noxious warm stimulus, which might affect the results. The warm condition was applied
412 as a control condition to provide similar sensory inputs to the forearm, which could interfere with
413 the cortical response and were not painful. Despite this measure, acute pain and non-noxious
414 stimuli engage saliency systems differently. While it may be argued that activation of the saliency
415 system is an intrinsic component of the pain experience, it can be controlled by matching saliency
416 from non-painful stimuli, which was not done here. Finally, early peaks in the remote regions of the
417 cortex (i.e., right M1 or the right DLPFC [64]) were not analyzed since the main aim of this study was
418 to assess local CE responses during acute pain. Nevertheless, non-motor TEP responses during acute
419 pain could be relevant as contralateral motor plastic changes to a painful stimulus were described
420 using traditional MEP measurements [55].

421 **CONFLICT OF INTEREST**

422 The authors have no conflicts of interest to declare.

423 **FUNDING**

424 This study was funded by the Pain Center, HC-FMUSP, CNPq (scientific production scholarship MJT,
425 DCA). The Center for Neuroplasticity and Pain (CNAP) is supported by the Danish National Research
426 Foundation (DNRF121). DCA supported by a Novo Nordisk Grant NNF21OC0072828.

427 **REFERENCES**

- 428 [1] Attal N, Poindessous-Jazat F, De Chauvigny E, Quesada C, Mhalla A, Ayache SS, Fermanian C, Nizard
429 J, Peyron R, Lefaucheur J, Bouhassira D. Repetitive transcranial magnetic stimulation for neuropathic
430 pain: a randomized multicentre sham-controlled trial. *Brain* 2021;3328–3339.
- 431 [2] Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV. Chronic Pain and the
432 Emotional Brain: Specific Brain Activity Associated with Spontaneous Fluctuations of Intensity of
433 Chronic Back Pain. *J Neurosci* 2006;22:12165–12173.
- 434 [3] Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An Inventory for Measuring Depression. *Arch
435 Gen Psychiatry* 1961;4:561–571.
- 436 [4] Belardinelli P, Biabani M, Blumberger DM, Bortoletto M, Casarotto S, David O, Desideri D, Etkin A,
437 Ferrarelli F, Fitzgerald PB, Fornito A, Gordon PC, Gosseries O, Harquel S, Julkunen P, Keller CJ,
438 Kimiskidis VK, Lioumis P, Miniussi C, Rosanova M, Rossi S, Sarasso S, Wu W, Zrenner C, Daskalakis ZJ,
439 Rogasch NC, Massimini M, Ziemann U, Ilmoniemi RJ. Reproducibility in TMS–EEG studies: A call for
440 data sharing, standard procedures and effective experimental control. *Brain Stimul* 2019;12:787–
441 790.
- 442 [5] Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. Functional MRI of the immediate impact
443 of transcranial magnetic stimulation on cortical and subcortical motor circuits. *European Journal of
444 Neuroscience* 2004;19:1950–1962.
- 445 [6] Borckardt JJ, Ph D, Reeves ST, Frohman H, Jensen MP, Patterson D, Barth K, Smith a R, Gracely R,
446 George MS. Fast Left Prefrontal rTMS Acutely Suppresses Analgesic Effects of Perceived
447 Controllability on the Emotional Component of Pain Experience. *Pain* 2012;152:182–187.
- 448 [7] Borckardt JJ, Reeves S, Weinstein M, Smith A, Shelley N, Kozel FA, Nahas Z, George MS. Significant
449 analgesic effects of one session of postoperative left prefrontal cortex repetitive transcranial
450 magnetic stimulation: A replication study. *Brain Stimul* 2008;1:122–127.
- 451 [8] Burns E, Chipchase LS, Schabrun SM. Primary sensory and motor cortex function in response to
452 acute muscle pain: A systematic review and meta-analysis. *European Journal of Pain* 2016;20:1203–
453 13.
- 454 [9] Bushey D, Tononi G, Cirelli C. Sleep and Synaptic Homeostasis: Structural Evidence in *Drosophila*.
455 *Science* (1979) 2011;332:1576–1581.
- 456 [10] Casarotto S, Canali P, Rosanova M, Pigorini A, Fecchio M, Mariotti M, Lucca A, Colombo C, Benedetti
457 F, Massimini M. Assessing the effects of electroconvulsive therapy on cortical excitability by means
458 of transcranial magnetic stimulation and electroencephalography. *Brain Topogr* 2013;26:326–337.
- 459 [11] Casarotto S, Fecchio M, Rosanova M, Varone G, D'Ambrosio S, Sarasso S, Pigorini A, Russo S,
460 Comanducci A, Ilmoniemi RJ, Massimini M. The rt-TEP tool: real-time visualization of TMS-Evoked
461 Potentials to maximize cortical activation and minimize artifacts. *J Neurosci Methods*
462 2022;370:109486.
- 463 [12] Casarotto S, Lauro LJR, Bellina V, Casali AG, Rosanova M, Pigorini A, Defendi S, Mariotti M, Massimini
464 M. EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable
465 over time. *PLoS One* 2010;5.

