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Abstract

Genome-wide association studies (GWAS) have uncovered susceptibility loci associated with
psychiatric disorders like bipolar disorder (BP) and schizophrenia (SCZ). However, most of
these loci are in non-coding regions of the genome with unknown causal mechanisms of the link
between genetic variation and disease risk. Expression quantitative trait loci (eQTL) analysis of
bulk tissue is a common approach to decipher underlying mechanisms, though this can obscure
cell-type specific signals thus masking trait-relevant mechanisms. While single-cell sequencing
can be prohibitively expensive in large cohorts, computationally inferred cell type proportions
and cell type gene expression estimates have the potential to overcome these problems and
advance mechanistic studies. Using bulk RNA-Seq from 1,730 samples derived from whole
blood in a cohort ascertained for individuals with BP and SCZ this study estimated cell type
proportions and their relation with disease status and medication. We found between 2,875 and
4,629 eGenes for each cell type, including 1,211 eGenes that are not found using bulk
expression alone. We performed a colocalization test between cell type eQTLs and various
traits and identified hundreds of associations between cell type eQTLs and GWAS loci that are
not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on cell type
expression regulation and found examples of genes that are differentially regulated dependent
on lithium use. Our study suggests that computational methods can be applied to large bulk
RNA-Seq datasets of non-brain tissue to identify disease-relevant, cell type specific biology of
psychiatric disorders and psychiatric medication.
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INTRODUCTION

One limitation of standard eQTL studies is that they generally use expression estimates from
bulk tissue.'? While this is informative, it has been shown that there are many cell type specific
mechanisms driving biology,** which can be missed when looking at a collection of many cell
types. In recent years, single cell RNA-Seq has allowed for the profiling of the gene expression
of an individual cell, giving us a clearer picture of cell type gene expression. However, single cell
RNA-Seq experiments are considerably more expensive than bulk RNA-Seq®. To leverage the
advantages of each of these approaches, we can use methods to estimate cell type gene
expression from bulk RNA-Seq expression.

There exist many methods®’ to estimate cell type expression from bulk RNA-Seq. Here, we
elected to use CIBERSORTx® and bMIND?® to estimate cell type proportions and cell type
expression, respectively. Computational methods for analyzing bulk gene expression data have
the potential for being advantageous in some applications as it is possible to obtain much larger
sample sizes using bulk RNA-Seq instead of single cell RNA-Seq. While most single cell
RNA-Seq studies have sample sizes in the range of several hundreds of cells from a small
number of individuals, leveraging low-coverage bulk RNA-Seq allows us to obtain samples from
hundreds to thousands of subjects.'® We used the low-coverage RNA-seq dataset described in
Schwarz, et. al."®as the primary dataset for analysis of cell type deconvolution in this study.

Associations between immune-related traits and neuropsychiatric disorders have been
previously reported", and we hypothesized that using blood-based expression can provide
relevant information regarding the biology of such disorders.'"*'* In this work we used cell type
deconvolution methods to derive cell type specific estimates for gene expression from bulk
blood RNA-seq, specifically within a cohort including psychiatric patients and controls of
European ancestry. We used these results to conduct cell type cis-eQTL analyses, and
compared the shared and unique cell type associations. We show that these cell type eQTL
results derived from deconvoluted bulk RNA-Seq are consistent with eQTLs from scRNA-Seq.
We performed colocalization analysis to find loci driving GWAS associations in either
neuropsychiatric or blood-based traits and cell type gene expression. We go on to identify
several examples of “opposite-effect” eQTLs, where a cell type eQTL signal demonstrates gene
expression regulation in the opposite direction from that observed in a bulk eQTL study. Finally,
we explored the effects of lithium use' on cell type expression, and identified several cases of
lithium-SNP interaction dictating presence of an eQTL.

RESULTS

Section 1: Computationally-derived cell type estimates are reliable

Figure 1 provides a graphical abstract of the pipeline used in this study to generate putative
cell-type specific eQTLs. To estimate cell type gene expression in whole blood, we analyzed

bulk blood RNA-seq of bulk RNA-Seq (N = 1,730) using computational deconvolution tools.
First, we estimated cell type proportions using the LM22 signature matrix and CIBERSORTXx
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(Figure 2A). We found that these proportion estimates are consistent with standard white blood
cell reference ranges,® for which generally neutrophils have the highest abundance,
lymphocytes (including T cells, B cells, natural killer (NK) cells combined) the second highest
abundance, and monocytes the lowest abundance. However we note that blood cell type
proportions vary across individuals depending on numerous factors such as medication use,
current iliness, and age." We confirmed that the proportions estimated via CIBERSORTXx are
consistent with the complete blood count measures taken in the clinic for a subset (N=143) of
individuals in our dataset (Supplementary Figure 1). We observed a pearson correlation (R?) of
0.76 for cell type proportions estimated in neutrophils using CIBERSORTXx and proportions
measured in clinic, 0.85 for lymphocytes, and 0.48 for monocytes. These results suggest that
the computationally estimated proportions are reliable.

Next, we used these proportion estimates and bMIND expression deconvolution (Methods) to
estimate cell type expression. Consistent with biological expectations, we found that correlation
of estimated expression between different cell types is high, as all cell types are derived from
the same tissue (Figure 2B). Next, we investigated whether computationally estimated cell type
expression could successfully detect differences in expression between different cell types,
despite there being a high correlation structure between different cell types. Principal
component analysis confirmed that the major sources of variation in the dataset are attributable
to differences in cell type expression (Supplementary Figure 2). These results suggest that
using large cohorts of bulk RNA-Seq in blood, paired with computational deconvolution tools,
can successfully detect differences in expression dependent on cell type composition.

