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ABSTRACT

Across many brain areas, neural population activity appears to be constrained to a low-
dimensional manifold within a neural state space of considerably higher dimension.
Recent studies of the primary motor cortex (M1) suggest that the activity within the low-
dimensional manifold, rather than the activity of individual neurons, underlies the
computations required for planning and executing movements. To date, these studies
have been limited to data obtained in constrained laboratory settings where monkeys
executed repeated, stereotyped tasks. An open question is whether the observed low
dimensionality of the neural manifolds is due to these constraints; the dimensionality of
M1 activity during the execution of more natural and unconstrained movements, like
walking and picking food, remains unknown. We have now found similarly low-
dimensional manifolds associated with various unconstrained natural behaviors, with
dimensionality only slightly higher than those associated with constrained laboratory
behaviors. To quantify the extent to which these low-dimensional manifolds carry task-
relevant information, we built task-specific linear decoders that predicted EMG activity
from M1 manifold activity. In both settings, decoding performance based on activity
within the estimated low-dimensional manifold was the same as decoding performance
based on the activity of all recorded neurons. These results establish functional links
between task-specific manifolds and motor behaviors, and highlight that both
constrained and unconstrained behaviors are associated with low-dimensional M1
manifolds.
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INTRODUCTION

The number of neurons involved in planning and executing a motor behavior, no matter how
simple or complex, far exceeds the number of variables relevant to behavior. This mismatch
makes the signals across neurons highly redundant and raises the question of how the activity
of a population of neurons represents the relatively few variables relevant to behavior'3.
Contemporary studies across many brain areas report that the activity of populations of neurons
is constrained to low-dimensional subregions of the neural space known as neural manifolds?4-
20: the computations required for planning and executing behaviors appear to be carried out
through the patterns of neural activity within the manifolds rather than through the independent
activity of individual neurons?®13.14.17.21,22,

Despite widespread use of the term “low dimensionality”, its precise meaning and significance
remains unclear. Specifically, it raises questions such as: What qualifies as low dimensional?
How does the behavioral complexity affect the dimensionality of the neural manifold? Should the
nonlinearity in the neural manifold be considered when estimating its dimensionality? Recent
definitions from Jazayeri and Ostojic’s comprehensive review aim to clarify this ambiguity with a
focus on the neural computational principles associated with both intrinsic and embedding
dimensionality in neural recordings?3. A simple example illustrates the distinction between
intrinsic and embedding dimensionalities (Jazayeri and Ostojic 2021). A ring has an intrinsic
dimension of 1. If itis flat, it lies in an (x4, x,) plane, and its embedding dimension is 2. If the
ring is made of a flexible material, it can be locally pinched away from the (x;, x,) plane. A full
description of the ring now requires an additional direction x3; its embedding dimension is 3. If
the ring existed within a 100-dimensional space, there are still 97 directions along which the ring
could be locally pinched away from the (x4, x,) plane. Each such pinch involving a new direction
increases the embedding dimension by one without affecting the intrinsic dimension. This
simple example illustrates the intuition that the discrepancy between embedding and intrinsic
dimensions is a proxy for the degree of nonlinearity of the manifold?*.

The geometrical distinction between intrinsic and embedding dimensions leads to recent
hypotheses about their distinct functionalities: the intrinsic dimensionality quantifies the number
of independent latent variables needed to describe the collective activity of a population of
neurons, while the embedding dimensionality is related to how collective information is
processed and relayed downstream (Jazayeri and Ostojic 2021). For instance, recent
theoretical studies posit that the low embedding dimensionality of the relevant manifolds allows
for accurate brain-to-behavior maps’-?5. A low embedding dimensionality implies that the
relevant population dynamics can be captured by sampling the activity of a relatively small
number of neurons. This observation has two implications. At a conceptual level involving our
understanding of information processing in the brain, a low embedding dimension may facilitate
the downstream readout of neural activity across brain areas; at a practical level involving our
efforts to monitor and interpret neural population activity, a low embedding dimension allows the
relevant population activity to be captured by the current recording technologies?.

The comparative analysis of intrinsic and embedding dimensionality is thus a critical concept to
1) quantify the redundancy in neural representations, 2) identify the number of latent
components of collective activity in the neural population, 3) investigate the relation between
these latent variables and behavioral task variables, sensory inputs, context, planning, and
future expectations, and 4) quantify the extent to which behaviors can be decoded using current
neural recording technologies.

In this study, we focus on primary motor cortical (M1) neural manifolds, which have been
previously found to be low dimensional®92427.28, However, these earlier studies were conducted
in laboratory settings where highly trained monkeys performed simple, constrained reach and
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grasp tasks. In contrast, natural behaviors outside the laboratory do not share these constraints.
It remains unclear whether the observed low dimensionality of M1 manifolds is simply a
byproduct of the constraints associated with laboratory tasks or if it reflects an intrinsic property
of population dynamics in M1'. If the M1 manifolds corresponding to unconstrained behaviors
were found to be similarly low dimensional, it would suggest that low dimensionality is a general
organizational principle about neural population activity in M1. In this view, the relatively few
latent variables that characterize a manifold would be sufficient for characterizing the cortical
control of movement. These population signals are to be read out by the downstream neural
circuitry that ultimately causes movement.

In intracortical Brain-Computer Interface (iBCl) applications, we operate under hardware
limitations that vastly undersample the population of motor cortical neurons contributing to a
specific behavior. When M1 population activity is constrained to a low-dimensional manifold, as
is the case for constrained laboratory tasks, this limitation is overcome when decoding M1
neural activity within iBCls. The question that we address here is whether the confinement of
M1 population dynamics to low-dimensional manifolds also applies to unconstrained, naturalistic
behaviors for which the development of iBCls is highly desirable.

Our primary objective in this work was to characterize the intrinsic and embedding
dimensionality of M1 manifolds corresponding to unconstrained behaviors such as grasping
small treats while standing in the cage and quadrupedal locomotion over perch bars, and to
compare them to the intrinsic and embedding dimensionalities of manifolds corresponding to
constrained behaviors in the laboratory. In this analysis, we first applied denoising algorithms to
the neural signals; this mitigates the overestimation effects of noise on the dimensionality
estimates?42%30, Following denoising, we computed both intrinsic and embedding
dimensionalities of the neural activity. We found that the intrinsic and embedding dimensionality
of neural manifolds were slightly higher in unconstrained settings, but still extremely low.

