

1 **Isolation and nitrogen removal characteristics of a novel aerobic
2 denitrifying strain *Achromobacter xylosoxidans* GR7397**

3

4 **Authors:** Ailu Gu, Yunlong Li, Wei Yao, Anqi Zhang, Zimin Chai, Maosheng
5 Zheng^{1*}

6

7 **Affiliations:**

8 Key Laboratory of Resources and Environmental Systems Optimization, Ministry of
9 Education, College of Environmental Science and Technology, North China Electric
10 Power University, Beijing 102206, China

11 **Corresponding author:**

12 M. Zheng, Email: maoshengzheng@ncepu.edu.cn

13

14 **Abstract**

15 Aerobic denitrifying bacteria have the potential for engineering applications due to
16 the efficient nitrate removal capacity from wastewater. In this study, a novel aerobic
17 denitrifying strain was isolated and identified as *Achromobacter xylosoxidans*
18 GR7397 from the activated sludge of a wastewater treatment plant, which possessed
19 efficient nitrate removal capacity. Moreover, the denitrification capacity and
20 properties of the strain were investigated in the presence of nitrate as the only nitrogen
21 source. Five denitrification reductases encoding genes were harbored by strain
22 GR7397 determined by electrophoretic analysis of PCR amplification products,
23 consisting of periplasmic nitrate reductase (NAP), nitrate reductase (NAR), nitrite
24 reductase (NIR), nitrous oxide reductase (NOS), and nitric oxide reductase (NOR),
25 demonstrating that the strain has a complete denitrification metabolic pathway. The
26 optimum denitrifying condition of strain GR7397 included sodium acetate adopted as
27 the electron donor, COD/TN ratio at 4, pH at 8, temperature at 30°C, under which
28 condition, the nitrate removal rate reached $14.86 \text{ mg} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$ that the NO_3^- -N
29 concentration decreased from 93.90 mg/L to 4.73 mg/L within 6 h with no
30 accumulation of nitrite. In addition, the bioaugmentation performance of strain
31 GR7397 to enhance nitrate removal was evaluated to be effective and stabilized in a
32 sequential batch reactor (SBR). The removal rate of NO_3^- -N was the highest during
33 each cycle with a range of $15.48\text{--}28.56 \text{ mg} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$ in the SBR with inoculating 30% of
34 the strain concentrate. The current research demonstrated that strain GR7397 has
35 significant potential for application in enhancing nitrogen removal in wastewater
36 treatment.

37 **Keywords:** Aerobic denitrification; Nitrate removal; High-efficiency; *Achromobacter*

38 *xylosoxidans*; Bioaugmentation

39 **1. Introduction**

40 Nitrogen is one of the most important pollutants contributing to water pollution
41 when it exceeds a restricted concentration in the aquatic environment, which can
42 cause deterioration and eutrophication of water quality (Zhu et al., 2012),
43 consequently threatening the ecosystem functions of freshwater, aquaculture safety,
44 and sanitation (Tang et al., 2019). Therefore, the development of efficient nitrogen
45 removal technology has received widespread attention from an increasing range of
46 researchers. Biological denitrification was gradually focused to be the most promising
47 method to reduce total nitrogen in the water because of its safety, high efficiency, and
48 economic efficiency. Traditional biological nitrogen removal technology utilizes
49 nitrifying and denitrifying bacteria to convert ammonia to nitrate and then reduce
50 nitrate to nitrogen, with the aim of achieving the removal of total nitrogen from water
51 (Khardenavis et al., 2007). Aerobic denitrification is an emerging biological
52 denitrification technology in recent years, which has unique advantages compared
53 with traditional anoxic denitrification and facultative aerobic denitrification. The
54 aerobic denitrifying bacteria could perform the denitrification step of converting
55 nitrate to nitrite in the presence of relatively high dissolved oxygen due to the low
56 affinity for oxygen of periplasmic nitrate reductase (NAP) (Sparacino-Watkins et al.,
57 2014). In particular, heterotrophic nitrifying and aerobic denitrifying microorganisms
58 have been increasingly studied since *Thiosphaera Pantotropha* was isolated in the
59 1980s (Lesley & Kuenen, 1983). Subsequently, other bacterial genera such as
60 *Acinetobacter* (Su et al., 2017), *Enterobacter* (Guo et al., 2016), *Halomonas* (Ren et
61 al., 2019), *Marinobacter* (Liu et al., 2016), *Pseudomonas* (Huang et al., 2015; Zhao et

62 al., 2018; Zheng et al., 2014), *Fusarium* (Cheng et al., 2020), *Hanseniaspora* (Zhang
63 et al., 2018), *Paracoccus* (Shi et al., 2013), *Vibrio* (Duan et al., 2015). *Bacillus* (Rout
64 et al., 2017), and *Klebsiella* (Li et al., 2019), were sequentially isolated from activated
65 sludge, industrial wastewater, rice soils, etc. With the widespread attention on aerobic
66 denitrifying bacteria, their denitrification characteristics including influence by
67 nutritional and physical factors, metabolic pathways, and applications in practical
68 engineering have been investigated (Fu et al., 2022).

69 To date, although increasing aerobic denitrifying microorganisms have been
70 isolated and identified, their NO_3^- -N removal rates hardly meet the requirement of
71 practical application. Two heterotrophic nitrifying aerobic denitrifying bacteria,
72 *Achromobacter* sp. HNDS-1 and *Enterobacter* sp. HNDS-6, were isolated from paddy
73 soil with NO_3^- -N removal rate of $5.84 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$ and $10.54 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$, respectively
74 (Liu et al., 2023). *Hanseniaspora uvarum* KPL 108 was isolated from drinking water
75 reservoir sediments, which decreased NO_3^- -N concentration from the initial 138 mg/L
76 to 1.07 mg/L in 35 hours with an average removal rate of $3.91 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$ (Zhang et al.,
77 2018). Similarly, it was reported that the nitrate removal rates of *Fusarium solani*
78 RADF-77 (Cheng et al., 2020), *Rhodococcus* sp. CPZ24 (Chen et al., 2012), *Vibrio*
79 *diabolicus* SF16 (Duan et al., 2015) and *Marinobacter* sp. F6 (Zheng et al., 2012)
80 reached $4.43 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$, $3.10 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$, $2.83 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$, and $1.46 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$,
81 respectively. Accordingly, to the best of our knowledge, few strains with high-
82 efficient aerobic denitrification properties have been reported.

83 For exploring aerobic denitrifying bacteria with high denitrification capacity, a
84 novel aerobic denitrifying strain GR7397 was isolated in this research. To investigate
85 the optimal culture environment for aerobic denitrification bacteria with a high-

86 efficiency nitrate removal rate and to validate the feasibility of applying it to practical
87 engineering. An aerobic denitrifying strain GR7397 with high-efficient denitrification
88 performance was isolated and purified from the activated sludge of a wastewater
89 treatment plant in this study. The mechanism of aerobic denitrification was explored
90 based on the successful amplification of five aerobic denitrification functional genes.
91 Moreover, the denitrification performance under different carbon sources, COD/TN
92 ratios, O₂ concentration, and pH values were also investigated. Further, the strain was
93 inoculated into a sequencing batch reactor (SBR) for the treatment of wastewater that
94 containing high concentrations of nitrate, and the feasibility of strain GR7397 in
95 practical wastewater treatment applications was comprehensively evaluated through
96 comparison of the system without bioaugmentation.

97 **2. Materials and methods**

98 **2.1. Sludge sample and medium**

99 Activated sludge samples were collected from the aeration tank of a wastewater
100 treatment plant (WWTP) in Beijing, China (40°01'N, 116°29'E). This WWTP was
101 operated with a typical anaerobic anoxic aerobic process with an HRT of 12h and SRT
102 of 30 days (Zheng et al., 2021). Other operational parameters including influent total
103 nitrogen (TN) concentration of 32.5 mg/L, pH of 7.3, and the dissolved oxygen of 5.2
104 mg/L. The mixed liquor suspended solids (MLSS) were about 8447mg/L.

105 The aerobic denitrifying bacterial enrichment medium (EM) consisted of (per
106 liter) 1.71 g CH₃COONa, 0.6 g NaNO₃, 1.6 g K₂HPO₄, 0.1 g MgSO₄ · 7H₂O, 0.02 g
107 CaCl₂, 0.005 g FeSO₄ · 7H₂O, and 0.1 mL trace elements solution (Yao et al., 2013).