Finally, we contrasted computationally-derived cell-type estimates with single cell RNA-Seq
(scRNA-Seq) data.'®'® We compared median TPM (transcripts per million) estimates across six
cell types and find moderate correlation between the reference single-cell expression and
computationally derived expression, ranging from R? of 0.11 in naive B cells to R? of 0.27 in CD8
T cells (Supplementary Table 1 and Supplementary Figure 3). To further check how well
computationally estimated expression compares to expression derived from scRNA-Seq, we
correlated expression estimates between the two reference scRNA-Seq datasets in monocytes,
the one cell type with data available in both reference datasets. We found that the median TPM
of the 2,836 eGenes (genes with an associated eQTL) in both datasets have an R? of 0.22,
comparable to the R? observed when comparing computationally estimated expression with
scRNA-Seq.

Section 2: Cell type eQTL analysis reveals more refined biological signal compared to
bulk eQTL

Next, we performed eQTL analyses on the resulting cell type expression estimates to find
evidence of genetic regulation of cell type expression. We restricted to the eight cell types with
average proportion > 2% including: naive B Cells, memory B Cells, CD4 naive T Cells, CD4
memory T cells, natural killer cells, monocytes, and neutrophils. We conducted local-eQTL
mapping with a 1 Mb window using QTLtools (Methods), to identify between 2,875 and 4,629
eQTL-genes (eGenes) with a significant association at FDR correction level of 5%, across the
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eight different cell types (Figure 3A). In total, we identified 5,752 eGenes with a significant
association in at least one of the eight main cell types. We show that there exists a range of
concordance of effect sizes for eGenes found in both the individual cell type analyses and the
bulk eQTL analysis (Figure 3B and 3C). This confirms findings from previous studies showing a
strong shared genetic effect on gene expression across cell types. We observed that most
eGenes are detected as significant in either just one, or all eight cell types (Supplementary
Figure 4).

Additionally, we found evidence of cell type “opposite-effect” eQTLs, where a SNP in a given cell
type shows an association with the same eGene as detected using bulk RNA-Seq, but in the
opposite direction. One such example is the eQTL for FCGR3B (Fc fragment of IgG receptor
[1Ib); while the bulk eQTL had an effect size of -1.3, the effect size in neutrophils and T cell types
ranged between 0.49 and 0.86. Similarly, the eQTL for MACF1 (Microtubule actin crosslinking
factor 1) had effect sizes between -1.1 and -0.15 for the T cell types, versus effect sizes ranging
between 0.21 and 0.28 for the bulk and remaining immune cell types. MACF1 is known to be
involved in neurite growth during brain development and has previously been linked to
schizophrenia.?’ These examples are especially interesting as it supports the idea that gene
expression at the cell type level can uncover nuances of biological mechanisms that go
undetected when only using bulk-level analyses. Similar effects have been observed in other
studies using both single cell RNA-Seg?' and deconvoluted bulk RNA-Seq.?

To further validate these cell type eQTLs, we compared the results of this analysis with results
from eQTL analysis using single cell RNA-Seq from the eQTLCatalogue and BLUEPRINT
consortiums.'®?*?* We restricted to the protein coding genes identified as eGenes using the
computational deconvolution approach. Generally, we found that the two approaches to cell type
eQTL mapping show strong concordance. For example, in neutrophils, we found that 2,921 out
of the 4,629 genes (63%) with a significant association using the computational deconvolution
approach also had a significant association in using single-cell RNA-Seq, correcting at an FDR
level of 5%. Among these eGenes, comparing the association with the same leading SNP in
both of these datasets (Figure 3D), we observed a correlation (R?) of 0.66 between their effect
sizes. Similar effect size correlations, for T cells CD4, B cells, and monocytes are shown in
Supplementary Figure 5. This suggests that the computational deconvolution approach to
large scale bulk RNA-Seq projects can be used to obtain accurate cell type eQTL estimates.

Section 3: Integration of cell type specific eQTL with brain and blood trait GWAS

For every gene with a significant eQTL, we used FUSION? to estimate the gene expression
heritability across each of the contexts, or the proportion of variance in gene expression
explained by variance in genetics. Only those genes with significant heritability after five-fold
cross validation per each context were retained for further analysis. Table 2 provides the
summarized statistics of the significantly heritable genes and the gene with highest estimated
SNP-heritability per cell type. An advantage of investigating eQTLs at the cell type level is that it
provides a more precise view of biological mechanisms driving the association between gene
expression and phenotype. In order to investigate whether there exists variants that drive both
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the expression of genes in a specific cell type and a GWAS trait, we conducted Transcriptome
Wide Association Study (TWAS)? and colocalization?® analyses using the significant ct-eQTLs
from the eight main cell types previously mentioned, and GWAS of several neuropsychiatric and
blood-based phenotypes. Figure 4A provides an overview of the overlap across the contexts,
both for brain-related and blood-based traits.

GWAS for neuropsychiatric traits tested include: BP,?” SCZ,?® major depressive disorder
(MDD),® alcohol dependence,* cannabis use disorder,*' migraines,* insomnia,*
attention-deficit/hyperactivity disorder (ADHD),** and Alzheimer’s disease.* In total there were
710 eGenes found to be associated only in bulk and no other cell type, and 168 eGenes found
to be associated in one or more cell types and not in the bulk (Table 3). Regarding
colocalization, in total there were 68 eGenes found to have colocalized SNPs between
expression and trait only in the bulk and no other cell type, and 50 eGenes found only in one or
more cell types and not in the bulk (Table 3).