Our secondary objective was to characterize the geometry of the manifolds associated with
unconstrained behaviors. To this end, we assessed the nonlinearity of the neural
representations in both constrained and unconstrained settings. While we found evidence that
the low-dimensional manifolds associated with unconstrained behaviors were nonlinear, most
latent dynamics involved exploring nearly linear regions within the neural manifolds.

Our final objective was to investigate whether the low-dimensional M1 manifolds carry sufficient
information about behavior to decode simultaneously recorded electromyograms (EMGs). In
both laboratory and cage settings, we demonstrated that EMGs could be decoded from the level
of activation of relatively few latent variables within neural manifolds, and that the performance
of these decoders was as good as that obtained when decoding EMGs from the activity of all
recorded neurons.

Our study illustrates that the low dimensionality of primary motor cortical manifolds is not
exclusive to constrained laboratory tasks but is also present in unconstrained motor behaviors
within a cage environment. Although the manifolds associated with unconstrained tasks have
slightly higher intrinsic and embedding dimensionalities than those associated with constrained
tasks, their existence indicates that the low dimensionality of M1 manifolds is characteristic of
the population dynamics of M1 rather than a mere consequence of laboratory constraints. Our
study advances our understanding of the computational strategies implemented to achieve M1’s
role in processing and representing muscle-related information. In addition, we expect these
findings to facilitate the extension of neural prosthetics and brain-machine interfaces to
unconstrained settings.
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METHODS

Recordings, tasks, and data preprocessing

We trained two 9-10 kg monkeys (Macaca mulatta) to perform tasks in two different
environments. The first is defined as the “in-lab” environment, where the monkeys were seated
on a standard primate chair and trained to perform a grasping task (Fig 1a). The task required
them to reach and grasp a force-instrumented device located 30 cm in front of their shoulder
using either left hand (monkey G) or right hand (monkey P). The shape of the device during an
experimental session determined the type of grasping: a cylinder for power grasps with the palm
and the fingers, a small rectangular cuboid for key grasps with the thumb and the edge of the
index finger, and a small rectangular cuboid recessed within a thin slot for precision grasps with
the tips of the thumb and the index finger. A pair of force sensitive resistors (FSRs) were
attached on the sides of the devices to measure the grasping forces the monkeys applied. A
monitor was placed above the device to display such forces with a cursor; the position of the
cursor along the vertical and horizontal axes was determined by the sum and the difference of
the FSR outputs, respectively. In each trial, the monkeys were initially required to keep the hand
resting on a touch pad for a random time (0.5-1.0 s). A successful holding triggered the onset of
one of three possible rectangular targets on the screen and an auditory go cue. The monkey
was required to place the cursor into the target and to hold it there for 0.6 s by increasing and
maintaining the grasping force applied on the device.

The second environment is defined as the “in-cage” environment, where the monkeys were
placed inside a 2x1x1 m plastic cage (Fig 1b). There were five bars spanning the width of the
cage mounted 10 cm above the floor; the monkey grasped these bars while walking back and
forth the length of the cage. The monkey typically would do a series of power grasps on these
perches as he moved. We called this behavior bar walk. There are small holes on the door of
the cage, through which experimenters could present small food pellets as treats to the
monkeys inside; the monkeys typically used a precision grasp with the thumb and the index
finger to take them. We called this behavior treat grasp. We identified single in-cage bar walk
and treat grasp segments from the continuous recordings based on synchronized video
recordings, and defined those segments as “successful trials”.

We implanted a 96-electrode array with 1.5 mm shaft length (Blackrock Microsystems, Salt Lake
City, UT) in the hand area of motor cortex (M1) of each monkey (Fig 1c; monkey G: right,
monkey P: left). Neural signals were collected using a Cerebus system (Blackrock
Microsystems, Salt Lake City, UT). For the in-lab recordings, the neural signals were amplified
by a Cereplex-E headstage. For the in-cage recordings, the neural signals were amplified,
digitized at 30 kHz, and transmitted by a Cereplex-W wireless headstage. The neural signals
were then digitally band-pass filtered (250 — 5000 Hz). Spikes were detected using a threshold
set at -5.5 times the root-mean-square (RMS) amplitude of the signal on each channel, and the
time stamp and a 1.6 ms snippet of each signal surrounding the threshold crossing were
recorded. We used multiunit threshold crossings on each channel instead of well isolated single
neurons in all our data analyses. We applied a Gaussian kernel (S.D.: 100 ms) to the spike
counts in 50 ms, non-overlapping bins to obtain a smooth firing rate as function of time for each
channel. We excluded channels with an average firing rate < 0.5 Hz during either in-lab or in-
cage movements.

We also implanted intramuscular electromyographic (EMG) leads in 23 arm, forearm, and hand
muscles in the left arm of monkey G and in the right arm of monkey P, contralateral to the M1
implant. For the in-lab recording sessions of monkey G, we collected EMG signals using a multi-
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channel differential amplifier and the analog input channels of the Cerebus system. For the in-
cage sessions of monkey G and all sessions of monkey P, we collected EMG signals using a
micro multi-channel amplifier (RHD2132, Intan Tech., Los Angeles, CA) and a wireless
transmitter (RCB-W24A, DSP Wireless Inc., Haverhill, MA). The micro amplifier and wireless
transmitter were both placed in a backpack on the monkey’s jacket. The EMG signals were
amplified, band-pass filtered (4-pole, 50 - 500 Hz), and sampled at 2000 Hz. The EMGs were
subsequently digitally rectified and low-pass filtered (4-pole, 10 Hz, Butterworth), and
subsampled to 20 Hz (50 ms bins) to match the neural spike counts.

For each monkey, we divided the neural and EMG data collected for a given task into smaller
datasets of non-overlapping data segments of 75 seconds duration. We chose 75 seconds
based on simulations?* and on a preliminary analysis (Supplementary Fig 1) that assessed the
effect of the amount of temporal data on dimensionality estimates. All neural and EMG data
channels were normalized to their 95" percentile value.

Embedding and intrinsic dimensionality estimation algorithms

We used two algorithms for dimensionality estimation: Parallel Analysis®'-33 and Two Nearest-
Neighbors34. These methods were selected due to their superior performance in evaluating the
dimensionality of simulated linear and nonlinear manifolds, respectively?*.