108 The medium for screening bacteria consisted of an additional 2% agar and 1 mL of
109 1% BTB solution (1% bromothymol blue dissolved in anhydrous ethanol) based on

110 EM. The aerobic denitrification ability of the strain was initially determined based on
111 the color change by the medium as increasing pH ascribed from denitrification would
112 make the BTB medium appear blue (Naoki et al., 2003). Denitrification medium (DM)
113 consisted of (per liter) 0.6 g NaNO₃, 0.512 g CH₃COONa, 1.6 g K₂HPO₄, 0.1 g
114 MgSO₄ · 7H₂O, 0.02 g CaCl₂, 0.005 g FeSO₄ · 7H₂O, and 3 ml trace element solution.
115 All culture media were adjusted to pH 7.5-8.0 using 0.1 M HCl and 0.1 M NaOH, and
116 were sterilized by autoclaving at 121°C for 30 min before incubation.

117 **2.2. Isolation and taxonomical identification of the strain GR7397**

118 Erlenmeyer flask with volume of 250 mL was filled with 100 mL sterilized EM
119 and inoculated with 30 mL activated sludge sample. The inoculated flask was
120 incubated thermostatically for 2 days on a shaker at 30°C and 130 rpm. Afterward, the
121 cultured bacterial suspension (1 mL) was transferred to another 250 mL Erlenmeyer
122 flask containing 100 mL EM, where the heterotrophic denitrifying bacteria were
123 cultured at 30°C and 130 rpm for another 2 days. This inoculation culture procedure
124 was repeated three times consecutively. Gradient dilutions of the replicate cultures
125 were performed to obtain bacterial suspensions (multiplication of dilutions 10⁻² - 10⁻⁵).
126 0.1 mL of bacterial suspension was taken using the plate scribing method on enriched
127 agar solid medium and then incubated in a thermostatic chamber at 30°C. In case of
128 visible colony formation pick a single colony onto a new enrichment agar solid
129 medium for scribing and repeat twice to obtain purified single colonies, and were
130 tested separately for denitrification activity in BTB solid medium. Finally strain
131 GR7397 was investigated further as it demonstrated the most high-efficient nitrate
132 removal rate under aerobic conditions in batch experiments. The isolated and purified
133 aerobic denitrifying strain GR7397 was inoculated into the slant solid medium and

134 was sent to China General Microbiological Culture Collection Center for strain
135 conservation. Total genomic DNA was extracted from the bacterial suspension using
136 the Bacterial DNA Isolation Kit (Chengdu Fuji Biotechnology Co., Ltd.) according to
137 the manufacturer's instructions. The gene encoding 16S rDNA was amplified from
138 genomic DNA by polymerase chain reaction using forward primer F27 (5'-
139 AGAGTTGATCATGGCTCAG-3') and reverse primer R1492 (5'-
140 TACGGTTACCTTGTACGACTT-3') (Shanghai Shengong Bioengineering
141 Company). The PCR amplification reaction conditions were as follows: 94 °C for 3
142 min; 24 cycles, 94 °C for 30 s; 54 °C for 30 s; 72 °C for 1.5 min, and extended at
143 72°C for 10 min(Zheng et al., 2014). PCR products sequenced by the Sanger method.
144 The sequencing results were analyzed using BLAST software (BLAST: Basic Local
145 Alignment Search Tool (nih.gov)), and the spliced sequences were compared with
146 other known sequences in the NCBI database. Simultaneously, a phylogenetic tree
147 was constructed based on the Neighbor-joining method using MEGA 7. 0 software.

148 **2.3. PCR amplification of denitrification functional genes**

149 5 mL purified bacterial suspension was obtained for the analysis of
150 denitrification functional genes. Total genomic DNA in bacterial suspensions was
151 extracted from the sample using the FastDNA Spin Kit (MP Biomedical, Illkirch,
152 France) according to the manufacturer's instructions, and stored at -20 °C until use.
153 DNA concentration and purity were determined with a microspectrophotometer.
154 Denitrification genes including periplasmic nitrate reductase gene (*napA*), nitrate
155 reductase gene (*narG*), nitrite reductase gene (*nirS*), nitrous oxide reductase gene
156 (*nosZ*), and nitric oxide reductase gene (*cnorB*), were determined by q-PCR technique
157 according to the primers shown in Table 1. Operating conditions on Applied

158 Biosystem 7300 were as follows: pre-denaturation at 94 °C for 15 min; 35 cycles of
159 denaturation at 95 °C for 30 s, annealing for 1 min at 58 °C for *narG* and *napA*, at
160 60 °C for *nirS*, at 56 °C for *cnoR* and at 60 °C for *nosZ*, extension at 72 °C for 45 s
161 for *napA* and *nirS*, or 60 s for *cnoR* and *nosZ*; the final step was an extension at
162 72 °C for 1 min. The total volume of PCR amplification was 20 μL, containing 2 μL
163 DNA template, 15 μL PCR ReadyMix (BGI, Shenzhen, China), 0.5 μL of each primer
164 (10 μmol/L) and 2 μL DD H₂O. DD H₂O was selected to replace the DNA template
165 for a blank control to exclude external interference. The amplified PCR products were
166 visualized by electrophoresis on a 1.8% agarose gel stained with ethidium bromide.

167 **2.4. Optimal culture conditions for aerobic denitrification of strain GR7397**

168 To investigate the maximum denitrification rate of aerobic denitrifying strain
169 GR7397, different environmental factors that would promote or inhibit aerobic
170 denitrification, which included carbon source supply, COD/TN ratio, pH, and oxygen
171 concentration were investigated. The condition which optimized the denitrification
172 capacity of strain GR7397 would be taken as the condition in the next factor
173 experiment. The effects of methanol, sodium acetate, sodium citrate, sodium succinate,
174 glucose, and ethanol were selected as various carbon sources for the aerobic
175 denitrification capacity of strain GR7397. Subsequently, the COD/TN ratio was
176 selected as 2, 4, 6, 8, and 12 in the culture medium. When investigating the effect of
177 COD/TN, the NO₃⁻-N concentration in the culture medium was kept constant at 100
178 mg/L, with changing the concentration of the carbon source to vary the different
179 COD/TN ratios at 2, 4, 6, 8, and 12, respectively. Furthermore, oxygen concentration
180 influence on the denitrifying strain was investigated. The anaerobic flask was filled
181 with helium for 15 min to evacuate the headspace and then charged with a relative

182 proportion of oxygen so that the relative proportion of oxygen in the flask were 0%,
183 10%, 20%, 30%, 50%, and 100%, respectively. Eventually, while exploring the effect
184 of pH on denitrifying strain GR7397, the pH of the medium was adjusted to 6±0.2,
185 7±0.2, 8±0.2, 9±0.2 and 10±0.2 by 0.1 M sodium hydroxide or 0.1 M dilute
186 hydrochloric acid.

187 Before each batch of experiments, strain GR7397 was activated for culture. 5 mL
188 of the purified strain concentrate was injected into a 250 mL Erlenmeyer flask
189 containing 100 mL of DM with a sterile syringe and incubated in a thermostatic
190 shaker at 30°C and 130 rpm until the OD>0.8 of the culture. Thereafter, 40 mL of DM
191 was added to the 100 mL anaerobic flask corresponding to the various influencing
192 factors. 2 mL of the activated bacterial solution was inoculated into the anaerobic
193 bottle, which was incubated in a shaker at 30°C and 130 rpm, with the concentration
194 of nitrate-nitrogen and nitrite-nitrogen measured every 2 h until the nitrate nitrogen
195 was basically consumed. A series of parallel experiments were set up for each group
196 to exclude the effect of errors on the experimental results.

197 **2.5. Potential applications of strain GR7397 in activated sludge systems**

198 To investigate the feasibility of the isolated denitrifying strain GR7397 for
199 application in the wastewater treatment. A serum bottle with a volume of 1L was
200 selected as the sequencing batch reactor (SBR). Different amount of strain GR7397
201 concentrate (0%, 15%, and 30%) and a certain volume of activated sludge were
202 inoculated the SBRs with working volume of 300 mL (MLSS of 2000-2500 mg/L). In
203 particular, the activated sludge was domesticated and cultivated in the aeration tank of
204 the reactor for two sludge retention time at hydraulic retention time (HRT) of 12 h, a
205 NO₃-N concentration of 100 mg/L, and COD/TN ratio of 4. The serum flasks were

206 sequentially supplemented with DM that satisfied the optimal culture conditions for
207 strain GR7397 and 30% hydrophilic polyurethane foam (1 m³, Qingdao Banghao Co.,
208 Ltd.) (Feng et al., 2012) to ensure a final effective liquid volume of approximately
209 300 mL. SBRs were incubated in a thermostatic shaker at 30°C and 130 rpm. One
210 cycle of SBRs operation was established for 12 h, including 5 min of feeding, 11 h of
211 operating, 50 min of settling, and 5 min of decanting. The hydrophilic polyurethane
212 packing with adsorbed activated sludge and GR7397 strain was retained after 50 min
213 of decanting and 200 mL of supernatant was withdrawn using a sterile syringe.
214 Thereafter, the serum bottle was filled with 200 mL of denitrifying concentrated liquid
215 medium to ensure that the effective volume in the SBR was 300 mL and that the
216 content of the various substances inside the bottle was the same as the DM after
217 shaking uniformly. The concentrations of NO₃⁻-N and NO₂⁻-N were determined from
218 the second cycle at an interval of hour in SBRs. A set of parallel experiments were set
219 up for each group.