Of the 50 eGenes found to have a colocalization posterior probability with the same variant
impacting both gene expression and the GWAS trait (PP4>0.8) in a cell type but not in the bulk,
half have a higher median TPM across the GTEx v8 brain tissue types than in GTEx whole
blood. This suggests that these genes are relevant for brain functions despite being detected in
immune cell type specific expression estimates. An example of one such gene is HTR6, a
serotonin receptor targeted by certain antidepressant and antipsychotic medication, found to be
strongly associated and colocalized with BP in the most recent Psychiatric Genomics
Consortium (PGC) study on bipolar disorder?” which used brain-derived gene expression
weights from the PsychENCODE project.*® Conditioning on HTR6 memory B cell-specific
expression using FUSION completely removed the significant GWAS signal at this locus,
suggesting that the genetic factor driving gene expression also encompasses the BP
association signal (Figure 4B). The same held true for other immune cell types in which HTR6
was colocalized with BP, including naive B cells and CD4 T cells. This demonstrates the utility of
using cell type deconvolution methods in large cohorts of an easily-accessible tissue like blood,
since it is able to capture gene expression regulation relevant in brain cell types that otherwise
are not detectable in bulk blood eQTLSs.

GWAS for blood-based traits tested include: systemic lupus erythematosus®” (an autoimmune
disorder), mean corpuscular volume, mean corpuscular hemoglobin,*® red blood cell width
distribution, monocyte count, eosinophil count, lymphocyte count, platelet count, white blood cell
count, and red blood cell count.* In total there were 1,765 eGenes found to have associations
only in bulk and no other cell type, and 493 eGenes found only in one or more cell types and not
in the bulk (Table 4). Regarding colocalization, in total there were 488 eGenes found only in the
bulk and no other cell type, and 229 eGenes found only in one or more cell types and not in the
bulk (Table 4).

Within the blood-based traits we again found examples of opposite-sign effects in certain cell
types when compared to the bulk. For example, when considering systemic lupus
erythematosus (SLE) as a trait, we found for the /RF5 gene, natural killer cells have a TWAS
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Z-score of -10.7 whereas the bulk has a score of +3.91, suggesting distinct mechanisms that
are dependent on the cell type context. IRF5 (interferon regulatory factor 5) is known to be
implicated in SLE,***' though the exact mechanism by which it is dysregulated in the context of
disease remains unknown.

See the TWAS Supplementary Tables to view all FUSION TWAS and colocalization results.
Section 4: Lithium-dependent genetic regulation of gene expression

Given the large number of BP probands in our study sample, we were interested to see whether
there were BP-specific effects that could be observed using cell type deconvoluted expression.
Since lithium is the most commonly used drug to treat these patients and it has also been
established that lithium use has an effect on the blood transcriptome,**** we hypothesized that
lithium-dependent genetic regulation of the blood transcriptome may exist. Among the 1,045
bipolar disorder patients in this cohort, 709 were taking lithium at the time of blood draw
(“Lithium-User”) and 336 were not (“Lithium Non-User”).

When stratifying by cases versus controls (with all BP and SCZ individuals included as cases),
we found significant differences in cell type proportion for CD4 T cells (p=1.8e-7, higher in
controls), natural killer resting cells (p=1.2e-7, higher in controls), and neutrophils (p=2.3e-8,
higher in cases). Next, considering only the cases of BP, we stratified those who use lithium
versus those who do not, and found significant differences in cell type proportion for CD4 naive
T cells (p=8e-4, higher in non-users), CD4 memory T cells (p=4e-4, higher in non-users), natural
killer resting cells (p=3e-4, higher in non-users), and neutrophils (p=1.5e-9, higher in users).
However, when we only include lithium non-users within the BP cases, and compare those
against the controls, we found no significant differences in proportion for any of the cell types.
See Supplementary Figure 6 for example plots of all three tests using neutrophils. This
suggests that the use of lithium within the BP cases drives these differences in cell type
proportion, rather than disease status itself, consistent with previous findings.*

We validated the effect of lithium use on blood cell types in a separate cohort of individuals who
had electronic health data from the University of California, Los Angeles ATLAS Community
Health Initiative.***° Specifically, we included self-reported European patients with a PheCode
for bipolar disorder who also had laboratory test orders for complete blood counts and noted
whether they had a prescription order for lithium (n=1302 with lithium, n=6208 without). In
comparing the neutrophil count between BP patients who had never been prescribed lithium (or
before they were prescribed lithium) and those who had a prescription order for lithium, we
found that there was a significant (logistic regression p=2.09e-07) elevation of neutrophils in
patients with a prescription for lithium (Supplementary Figure 7). Furthermore, for a subset of
BP patients within the ATLAS dataset, we also have records for neutrophil counts both before
and after the patient was prescribed lithium. Using a Wilcoxon-signed rank test with continuity
correction, we found a significant difference between the neutrophil counts between the two
groups (p=0.0228) when including individuals of any ancestry (n=376), though when restricting
to only European individuals (n=229), the significant difference is lost (p=0.2) (Supplementary
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Figure 7). The replication of this finding in this large external dataset provides further evidence
to suggest that cell type proportion is impacted by lithium usage, though the implications of this
are yet to be understood.

Next, we investigated whether estimated cell type expression is a significant predictor for
case/control status or lithium use. Restricting to the genes with the highest variance in each cell
type, we built logistic regression models to separately predict case/control status and lithium
use, including the same covariates as the previous proportion-based models. However, we find
that gene expression does not provide additional predictive value over the cell type proportions
for either case/control status or lithium use.