Parallel Analysis (PA) is an embedding dimensionality estimator based on the eigenvalues of
the covariance matrix for the dataset®'. Unlike other embedding dimensionality estimators that
rely on eigenvalue computation, PA does not rely on a predetermined variance threshold, but
rather relies on counting the number of eigenvalues that exceed their respective values in a null
distribution. This method has been shown to be an accurate estimator of embedding
dimensionality in many fields3°.

To estimate the embedding dimensionality of a given M-by-N dataset with M samples of N
recorded signals, the PA algorithm proceeds as follows. First, it repeats the following process K
times: for each feature, the data are independently shuffled using a random permutation along
the corresponding column, the temporal axis; this shuffling breaks the correlation across
features. Then, the eigenvalues of the features covariance matrix for the shuffled data are
obtained and sorted from largest to smallest. A null distribution is created for each eigenvalue
from the K shuffles. We used K = 200 repetitions and fixed the random number generator seed
for reproducibility.

Next, we computed the 95" percentile from the null distribution of each eigenvalue; this serves
as a significance threshold. Finally, we counted the number of original eigenvalues that were
larger than their respective 95" percentile null distributions. This number was D4, the
embedding dimensionality estimate obtained by PA. While the 95™ percentile cutoff was an
arbitrary choice, PA is quite robust to a reasonable choice of threshold to characterize
significant deviations to the null, noise-based eigenvalue distribution3®. In contrast, the usual
practice of choosing a threshold for the variance-accounted-for (VAF) in a PCA-based approach
often results in significant changes in the estimate of the embedding dimensionality when the
threshold is changed by a few percentage points, such as choosing a 90" instead of a 95
cutoff.

To estimate the intrinsic dimensionality, we used Two Nearest-Neighbors (TNN), an estimator
based on the local adjacency of data points3436:37, Specifically, this method is based on the ratio
u of distances to the second vs the first nearest neighbors of a given point. The second-to-first
nearest neighbors distance ratio is Pareto distributed with a unitary scale parameter and a
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shape parameter equal to the intrinsic dimensionality®. The intrinsic dimensionality can be
approximated using the following equation:

log(1-F(w)

log(l) (Equation 1)

Dryy = —
Here, F(u) is the empirical cumulative distribution of the ratio of second-to-first nearest neighbor
distances for each data point. In this study, we used the publicly available python package
called scikit-dimension® to compute the TNN estimate of intrinsic dimensionality.

Denoising algorithms

Noise is a confounding factor for both intrinsic and embedding dimensionality estimates?4.29:30,
Random noise across channels will lead to increased dimensionality estimates that might even
approach the total number of recorded signals. To address this issue, we implemented two
denoising approaches that rely on an initial estimate of an upper bound dimensionality D = Dp,4
obtained using Parallel Analysis (PA).

The first approach, PCA denoising, is a linear method based on Principal Component Analysis
(PCA, Fig 2a). After determining the value of D using PA, we used the D leading principal
components to reconstruct the original data. This approach assumes that most of the noise is
present in the low-variance principal components that have been discarded.

The second approach, Joint Autoencoder (JAE) denoising, is a neural network-based method
(Fig 2b). We divided the noisy neural signals with N features into two disjoint subsets, each
including N /2 features, and used the compressive halves of two autoencoders to map each
subset into a D-dimensional subspace. The reconstructed versions of the subsets of dimension
N/2 resulted from the expansive halves of the respective autoencoders. The JAE was trained
using a cost function that minimized the mean-squared error associated with the reconstructions
of each of the two subsets, as well as the mean-squared error between the two intermediate D-
dimensional latent signals. This approach assumes that each subset contains the necessary
information to identify the underlying D-dimensional signals while the noise components are
common across the two subsets.

To evaluate the performance of the denoising algorithms, we calculated the coefficient of
determination (R?) between the denoised and noisy neural signals (Fig 2c and 2d). We
validated these denoising approaches in a previous study based on simulated neural datasets
with known levels of noise?.

Robustness of the dimensionality estimates relative to the ambient
dimensionality of the underlying neural space

Accurately interpreting the dimensionality of neural data requires consideration of the amount of
data used for dimensionality estimation. Prior studies have shown that the amount of data used,
measured by both the number of samples M and number of features N, can affect the accuracy
and precision of the dimensionality estimates232430.40. To ensure stable dimensionality
estimates, we determined that datasets roughly one minute in length were sufficient for our
analyses (see Supplementary Figure 1).

Similarly, we conducted analyses to determine the robustness of our estimates with respect to
the number of neurons. Specifically, we aimed to assess whether our dimensionality estimates
reached an asymptote as the number of neurons increased, indicating reliable estimates. We
gradually sampled increasing numbers of neurons and repeatedly computed the dimensionality
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estimates 20 times for each number. We sampled 5, 10, 15, 20, 25, 30, 35, and the maximum
number of recorded neurons for each dataset. If the estimates reached an asymptote, we
concluded that additional neurons would not contribute meaningfully to the estimated
dimensionality, indicating that our dimensionality estimates were robust. Conversely, if the
estimates continued to increase with the number of neurons, this suggested that more neurons
would be necessary to obtain reliable estimates.

Quantifying the extent of nonlinearity

We used two measures to compute the extent of nonlinearity in the neural recordings; these
measures arise from two complementary perspectives. The first measure, that we called
manifold nonlinearity index, focused on the nonlinearity of the geometry of the neural manifold.
The second measure, that we called local flatness index, focused on how much of the
population activity is concentrated in approximately linear regions within the manifold.

To compute the manifold nonlinearity index, we used the ratio of embedding-to-intrinsic
dimensionality of the neural manifold?*. The manifold nonlinearity index is similar to the
dimensionality gain metric used in an artificial neural network study that sought to extract
predictive latent signals*'.

To compute the local flatness index, we compared the Euclidean and geodesic distances
between every pair of data points in the state space of each dataset (Supplementary Figure
2). Euclidean distance is the length of the shortest straight line between two points, while
geodesic distance takes into account the curvature of the neural manifold by measuring the
length of the shortest path that lies within the manifold and connects the two points. To calculate
the geodesic distance from one point to all others, we started from a nearest-neighbor cloud
limited to 200 samples. Distances to those 200 closest activity patterns were computed along
the straight lines joining the central point to its neighbors within the cloud. It is from these short
linear segments that global geodesics are constructed.