- 466 [13] Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR.
467 The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies.
468 *Neuroimage* 2019;185:300–312.
- 469 [14] Correll J, Mellinger C, McClelland GH, Judd CM. Avoid Cohen's 'Small', 'Medium', and 'Large' for
470 Power Analysis. *Trends Cogn Sci* 2020;24:200–207.
- 471 [15] D'Ambrosio S, Jiménez-Jiménez D, Silvennoinen K, Zagaglia S, Perulli M, Poole J, Comolatti R, Fecchio
472 M, Sisodiya SM, Balestrini S. Physiological symmetry of transcranial magnetic stimulation-evoked
473 EEG spectral features. *Hum Brain Mapp* 2022;43:5465–5477.
- 474 [16] Darmani G, Bergmann TO, Zipser C, Baur D, Müller-Dahlhaus F, Ziemann U. Effects of antiepileptic
475 drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study. *Hum Brain Mapp*
476 2019;40:1276–1289.
- 477 [17] Defrin R, Ohry A, Blumen N, Urca G. Sensory determinants of thermal pain. *Brain* 2002;125:501–510.
- 478 [18] Delorme A, Makeig S. EEGLAB : an open source toolbox for analysis of single-trial EEG dynamics
479 including independent component analysis. *J Neurosci Methods* 2004;134:9–21.
- 480 [19] Desforges M, Hadas I, Mihov B, Morin Y, Rochette Braün M, Lioumis P, Zomorrodi R, Théoret H,
481 Lepage M, Daskalakis ZJ, Tremblay S. Dose-response of intermittent theta burst stimulation of the
482 prefrontal cortex: A TMS-EEG study. *Clinical Neurophysiology* 2022;136:158–172.
- 483 [20] Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G. A direct demonstration of
484 cortical LTP in humans: A combined TMS/EEG study. *Brain Res Bull* 2006;69:86–94.
- 485 [21] Fecchio M, Pigorini A, Comanducci A, Sarasso S, Casarotto S, Premoli I, Derchi CC, Mazza A, Russo S,
486 Resta F, Ferrarelli F, Mariotti M, Ziemann U, Massimini M, Rosanova M. The spectral features of EEG
487 responses to transcranial magnetic stimulation of the primary motor cortex depend on the
488 amplitude of the motor evoked potentials. *PLoS One* 2017;12:1–15.
- 489 [22] Fernandes AM, Graven-Nielsen T, De Andrade DC. New updates on transcranial magnetic
490 stimulation in chronic pain. *Curr Opin Support Palliat Care* 2022;16:65–70.
- 491 [23] Fierro B, De Tommaso M, Giglia F, Giglia G, Palermo A, Brighina F. Repetitive transcranial magnetic
492 stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) during capsaicin-induced pain:
493 Modulatory effects on motor cortex excitability. *Exp Brain Res* 2010;203:31–38.
- 494 [24] Galhardoni R, Correia GS, Araujo H, Yeng LT, Fernandes DT, Kaziyama HH, Marcolin MA, Bouhassira
495 D, Teixeira MJ, De Andrade DC. Repetitive transcranial magnetic stimulation in chronic pain: A
496 review of the literature. *Arch Phys Med Rehabil* 2015;96:S156–S172.
- 497 [25] Gordon EM, Chauvin RJ, Van AN, Rajesh A, Nielsen A, Newbold DJ, Lynch CJ, Seider NA, Krimmel SR,
498 Scheidter KM, Monk J, Miller RL, Metoki A, Montez DF, Zheng A, Elbau I, Madison T, Nishino T,
499 Myers MJ, Kaplan S, Badke D'Andrea C, Demeter D V, Feigelis M, Ramirez JSB, Xu T, Barch DM,
500 Smyser CD, Rogers CE, Zimmermann J, Botteron KN, Pruitt JR, Willie JT, Brunner P, Shimony JS, Kay
501 BP, Marek S, Norris SA, Gratton C, Sylvester CM, Power JD, Liston C, Greene DJ, Roland JL, Petersen
502 SE, Raichle ME, Laumann TO, Fair DA, Dosenbach NUF. A somato-cognitive action network
503 alternates with effector regions in motor cortex. *Nature* 2023. doi:10.1038/s41586-023-05964-2.

- 504 [26] Huber R, Mäki H, Rosanova M, Casarotto S, Canali P, Casali AG, Tononi G, Massimini M. Human
505 cortical excitability increases with time awake. *Cerebral Cortex* 2013;23:332–338.
- 506 [27] Ilmoniemi RJ, Kičić D. Methodology for combined TMS and EEG. *Brain Topogr* 2010;22:233–248.
- 507 [28] Ilmoniemi RJ, Virtanen CAJ, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, Katila T. Neuronal
508 responses to magnetic stimulation reveal cortical reactivity and connectivity. *Neuroreport*
509 1997;8:3537–40.
- 510 [29] Julkunen P, Säisänen L, Könönen M, Vanninen R, Kälviäinen R, Mervaala E. TMS-EEG reveals
511 impaired intracortical interactions and coherence in Unverricht-Lundborg type progressive
512 myoclonus epilepsy (EPM1). *Epilepsy Res* 2013;106:103–112.
- 513 [30] Kähkönen S, Holi M, Wilenius J, Karhu J, Nikouline V V., Bailey CJ, Ilmoniemi RJ. The functional
514 connectivity of the prefrontal cortex studied by combined TMS with EEG. *Biomedizinische Technik*
515 2001;46:257–259.
- 516 [31] Kähkönen S, Komssi S, Wilenius J, Ilmoniemi RJ. Prefrontal TMS produces smaller EEG responses
517 than motor-cortex TMS: Implications for rTMS treatment in depression. *Psychopharmacology (Berl)*
518 2005;181:16–20.
- 519 [32] Kähkönen S, Wilenius J, Komssi S, Ilmoniemi RJ. Distinct differences in cortical reactivity of motor
520 and prefrontal cortices to magnetic stimulation. *Clinical Neurophysiology* 2004;115:583–588.
- 521 [33] Komssi S, Aronen HJ, Huttunen J, Kesa M, Soinne L, Nikouline V V, Ollikainen M, Roine RO, Karhu J,
522 Savolainen S, Ilmoniemi RJ. Ipsi- and contralateral EEG reactions to transcranial magnetic
523 stimulation. *Clinical Neurophysiology* 2002;113:175–184.
- 524 [34] Komssi S, Kähkönen S, Ilmoniemi RJ. The Effect of Stimulus Intensity on Brain Responses Evoked by
525 Transcranial Magnetic Stimulation. *Hum Brain Mapp* 2004;21:154–164.
- 526 [35] Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer
527 for t-tests and ANOVAs. *Front Psychol* 2013;4:1–12.
- 528 [36] Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C,
529 Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP,
530 Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quararone A, Rachid
531 F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines
532 on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–
533 2018). *Clinical Neurophysiology* 2020;131:474–528.
- 534 [37] Litvak V, Komssi S, Scherg M, Hoechstetter K, Classen J, Zaaroor M, Pratt H, Kahkonen S. Artifact
535 correction and source analysis of early electroencephalographic responses evoked by transcranial
536 magnetic stimulation over primary motor cortex. *Neuroimage* 2007;37:56–70.
- 537 [38] Makeig S, Westerfield M, Jung T, Enghoff S, Townsend J, Courchesne E, Sejnowski T. Dynamic Brain
538 Sources of Visual Evoked Responses. *Science* (1979) 2002;295:690–694.
- 539 [39] Mäki H, Ilmoniemi RJ. The relationship between peripheral and early cortical activation induced by
540 transcranial magnetic stimulation. *Neurosci Lett* 2010;478:24–28.