To investigate lithium-dependent genetic regulation, we performed an interaction model eQTL
scan between lithium users and nonusers, testing whether there exist SNPs whose cell type or
cell type specific expression regulation is dependent on the presence of lithium. To do this, we
included an interaction term for the genotypes and lithium status in the regression model
(Methods). Using bulk expression, we only identified one gene with such an association (FDR
p-value < 0.10). With cell type expression derived from bMIND, we identified as many as 34
such eGenes (in monocytes), and a total of 110 examples of genes (Li-eGenes) that show
differential regulation of cell type expression, compared to just one gene that shows differential
regulation of bulk expression (Supplementary Table 3). We found that 97 of the eGenes that
have significant differential lithium regulation exhibit opposite effect sizes between the lithium
user and nonuser groups, at the cell type level. The remaining 13 Li-eGenes show same
direction effect sizes between the lithium user and nonuser groups, with significantly different
magnitudes. For example, in naive B cells, KITLG (ENSG00000049130) shows opposite effect
eQTLs based on rs11104703 (Figure 5A). While in monocytes we see that TNFRSF11A
(ENSG00000105641) shows differential effect size, in the same direction, based on rs79143095
(Figure 5B). Due to the large number of samples used in this analysis, we are powered to
detect small differences, like these.

In order to directly measure expression differences between lithium users and nonusers, we
conducted a differential expression analysis test using limma“* initially in the bulk dataset
(Methods). Comparing the two groups, we tested 17,194 genes from bulk expression
measures. We found 100 genes with evidence of differential expression in bulk (FDR < 0.05),
with log fold changes of the significant genes ranging from -0.191 to 0.177, suggesting low
impact of lithium on differential expression (Figure 5C). Out of the 100 differentially expressed
genes found here, 33 were previously reported in Krebs, et. al,*® a significant overlap according
to Fisher’s exact test (OR = 6.43, p = 4.74e-14). Overlapping genes include FBXL2 - a gene
highly expressed in the brain and involved in neuronal signaling, and CNTNAP3 - which
mediates interactions between neurons and glial cells. See Differential Expression
Supplementary Tables for full lithium differential expression results.

Though previous studies have not found substantial evidence of differential expression in the
blood transcriptome between cases of BP or SCZ and controls,***” we were interested in
investigating this within our own cohort given the uniquely large sample size. Using the bulk
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RNA-seq and the same 17,194 genes selected in the lithium-user differential expression
analysis, we found 64 genes with FDR < 0.05, of which nine genes overlapped with the
significant genes found in the lithium analysis. Log fold changes of the significant genes ranged
only from -0.126 to 0.104, suggesting that if these genes are truly a result of disease status, the
differences are minimal (Supplementary Figure 8). See Differential Expression Supplementary
Tables file for full case/control differential expression results.

For the cell-type specific differential expression analyses, we leveraged the differential
expression function available through the bMIND software. In the case-control analysis, we
found four differentially expressed genes in Neutrophils (FDR<0.05), including TSPANZ2 and
CFAP45 both of which were reported in the Krebs et. al. lithium differential expression study.*?
We found 24 differentially expressed genes in memory B cells, and 21 in naive B cells (with 18
differentially expressed genes in common between the two B cell types). Interestingly, when
conducting the lithium user versus non-user analysis, we did not find any differentially
expressed genes in any cell type. While this may be a result of the smaller sample set used in
the lithium analysis as compared to the case-control analysis, it also may reflect that the effects
of lithium are only found at the bulk level due to its impact on cell type composition, rather than
changes in gene expression within individual cell types. See Differential Expression
Supplementary Tables file for g-values of all cell type specific differential expression results.

DISCUSSION

We show that cell type deconvolution of bulk blood RNA-seq provides novel insights not only for
immune-relevant biology, but also neuropsychiatric disease biology. While bulk eQTLs tend to
provide a greater number of associations overall, we find that cell type specific eQTLs provide
unique associations not otherwise detectable in bulk. Many of these unique cell type
associations have high expression in brain tissue types, and harbor several example genes that
have been previously implicated in BP TWAS? studies using brain tissue. This demonstrates
that large cohorts of an easily accessible tissue like blood is useful for deciphering biology for
brain-related phenotypes when cell type deconvolution is applied. An important caveat,
however, is that the associations with brain-related traits found in this study are most likely to be
shared genetic mechanisms between blood cell types and brain cell types, rather than blood cell
type-specific biology.

Considering the BP TWAS results alone, there were 82 total eGenes with an opposite direction
of effect in a cell type than in the bulk eQTL analysis (defined as having an opposite-sign TWAS
Z-score for the same gene and the same trait). For example, we found 63 eGenes, significantly
associated with BP, that have an opposite direction of effect in CD8-T cells when compared to
bulk expression. ARID5A, a gene implicated in the most recent PGC bipolar disorder TWAS? is
one example of these genes. In the bulk expression the TWAS Z-score of ARID5A and bipolar
disorder is -4.99 (TWAS Z-score -5.32 in PGC BP study), whereas in CD8-T cells it is +6.02.
This gene was also found to be colocalized with PP4>0.8 in the CD8 T Cell test, though it does
not pass the colocalization threshold in the bulk test or PGC3 BP test. The same is true for
ARID5A in CD4 memory resting T cells (TWAS Z-score +6.56). Similarly, the methyltransferase
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gene WDR82 in CD4 Naive T cells has a positive (TWAS Z-score +3.72) association with BP,
whereas the bulk expression has a negative (TWAS Z-score -3.98) association at the same
locus (TWAS Z-score -6.75 in PGC BP study). There are many such examples of these genes
across each of the cell types and the various traits that we examined.

Examples of novel BP-associated genes were also discovered, including RILPL2, found to be
colocalized in the context of memory B cells, monocytes, natural killer resting cells, and CD8 T
cells, but not in the bulk. This gene is highly expressed in whole blood in adults (median TPM
27.42 in GTEX), but is also crucial for dendritic-spine morphogenesis in developing neurons*®
Similarly, CAMKK2 (calcium/calmodulin dependent protein kinase kinase 2), a gene found to be
colocalized in the context of monocytes, neutrophils, and CD4 T cells is highly expressed both
in whole blood and in brain tissues (particularly cerebellar hemisphere and cerebellum
according to GTEx). While CAMKK2 has not been implicated in a BP TWAS, the large PGC
GWAS points toward calcium channel signaling as a potential therapeutic target for BP,?” and
indeed a loss-of-function mutation in this gene has been previously linked to BP status.*® We
consider these to be potential BP-relevant genes that are interesting candidates for
experimental validation.