A large discrepancy between the Euclidean and geodesic distances indicates that the
population activity explores curved, nonlinear regions within the manifold. A higher degree of
overlap suggests that the neural activity is largely confined to nearly linear regions within the
manifold. To determine the extent to which the neural activity evolves in a linearizable region of
the neural manifold, we computed the empirical distribution of both Euclidean and geodesic
distances for each dataset. We used 20 bins to cover the full range shared between these two
distance distributions; we then converted these distributions to normalized densities. Within
each bin, the smaller of the two density values, multiplied by the bin size and summed over all
bins provides the value for the local flatness index. Supplementary Figure 2 shows a graphical
illustration of how we computed the local flatness index for a randomly chosen bar walk dataset
from Monkey P.

Computing the activity on the low-dimensional neural manifolds

To project the population neural activity onto the low-dimensional neural manifolds, we
employed two different techniques, each with different underlying assumptions about the
linearity of the data: Principal Component Analysis (PCA) and a nonlinear autoencoder. PCA is
a widely used linear technique based on finding the orthogonal directions in neural space that
correspond to maximum variance in the data. In contrast, the nonlinear autoencoder is a neural
network-based technique that can capture complex nonlinear relationships in the data and is
especially useful for projecting population activity onto the low-dimensional nonlinear neural
manifolds. The autoencoder consisted of five feedforward layers (input, first hidden, bottleneck,
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second hidden, and output layers) with ReLU activation and was trained using the ADAM
optimizer on the reconstruction error, the mean-squared error between output and input; default
training parameters were used, and training lasted for 50 epochs.

For both techniques, we used the TNN estimates of the intrinsic dimensionality to determine the
manifold dimensions. For PCA, this meant that we retained a number of leading principal
components equal to Dyyy rounded to the nearest integer. For the autoencoder, we made the
number of neurons in the bottleneck layer equal to D,y rounded to the nearest integer.

Decoding electromyograms (EMGs)

Our setup allowed for the simultaneous recording of neural signals from the primary cortex and
EMG signals from muscles as the monkeys engaged in various motor behaviors. We used
linear regression to decode EMG signals from neural signals; this basic, interpretable, and linear
method is widely used in the field of brain-computer interfaces*?>43. Each set of EMG signals
was decoded using three types of inputs: all available neurons, latent signals obtained from
PCA, and latent signals obtained from the bottleneck layer of the autoencoder. We used five-
fold cross validation for each approach and reported all five test folds for a given neural-to-EMG
dataset pair.

Statistical analyses

We reported our computations in the mean + standard deviation format. We used Welch’s t-test
for statistical comparisons when the distribution of the statistic of interest was normal. We used
Wilcoxon rank sum test in the case when the normality assumption was violated
(Supplementary Fig 3). When we compared EMG decoding accuracies from PCA embeddings,
AE embeddings, and all available neurons, we used repeated measures ANOVA (Fig 6). We
reported the p-values obtained from the statistical test in the figure legends and used Bonferroni
correction for multiple comparisons where applicable.

Ethics statement

All surgical and experimental procedures that yielded the datasets comprising of multi-electrode
neural recordings and intramuscular electromyogram (EMG) signals from non-human primates
were approved by the Institutional Animal Care and Use Committee of Northwestern University.
The two monkeys were monitored daily to ensure their well-being and health. Their diet
consisted of a standard laboratory animal diet supplemented with fresh fruits and vegetables to
provide optimal nutrition. Additionally, the monkeys were provided with access to various types
of enrichment to promote mental stimulation and overall well-being.
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RESULTS

Reducing the effects of noise using linear and nonlinear methods

Both neurons and neural recordings are noisy*4, which can cause an overestimation of the
dimensionality?324.3445 of recorded neural activity. To mitigate the effect, we first denoised the
recorded neural signals using two approaches that differed by their assumption about the
linearity of the manifold to which the data is mostly confined. The linear denoising method was
based on Principal Component Analysis (PCA, Fig 2a). The nonlinear denoising method was a
neural network-based approach called the Joint Autoencoder (JAE, Fig 2b).

For every data set for both monkeys, denoising the data using JAE yielded a higher
reconstruction accuracy (R?) than denoising the data using PCA (Fig 2c and 2d). For monkey P
and for the power and precision grasp tasks, PCA yielded a reconstruction accuracy of 0.78 +
0.03 (mean + standard deviation) and 0.78 + 0.02, whereas JAE yielded 0.88 + 0.04 and 0.87 +
0.04, respectively. The reconstruction accuracies for the bar walk and treat grasp tasks were
0.69 + 0.02 and 0.71 £ 0.05 with PCA, and 0.76 + 0.02 and 0.85 £ 0.04 with JAE. We observed
a similar trend for Monkey G. For the power and key grasp tasks, reconstruction accuracy using
PCA was 0.65 + 0.01 and 0.74 + 0.02, whereas the reconstruction accuracy using JAE was
higher at 0.88 =+ 0.02 and 0.91 + 0.02. For the unconstrained tasks, reconstruction accuracies
using PCA and JAE were 0.66 £ 0.01 and 0.68 + 0.05, and 0.77 + 0.01 and 0.81 + 0.04,
respectively. For the reminder of the analyses, we denoised the neural signals using the JAE
approach due to its consistently superior performance over PCA.

Dimensionality estimates of denoised neural signals

Our next goal was to compute the dimensionality of the denoised signals. We applied two
dimensionality estimation algorithms: PA and TNN. We used PA to estimate the embedding
dimensionality and TNN to estimate the intrinsic dimensionality of the neural signals. These
methods were chosen based on their assumption about linearity and superior performance to
alternatives?.

Both embedding and intrinsic dimensionality estimates were slightly higher for unconstrained
behaviors compared to constrained behaviors for both Monkey P and Monkey G (Fig 3).
Dimensionality estimates from PA were almost always higher than those from TNN. For Monkey
P, the PA dimensionality across the constrained laboratory tasks increased from 7.28 + 1.67 to
10.40 * 2.54 across the unconstrained tasks (Fig 3a). Similarly for Monkey G, the PA
dimensionality across constrained and unconstrained tasks was 5.84 £ 0.78 and 9.27 + 1.62,
respectively (Fig 3b). We observed the same trend in TNN dimensionality across the two task
settings. TNN dimensionality estimates for Monkey P increased from 5.01 £ 0.39 to 6.5 + 0.58
from the constrained to unconstrained tasks (Fig 3c¢). Similarly for Monkey G, TNN estimates
went from 4.72 + 0.18 to 5.70 £ 0.27 (Fig 3d). In summary, neural manifolds for all tasks were
consistently much smaller than the total number of sampled neurons, which defines the
dimensionality of the empirical neural space that contains these task-specific manifolds. We
note that both the intrinsic and embedding dimensionalities were slightly higher for
unconstrained tasks.