- 541 [40] De Martino E, Seminowicz DA, Schabrun SM, Petrini L, Graven-Nielsen T. High frequency repetitive
542 transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor
543 cortex function in the transition to sustained muscle pain. *Neuroimage* 2019;186.
- 544 [41] De Martino E, Zandalasini M, Schabrun S, Petrini L, Graven-Nielsen T. Experimental muscle
545 hyperalgesia modulates sensorimotor cortical excitability, which is partially altered by
546 unaccustomed exercise. *Pain* 2018;159:2493–2502.
- 547 [42] Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective
548 connectivity during sleep. *Science* (1979) 2005;309:2228–2232.
- 549 [43] Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: Towards development
550 of brain-based algorithms for diagnosis and optimised treatment. *Br Med Bull* 2003;65:193–207.
- 551 [44] Mylius V, Ayache SS, Ahdab R, Farhat WH, Zouari HG, Belke M, Brugières P, Wehrmann E, Krakow K,
552 Timmesfeld N, Schmidt S, Oertel WH, Knake S, Lefaucheur JP. Definition of DLPFC and M1 according
553 to anatomical landmarks for navigated brain stimulation: Inter-rater reliability, accuracy, and
554 influence of gender and age. *Neuroimage* 2013;78:224–232.
- 555 [45] Ong WY, Stohler C, Herr D. Role of the Prefrontal Cortex in Pain Processing. *Mol Neurobiol*
556 2019;56:1137–1166. Available:
557 <http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L622473522%0A>
558 <http://dx.doi.org/10.1007/s12035-018-1130-9>.
- 559 [46] Rocchi L, Di A, Brown K, Ib J, Casula E, Rawji V, Di V, Koch G, Rothwell J. Brain Stimulation
560 Disentangling EEG responses to TMS due to cortical and peripheral activations. *Brain Stimul*
561 2021;14:4–18.
- 562 [47] Rohel A, Bouffard J, Patricio P, Mavromatis N, Billot M, Roy JS, Bouyer L, Mercier C, Masse-Alarie H.
563 The effect of experimental pain on the excitability of the corticospinal tract in humans: A systematic
564 review and meta-analysis. *European Journal of Pain* 2021;25:1209–1226.
- 565 [48] Rolke R, Baron R, Maier C, Tölle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Bötefür
566 IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihöfner C, Rolko C, Schaub C,
567 Scherens A, Sprenger T, Valet M, Wasserka B. Quantitative sensory testing in the German Research
568 Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. *Pain*
569 2006;123:231–243.
- 570 [49] Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human
571 corticothalamic circuits. *Journal of Neuroscience* 2009;29:7679–7685.
- 572 [50] Rosanova M, Fecchio M, Casarotto S, Sarasso S, Casali AG, Pigorini A, Comanducci A, Seregni F,
573 Devalle G, Citerio G, Bodart O, Boly M, Gosseries O, Laureys S, Massimini M. Sleep-like cortical OFF-
574 periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome
575 patients. *Nat Commun* 2018;9:1–10.
- 576 [51] Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R,
577 Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ,
578 Pascal Lefaucheur J, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W,
579 Peterchev A V., Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafii MM,
580 Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and