We replicated previous findings that immune cell type composition is impacted by lithium use
rather than BP status. We also replicated several previously reported genes that are
differentially expressed in whole blood in response to lithium, in addition to reporting novel
lithium-response genes. Although lithium has been prescribed as a mood stabilizer for decades,
its precise mechanism of action is still unclear.* Lithium has been shown to increase the activity
of the transcription factor CREB (cAMP response element-binding protein),®' a protein involved
in neuronal plasticity.%? Here, we found that ATF4, an eGene in all cell types and the bulk, which
encodes for CREB-2, has opposite directions of effect in T cell types than in the other immune
cell types or bulk. We found a similar pattern for the AKT1 (Rho-family-alpha
serine/threonine-protein kinase) eGene. AKT1 protein levels in brain tissue have been
previously associated with both schizophrenia and bipolar disorder, and although genetic
associations exist,* they do not pass genome-wide multiple testing correction.

While we find promising lines of evidence that immune cell type specific expression is useful for
discovering candidate brain-relevant genes, there are several limitations to our study. Firstly,
while our cohort had an ample number of BP patients, the number of SCZ samples was much
lower, and thus underpowered for a diagnosis-specific analysis. Furthermore, we only test
SNP-gene pairs in cis, whereas trans eQTLs are known to be more context-specific,> so we
miss distal associations that are potentially biologically relevant to the phenotypes of interest. By
using computationally-derived expression estimates, there is a greater possibility for spurious
associations that are not related to biology, dependent on the specific method of
decomposition/deconvolution chosen. Also by using low-coverage RNA-seq, we may be missing
important eGenes that are not as highly expressed in blood. Finally, our study consists of all
European-ancestry individuals, but to gain a more comprehensive and inclusive understanding
of the biology between immune cell types and psychiatric conditions, in addition to better
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fine-mapping these eQTL, many more samples of diverse ancestries need to be analyzed in
future work.

Collectively, this suggests that while the bulk whole blood gene expression provides a greater
number of significant findings overall, cell type specific expression allows us to observe
additional biological mechanisms that are not possible to capture when only using gene
expression measures from bulk alone.

METHODS

Cohort description

The samples included are from a study with individuals ascertained for bipolar disorder (BP) or
Schizophrenia (SCZ). The cohort consists of 1,045 individuals with BP, 84 individuals with SCZ,
and 601 controls with whole blood RNA-seq and corresponding genotypes (N=1,730 after
excluding first degree relatives) included for all individuals.

Bulk RNA-Sequencing

Bulk RNA-sequencing was performed at the UCLA Neurogenomics Core, using the TruSeq
Stranded plus rRNA and GlobinZero library preparation method, as described previously. We
used FASTQC to visually inspect the read quality from the lower-coverage whole blood
RNA-Seq (5.9M reads/sample). We then used kallisto®® to pseudoalign reads to the GRCh37
gencode transcriptome (v33) and quantify estimates for transcript expression. We aggregated
transcript counts to obtain gene level read counts using scripts from the GTEx consortium
(https://github.com/broadinstitute/gtex-pipeline).

Genotyping pipeline

Genotypes for the individuals included in the cohort were obtained from the following platforms:
OmniExpressExome (N = 816), Psych Chip (N = 522), COEX (N = 162), lllumina550 (N=19),
and Global Screening Array (N=211). Given that the SNP-genotype data came from numerous
studies, the number of overlapping SNPs across all platforms was < 80k, prompting us to
perform imputation separately for each genotyping platform, as previously described in
Schwarz, et. al. 2022. Briefly, genotypes were first filtered for Hardy-Weinberg equilibrium p
value < 1.0e-6 for controls and p value < 1.0e-10 for cases, with minor allele frequency (MAF) >
0.01, then were imputed using the 1000 Genomes Project phase 3 reference panel® by
chromosome using RICOPILI v.1°" separately per genotyping platform, then subsequently
merged. Imputation quality was assessed by filtering variants where genotype probability > 0.8
and INFO score > 0.1. We restricted it to only autosomal chromosomes due to sex chromosome
dosage, as commonly done.*®

Cell type proportion estimation
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We estimated the proportion of cell types of the bulk whole blood RNA-seq datasets using
CIBERSORTYX, with batch correction applied and LM22 signature matrix as the reference gene
expression profile. The LM22 signature matrix uses 547 genes to distinguish between 22 human
hematopoietic cell phenotypes, though here we restrict to 8 cell types with proportions > 0.02.

Complete blood counts (CBC) lab tests from the clinic were provided for a subset of the cohort
(N=143), providing us ground truth measures (in units of 10° cells per liter) for neutrophils,
lymphocytes, monocytes, basophils, and eosinophils. To make the counts comparable to the
proportions outputted by CIBERSORTX, we divided the counts of the cell type of interest by the
sum of counts across all cell types in an individual, providing the count ratio shown in
Supplementary Figure 1.