220 **2.6. Analytical methods and calculations**

221 The culture fluids were separated by centrifugation at 12,000 rpm in the high-
222 speed benchtop microcentrifuge with the supernatant for chemical analysis after
223 centrifugation. NO₃⁻-N or NO₂⁻-N was determined using SmartChem 200 fully
224 automated chemistry analytical instrument (AMS Alliance, Italy).

225 The removal efficiency (%) and rate mg·L⁻¹·h⁻¹ of NO_x⁻ was calculated as follows:

226
$$\text{Removal efficiency of } \text{NO}_x^- = \frac{C_a - C_b}{C_a} * 100\% \quad (1)$$

227
$$\text{Removal rate of } \text{NO}_x^- = \frac{C_x - C_y}{T_y - T_x} \quad (2)$$

228 *C_a* and *C_b* (mg/L) are the concentrations of NO_x⁻ at the beginning and end of the
229 experiment, respectively; *T_x* is the start time and *T_y* is the end time of the experiment,

230 C_x and C_y (mg/L) correspond to the concentrations of NO_x^- at T_x and T_y , respectively
231 (Ke et al., 2022).

232 **3. Results**

233 **3.1. Identification of the strain GR7397**

234 After serial enrichment and purification, an aerobic denitrifying strain with high-
235 efficiency denitrification ability was isolated from the activated sludge of a WWTP,
236 which was named as GR7397. The phylogenetic tree including this strain and other
237 adjacent strains was constructed using 16S rDNA sequencing results compared with
238 the GenBank database (Fig. 1). The results indicated that the strain belonged to the
239 genus *Achromobacter* and was 99.93% similar to *Achromobacter xylosoxidans* Hugh
240 2838. Additionally, it should be mentioned that the 16S rDNA gene sequence of
241 *Achromobacter sp.* GR7397 was not identified in the NCBI nucleotide database,
242 demonstrating that this strain was screened for the first time and identified as
243 *Achromobacter xylosoxidans* GR7397.

244 **3.2. PCR amplification of denitrifying enzyme genes**

245 PCR amplification of genes related to aerobic denitrification was performed to
246 study the nitrogen metabolism pathway of strain GR7397. Five potential nitrogen
247 metabolizing denitrifying enzyme encoding genes were examined by agarose gel
248 electrophoresis using PCR amplification products containing, *narG*, *napA*, *nirS*,
249 *cnorB* and *nosZ*. The stained electrophoresis gel plates were visualized under a long-
250 wave UV illuminator at a wavelength of 245 nm. As the results shown in Figure 2, it
251 is evident that strain GR7397 denitrifying genes (Fig. 2). Thereby it could perform the
252 complete metabolic pathway, i.e., $\text{NO}_3^- - \text{N} \rightarrow \text{NO}_2^- - \text{N} \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2$. The
253 corresponding reductase is required for each step of the reduction process. Microbial

254 nitrate reductases are classified as allosteric nitrate reductase (NAR), periplasmic
255 nitrate reductase (NAP), and anabolic nitrate reductase (NAS) based on the
256 physiological function of the enzyme, the subcellular location, and the structure of the
257 molybdenum active sites. (Sparacino-Watkins et al., 2014). The enzyme that catalyzes
258 the reaction of reducing the nitrous oxide to nitrogen gas is nitrous oxide reductase
259 (NOS) in microorganisms, encoded by the *nosZ* gene, which is responsible for the
260 final step of the denitrification process (Roy et al., 2021). Nitrous oxide in most
261 denitrifying microorganisms, like the present strain GR7397 is an intermediate during
262 the denitrification process, while nitrous oxide in some microbes lacking *nosZ* gene is
263 the terminal product, which would pose an considerable emission of the unwanted
264 greenhouse gas (Kuypers et al., 2018). As Achromobacter sp. GR 7397 contains NAR,
265 NAP, NIR, NOR, and NOS, it demonstrated the potential to perform the complete
266 denitrification process, realizing not only nitrate reduction but also the control of N₂O
267 emission.

268 **3.3. Optimum culture conditions for strain GR7397**

269 **3.3.1 Effect of different carbon sources on strain GR7397**

270 In this study, methanol, sodium acetate, sodium citrate, sodium succinate,
271 glucose, and ethanol were selected as carbon sources with nitrate as the sole nitrogen
272 source to investigate the effects of different carbon source on aerobic denitrifying
273 strain GR7397. The variation curves of NO₃⁻-N and NO₂⁻-N concentrations using
274 different carbon sources to treat simulated wastewater with high nitrate nitrogen were
275 shown in Fig. 3a. During the experiments with glucose and methanol as the only
276 carbon source, the concentration of NO₃⁻-N was eventually dropped from 100 mg/L to
277 47.60 mg/L and 65.30 mg/L over 12 h. The NO₃⁻-N removal efficiency was 50.16%

278 and 28.79%, respectively (Fig.3a). The results indicated that the methanol and
279 glucose as carbon sources were not favorable to the cultivation of strain GR7397
280 when compared with other carbon sources, which significantly inhibited the
281 denitrification ability, and delayed the initiation of the denitrification of strain
282 GR7397. However, glucose promoted the denitrification of strain GR7397 more
283 effectively than methanol. In the experiments with sodium acetate and sodium
284 succinate as the carbon sources, nitrate-nitrogen was almost completely degraded at
285 the 8th and 10th hour, while at the same time nitrite-nitrogen did not accumulate.
286 Meanwhile, the removal rates of nitrate by sodium acetate and sodium succinate were
287 both rapid at 6 h-8 h, reaching an average of $12.05 \text{ mg} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$ and $9.58 \text{ mg} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$,
288 respectively. In addition, sodium acetate was the carbon source with the highest
289 nitrate removal capacity, with a removal efficiency of 98.50% after 8 hours of nitrate
290 denitrification; the next removal efficiency was 72.76% using sodium succinate as the
291 carbon source. In the microcosm with sodium acetate and sodium succinate as carbon
292 sources, almost all of the nitrate and nitrite have eventually completed their
293 denitrification reduction reactions. In addition, sodium citrate and ethanol also could
294 significantly promote the denitrification of GR7397, with NO_3^- -N removal efficiencies
295 of 93.71% and 93.20%, respectively. To sum up, with nitrate as the only nitrogen
296 source and sodium acetate as the carbon source, strain GR7397 had the strongest
297 denitrification capability and the fastest removal rate of nitrate. The denitrification
298 capacity of strains GR7397 using organic substances as carbon sources ranged from
299 sodium succinate, sodium citrate, ethanol, glucose, and methanol. Hence, sodium
300 acetate was used as the carbon source in DM for the following experiments
301 investigating the different influencing factors on the optimal culture conditions of

302 strain GR7397.

303 **3.3.2 Impact of different COD/TN ratios on strain GR7397**

304 The carbon source would provide electrons for the denitrification and the
305 necessary energy for the aerobic respiration of microorganisms. Substrate utilization
306 rate by aerobic denitrifying microorganisms is influenced by the ratio of carbon and
307 nitrogen sources. Generally, overhigh COD/TN ratios would inhibit the activity of
308 denitrifying bacteria, which leads to ineffective denitrification and leaves excess
309 organic matter unused and wasted at the end of the reaction, while the lower COD/TN
310 ratio is also detrimental to the denitrification reaction since there are not enough
311 nutrients to satisfy the normal denitrification process resulting in poor denitrification
312 (Deng et al., 2020).

313 In this study, the effect of the COD/TN ratio on strain GR7397 was investigated
314 by keeping the concentration of nitrate concentration in the medium constant and
315 changing the concentration of carbon source to achieve different COD/TN ratios, and
316 the experimental results are shown in Figure 3b. Most of the NO_3^- -N concentrations
317 were effectively reduced at COD/TN ratios of 4-12, while NO_3^- -N removal was
318 discontinued at 62.04% at a COD/TN ratio of 2. However, the nitrate removal
319 efficiency reached 90.75% by the 2nd hour when the C/N ratio was 4, which was the
320 fastest nitrate removal rate among all COD/TN ratios. The second highest nitrate
321 removal rate was at COD/TN ratio of 6 when the nitrate removal rate was 76.68% and
322 the removal rate was up to 90.81% at 4 h. Although the accumulation of NO_3^- -N was
323 observed in the 2nd hour at COD/TN ratios of 4 and 6, the accumulated NO_2^- -N was
324 rapidly degraded as the denitrification process advanced (Fig. 3b). The denitrification
325 of strain GR7397 was relatively delayed, and the nitrate removal efficiency was high

326 after the initiation of denitrification at a COD/TN ratio of 12. These results
327 demonstrated that providing the strain with an appropriate carbon source could
328 promote both the reduction of NO_3^- -N concentration and the accumulation of NO_2^- -N,
329 while too low or excessive carbon sources could inhibit the denitrification ability of
330 the strain. Therefore, the COD/TN ratio of 4 with the highest removal efficiency and
331 the fastest removal rate was selected as one of the optimal culture conditions for strain
332 GR7397. Based on the effects of two environmental factors, including carbon source
333 and COD/TN on the denitrification ability of strain GR7397, it was selected that
334 sodium acetate as carbon source and COD/TN ratio of 4 in the following experiments
335 to further explore the optimal culture conditions of the strain.