We asked if the small but significant increase in the dimensionality of neural manifolds
associated with unconstrained tasks is a reflection of increased task complexity'?°, and used
the intrinsic dimensionality of EMG signals as a proxy for task complexity (Supplementary Fig
3). The increase in EMG dimensionality when comparing unconstrained to constrained tasks
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was also small but significant, and particularly noticeable in some instances of unconstrained
tasks for monkey G (Supplementary Fig 4).

Investigating the extent of nonlinearity in the neural manifolds

To quantify the degree of nonlinearity in the geometry of neural manifolds, we computed the
manifold nonlinearity index (see Methods). On average, the manifold nonlinearity index was
slightly higher for the unconstrained tasks than for the constrained tasks, but rarely exceeded
two (Fig 4a and 4b). On average, the manifold nonlinearity index was 1.45 + 0.29 (Monkey P)
and 1.24 £ 0.16 (Monkey G) for the constrained tasks, and 1.58 + 0.28 (Monkey P) and 1.63 +
0.26 (Monkey G) for unconstrained tasks, respectively. The larger manifold nonlinearity index
for Monkey P was not statistically significant.

The manifold nonlinearity index only partially elucidates the nature of nonlinearity of the neural
manifold, because it does not reveal how neural activity samples the manifold. To complement
it, we computed the local flatness index, which quantifies the extent to which the population
activity samples linear regions within the manifold (see Methods). The approach is based on
comparing all pairwise Euclidean and geodesic distances for each dataset. (Fig 4c and 4d).
The overlap between the distributions of geodesic and Euclidean distances highlights the
degree of linearity in the explored regions of the manifold: an overlap greater than 0.50 indicates
that most of the data lie in regions of the manifold that are well approximated by the tangent
linear subspace (Supplementary Fig 2).

For Monkey P, the constrained tasks had a local flatness index of 0.79 £+ 0.04 and
unconstrained tasks had a local flatness index of 0.70 £ 0.06. For Monkey G, local flathess was
0.58 £ 0.06 for constrained and 0.81 = 0.04 for the unconstrained tasks (Fig 4c and 4d). The
differences for both monkeys were statistically significant, despite being in opposite directions.
We notice the low value of the local flatness index for Monkey G when executing constrained
tasks, and hypothesize that this effect is likely associated with the adoption of distinct task
execution strategies by Monkey G in the laboratory, as illustrated in Supplementary Fig 3b. For
this hypothesis to be confirmed, we would need to analyze and compare the fine details of task
execution, an analysis beyond the scope of this work. To summarize these findings the
aggregate results in Fig 4c and 4d show that the local flatness index never fell below 0.5 in any
constrained or unconstrained scenario; this indicates a substantial overlap between the
distributions of geodesic and Euclidean distances for both monkeys. Results for the local
flatness index establish that for the tasks investigated here the neural population dynamics
visited states mostly confined to nearly linear regions within slightly nonlinear neural manifolds.

Number of neurons required for stable dimensionality estimates

One critical consideration for interpreting dimensionality is the amount of data needed for
dimensionality estimates; previous studies show that the amount of data can affect the accuracy
of the estimates?44%. We determined that datasets roughly one minute-long were sufficient for
stable dimensionality estimates (Supplementary Figure 1).

Another factor contributing to the reliability of dimensionality estimates is the number of
recorded neurons. How robust are the dimensionality estimates with respect to the number of
neurons used in analysis? To answer this question, we assessed whether the dimensionality
estimates reached an asymptote as the number of neurons used for analysis increased. An
asymptotic saturation of the estimated dimensionality would signal reliable dimensionality
estimates.
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We found that for both monkeys the nonlinear TNN method saturated as the number of neurons
increased (Fig 5a and 5c). The TNN dimensionality estimates saturated at roughly 20 to 35
sampled neurons for all tasks and monkeys. In contrast, the linear method PA yielded
dimensionality estimates that continued to increase as the number of neurons used to estimate
manifold dimensionality increased (Fig 5b and 5d).

Decoding EMGs from low-dimensional latent activity

Finally, we compared how well the neural manifolds represented behavior by decoding EMGs
from the activity within the low-dimensional neural manifolds obtained with both PCA and a
nonlinear autoencoder (Fig 6). We compared the accuracy of these decoders to that of
decoders based on the activity of all recorded neurons. In both scenarios, we reported the

Dy n estimates of the intrinsic dimensionality of the EMG signals and used this dimensionality
as the number of leading latent variables to be used as inputs to a neural-to-EMG decoder.

This approach allowed us to directly quantify the extent to which muscle-related information
lives in a linear hyperplane that approximates a slightly nonlinear neural manifold of

Dryn dimensions. Examples of actual and decoded EMG signals based on all recorded
neurons, linear latent variables, and nonlinear latent variables are shown in Supplementary Fig
5 for five different muscles. We also showed the EMG decoding performance from progressively
increasing neural manifold dimensionality in Supplementary Fig 6.

In all datasets, the accuracies obtained when decoding EMGs from all recorded neural signals
and from the low-dimensional latent variables were not significantly different. Importantly, linear
decoding from the activity of PCA and autoencoder latent variables restricted to Dyyy
dimensions yielded similar accuracy—ANOVA with repeated measures was not significant, p =
0.59. For Monkey P, the average test-fold EMG decoding accuracy using PCA, autoencoder, or
all recorded neural signals was (mean + standard deviation) 0.41 + 0.14, 0.40 £ 0.15, and 0.41
+ 0.15 (Fig 6a). The corresponding results for Monkey G were 0.42 + 0.15, 0.42 + 0.15 and 0.41
+ 0.17(Fig 6b). These results indicate that there was no difference in EMG decoding from the
activity of all recorded neurons or from the latent variables that characterize the low-dimensional
neural manifolds. Additionally, the similar EMG decoding accuracy from Dy latent variables
obtained from PCA and nonlinear autoencoder embeddings indicates that the information
encoded in the motor cortex relevant to activating muscles exists in a mostly linear subspace of
dimension D;yy (Supplementary Fig 5 and 6).
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DISCUSSION