- 581 recommendations for TMS use in healthy subjects and patient populations, with updates on
582 training, ethical and regulatory issues: Expert Guidelines. *Clinical Neurophysiology* 2021;132:269–
583 306.
- 584 [52] Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB,
585 George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-
586 Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive
587 electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic
588 principles and procedures for routine clinical and research application: An updated report from an
589 I.F.C.N. Committee. *Clinical Neurophysiology* 2015;126:1071–1107.
- 590 [53] Russo S, Sarasso S, Puglisi GE, Dal Palù D, Pigorini A, Casarotto S, D'Ambrosio S, Astolfi A, Massimini
591 M, Rosanova M, Fecchio M. TAAC - TMS Adaptable Auditory Control: A universal tool to mask TMS
592 clicks. *J Neurosci Methods* 2022;370:109491.
- 593 [54] Sarasso S, D'Ambrosio S, Fecchio M, Casarotto S, Viganò A, Landi C, Mattavelli G, Gosseries O,
594 Quarenghi M, Laureys S, Devalle G, Rosanova M, Massimini M. Local sleep-like cortical reactivity in
595 the awake brain after focal injury. *Brain* 2020;143:3672–3684.
- 596 [55] Schabrun SM, Christensen SW, Mrachacz-Kersting N, Graven-Nielsen T. Motor Cortex Reorganization
597 and Impaired Function in the Transition to Sustained Muscle Pain. *Cerebral Cortex* 2016;26:1878–
598 1890.
- 599 [56] Schabrun SM, Hodges PW. Muscle pain differentially modulates short interval intracortical inhibition
600 and intracortical facilitation in primary motor cortex. *Journal of Pain* 2012;13:187–194.
- 601 [57] Seminowicz, Moayedi M. The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain. *Journal of*
602 *Pain* 2017;18:1027–1035.
- 603 [58] Seminowicz, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell
604 MC, Shir Y, Ouellet JA, Stone LS. Effective Treatment of Chronic Low Back Pain in Humans Reverses
605 Abnormal Brain Anatomy and Function. *Journal of Neuroscience* 2011;31:7540–7550.
- 606 [59] Short EB, Borckardt JJ, Anderson BS, Frohman H, Beam W, Reeves ST, George MS. Ten sessions of
607 adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: A randomized, controlled
608 pilot study. *Pain* 2011;152:2477–2484.
- 609 [60] Siebner HR, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, Drzezga A, Conrad B, Bartenstein
610 P. Lasting cortical activation after repetitive TMS of the motor cortex: A glucose metabolic study.
611 *Neurology* 2000;54:956–963.
- 612 [61] Spielberger C, Gorsuch R, Lushene R. STAI: Manual for the State–Trait Anxiety Inventory (STAI).
613 Consulting Psychologists Press 1970;8:1308–1309.
- 614 [62] Sullivan MJL, Bishop S, Pivik. The Pain Catastrophizing Scale: development and validation. *Psychol*
615 *Assess* 1995;7:524–532.
- 616 [63] Taylor JJ, Borckardt JJ, Canterbury M, Li X, Hanlon CA, Brown TR, George MS. Naloxone-reversible
617 modulation of pain circuitry by left prefrontal RTMS. *Neuropsychopharmacology* 2013;38:1189–
618 1197.

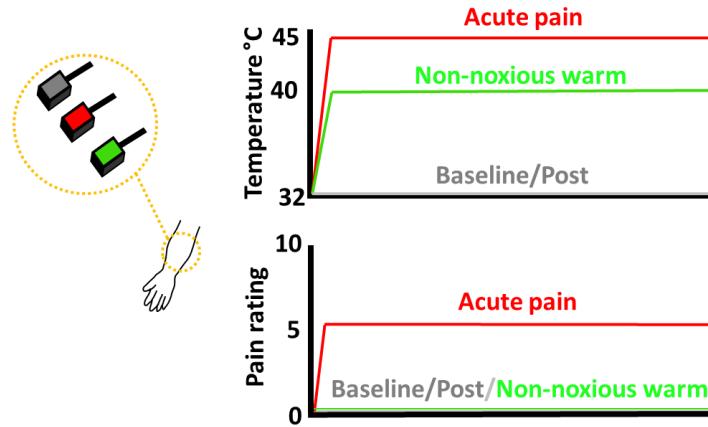
- 619 [64] Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di V, Farzan F, Ferrarelli F,
620 Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-leone A, Concetta
621 M. Clinical utility and prospective of TMS – EEG. *Clinical Neurophysiology* 2019;130:802–844.
- 622 [65] Watson D, Clark LA. Development and Validation of Brief Measures of Positive and Negative Affect:
623 The PANAS Scales. *J Pers Soc Psychol* 1988;54:1063–1070.
- 624 [66] Yarnitsky D, Bouhassira D, Drewes AM, Fillingim RB, Granot M, Hansson P, Landau R, Marchand S,
625 Matre D, Nilsen K, A S, Treede R, Wilder-Smith O. Recommendations on practice of conditioned pain
626 modulation (CPM) testing. *European Journal of Pain* 2014;1–2.
- 627
- 628