336 **3.3.3 Different oxygen concentrations**

337 To investigate the effects of different oxygen concentrations on the growth and
338 denitrification capacity of the facultative denitrifying bacterium GR7397, the
339 headspace of the anaerobic flasks was filled with helium and then filled with a relative
340 proportion of oxygen. When the initial oxygen concentration in the serum bottle was
341 0% and 10%, the concentration of NO_3^- -N began to decline first, and the rate of nitrate
342 removal at the 6th hour was the highest compared to other oxygen concentrations,
343 respectively, and the removal efficiency was 89.41% and 69.77%, while the
344 accumulation of NO_2^- -N reached a peak at this time but was quickly degraded by
345 denitrifying bacteria (Fig. 4a). The removal rate of nitrate nitrogen was $11.87 \text{ mg} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$
346 when all nitrate was reduced; denitrification rates were essentially the same at
347 30%, 50%, and 100% oxygen concentrations, and strain GR7397 consumed all the
348 nitrate and nitrite in the bottle after the tenth hour at different oxygen concentrations.
349 The denitrification capacity of strain GR7397 was not altered with oxygen

350 concentration at oxygen concentrations above air saturation (21%). In summary, the
351 denitrification capacity of strain GR7397 reached equilibrium at oxygen
352 concentrations above air saturation (21%), and the denitrification capacity of the
353 strain did not significantly differ in serum flasks with different oxygen concentrations.
354 Hence, the denitrification capacity of strain GR7397 was not significantly affected by
355 the oxygen content, so the oxygen concentration was not constrained in the next
356 experiments (Fig.4a).

357 **3.3.4 Effect of different initial pH values on GR7397**

358 The pH of the environment is significant in the metabolic activity of
359 microorganisms, which is the primary role being to cause changes in the charge of the
360 cell membrane. It affects the absorption of nutrients by microorganisms, the activity
361 of enzymes in the metabolic process, the availability of nutrients in the growth
362 environment and the toxicity of harmful substances (Hu et al., 2021). The effects of
363 weakly acidic and weakly alkaline environments on the denitrification performance of
364 strain GR7397 are shown in Figure 4b. Overall, strain GR7397 exhibited stronger
365 denitrification performance in weakly alkaline and neutral environments compared to
366 weakly acidic conditions. The fastest nitrate removal rate of strain GR7397 occurred
367 in pH 8, with a nitrate removal efficiency of 94.96% at the 4th hour, and the removal
368 rate of NO_3^- -N was $14.86 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$. The efficiency of nitrate removal by the strain in
369 the microcosm reached 95.37% and the removal rate of NO_3^- -N was $11.34 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$ at
370 pH 9, which was second only to the efficiency at pH 8 when 6 hours were consumed.
371 Meanwhile, the accumulation of NO_2^- -N simultaneously peaked at pH 8 and 9 at the
372 6th hour, and the accumulation of NO_2^- -N was relatively more at pH 9. The removal
373 rate of NO_3^- -N from the microcosm was slow when the pH was 6, eventually reaching

374 a removal efficiency of 29.65% and accumulation of nitrite was not observed. The
375 denitrification rate of the strain was weak in the first 6 hours at pH 7. After that,
376 denitrification capacity in the microcosm increased immediately, and the
377 accumulation of NO_2^- -N peaked at the 8th hour. At the end of the reaction at pH 7,
378 both nitrate and nitrite nitrogen were completely degraded (Fig. 4b). As a
379 consequence, the denitrifying strain GR7397 is most suitable for growth and
380 reproduction in a weak alkaline environment and the strain has the strongest
381 denitrification capacity at pH 8.

382 To summarize, the optimal culture conditions for strain GR7397 were when
383 sodium acetate was used as the electron donor, the COD/TN ratio was 4, the pH was 8,
384 and the temperature was 30°C. The best NO_3^- -N removal rate in microcosm was 14.86
385 $\text{mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$ with 94.97% removal efficiency, and it took six hours to reduce the nitrate-
386 nitrogen concentration from 93.90 mg/L to 4.73 mg/L with no nitrite accumulation.

387 **3.4. Potential applications of strain GR7397 in activated sludge systems**

388 According to the above study, strain GR7397 was observed to have high-
389 efficiency nitrate removal ability and was further studied for its feasibility in practical
390 engineering applications. Based on the experimental results in section 3.3, the
391 following experimental conditions were formulated as that no changes were made to
392 the oxygen concentration, sodium acetate was selected as the only carbon source, the
393 COD/TN ratio was 4, and the pH was adjusted between 7.5 and 8.5.

394 Fig. 5 describes the concentration variation of nitrate and nitrite in the
395 concentrates of strains inoculated with different concentrations in SBRs. It is
396 significantly evident from Fig. 5a that the NO_3^- -N removal rate was faster in the
397 reactor inoculated with denitrifying strain GR7397 concentrate than in the reactor

398 without strain GR7397 concentrate, confirming that strain GR7397 had a stronger
399 denitrification capacity when put into the SBR and that the higher inoculation amount
400 of strain GR7397 cause the faster NO_3^- -N removal rate in the reactor. The relative
401 abundance of inoculated strain GR7397 was proportional to the removal rate of NO_3^- -
402 N. The NO_3^- -N removal rates in the SBR concentrated with the denitrifying strain in
403 the second cycle were higher than that without the strain GR7397. At the first hour,
404 the removal rates of NO_3^- -N were $6.71 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$, $20.02 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$, and $29.47 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$
405 in the SBR without strain concentrate, with 15% strain concentrate and 30% strain
406 concentrate, respectively. The NO_2^- -N accumulated during denitrification was
407 completely reduced in the process over eight hours. Therefore, the efficient nitrate
408 removal capacity of strain GR7397 was significantly demonstrated in the practical
409 water treatment process. Meanwhile, the nitrate removal rates were 12.78, 13.69, and
410 $15.90 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$ in the SBR without strain concentrate, with 15% strain concentrate,
411 and with 30% strain concentrate when the NO_3^- -N concentration was $<10 \text{ mg/L}$,
412 respectively. Nevertheless, NO_3^- -N removal rates were gradually approached in the
413 two inoculated groups of reactors after 5 cycles (Fig. 5). Such a phenomenon revealed
414 that the increasing bacterial biomass eventually converges to an equilibrium state after
415 the strain GR7397 grew and formed biofilm on the carrier of the SBR. Also, as can be
416 seen in Fig. 5b, nitrite is preferentially accumulated in the reactor inoculated with
417 30% strain concentrate and is predominately reduced to nitrogen in each cycle. It
418 indicates that the initial inoculum concentration would shorten the initiation process
419 of denitrification and preferentially complete the denitrification process.

420 The removal rates of NO_3^- -N for each cycle of continuous SBR operation are
421 depicted in Fig. 6. The NO_3^- -N removal rate of 30% inoculated group was the highest

422 in each cycle, with nitrate removal rates ranging from $15.48\text{-}28.55\text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$. The
423 second highest was 15% inoculated group which removed nitrate at a rate in the range
424 of $13.14\text{-}21.67\text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$. The lowest nitrate removal rate was 0% inoculated group
425 which ranged from $11.95\text{-}13.77\text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$. Overall, the NO_3^- -N removal rate in the
426 second cycle was significantly lower compared to the first cycle in both inoculated
427 and non-inoculated SBRs, and accelerated rapidly from the third cycle onwards. To
428 sum up, denitrifying bacteria were immobilized on the carrier and multiplied rapidly,
429 which resulted in a rapid increase of nitrate removal rate. Denitrifying strain GR7397
430 can significantly enhance the denitrification rate, with high-efficient nitrate-nitrogen
431 removal ability, which has the potential to be applied in the reactor.