Cell type expression estimation

We log2-transformed the matrix of bulk TPM measures before inputting into bMIND since the
largest expression measure was greater than 50 TPM. Using the cell type proportions derived
from CIBERSORTX in conjunction with these log-transformed bulk expression measures, we
used bMIND in order to derive cell type expression estimates, with flag np=TRUE.

bMIND derived estimates and cis-eQTL mapping

Using output from bMIND, we transformed expression estimates from log2(TPM) to counts
using sequencing library sizes, restricting to sufficiently expressed genes (estimated count > 1.0
in 40% of individuals). Expression estimates were then standardized (mean = 0) then performed
cis-eQTL analysis mapping using QTLTools, using a defined window of 1 Mb both up and
downstream of every gene’s TSS, for sufficiently expressed genes (TPM > 0.1 in 20% of
individuals). We run the eQTL analysis in permutation pass mode (1000 permutations, and
perform multiple testing corrections using the q value FDR procedure, correcting at 5% unless
otherwise specified. We then restrict associations to the top (or leading) SNP per eGene.

TWAS and colocalization

We used the FUSION pipeline to perform TWAS on the normalized cell type specific expression
estimates and normalized bulk expression measures, residualizing each expression matrix by its
first 50 principal components to account for variation due to technical (non-biological) factors.
Imputed genotypes were restricted to those that overlap with the 1000 Genomes LD reference
panel, providing 272,652 SNPs on which to perform the analysis. A window of 500kb upstream
and 500kb downstream of the lead SNP for each eQTL was used as the cis-region to be tested.
Gene-trait pairs were selected based on the best performing model after five-fold cross
validation, including for Best Unbiased Linear Predictor (BLUP), elastic net (ENET), Least
Absolute Shrinkage and Selection Operator (LASSO), and just using the top SNP.

We tested for colocalization of GWAS and eQTLs using the —coloc flag within the
FUSION/TWAS pipeline. Colocalization is only performed in those gene-trait associations with p
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< 0.05. In each cell type, we tested eGenes with a significant association between expression
and SNP (Tables 4 and 5). We report SNPs with a colocalization probability (PP4) > 0.80 .

Cell type specific regressions using estimated cell type proportions and gene expression

We built logistic regression models to evaluate the effect of cell type proportion on case/control
status, and lithium use status within only the BP cases. These models included the proportion of
one cell type at a time, along with covariates including age, sex, RNA concentration, and RNA
integrity number (RIN) as predictors. In testing the differences in cell type proportions between
different binary outcomes, we used the gim() function in R with family=binomial.

We also used logistic regression to predict either case control status or lithium use (only in BP
cases) from cell type expression estimates after residualizing for 50 expression PCs. Variable
numbers of genes were included based on genes with most variance per cell type, using a
range of 100 to 1000 genes with an interval of 100. Covariates include age, sex, RNA RIN, RNA
concentration, and cell type proportion estimates. A random 70% of individuals were sampled to
use for training, and 30% for testing the prediction.

Electronic Medical Record Validation Cohort

ATLAS is an opt-in biobank that enrolls patients when they visit UCLA for a blood draw. ATLAS
is a diverse biobank that includes patients from a variety of genetic ancestries that live across
the greater Los Angeles region.*® Registered ATLAS researchers can access deidentified
electronic health record data for patients, consisting of outpatient and inpatient encounters,
including information on diagnoses, procedure orders, laboratory orders, and prescription
orders. As of 2022, there were approximately 50,000 participants enrolled in ATLAS. A complete
description of the ATLAS project and data is available in *.

Bipolar patients were identified in ATLAS using the diagnosis table. The bipolar phenotype was
defined as any patient who had at least one diagnosis of any of the ICD 10 codes included in
the bipolar Phecode Map 1.2.%° Neutrophil counts (measured as 10° counts/uL) were determined
using test results for complete blood count laboratory orders. We restricted this analysis to those
individuals with self-reported European ancestry. To prevent severe outliers from biasing results,
test results with a neutrophil count greater than 2 standard deviations from the median count
value in all bipolar patients were removed. Lithium prescription orders were found by querying
the prescription order table for medications of any dose or format that were classified as
psychiatric medication and had the generic name lithium.

Neutrophil count data for patients with a bipolar Phecode were separated into three categories:
tests administered before the patient was prescribed lithium, tests administered after the first
lithium prescription order, and tests for patients without a lithium prescription order. Since many
patients had multiple complete blood count orders, the median neutrophil count per patient per
category was calculated. Median neutrophil counts were compared between bipolar patients
after their first lithium prescription and bipolar patients without a lithium prescription using a
logistic regression (implemented in R). Max age and sex were used as covariates. For the
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subset of patients who had complete blood count tests taken before and after a lithium
prescription order, we used a paired Wilcoxon rank test to increase power, implemented in R
using the wilcox.test(paired=TRUE) command.

Interaction model

To test whether there exists an interaction between SNP-lithium usage, we included an
interaction component in the regression model, as such:

y=*X+ p*l +B* (X + 1) + covariates

where X refers to the genotype at a particular SNP, and / refers to lithium use.

Differential expression analysis

We used the limma eBayes function with trend=true to conduct differential expression tests in
the bulk dataset. We include only those genes with at least 1 TPM in at least 436 individuals
(about 25% of the total 1,730 individuals included in the analysis), leaving 17,194 genes to be
tested. We then log2-transform this matrix and compute the first 50 expression principal
components to be included as covariates. In the lithium user vs non-user analysis, only cases
were included to avoid confounding effects caused by disease status, while in the case-control
analysis, all individuals diagnosed with BP or SCZ were included as cases and non-affected
individuals included as controls.

For the cell-type specific differential expression analysis, we use the bmind_de() function as
included in the bMIND software package. To keep the methods comparable to the bulk analysis,
we also use the log2-transformed expression measures as input along with the first 50
expression PCs as covariates.

Data Availability

The lower-coverage RNA-seq and the corresponding genotypes generated and analyzed during
this study have been deposited in dbGAP (accession number phs002856.v1).
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Table 1: Cell type proportion estimates from CIBERSORTx and number of eQTLs per cell

type.