Neural dimensionality has emerged as an important concept for understanding the underlying
dynamics and computation abilities of populations of neurons. The dimensionality of the primary
motor cortex (M1) manifolds associated with specific tasks has been found to be low in
numerous studies limited to constrained laboratory behaviors?92427.46_|n this work, we
computed the intrinsic and embedding dimensionalities of M1 recordings as monkeys engaged
in unconstrained tasks in their home cage. Our primary finding was that both the intrinsic and
embedding dimensionality of M1 signals were slightly higher than for tasks performed with a
single arm, while seated in a primate chair. Although the manifolds associated with
unconstrained tasks were found to have slightly higher dimensionalities, these dimensionalities
were still very low. In addition, although we found signatures of nonlinearity in the M1 neural
manifolds, most of the activity was confined to nearly linear evolved regions within the neural
manifolds. Finally, the accuracy of linearly decoded EMGs from the low-dimensional latent
variables that characterize the manifolds matched closely the accuracy of EMGs decoded from
all recorded neurons, both in cage and in lab.

Linking neural dimensionality to neural computation and processing

There are different definitions and interpretations of dimensionality. We adopted those recently
put forward by Jazayeri and Ostojic, who distinguish between intrinsic and embedding
dimensionalities?®. While the intrinsic dimensionality quantifies the number of independent latent
variables encoded by a neural population, the embedding dimensionality plays a role in
understanding how the latent variables are processed and transmitted. Together, the analysis of
both intrinsic and embedding dimensionalities illuminates how neural systems encode and
process information.

Intrinsic dimensionality refers to the actual dimensionality of a nonlinear manifold to which the
population neural activity is mostly confined; it may include different classes of information, such
as sensory inputs, motor outputs, and other latent variables that correspond to learned
experiences and expectations?3. Since different brain regions selectively represent these
classes, the intrinsic dimensionality of a representation in a particular brain area may be
strongly associated with one class and weakly with another. For example, the intrinsic
dimensionality of latent signals in early sensory areas like the olfactory cortex and primary visual
cortex is associated with the representation of incoming stimuli such as chemical odors*’ or
visual gratings*®, respectively. On the other hand, latent signals from the primary motor cortex
are more closely associated with motor output?64%50 and less with future expectations®'. The
intrinsic dimensionality of manifolds in the primary motor cortex would therefore be expected to
be closely associated with motor output variables such as kinematics or muscle activation.

Embedding dimensionality refers to the dimensionality of the minimal Euclidean space sufficient
to fully contain the nonlinear manifold. Although the recurrent dynamics within a given brain
area might lead to nonlinear manifolds best characterized by their intrinsic dimension, it is their
embedding dimension that best characterizes the signals to be communicated through linear
readouts. This observation has led to the view that the embedding dimension reflects how the
latent variables are processed for communication to other neural areas?3. However, the
computational principles associated with the embedding dimensionality are not yet fully
understood. What determines whether the embedding dimensionality is high or low? We have
argued that a higher degree of manifold nonlinearity will require a larger embedding dimension.
But how does this concept connect to the question of communication across areas? One
hypothesis is that the neural code is linearly relayed to other brain areas or to the periphery52-56,
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In this view, different linear decoders can selectively relay different task relevant information to
different downstream areas without interference, a property called mixed selectivity®”-58. A brain
area that relays distinct sets of information to several downstream areas would require the latent
variables to be embedded into a higher-dimensional Euclidean subspace to facilitate mixed
selectivity. Mixed selectivity thus necessitates a high embedding dimensionality®3. As an
example of this correspondence, prefrontal and primary visual cortical neurons have been
reported to have a very high embedding dimensionality®?57:5%; these observations fit well with the
mixed selectivity hypothesis. In contrast, a brain area that does not require extensive mixed
selectivity, such as the primary motor cortex, would generate latent variables that only require a
relatively low embedding dimensionality, an observation consistent with many reports on M1
manifo|d82,9,24,27,28,60,61 .

Low dimensionality of M1 transcends task constraints

Thus far, the low dimensionality of M1 manifolds has only been investigated in the context of
constrained laboratory settings. It is unclear whether the low dimensionalities observed in M1
truly reflect some intrinsic computational property of M1 or whether they are a byproduct of the
constraints in stereotyped, repeated laboratory tasks. To begin to elucidate this question, our
approach was to obtain and analyze a rich collection of datasets corresponding to two distinct
settings: laboratory and cage. These two settings captured different levels of constraint. In the
laboratory setting, we placed the monkeys in a primate chair with restraints such that they were
only able to move the hand contralateral to their neural implant in specific, well-instructed trial
segments. In the cage setting, the monkeys had more freedom to move around the perch bars
and could grab small treats from the experimenters as they pleased. We did not provide any
instructions on how or when to perform the tasks in the cage; the monkeys could take as much
time as they needed and execute these tasks in a non-stereotyped manner. Our results show
that the low dimensionality of the primary motor cortex is largely independent of task setting and
constraints. Both the intrinsic and embedding dimensionalities of M1 were low in both
constrained laboratory and unconstrained cage settings, with only slightly higher dimensionality
estimates for the unconstrained tasks (Fig 3). Thus, we hypothesize that the low dimensionality
of M1 may not be a byproduct of constrained movements, but rather reflects its computational
strategy. Our results, obtained through the lens of dimensionality, fit in with recent evidence of
context independence in M1, In contrast, recent evidence from mouse cerebellar parallel fiber
recordings showed a roughly four-fold increase in embedding dimensionality from constrained
limb-actuated lever tasks to spontaneous standing, running, or whisking tasks®?. The difference
between M1 and cerebellar results, though from a different species, highlights that different
brain areas differentially process task constraints and context.

M1 representations are nonlinear, but only slightly

Task-specific M1 representations were slightly nonlinear for all tasks and in both settings. For a
given bottleneck dimension D, the nonlinear JAE denoising algorithm consistently resulted in a
better reconstruction of neural signals than PCA (Fig 1). The manifold nonlinearity index was
between one and two for all datasets (Fig 4). Finally, the local flatness index was, on average,
around 0.7 when aggregated across all datasets. Although these results describe neural
manifolds that were monkey and task specific, a general trend emerges: despite the slight
degree of nonlinearity in the geometry of the neural manifolds, task-specific neural dynamics
sampled mostly linear regions within the respective nonlinear manifolds (Fig 4). In other words,
there was evidence of only mild nonlinearity in M1 manifolds associated with the motor
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behaviors analyzed here; in addition, the population activity was mostly confined to linear
regions within these manifolds.