629 **FIGURE CAPTION**

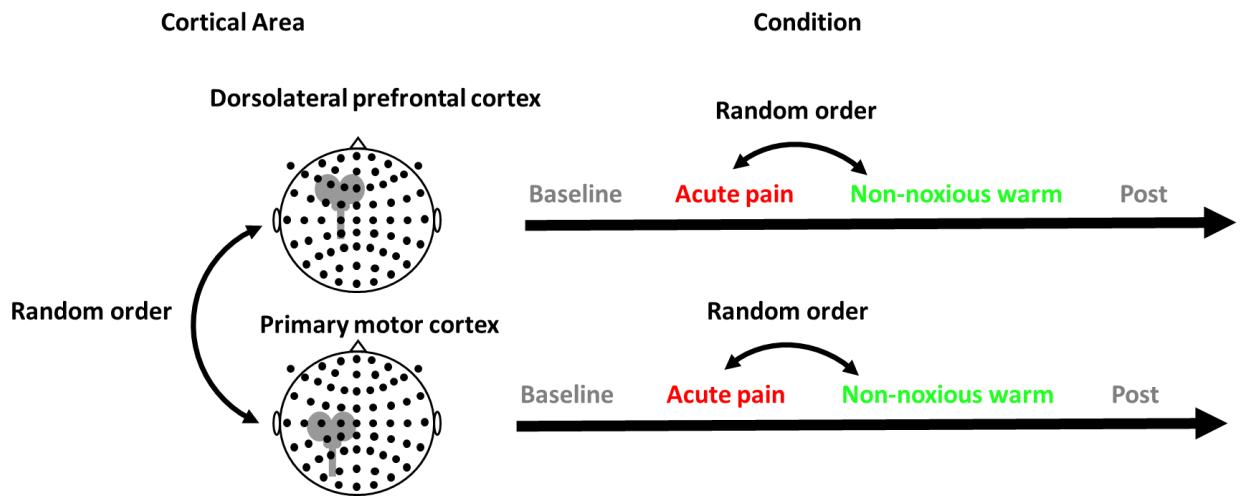
630 **Figure 1:** **A)** Baseline and Post (32°C), Non-painful warm (40.2±0.8°C) and Acute pain (45.2±0.8°C)
631 temperatures were applied to the palmar region of the right forearm. Participants experienced pain
632 intensity of around 5 using an 11-point scale during Acute Pain. **B)** Transcranial Magnetic Stimulation
633 (TMS)-Electroencephalography was recorded in two Cortical Areas: The dorsolateral prefrontal
634 cortex (DLPFC) and the primary motor cortex (M1). Four different conditions were recorded for each
635 cortical area: Baseline, Acute pain, Non-painful warm and Post. The order of cortical stimulation
636 area (DLPFC and M1) and Acute pain and Non-painful warm conditions were randomized.

637 **Figure 2:** Sample data of TMS-evoked activity recorded with EEG following single pulse stimulation
638 in a representative participant. **A)** The figure depicts the left primary motor cortex stimulation with
639 the butterfly plot and topographical maps. The red line corresponds to the C3 electrode, and the
640 blue lines correspond to the other 62 channels. The global mean field power (GMFP) of TMS-evoked
641 potentials is shown below. **B)** The figure depicts the left dorsolateral prefrontal cortex with the
642 butterfly plot and topographical maps. The red line corresponds to the F3 electrode, and the blue
643 lines correspond to the other 62 channels. The global mean field power (GMFP) of TMS-evoked
644 potentials is shown below.

645 **Figure 3:** **A)** Grand average of TEPs (N = 24) during M1 stimulation at Baseline (black line), Acute
646 pain (red line), Non-painful warm (green line) and Post (blue line). The largest peak-to-peak
647 responses from the region close to the stimulation site were selected from each individual
648 participant (selected channel for single participant: C3: n = 13; C1 n = 6; Cp3 n = 5). The topographical
649 maps are shown for the 63 recorded channels next to the positive (P25) and negative (N45) peaks;
650 **B)** Percentage changes from Baseline (mean and 95% confidence interval) are shown at Acute Pain,
651 Non-painful warm and Post (Pairwise contrast * P <0.05).

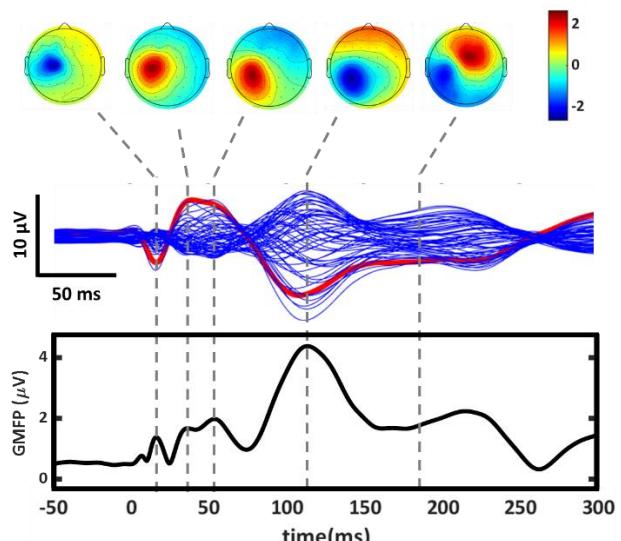

652 **Figure 4:** **A)** Grand average of TEPs (N = 24) during dorsolateral prefrontal cortex stimulation at
653 Baseline (black line), Pain (red line), Warm (green line) and Post (blue line) conditions. The largest
654 peak-to-peak responses from the region close to the stimulation site were selected from each
655 individual participant (selected EEG channel for single participant: F1 n = 14; F3 n = 8; Fc1 n = 2). The
656 topographical maps are shown for the 63 recorded channels next to the positive (P30) and negative
657 (N100) peaks; **B)** Percentage changes from Baseline (mean and 95% confidence interval) are shown
658 at Pain, Warm and Post conditions (*: significantly different from Pain, P <0.05).