Cell type Mean cell type proportion Number of eGenes
estimate (s.d.) (FDR < 0.05)

Naive B cells 0.025 (0.020) 4,009
Memory B cells 0.020 (0.014) 3,571
CD8 T cells 0.025 (0.025) 2,875
Naive CD4 T cells 0.15 (0.042) 3,082
Memory Resting CD4 T cells 0.066 (0.034) 3,284
Resting NK Cells 0.066 (0.029) 3,858
Monocytes 0.050 (0.039) 3,483
Neutrophils 0.51 (0.094) 4,629
Bulk (directly from RNA-Seq) 1.0 7,302

Table 2: FUSION heritability results. Number of Sig. Genes refers to the number of genes
that remain significantly (P<0.05) heritable after five-fold cross validation. Q1 = first interquartile,
Q3 = third interquartile. Overall, the bulk data shows higher heritability estimates across each of
the statistics. Of note is that every gene listed is distinct for each context, including genes that
are relevant to neuronal function, such as NSG1 (neuronal vesicle trafficking associated),
CAMKK?2 (calcium dependent kinase, involved in neuronal differentiation and synapse
formation) and BTG1 (B-cell translocation gene 1, found to be involved in neural stem cell

renewal).®’
Number of Gene with
Panel Sig. Genes Min Q1 Median| Mean | Q3 Max | Max h2
Bulk 5,113 0.0041 0.026 | 0.055 | 0.096 | 0.12 | 0.728 | TRBV28
B Cells Memory 2,541 0.0035 0.024 | 0.044 | 0.075 |0.093| 0.68 BTG1
B Cells Naive 1,552 0.0056 0.024 | 0.045 | 0.078 |[0.095| 0.579 PI16
Monocytes 2,431 0.0052 0.025 | 0.045 | 0.077 [0.095| 0.584 | NSGT
NK Cells Resting 2,763 0.0042 0.024 | 0.045 | 0.078 |0.098| 0.61 BCAT1
Neutrophils 1,605 0.0056 0.025 | 0.048 | 0.083 | 0.10 | 0.69 | CAMKK2
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T Cells CD4
Memory Resting 1,989 0.0057 0.026 0.047 | 0.080 |0.099]| 0.63 SBF2
T Cells CD8 2,033 0.0057 0.024 0.042 | 0.069 |0.081| 0.63 | FGFBP2
T Cells CD4 Naive 2,147 0.0053 0.024 0.044 | 0.075 |0.092| 0.56 CROT

Table 3: TWAS & Colocalization neuropsychiatric trait results. Shared refers to the number
of significant (FDR < 0.05) genes that are in common with the bulk TWAS-significant gene set,
whereas unique refers to those that are not present in the bulk TWAS-significant gene set.

Num Significant| Num Significant | Num Genes with |[Num Genes with
Significant [ TWAS Genes, | TWAS Genes, Coloc PP4>0.8, | Coloc PP4>0.8,
Cell Type eGenes Shared Unique Shared Unique
B Cells Naive 4,009 90 43 43 13
B Cells Memory 3,571 142 58 62 25
T Cells CD8 2,875 108 50 50 15
T Cells CD4 Naive 3,082 120 46 56 19
T Cells CD4 Memory

Resting 3,082 115 43 55 22
NK Cells Resting 3,858 156 72 73 21
Monocytes 3,483 126 52 62 24
Neutrophils 4,629 76 35 35 9
Bulk 7,302 906 / 155 /

Table 4: TWAS & Colocalization blood-based trait results. Shared refers to the number of
significant (FDR < 0.05) genes that are in common with the bulk TWAS-significant gene set,
whereas unique refers to those that are not present in the bulk TWAS-significant gene set.

Num Significant | Num Significant | Num Genes with [ Num Genes with
Significant| TWAS Genes, | TWAS Genes, | Coloc PP4>0.8, | Coloc PP4>0.8,
Cell Type eGenes Shared Unique Shared Unique
B Cells Naive 4,009 922 164 289 78
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B Cells Memory 3,571 1,582 207 511 106

T Cells CD8 2,875 1,276 168 414 93

T Cells CD4 Naive 3,082 1,349 183 445 88
T Cells CD4 Memory

Resting 3,082 1,257 150 419 80

NK Cells Resting 3,858 1,712 254 557 119

Monocytes 3,483 1,484 212 484 113

Neutrophils 4,629 969 159 331 60

Bulk 7,302 3,893 / 1,175 /
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Figure 1: Graphical abstract of pipeline. Figure created in BioRender.
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Figure 2: Cell type expression from computational deconvolution methods
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Figure 2A: Cell type proportion predictions from CIBERSORTX - A violin plot showing the
range of estimated cell type proportions for all 1730 individuals in each of the eight major cell

types.
Figure 2B: R? of expression between each cell type - A heatmap of correlations (measured

by R? of mean expression across samples) between the eight main cell types captured by
CIBERSORTXx.
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Figure 3: eQTLs per cell type, effect size correlation with reference dataset and bulk
dataset.
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Figure 3A: Number of associations identified per cell type - Number of eGenes with a
significant association identified for the eight major cell types detected by CIBERSORTYX, using
a FDR cutoff of 0.05 .

Figure 3B: Comparison of effect size between shared cis-associations with Neutrophils -
Restricting to the eGenes with a significant association in both the bulk eQTL analysis and
neutrophil eQTL analysis, we compare the estimated effect sizes of the most significant eQTL
associations.

Figure 3C: Comparison of effect size between shared cis-associations with Monocytes -
Restricting to the eGenes with a significant association in both the bulk eQTL analysis and
monocyte eQTL analysis, we compare the estimated effect sizes of the most significant eQTL
associations.

