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Abstract [currently 250 of 250 words]
Emerging evidence supports the important role of the tumor microbiome in oncogenesis, cancer

immune phenotype, cancer progression, and treatment outcomes in many malignancies. In this
study, we investigated the metastatic melanoma tumor microbiome and potential roles in
association with clinical outcomes, such as survival, in patients with metastatic disease treated
with immune checkpoint inhibitors (ICls). Baseline tumor samples were collected from 71
patients with metastatic melanoma before treatment with ICls. Bulk RNA-seq was conducted on
the formalin-fixed paraffin-embedded (FFPE) tumor samples. Durable clinical benefit (primary
clinical endpoint) following ICls was defined as overall survival >24 months and no change to
the primary drug regimen (responders). We processed RNA-seq reads to carefully identify
exogenous sequences using the {exotic} tool. The 71 patients with metastatic melanoma ranged
in age from 24 to 83 years, 59% were male, and 55% survived >24 months following the
initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA-seq, including
bacteria, fungi, and viruses. We found differences in gene expression and microbe abundances
in immunotherapy responsive versus non-responsive tumors. Responders showed significant
enrichment of several microbes including Fusobacterium nucleatum, and non-responders
showed enrichment of fungi, as well as several bacteria. These microbes correlated with
immune-related gene expression signatures. Finally, we found that models for predicting
prolonged survival with immunotherapy using both microbe abundances and gene expression
outperformed models using either dataset alone. Our findings warrant further investigation and
potentially support therapeutic strategies to modify the tumor microbiome in order to improve
treatment outcomes with ICls.

Significance

We analyzed the tumor microbiome and interactions with genes and pathways in metastatic
melanoma treated with immunotherapy, and identified several microbes associated with
immunotherapy response and immune-related gene expression signatures. Machine learning
models that combined microbe abundances and gene expression outperformed models using
either dataset alone in predicting immunotherapy responses.
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121 INTRODUCTION

122  Advances in immunotherapy, including immune checkpoint inhibitors (ICls), have transformed
123  the standard of care for many types of cancer, including melanoma. While ICls have improved
124  outcomes for melanoma patients, many patients suffer from primary or secondary tumor

125  resistance. For example, at 6.5 years, the overall survival rates with ipilimumab plus nivolumab,
126  nivolumab, and ipilimumab were 49%, 42%, and 23%, respectively, as reported in the pivotal
127  CheckMate 067 trial (1). Furthermore, mechanisms of resistance to immunotherapy remain

128  poorly understood, and many treatments are associated with immune-mediated toxicities.

129  Therefore, there is an urgent need to develop and improve biomarkers predictive of benefit from
130 ICl therapy.

131

132  Numerous biomarkers that predict the response of melanoma to ICls are under investigation,
133  including those based on clinical characteristics, genomics, transcriptomics, and epigenomics.
134  For genomics data, these predictive biomarkers include tumor mutational burden (TMB) (2),
135 neoantigen load (3), genotypes of HLA-I (3,4), T-cell repertoire (5), aneuploidy (also known as
136  somatic copy number alterations, SCNAs) (6), and germline variations (7). On the other hand,
137  predictive biomarkers derived from transcriptomics data include tumor oncogene expression
138  signatures such as genes related to MYC (8), WNT/R-catenin (9,10), or RAS (11) signaling, or
139  gene expression profiles within the tumor immune microenvironment (TIME) such as interferon-
140 vy (IFN-y) responsive genes (12), chemokines (13,14), major histocompatibility complex (MHC)
141  class | and Il (15), and cytotoxic T-cell and T-cell effector (16,17) gene expression markers that
142  have been reported to be predictive of ICI response in metastatic melanoma. Unfortunately, the
143  predictive power remains low. For example, in terms of prediction of ICI response, TMB, IFN-y-
144  responsive gene signatures, or the combination of TMB and IFN-y gene signatures produce an
145  area under the receiver operating characteristic curve (AUROC) of 0.60-0.84 in melanoma

146  cohorts (18).

147

148  Recently, high-throughput transcriptome, genome, or amplicon-based sequencing data

149  demonstrated an abundance and variety of microbes’ nucleic acids inside tumors (8). In some
150 cases, hundreds of negative controls and paraffin-only blocks were sequenced to ensure a

151  thorough understanding of the background signal and reagent contamination. Further, the

152  presence of microbes has been validated using fluorescence in situ hybridization (FISH) and
153  immunohistochemistry (IHC) (19). The microbes showed cancer specificity (9,12,13), and blood-
154  based measurements could predict early-stage disease. These findings suggest that microbes
155  observed in high-throughput sequencing data may also correlate with treatment outcomes.

156  Recent efforts to use these microbes as biomarkers showed that while generally less predictive
157  of prognosis than gene expression, when combined with gene expression they increase the
158  predictive power (20). Further, the tumor microbiome was predictive of chemotherapy response.
159

160  Here, we describe the use of tumor RNA sequencing (RNA-seq) to predict response to ICIs in
161  patients with melanoma (Figure 1). We demonstrate the presence of microbes within tumors
162  and show the existence of different microbial communities in patients whose tumors responded
163  to treatment. We predict treatment response using human gene expression patterns that

164  perform similarly to other ICl-response prediction efforts. Finally, we show how the presence of
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165  microbes correlates with these signatures, suggesting an interaction with the immune system,
166  and how including tumor microbes in these models improves their predictive accuracy.