432 **4. Discussion**

433 Although aerobic denitrifying bacteria have been widely reported (Chen et al.,
434 2020; Lang et al., 2020; Ren et al., 2019; Wang et al., 2018), most aerobic denitrifying
435 bacteria reported in the current study denitrify at relatively lower rates. Nonetheless,
436 the strain *A. xylosoxidans* GR7397, which was isolated from activated sludge in an
437 aeration tank treating domestic wastewater, could have efficient performance in
438 removing nitrate under aerobic conditions for this research. Five potential nitrogen
439 metabolizing denitrifying enzyme genes were examined by agarose gel
440 electrophoresis using PCR amplification products which contained *narG*, *napA*, *nirS*,
441 *cnorB*, and *nosZ*. Strain GR7397 includes two nitrate reductases, which are NAR and
442 NAP, nitrite reductase (NIR), nitrous oxide reductase (NOS), and nitric oxide
443 reductase (NOR), demonstrating that strain GR7397 can complete the complete
444 denitrification process independently. Interestingly, the presence of both NAP and
445 NAR genes is essential to ensure that strain GR7397 could reduce nitrate to nitrite in

446 both aerobic and anoxic environments or even in the absence of oxygen. Because
447 NAP is insensitive to oxygen, it can be expressed under aerobic conditions, while the
448 presence of oxygen inhibits the activity of NAR (Sparacino-Watkins et al., 2014). In
449 parallel, the presence of NOS reductase allowed strain GR7397 to reduce nitrous
450 oxide accumulation during denitrification, thus reducing greenhouse gas emissions
451 (Roy et al., 2021). Hence, the strain GR7397 could be preferentially selected for
452 application in the actual wastewater treatment process.

453 In this study, the effects of different carbon sources, COD/TN ratios, oxygen
454 concentrations, and pH values on strain GR7397 were investigated for the purpose of
455 gaining a clear insight into the growth characteristics and optimal growth environment
456 of strain GR7397. The results showed that strain GR7397 could achieve the best
457 denitrification treatment of wastewater with NO_3^- -N removal rate of $14.86 \text{ mg}\cdot\text{L}^{-1}\cdot\text{h}^{-1}$
458 when sodium acetate was used as the electron donor, COD/TN ratio was 4, pH was 8,
459 the temperature was 30°C , and dissolved oxygen was not controlled. Due to its simple
460 molecular structure, sodium acetate is directly utilized by GR7397 for metabolism
461 without modification. However, methanol and glucose did not significantly promote
462 denitrification by GR7397 because methanol must be enzymatically converted to
463 formic acid before being metabolized by denitrifying bacteria. As well, glucose needs
464 to be broken down into pyruvate via the glycolytic pathway before being further
465 converted into simple alcohols and acids. The mechanism of sodium acetate
466 utilization by strain GR7397 was more readily available compared to methanol and
467 glucose (Jiang et al., 2022; Xu et al., 2018). Simultaneously, perhaps due to a
468 preference for weakly alkaline environments, strain GR7397 prefers organic acids
469 (acetate and succinate) as carbon sources rather than sugars (glucose). The reason is

470 that when sugars are used as a carbon source, the pH after metabolism decreases due
471 to their oxidation-reduction potential of them own (Song et al., 2021). Alternatively,
472 the lower denitrification performance of strain GR7397 at COD/TN < 4 could be
473 attributed to the number of electrons provided being too low to provide sufficient
474 energy for cell growth containing a low concentration of carbon source (Kim et al.,
475 2008). At the same time, the excessive COD/TN ratio caused a large number of other
476 heterotrophic bacteria to multiply, resulting in competition between limited substrates,
477 thus inhibiting the activity of denitrifying bacteria and making denitrification less
478 effective (Deng et al., 2020). In this study, the initiation time of the denitrification
479 capacity of the strain was prolonged by 2 hours when COD/TN=12, confirmed that
480 the denitrification capacity of the bacteria was inhibited by an excessive carbon
481 source. The strain GR7397 was therefore more capable of denitrification when the
482 COD/TN ratio was between 6 and 8. The effect of pH on the rate of denitrification
483 was mainly reflected by affecting the activity of the denitrifying enzymes. The
484 enzyme activity would be highest in the optimum pH range, and either lower or
485 higher pH would affect the enzyme activity. The microorganisms were died when the
486 maximum pH was exceeded or when it was below the minimum pH (Ke et al., 2022).
487 The nitrate removal efficiency of strain GR7397 ended up being 29.65% at pH 6. This
488 phenomenon was probably caused by the inappropriate growth and reproduction of
489 strain GR7397 in mildly acidic conditions and affected the denitrification
490 performance of the strain. The most suitable pH range for most aerobic denitrifying
491 bacteria is 7.5-8, such as *Penicillium* sp. M25-22 (Wang & Yu, 2010),
492 *Stenotrophomonas* sp. MSNA-1 (Zeng et al., 2020), *Acinetobacter junii* YB (Prieur,
493 2000), *Marinobacter* sp. NNA5 (Liu et al., 2016), *Marinobacter* sp. F6 (Zhang et al.,

494 2012), and *Bacillus* sp. N31 (Huang et al., 2017), which were consistent with the
495 findings of strain GR7397.

496 This study further evaluated that the nitrate removal capacity of strain GR7397 in
497 SBR was effective and stable. The NO_3^- -N removal rate in the 30% inoculated group
498 was the highest in each cycle, which was ranging from $15.48\text{-}28.55 \text{ mg} \cdot \text{L}^{-1} \cdot \text{h}^{-1}$.
499 Meanwhile, the removal efficiency was as high as 99% to 100%. This result is almost
500 consistent with the performance of the SBR inoculated with *Enterobacter* sp. strain FL
501 separately, with influent nitrate-nitrogen concentrations ranging from 100 -110 mg/L,
502 setting for 24 h each cycle, with nitrate removal efficiencies ranging from 90.20 to
503 99.70% (Wang et al., 2018). The feasibility of strain GR7397 for wastewater
504 treatment in open systems was further confirmed as strain GR7397 indicated
505 significant aerobic denitrification capability in the SBR operation after mixing with
506 microbial populations, even under uncontrolled oxygen conditions. To sum up,
507 aerobic denitrification of this strain has great potential for application in bioreactors.
508 Since mixed microbial population systems are typically used in WWTPs, it remains to
509 be explored whether aerobic denitrifying strain GR7397 can be the dominant
510 population in a sophisticated open system for wastewater treatment.

511 **5. Conclusion**

512 In this study, a novel and highly efficient aerobic denitrifying strain
513 *Achromobacter xylosoxidans* GR7397 was isolated from the activated sludge of an
514 domestic wastewater treatment plant to address several environmental pollution
515 problems caused by excessive nitrogen in water. The presence of functional genes
516 including *narG*, *napA*, *nirS*, *cnorB*, and *nosZ* demonstrated by electrophoretic analysis
517 of PCR amplification products indicated that the strain had a complete denitrification

518 capacity, i.e., $\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2$. The optimum denitrification
519 conditions for the strain were obtained with sodium acetate as an electron donor,
520 COD/TN ratio of 4, pH of 8, dissolved oxygen not controlled. The nitrate removal
521 rate of inoculated strain GR7397 was demonstrated to be higher than the nitrate
522 removal rate in activated sludge systems operating in SBR. These studies reveal that
523 strain GR7397 could be preferentially selected for the treatment of wastewater with
524 high concentrations of nitrate or nitrite.

525 **References**

526 Chen, P.Z., Li, J., Li, Q.X., Wang, Y.C., Li, S.P., Ren, T.Z., Wang, L.G. 2012.
527 Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium
528 *Rhodococcus* sp CPZ24. *Bioresource Technology*, **116**, 266-270.

529 Chen, S.N., Li, S.L., Huang, T.L., Yang, S.Y., Liu, K.W., Ma, B., Shi, Y.J., Miao, Y.T.
530 2020. Nitrate reduction by *Paracoccus thiophilus* strain LSL 251 under aerobic
531 condition: Performance and intracellular central carbon flux pathways.
532 *Bioresource Technology*, **308**.

533 Cheng, H.Y., Xu, A.A., Awasthi, M.K., Kong, D.D., Chen, J.S., Wang, Y.F., Xu, P.
534 2020. Aerobic denitrification performance and nitrate removal pathway analysis
535 of a novel fungus *Fusarium solani* RADF-77. *Bioresource Technology*, **295**.

536 Deng, M., Li, L., Dai, Z.L., Senbati, Y., Song, K., He, X.G. 2020. Aerobic
537 denitrification affects gaseous nitrogen loss in biofloc-based recirculating
538 aquaculture system. *Aquaculture*, **529**.

539 Duan, J.M., Fang, H.D., Su, B., Chen, J.F., Lin, J.M. 2015. Characterization of a
540 halophilic heterotrophic nitrification-aerobic denitrification bacterium and its
541 application on treatment of saline wastewater. *Bioresource Technology*, **179**, 421-
542 428.