Figure 3D: Comparison of effect sizes between shared cis-associations using reference
single cell RNA-seq. Restricting to the eGenes with a significant association in both the
BLUEPRINT reference neutrophil eQTL analysis and our neutrophil eQTL analysis, we compare
the estimated effect sizes of the most significant eQTL associations.
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Figure 4: Colocalization and enrichment analyses of cell type specific eQTLs.
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Figure 4A: (top) Number of genes with coloc PP4>0.8 across contexts in

neuropsychiatric traits. (bottom) Number of genes with coloc PP4>0.8 across contexts in
blood-based traits.
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Figure 4B: Conditional analysis of HTR6 expression in memory B cells.

All genes in the locus are included in the top panel, with marginally TWAS associated genes
highlighted in blue, and those jointly significant (HTR6) in green. The bottom panel includes a
Manhattan plot of the GWAS data before (gray) and after (blue) conditioning on the imputed
expression of HTR6 in memory B cells. Figure generated by FUSION.post_process.R script.
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Figure 5: Lithium user vs non-user analyses.
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Figure 5A: Boxplots showing the expression of KITLG (ENSG00000049130) in naive B cells,
stratified by dosage of SNP rs11104703 in lithium users versus nonusers.

5B: Boxplots showing the expression of TNFRSF11A (ENSG00000105641) in monocytes,
stratified by dosage of SNP rs79143095 in lithium users versus nonusers.
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Figure 5C: Differential gene expression results for lithium users vs lithium non-users:
(left) Volcano plot which highlights differentially expressed genes (FDR < 0.05) in red (N=100

total differentially expressed genes). (right) Average expression of each gene vs the log fold
change (logFC) of each gene, with differentially expressed genes highlighted in red.
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Supplementary Figures

Supplementary Figure 1: Scatterplots of CIBERSORTXx-estimated cell type proportions vs
complete blood count proportions. We find generally high concordance between
computationally estimated and measured ground truth cell type proportions using a subset of
our cohort. Pearson’s correlation R2 for neutrophils = 0.76, for lymphocytes = 0.85, for
monocytes = 0.48.
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Supplementary Figure 2: PCA of cell type expression.
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Supplementary Figure 3: Scatterplots of expression estimated from bulk vs single-cell
Using two scRNA-Seq datasets as references, we compare the median TPM values for genes
detected as eQTLs using both scRNA-Seq and computationally deconvoluted bulk RNA-Seq.
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Supplementary Figure 4: Distribution of shared eGenes across cell type contexts.
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Supplementary Figure 5: Effect size correlations between reference single cell eQTL and
the deconvoluted eQTL. T cells CD4 naive R2 = 0.27; B cells naive R2 = 0.22; Monocytes R2
=0.36.
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Supplementary Figure 6: Neutrophil count elevated for lithium users.
A. Difference in neutrophil proportion (after accounting for covariates including age, sex,
RIN, and RNA concentration) between BP/SCZ cases and controls.
B. Difference in neutrophil proportion between lithium users and non-users (after
accounting for covariates), only within BP cases.
C. Difference in neutrophil proportion between lithium non-users and controls (after
accounting for covariates).
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Supplementary Figure 7: Neutrophil count elevated for lithium users in UCLA ATLAS.
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Supplementary Figure 8: Differential gene expression results for BP or SCZ cases vs
controls: (left) Volcano plot which highlights differentially expressed genes (FDR < 0.05) in red

(N=64 total differentially expressed genes). (right) Average expression of each gene vs the log
fold change (logFC) of each gene, with differentially expressed genes highlighted in red.
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Supplementary Table 1: Correlations of median expression between reference single cell
RNA-Seq datasets and computationally derived expression estimates

Restricting to the genes identified as eGenes using both the single cell RNA-Seq reference
dataset and the computationally derived cell type expression, we report R? values for the
median TPM for genes across samples.

Cell type Reference R? Number of genes
Monocytes BLUEPRINT 0.14 2896

Neutrophils BLUEPRINT 0.16 3239

CD4 Memory T Cells | BLUEPRINT 0.26 2504

CD4 Naive T Cells BLUEPRINT 0.27 2504

CD8 T Cells BLUEPRINT 0.24 2504

B Cell Naive Schmeidel 0.1 624

Monocytes Schmeidel 0.15 2896

Monocytes* ISNC'FmeideVBLUEPR 0.22 2836

Supplementary Table 2: Linear models for lithium usage prediction

Cell type Model R? Effect size SE p-value
Monocytes 0.06 -1.28 0.36 <0.001
Neutrophils 0.09 1.08 0.15 <0.001
CD4 Memory T Cells 0.06 -1.68 0.42 <0.001
CD4 Naive T Cells 0.06 -1.52 0.36 <0.001
CD8 T Cells 0.06 -2.09 0.55 <0.001

B Cell Naive 0.06 -3.06 0.79 <0.001
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B Cell Memory 0.05 0.59 1.09 0.59

Resting NK Cells 0.06 -1.92 0.52 <0.001

Supplementary Table 3: Number of eGenes differentially regulated by Lithium. Using an
FDR cut-off of p < 0.10, we look at the number of eGenes with a significant SNP-lithium
interaction. “Same-direction” Li-eGenes have the same direction of effect sizes between lithium
users and nonusers, and “opposite-direction” Li-eGenes have the opposite direction of effect
sizes between lithium users and nonusers.

Cell type Number of | Number of Number of
Li-eGenes | “same-direction” | “opposite-direction”
Li-eGenes Li-eGenes
Naive B cells 24 4 20
Memory B cells 15 3 12
CD8 T cells 2 1 1
Naive CD4 T cells 25 1 24
Memory CD4 T 2 0 2
cells
Resting NK cells 5 0 5
Monocytes 34 3 31
Neutrophils 3 1 2
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