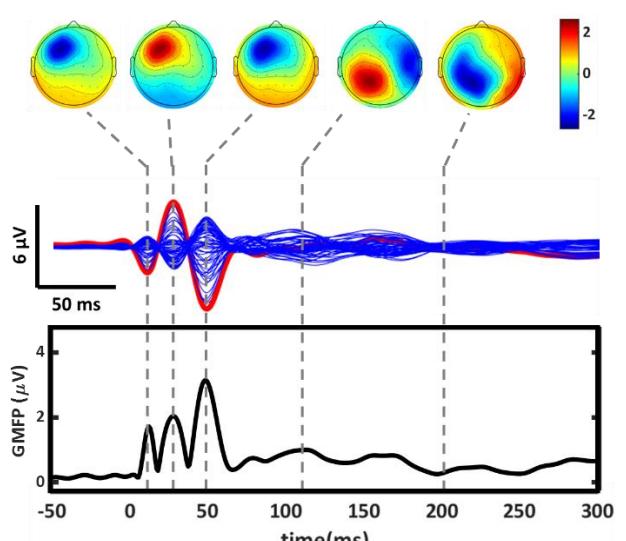
659 **Figure 5:** **A)** Grand average of the scalp maps (N = 24) presenting each individual electrode of TMS
660 stimulation to M1. The red dot corresponds to the area of stimulation. **B)** Grand average of global-
661 mean field power (Baseline; N = 24) from 63 EEG channels recorded in M1 at Baseline calculated as
662 the root mean-squared value of the signal across all electrodes in the time interval of 6-300 ms after
663 TMS stimulation (dark shaded area). **C:** Percentage changes from Baseline at Pain, Non-painful warm
664 and Post (*: significantly different, P<0.05) for the M1 stimulation. **D)** Grand average of the scalp
665 maps (N = 24) presenting each individual electrode of the TMS stimulation to DLPFC. The red dot
666 corresponds to the area of stimulation. **E)** Grand average of global-mean field power (Baseline; N =
667 24) from 63 EEG channels recorded in DLPFC at Baseline. **F)** Percentage changes from Baseline at
668 Acute Pain, Non-painful warm and Post conditions for the DLPFC stimulation.


669 **Figure 6:** Correlation between the peak-to-peak responses from M1 and DLPFC stimulation
670 expressed as a percentage of the Baseline from Acute pain. **A)** Correlation between M1 and DLPFC
671 stimulation in 24 participants (grey shaded area indicates 95% confidence intervals). **B)** Correlation
672 between the peak-to-peak responses from M1 and DLPFC stimulation in the participants who
673 exhibited a falling below the first quartile in their responses. The blue dots represent participants
674 showing a falling below the first quartile in DLPFC stimulation, while the red dots represent
675 participants showing a falling below the first quartile in M1 stimulation. **C)** The figure presents 24
676 stylized heads, each representing an individual participant (heads marked with a red quarter denote
677 participants who exhibit reductions below the 1st percentile in peak-to-peak amplitude in M1, and
678 a blue indicates participants with reductions below the 1st percentile in peak-to-peak amplitude in
679 DLPFC.