Interpreting the low dimensionality and mild nonlinearity of M1

How should we interpret the low dimensionality and mild nonlinearity of M1 manifolds? One
explanation is related to the computational tradeoff between generalizability and expressivity
that has been studied in both artificial and biological neural networks®3-6¢. Let’s first consider an
extreme case: if the task-specific information encoded in a brain area must be selectively
communicated to several different brain areas, latent signals ought to be confined to distinct,
linearly independent subspaces, and would therefore require a high embedding dimension.
Such an organization would facilitate linear readouts without interference and would therefore
be more expressive?*525357 The advantages of high-dimensional embeddings for linear
readouts are well understood in artificial networks and widely used in the context of kernel
methods and support vector machines®+67:68,

While there is evidence of some degree of expressivity in M1368, our findings of low-
dimensional manifolds implies that mixed selectivity is lower in M1 than in some higher-order
brain areas. For example, a brain area that must selectively relay the abstract variables relevant
to decision making and ultimately leading to motor output, such as the dorsolateral prefrontal
cortex, requires high mixed selectivity and has been reported to have a large embedding
dimensionality®?5”. The low dimensionality and mild nonlinearity of M1 indicates that such
complex representations are unnecessary for M1. Instead, M1 exhibits a more generalized, low-
dimensional representation that encodes different inputs into a small set of common activity
patterns5253, Thus, from a functional perspective, the low-dimensional and generalizable
computational strategy of M1 facilitates the reliable generation of muscle commands that are
largely unaffected by task constraints.

Another interpretation of the low dimensionality and mild nonlinearity of M1 neural population
activity refers to the strength of recurrent connectivity in M1. The dynamical systems
perspective highlights the existence of recurrent connections, but we do not know much about
the strength of these connections?2. Recent work on artificial and biological networks related the
strength of recurrent connections to the embedding dimensionality of neural representations®®-
3, In this view, networks with low-rank connectivity matrices generate low-dimensional
dynamics. While the body of work that relates recurrent connectivity structure to dynamics is in
its infancy and warrants future studies, the low dimensionality of M1 is consistent with weak
recurrent connections’.

Decoding EMGs from low-dimensional manifolds

Recent theoretical work directly relates the dimensionality of M1 manifolds to the accuracy of
movement parameter decoding’?%. In this view, the low dimensionality of M1 permits sampling
far fewer than the millions of active neurons for accurate decoding. While this theoretical work
was verified in laboratory settings, the relationship between low dimensionality and decoding
accuracy had not been shown in more natural settings. We showed that decoding EMGs from
latent variables works reasonably well in either context (Fig 6, Supplementary Figures 5 and
6), indicating that the proposed theoretical ideas also apply in unconstrained settings. Our
results indicate that current hardware recording technology that samples only hundreds to
thousands of neurons allows for the identification and description of neural manifolds associated
with unconstrained tasks. Generalizable representations in M1 are low dimensional and in turn
decodable even when our recording devices vastly undersample the active neurons in the motor
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cortex. These findings contrast with the recent findings about dimensionality and decoding
accuracy in the prefrontal cortex (PFC). The high embedding dimensionality of PFC
representations make it difficult to decode behavioral parameters form neural data acquired with
current recording technology, despite moment-by-moment changes in neural activity during
behavior’s; in some cases, decoding behavior from PFC was barely above chance levels.

Limitations

When the cage experiments were designed, we anticipated the unconstrained tasks to be more
complex, and hoped to quantify this expectation through a higher intrinsic dimensionality of
EMG signals. However, we failed to see the anticipated effect. For Monkey P, the EMG
reconstruction accuracies with progressively increasing latent dimensionality of linear and
nonlinear EMG manifolds were slightly lower for the treat grasp task than for the other
behaviors, signaling higher task complexity (Supplementary Figure 4a). The reconstruction
curves for bar walk overlapped with those of the constrained tasks. For Monkey G, the EMG
reconstruction curves associated with both bar walk and treat grasp tasks appeared to be below
those for constrained tasks (Supplementary Figure 4b). However, for all tasks and both
monkeys, roughly 4 to 5 latent dimensions were sufficient to explain over 0.70 of the variance in
EMG signals. Importantly, the TNN dimensionality of EMGs corresponding to constrained and
unconstrained settings were similar, and between 2 and 6 for both monkeys (Supplementary
Figure 3). These results indicate there was no significant difference in task complexity between
constrained and unconstrained tasks, in contrast to our original expectations. Therefore, one
limitation of our study was that all tasks that we tested were relatively simple, even the
unconstrained tasks in the more naturalistic cage setting. A definitive comparison between
neural manifold associated with simple versus complex tasks is still needed.

Interpreting the dimensionality and complexity of behaviors is difficult’®. Earlier studies showed
that the embedding dimensionality of hand kinematics did not exceed 8 even when humans
individually moved the joints on their hands’”. However, a more recent study showed evidence
that even low-variance Principal Components contain some degree of task-relevant information,
leading to the proposal that the distribution of eigenvalues of the covariance matrix of joint
angles should not be truncated, and that the embedding dimensionality of everyday manual
behaviors could be as high as 3078. Future studies should investigate how task complexity
affects the dimensionality of the EMG signals associated with from very simple to highly
dexterous hand gestures; such an investigation would help elucidate the current ambiguity in
quantifying and interpreting behavioral complexity.

The use of linear models for decoding EMG signals might also be considered a limitation. Linear
decoding is based on a weighted sum of neural signals; it is thus the projection of collective
neural activity along a specific direction in the neural state space. Although this widely used
approach#24361 has been superseded by nonlinear and recurrent alternatives**7°-8 linear
decoders are simple, interpretable, and effective, and provide a useful tool for hypothesis
testing. In this study, we were interested not in the absolute EMG decoding accuracy achieved
when all neurons are used as inputs, but in the relative accuracy achieved when only the latent
variables associated with the low-dimensional manifolds are used as inputs. Linear decoders
were amply sufficient to quantify this comparison. Future studies, such as those involving neural
prostheses, might benefit from the use of nonlinear and recurrent models of decoding for
improved EMG decoding accuracy?®’, although the degree of improvement is likely to depend on
task complexity and its effect on manifold nonlinearity.