543 Feng, Q., Wang, Y.X., Wang, T.M., Zheng, H., Chu, L.B., Zhang, C., Chen, H.Z.,
544 Kong, X.Q., Xing, X.H. 2012. Effects of packing rates of cubic-shaped
545 polyurethane foam carriers on the microbial community and the removal of
546 organics and nitrogen in moving bed biofilm reactors. *Bioresource Technology*,
547 **117**, 201-207.

548 Fu, W.L., Song, G.L., Wang, Y.S., Wang, Q., Duan, P.F., Liu, C., Zhang, X., Rao, Z.M.
549 2022. Advances in Research Into and Applications of Heterotrophic Nitrifying
550 and Aerobic Denitrifying Microorganisms. *Frontiers in Environmental Science*,
551 **10**.

552 Guo, L.J., Zhao, B., An, Q., Tian, M. 2016. Characteristics of a Novel Aerobic
553 Denitrifying Bacterium, *Enterobacter cloacae* Strain HNR. *Applied Biochemistry*
554 and Biotechnology, **178**(5), 947-959.

555 Hu, X.F., Su, J.F., Ali, A., Wang, Z., Wu, Z.Z. 2021. Heterotrophic nitrification and
556 biomineralization potential of *Pseudomonas* sp. HXF1 for the simultaneous
557 removal of ammonia nitrogen and fluoride from groundwater. *Bioresource*
558 *Technology*, **323**.

559 Huang, F., Pan, L.Q., Lv, N., Tang, X.M. 2017. Characterization of novel & ITBacillus
560 & ITstrain N31 from mariculture water capable of halophilic heterotrophic
561 nitrification-aerobic denitrification. *Journal of Bioscience and Bioengineering*,
562 **124**(5), 564-571.

563 Huang, T.L., Guo, L., Zhang, H.H., Su, J.F., Wen, G., Zhang, K. 2015. Nitrogen-
564 removal efficiency of a novel aerobic denitrifying bacterium, *Pseudomonas*
565 *stutzeri* strain ZF31, isolated from a drinking-water reservoir. *Bioresource
566 Technology*, **196**, 209-216.

567 Jiang, F.Y., Qi, Y.L., Shi, X.Y. 2022. Effect of liquid carbon sources on nitrate
568 removal, characteristics of soluble microbial products and microbial community
569 in denitrification biofilters. *Journal of Cleaner Production*, **339**.

570 Ke, X., Liu, C., Tang, S.Q., Guo, T.T., Pan, L., Xue, Y.P., Zheng, Y.G. 2022.
571 Characterization of *Acinetobacter indicus* ZJB20129 for heterotrophic
572 nitrification and aerobic denitrification isolated from an urban sewage treatment
573 plant. *Bioresource Technology*, **347**.

574 Khardenavis, A.A., Kapley, A., Purohit, H.J. 2007. Simultaneous nitrification and
575 denitrification by diverse *Diaphorobacter* sp. *Applied Microbiology and
576 Biotechnology*, **77**(2), 403-409.

577 Kim, M., Jeong, S.Y., Yoon, S.J., Cho, S.J., Kim, Y.H., Kim, M.J., Ryu, E.Y., Lee, S.J.
578 2008. Aerobic Denitrification of *Pseudomonas putida* AD-21 at Different C/N
579 Ratios. *Journal of Bioscience and Bioengineering*, **106**(5), 498-502.

580 Kuypers, M.M.M., Marchant, H.K., Kartal, B. 2018. The microbial nitrogen-cycling
581 network. *Nature Reviews Microbiology*, **16**(5), 263-276.

582 Lang, X.D., Li, Q.W., Ji, M.M., Yan, G.X., Guo, S.H. 2020. Isolation and niche
583 characteristics in simultaneous nitrification and denitrification application of an
584 aerobic denitrifier, *Acinetobacter* sp. YS2. *Bioresource Technology*, **302**.

585 Lesley, A., Robertson, Kuenen, J.G. 1983. *Thiosphaera pantotropha* gen. nov. sp. nov.,
586 a Facultatively Anaerobic, Facultatively Autotrophic Sulphur Bacterium. *Journal
587 of General Microbiology*, **129**(9), 2847-2855.

588 Li, D., Liang, X.H., Jin, Y., Wu, C.D., Zhou, R.Q. 2019. Isolation and Nitrogen
589 Removal Characteristics of an Aerobic Heterotrophic Nitrifying-Denitrifying
590 Bacterium, *Klebsiella* sp. TN-10. *Applied Biochemistry and Biotechnology*,
591 **188**(2), 540-554.

592 Liu, X., Zhang Qichun, Yang Xiaoyu. 2023. Isolation and characteristics of two
593 heterotrophic nitrifying and aerobic denitrifying bacteria, *Achromobacter* sp.
594 strain HNDS-1 and *Enterobacter* sp. strain HNDS-6. *Environmental Research*,
595 **220**.

596 Liu, Y., Ai, G.M., Miao, L.L., Liu, Z.P. 2016. *Marinobacter* strain NNA5, a newly
597 isolated and highly efficient aerobic denitrifier with zero N₂O emission.
598 *Bioresource Technology*, **206**, 9-15.

599 Naoki, T., B., M.A., Catalan-Sakairi, Yasushi Sakaguchi, Isao Kato, Zhemin Zhou,
600 Shoun, H. 2003. Aerobic Denitrifying Bacteria That Produce Low Levels of
601 Nitrous Oxide. *APPLIED AND ENVIRONMENTAL MICROBIOLOGY*, **69**(6),
602 3152-3157.

603 Prieur, G.M.a.D. 2000. Heterotrophic nitrification by a thermophilic *Bacillus* species
604 as influenced by different culture conditions. *Canadian Journal of Microbiology*,
605 **46**(5), 465-473.

606 Ren, J.L., Wei, C.Z., Ma, H.J., Dai, M.Y., Fan, J.Z., Liu, Y., Wu, Y.H., Han, R. 2019.
607 The Nitrogen-Removal Efficiency of a Novel High-Efficiency Salt-Tolerant
608 Aerobic Denitrifier, *Halomonas Alkaliphile* HRL-9, Isolated from a Seawater

609 Biofilter. *International Journal of Environmental Research and Public Health*,
610 **16**(22).

611 Rout, P.R., Bhunia, P., Dash, R.R. 2017. Simultaneous removal of nitrogen and
612 phosphorous from domestic wastewater using *Bacillus cereus* GS-5 strain
613 exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying
614 phosphorous removal. *Bioresource Technology*, **244**, 484-495.

615 Roy, S., Nirakar, P., Yong, N.G.H., Stefan, W. 2021. Denitrification kinetics indicates
616 nitrous oxide uptake is unaffected by electron competition in *Accumulibacter*.
617 *Water Research*, **189**.

618 Shi, Z., Zhang, Y., Zhou, J.T., Chen, M.X., Wang, X.J. 2013. Biological removal of
619 nitrate and ammonium under aerobic atmosphere by *Paracoccus versutus* LYM.
620 *Bioresource Technology*, **148**, 144-148.

621 Song, T., Zhang, X.L., Li, J., Wu, X.Y., Feng, H.X., Dong, W.Y. 2021. A review of
622 research progress of heterotrophic nitrification and aerobic denitrification
623 microorganisms (HNADMs). *Science of the Total Environment*, **801**.

624 Sparacino-Watkins, C., Stolz, J.F., Basu, P. 2014. Nitrate and periplasmic nitrate
625 reductases. *Chemical Society Reviews*, **43**(2), 676-706.

626 Su, J.F., Shi, J.X., Ma, F. 2017. Aerobic denitrification and biomimetic mineralization by a
627 novel heterotrophic bacterium, *Acinetobacter* sp H36. *Marine Pollution Bulletin*,
628 **116**(1-2), 209-215.

629 Tang, Y., Zhang, M.Y., Sun, G.X., Pan, G. 2019. Impact of eutrophication on arsenic
630 cycling in freshwaters. *Water Research*, **150**, 191-199.

631 Wang, L.Q., Yu, Q.L. 2010. Study on Characteristics of a Strain of *Penicillium* sp
632 Capable of Heterotrophic Ammonium Oxidation. *Agricultural Sciences in China*,
633 **9**(12), 1816-1820.

634 Wang, X., An, Q., Zhao, B., Guo, J.S., Huang, Y.S., Tian, M. 2018. Auto-aggregation
635 properties of a novel aerobic denitrifier *Enterobacter* sp strain FL. *Applied
636 Microbiology and Biotechnology*, **102**(4), 2019-2030.

637 Xu, Z.S., Dai, X.H., Chai, X.L. 2018. Effect of different carbon sources on
638 denitrification performance, microbial community structure and denitrification
639 genes. *Science of the Total Environment*, **634**, 195-204.

640 Yao, Y.C., Zhang, Q.L., Liu, Y., Liu, Z.P. 2013. Simultaneous removal of organic
641 matter and nitrogen by a heterotrophic nitrifying-aerobic denitrifying bacterial
642 strain in a membrane bioreactor. *Bioresource Technology*, **143**, 83-87.