680 **FIGURE**
681 **Figure 1**

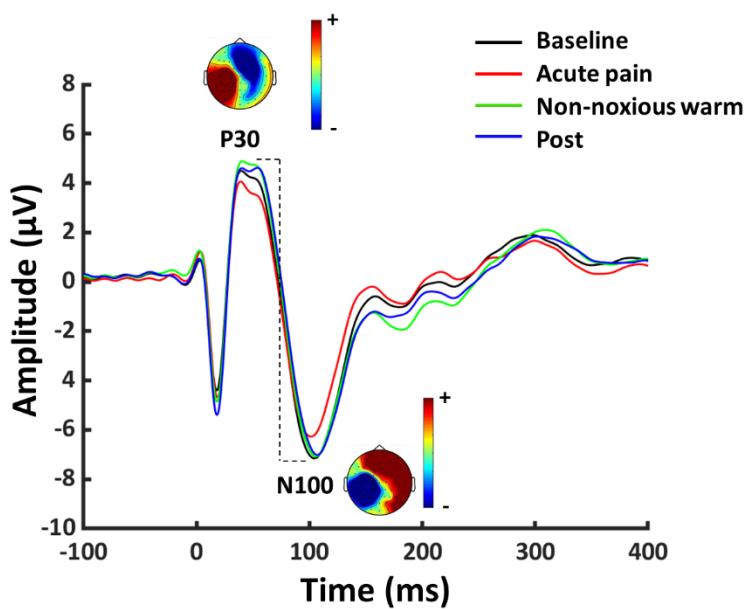
A

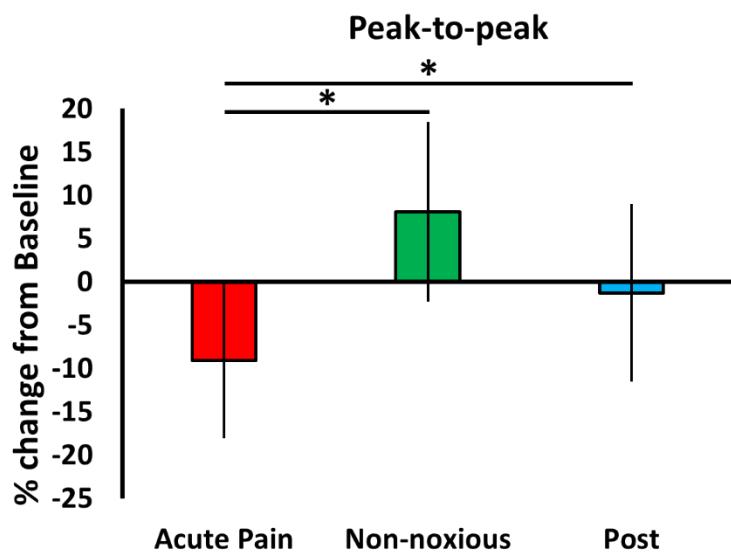

B


682

683 **Figure 2**

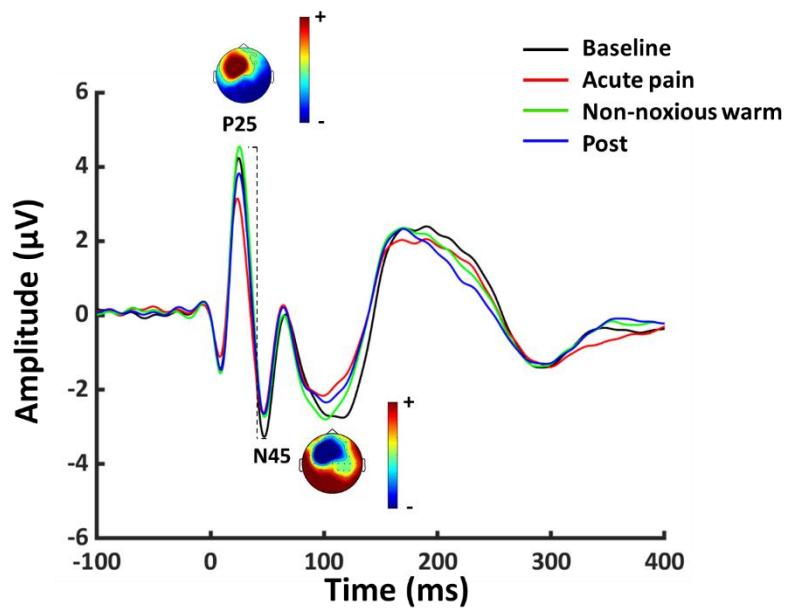
A

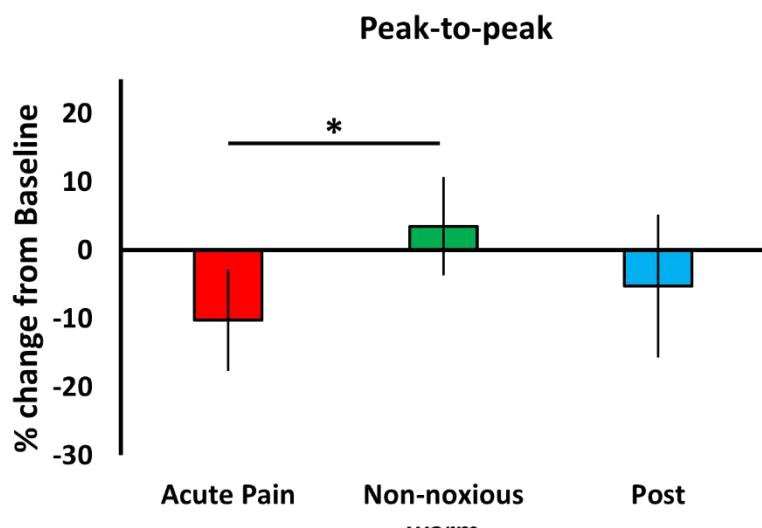

B


684

685 **Figure 3**

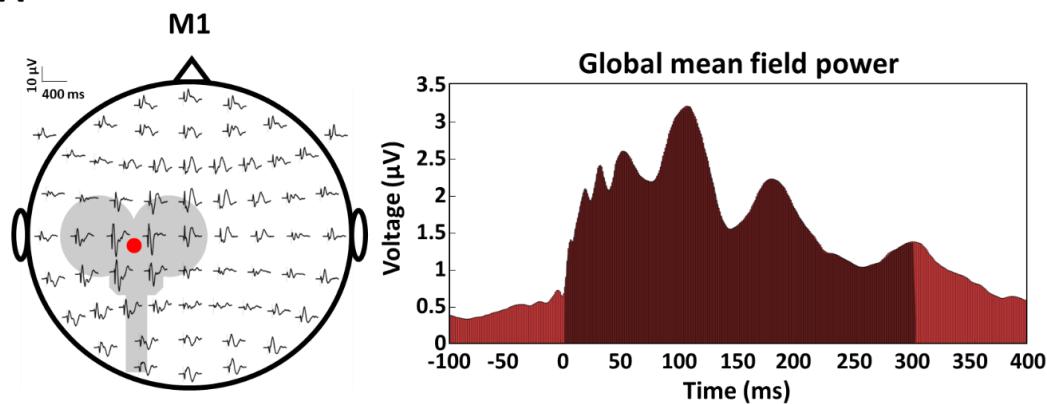
A


B


686

687 **Figure 4**

A


B

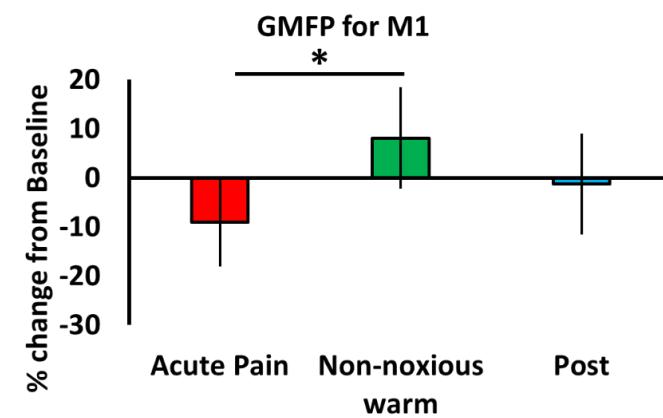
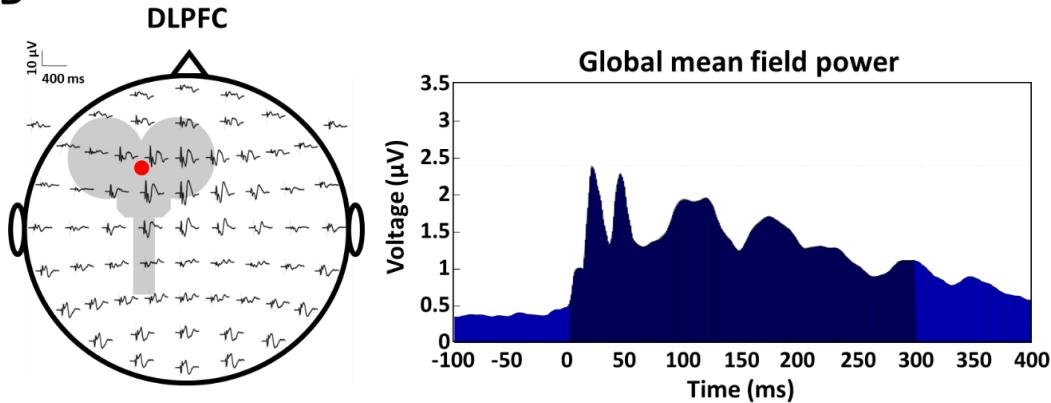