Conclusion
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Our study demonstrates that the low dimensionality of task-specific manifolds in primary motor
cortex is not limited to constrained laboratory tasks but is also present in unconstrained tasks.
This finding suggests that the low dimensionality of M1 manifolds reflects an intrinsic
computational property of M1, rather than being a byproduct of constrained movements. Even if
the unconstrained tasks were relatively simple, to have established the existence of low-
dimensional neural manifolds in M1 beyond our study.

Our study also revealed signatures of nonlinearity in the geometry of the M1 neural manifolds,
indicating that the neural population activity can represent complex relationships between the
latent variables. However, the population neural dynamics mostly explored nearly linear regions
of the neural manifolds. This finding is consistent with our results demonstrating the ability to
linearly decode EMG signals from relatively few linear latent variables, and provides a manifold-
based understanding of the surprising effectiveness of linear methods in decoding the motor
output in brain-machine interfaces?*?43.60.80,

Additionally, our study emphasizes the importance of distinguishing between intrinsic and
embedding dimensionalities when analyzing neural population activity. Our results suggest that
the low embedding dimensionality of M1 manifolds reflects that the processing and
communication requirements of M1 are relatively simple in comparison to those of other brain
areas. For example, areas such as prefrontal cortex, parallel fibers in the cerebellum, and the
primary visual cortex exhibit quite higher embedding dimensionalities. Future studies should
explore the relationship between neural dimensionality, manifold nonlinearity, and information
processing, both across different brain regions and across behavioral contexts of distinct
complexity.

Overall, our study provides new insights into the computational properties of primary motor
cortex and highlights the potential of low-dimensional representations for decoding motor
output. The insights gained from this research have implications for extending the applicability of
neural prosthetics and brain-machine interfaces to natural environments, while contributing to a
broader understanding of how the motor cortex represents and processes movement-related
information.
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Fig 1: Tasks and recordings. a) Primate chair in which the monkeys performed a series of
power, key, and precision grasp tasks in the constrained laboratory environment. b) The
unconstrained cage environment where the monkeys moved freely. In the cage, monkeys did
quadrupedal locomotion by grasping and walking over the perch bars (bar walk task). The
monkeys also received treats from the experimenters (treat task). Monkeys were monitored
using multiple synchronized cameras from which the individual behavior types were manually
segmented, allowing for the corresponding segmentation of neural and EMG data. c) 96-
electrode Utah arrays were implanted in the hand area of the primary motor (M1) cortex of each
monkey (monkey G: right hemisphere, monkey P: left hemisphere).
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Figure 2: Denoising the neural signals. Two methods were employed to denoise neural signals:
a PCA based approach and a deep neural network-based approach called JAE. a) In the PCA
based denoising approach, noisy neural signals were projected to the leading D principal
components, with D determined by Parallel Analysis. The denoised neural signals were the
reconstructions from the D-dimensional bottleneck. b) For the deep neural network-based
denoising approach we used the joint autoencoder (JAE). Noisy neural signals were randomly
divided into two subsets. Each subset was nonlinearly projected to a D-dimensional latent space
using two parallel deep networks. D was again determined using Parallel Analysis. The mean
squared error (MSE) loss used to train the network forced the D-dimensional latent
representations across the parallel networks to match. Denoised neural signals were obtained
from the reconstructions based on the activity in the D-dimensional bottlenecks. c) Comparison
of reconstruction accuracies between PCA and JAE denoising approaches for Monkey P. Each
circle represents the R? performance of each denoising method for a single dataset. Warm
colors indicate the constrained laboratory tasks. Cold colors indicate the unconstrained cage
tasks. d) Same as in panel ¢ but for Monkey G.
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Figure 3: Estimating the embedding and intrinsic dimensionalities of neural manifolds. We
applied Parallel Analysis (PA) and Two-Nearest Neighbors (TNN) to estimate the embedding
and intrinsic dimensionality, respectively. a) Comparison of the PA estimates for constrained
and unconstrained behaviors for Monkey P (p = 0). Each circle represents the dimensionality
estimate from a single dataset. Warm colors indicate constrained behaviors in the laboratory.
Cold colors indicate unconstrained behaviors in the cage. b) Same as in panel a but for Monkey
G (p = 0). c) Comparison of the TNN estimates across constrained and unconstrained behaviors
for Monkey P (p = 0). d) Same as in panel ¢ but for Monkey G (p = 0).
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Figure 4. Manifold nonlinearity index and local flatness index of neural manifolds. a) Manifold
nonlinearity index, the ratio of the embedding (PA) to intrinsic (TNN) dimensionality, for all
datasets for Monkey P. Each circle represents the manifold nonlinearity index for a single
dataset. Warm colors indicate constrained behaviors in the laboratory. Cold colors indicate
unconstrained behaviors in the cage (p = 0.06). b) Same as in panel a but for Monkey G (p =
0.0005). c) Local flatness index, measured by the fractional overlap between the distributions of
Euclidean and geodesic distances (see Methods, Supplementary Figure 2), for Monkey P (p =
0). d) Same as in panel ¢ but for Monkey G (p = 0).
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Figure 5: Number of neurons required for stable dimensionality estimates. We progressively
increased the number of neurons included in the dimensionality estimation. We randomly
subsampled, with ten repetitions, a given number of neurons from the total number of neurons
available in each dataset. Solid lines indicate the average dimensionality estimate. Shaded
regions indicate the standard deviation. a) TNN estimates from for Monkey P. b) PA estimates
for Monkey P. c) Same as in panel a, but for Monkey G. d) Same as in panel b, but for Monkey
G.
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Figure 6: Decoding EMGs from low dimensional embeddings and all available neurons.
We used linear regression to decode EMGs from denoised neural signals (see Methods for

denoising). We either used PCA embeddings (PCA), AE embeddings (AE), or the full-

dimensional neural signals (Full) as inputs to linear neural-to-EMG decoders. PCA and AE
provided linear and nonlinear latent variables, respectively. The dimensionality of the latent
representations followed from the TNN estimate for each dataset. Each dot represents the
decoding accuracy from one of the five test folds of decoding. Different colors represent
different tasks. Repeated measures ANOVA was not significant between the three conditions for
two monkeys (p = 0.59). a) EMG decoding accuracies for Monkey P. b) Same as in panel a, but
for Monkey G.
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