643 Zeng, X.Y., Huang, J.H.J., Hua, B.B., Champagne, P. 2020. Nitrogen removal
644 bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH
645 resistances. *Bioresource Technology*, **310**.

646 Zhang, H.H., Zhao, Z.F., Kang, P.L., Wang, Y., Feng, J., Jia, J.Y., Zhang, Z.H. 2018.
647 Biological nitrogen removal and metabolic characteristics of a novel aerobic
648 denitrifying fungus *Hanseniaspora uvarum* strain KPL108. *Bioresource
649 Technology*, **267**, 569-577.

650 Zhang, Q.L., Liu, Y., Ai, G.M., Miao, L.L., Zheng, H.Y., Liu, Z.P. 2012. The
651 characteristics of a novel heterotrophic nitrification-aerobic denitrification
652 bacterium, *Bacillus methylotrophicus* strain L7. *Bioresource Technology*, **108**,
653 35-44.

654 Zhao, B., Cheng, D.Y., Tan, P., An, Q., Guo, J.S. 2018. Characterization of an aerobic
655 denitrifier *Pseudomonas stutzeri* strain XL-2 to achieve efficient nitrate removal.
656 *Bioresource Technology*, **250**, 564-573.

657 Zheng, H.Y., Liu, Y., Gao, X.Y., Ai, G.M., Miao, L.L., Liu, Z.P. 2012.
658 Characterization of a marine origin aerobic nitrifying-denitrifying bacterium.

659 *Journal of Bioscience and Bioengineering*, **114**(1), 33-37.

660 Zheng, M.S., He, D., Ma, T., Chen, Q., Liu, S.T., Ahmad, M., Gui, M.Y., Ni, J.R.

661 2014. Reducing NO and N₂O emission during aerobic denitrification by newly

662 isolated *Pseudomonas stutzeri* PCN-1. *Bioresource Technology*, **162**, 80-88.

663 Zhu, L., Ding, W., Feng, L.J., Kong, Y., Xu, J., Xu, X.Y. 2012. Isolation of aerobic

664 denitrifiers and characterization for their potential application in the

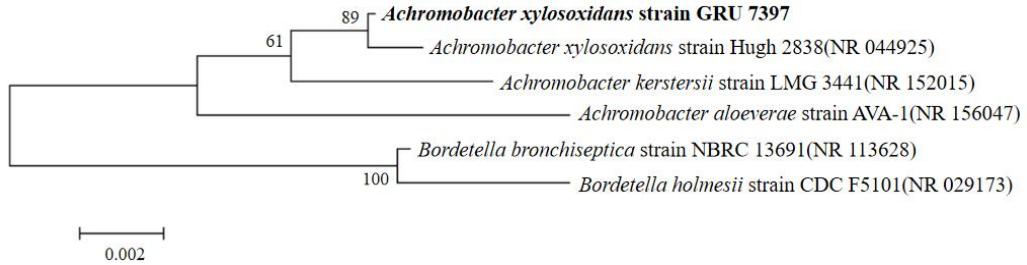
665 bioremediation of oligotrophic ecosystem. *Bioresource Technology*, **108**, 1-7.

666

Isolation and nitrogen removal characteristics of a novel aerobic denitrifying strain *Achromobacter xylosoxidans* GR7397

Authors: Ailu Gu, Yunlong Li, Wei Yao, Anqi Zhang, Zimin Chai, Maosheng Zheng^{1*}

Affiliations:


Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education,
College of Environmental Science and Technology, North China Electric Power University,
Beijing 102206, China

Corresponding author:

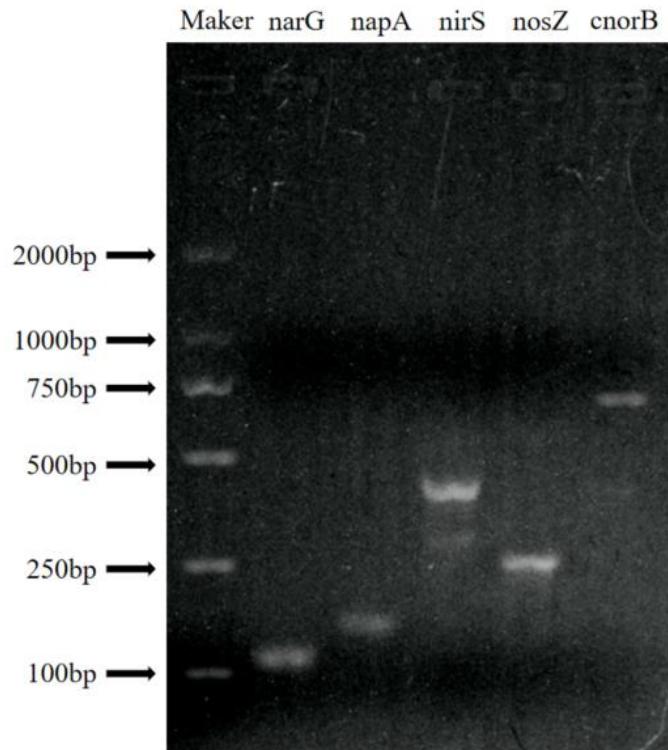
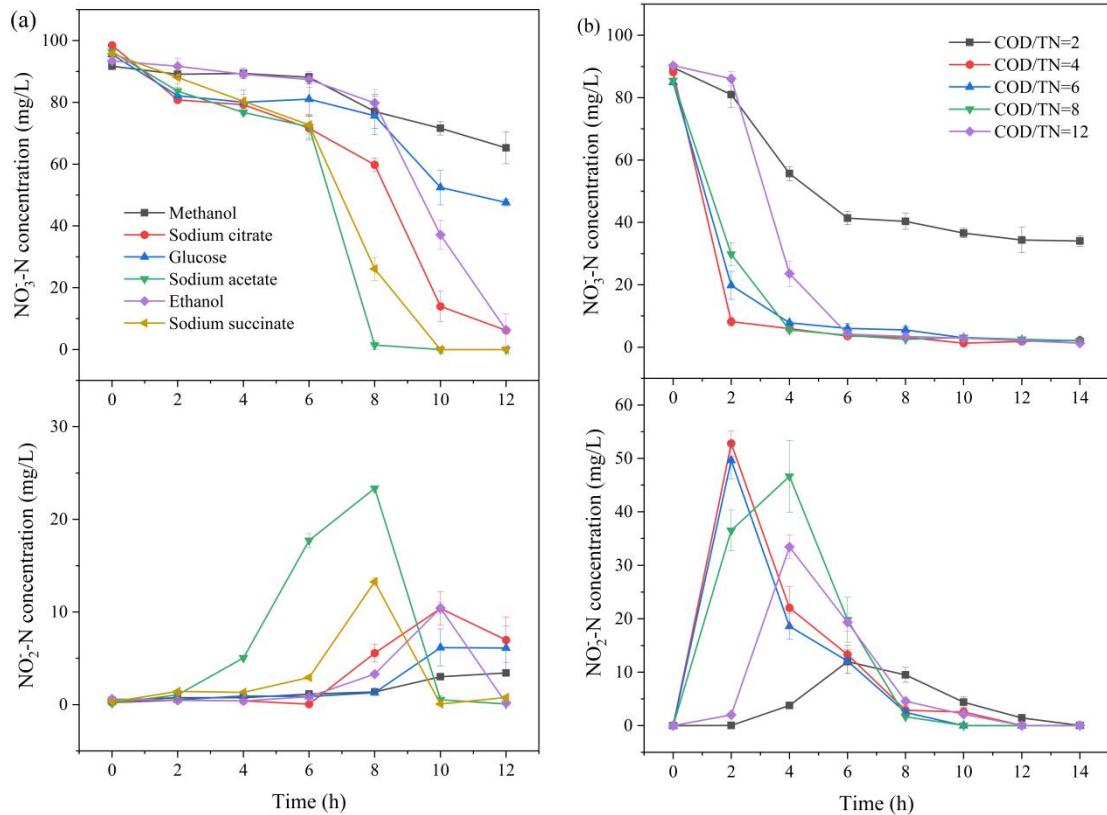
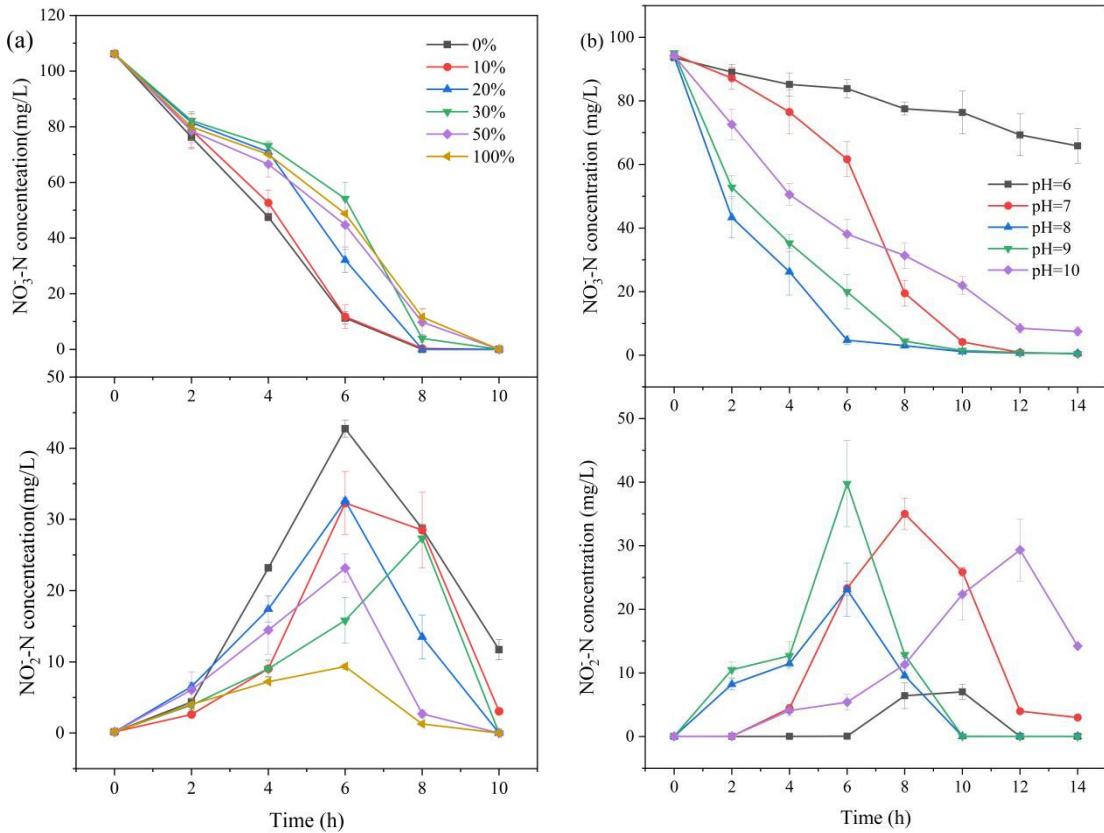
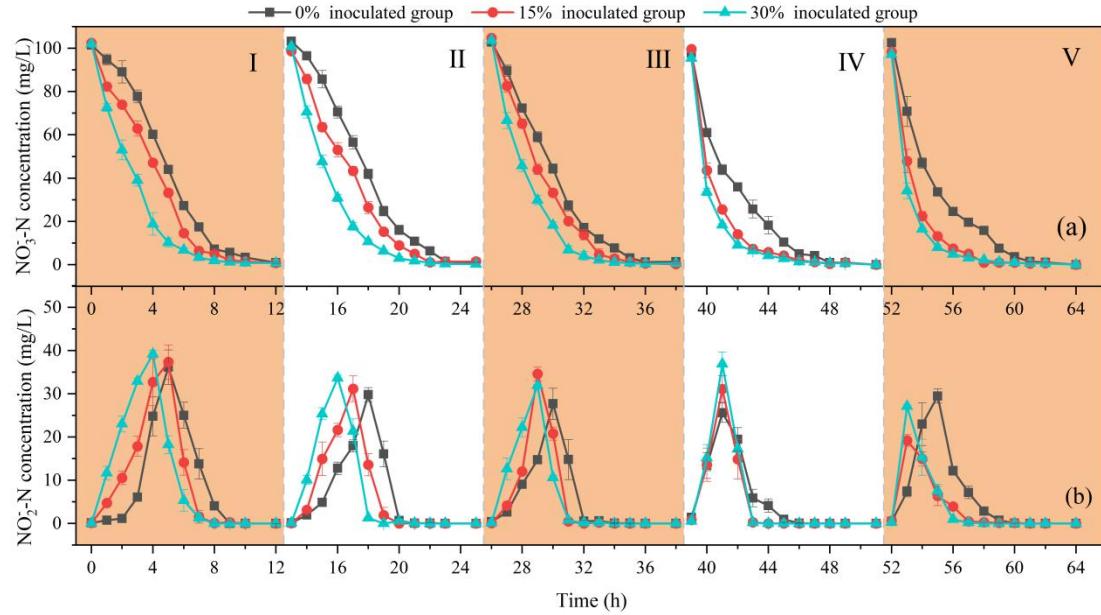