688

Figure 5


A

C

D

F

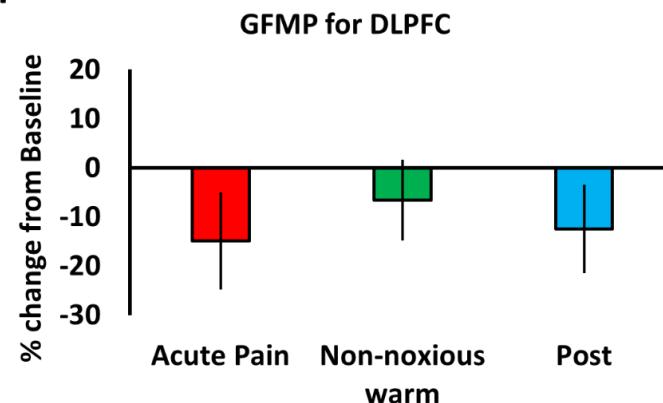
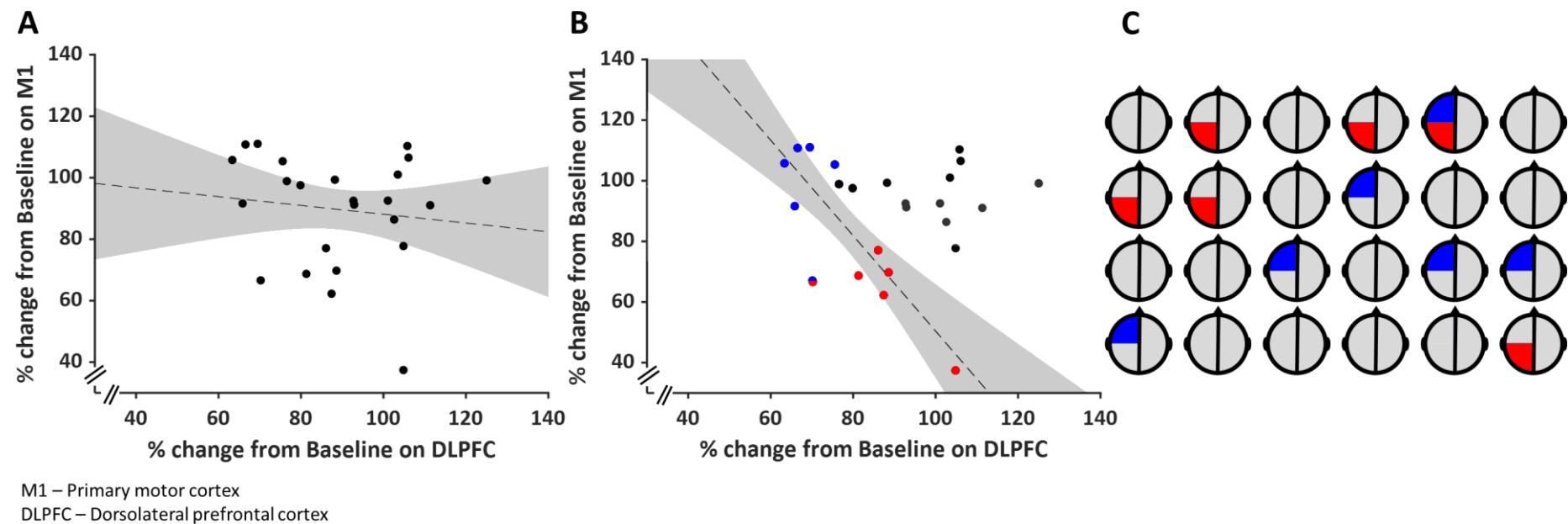



Figure 6

TABLE

Table 1

Mean (\pm standard deviation) of participant demographics, psychological questionnaires, and pain sensitivity.

Variable

Age (years)	27 \pm 5.5
Height (cm)	173 \pm 10.1
Body mass (kg)	70 \pm 14.2
Depression (BDI-II)	5.0 \pm 6.9
State anxiety (STAI-S)	42.6 \pm 6.1
Trait anxiety (STAI-T)	46.5 \pm 4.8
Pain Catastrophizing scale	8.7 \pm 7.9
PANAS-negative	13.3 \pm 3.0
PANAS-positive	25.0 \pm 5.4
HPT (°C)	44.2 \pm 2.9
CPT (°C)	13.1 \pm 9.0
CPM effect (°C)	1.4 \pm 1.2

BDI-II, beck depression inventory; STAI, state-trait anxiety inventory; PANAS, positive and negative affective schedule; HPT, heat pain thresholds; CPT, cold pain thresholds; CPM, conditioned pain modulation.