M. Zheng, Email: maoshengzheng@ncepu.edu.cn

Table. 1 PCR primers used for 16S rRNA gene sequencing and qPCR analysis.


Gene name	Primer name	Primer sequence (5' - 3')	References
16S rRNA	27F	AGAGTTGATCCTGGCTCAG	(Hass et al., 2011)
	1492R	TACGGYTACCTTGTAYGACTT	
narG	narG 1960F	TAYGTSGGSCARGARAA	(Wu et al., 2012)
	narG 2650R	TTYTCRTACCABGTBGC	
napA	V17F	TGGACVATGGGYTTYAAWC	(Wu et al., 2012)
	4R	ACYTCRCGHGCVGTRCCRCA	
nirS	nirS cd3aF	AACGYSAAGGARACSGG	(Luo et al., 2019)
	nirS R3cd	GASTTCGGRTGSGTCTTSAYGAA	
nosZ	nosZ 1527F	CGCTGTTCHTCGACAGYCA	(Zheng et al., 2014)
	nosZ 1773R	ATRTCGATCARCTGBTCGTT	
cnorB	cnorB 2F	GACAAGNNNTACTGGTGGT	(Tiedje et al., 2003)
	cnorB 6R	GAANCCCCANACNCCNGC	


Fig. 1 Phylogenetic tree drawn from neighbor-joining analysis based on the 16S rDNA gene sequence of *Achromobacter xylosoxidans* strain GR7397 and other reference sequences.


Fig. 2 Electrophoretic analysis of PCR amplification products for *narG*, *napA*, *nirS*, *cnorB* and *nosZ*.

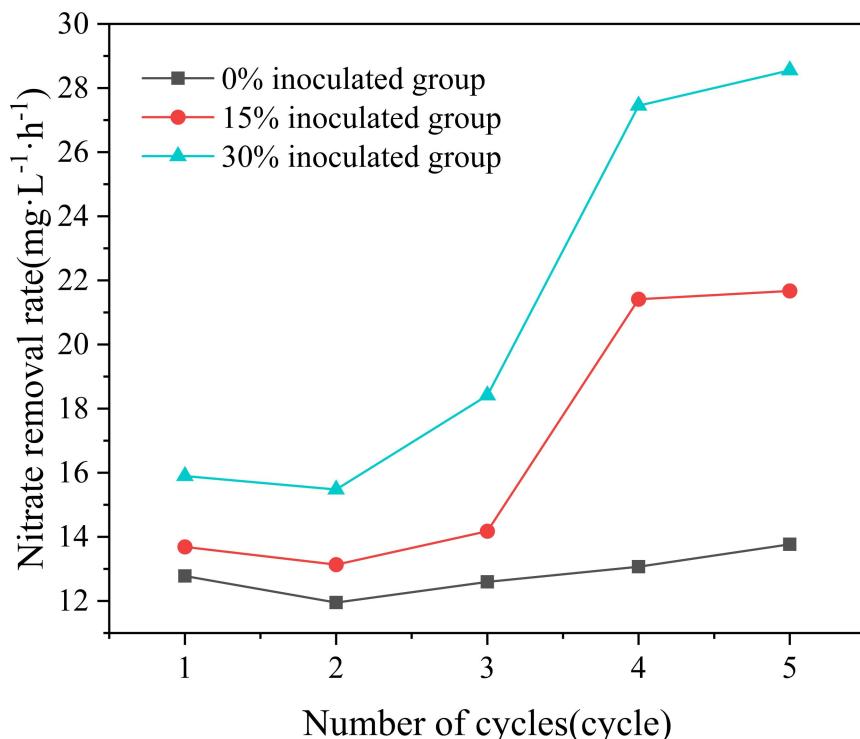

Fig. 3 NO_3^- -N and NO_2^- -N concentrations as a function of time in simulated high nitrate nitrogen wastewater inoculated with strain GR7397 with different carbon sources (a) and different COD/TN ratios (b).

Fig. 4 NO_3^- -N and NO_2^- -N concentrations with time-dependent changes in simulated wastewater treated with strain GR7397 at different relative oxygen concentrations (a) and different pH levels (b).

Fig. 5 Variations of nitrate and nitrite concentrations in SBRs inoculated with different amount of strain GR7393 .

Fig. 6 Removal rate of nitrate nitrogen in each cycle of the continuous SBR operation.