167

168  Figure 1. Overview of the research strategy
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169
170 RNA-seq data from tumor specimens are processed to microbe abundances and human gene expression. Each is
171 associated with 10 response, and then integrative analyses combine them into a model to predict outcomes.

172

173  MATERIALS AND METHODS

174  Study design

175  Established in 2014, the Oncology Research Information Exchange Network (ORIEN) is an

176  alliance of 18 US cancer centers. All ORIEN alliance members utilize a standard IRB-approved
177  protocol: Total Cancer Care® (TCC). As part of the TCC, participants agree to have their clinical
178  data followed over time, to undergo germline and tumor sequencing, and to be contacted in the
179  future by their provider if an appropriate clinical trial or other study becomes available (21). TCC
180 is a prospective cohort study where a subset of patients elect to be enrolled in the ORIEN

181  Avatar program, which provides research use only (RUO)-grade whole-exome tumor

182  sequencing, RNA-seq, germline sequencing, and collection of deep longitudinal clinical data
183  with lifetime follow-up. Nationally, over 325,000 participants have enrolled in TCC. M2GEN, the
184  commercial and operational partner of ORIEN, harmonizes all abstracted clinical data elements
185 and molecular sequencing files into a standardized, structured format to enable the aggregation
186  of de-identified data for sharing across the network. Data access was approved by the IRB in an
187  Honest Broker protocol (2015H0185) and Total Cancer Care protocol (2013H0199) in

188  coordination with M2GEN and participating ORIEN members.

189

190 In this study, we assembled RNA-seq data from the tumor samples of 71 patients with

191  metastatic melanoma treated with ICls. We defined durable clinical benefit (primary clinical

192  endpoint) following ICls as overall survival >24 months and no change to the primary drug

193  regimen (hereafter referred to as responders).

194
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Sequencing methods

ORIEN Avatar specimens undergo nucleic acid extraction and sequencing at HudsonAlpha
(Huntsville, AL) or Fulgent Genetics (Temple City, CA). For frozen and OCT tissue DNA
extraction, Qiagen QIASymphony DNA purification is performed, generating a 213 bp average
insert size. For frozen and OCT tissue RNA extraction, Qiagen RNAeasy plus mini kit is
performed, generating 216 bp average insert size. For formalin-fixed paraffin-embedded (FFPE)
tissue, a Covaris Ultrasonication FFPE DNA/RNA kit is utilized to extract DNA and RNA,
generating a 165 bp average insert size. RNA-seq is performed using the lllumina TruSeq RNA
Exome with single library hybridization, cDNA synthesis, library preparation, and sequencing
(100 bp paired reads at Hudson Alpha, 150 bp paired reads at Fulgent) to a coverage of 100M
total reads/50M paired reads.

Data processing and gene expression analyses

RNA-seq Tumor Pipeline Analysis is processed according to the workflow outlined below using
GRCh38/hg38 human genome reference sequencing and GenCode build version 32. Adapter
sequences are trimmed from the raw tumor sequencing FASTQ file. Adapter trimming via k-mer
matching is performed along with quality trimming and filtering, contaminant filtering, sequence
masking, GC filtering, length filtering, and entropy filtering. The trimmed FASTQ file is used as
input to the read alignment process. The tumor adapter-trimmed FASTQ file is aligned to the
human genome reference (GRCh38/hg38) and the Gencode genome annotation v32 using the
STAR aligner. The STAR aligner generates multiple output files for Gene Fusion Prediction and
Gene Expression Analysis. RNA expression values are calculated and reported using estimated
mapped reads, fragments per kilobase of transcript per million (FPKM) mapped reads, and
transcripts per million (TPM) mapped reads at both the transcript and gene levels based on
transcriptome alignment generated by STAR. RSEM pipeline and gene expressions were
quantified as TPM. Gene expressions (GE) were log2(TPM+1) transformed, and downstream
analyses were performed using the GE matrix. To determine differentially expressed genes
(DEG) of responders vs. non-responders, we used the limma (v. 3.54.0) and edgeR (v. 3.40.0)
packages where genes that have log2 fold change (log2FC) greater or less than 1 and adjusted
p-value <0.1 were considered as significant DEG. For gene set enrichment analysis (GSEA) of
responders vs. non-responders, we used the Java version of gsea (v. 4.3.2) using the gene set
permutation of 1000 using Hallmark gene sets or TIMEX cell types. Gene sets or cell types that
have adjusted p-value <0.1 were considered significant. Normalized enrichment score (NES)
and adjusted p-value were provided in the plot.

Microbe abundance and diversity

RNA-seq reads are used to calculate microbe abundances using the {exotic} pipeline, as
described previously (22). Briefly, reads are aligned first to the human reference genome, and
then unaligned reads are mapped to a database of bacteria, fungi, archaea, viruses, and
eukaryotic parasites. The observed microbes then proceed through a series of filtering steps to
carefully and conservatively remove contaminants before batch correction and normalization.
Diversity measures were estimated by calculating the Shannon and Simpson indices, as well as
Chao1, ACE, and inverse Simpson using the R package vegan.
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Signatures and pathways analyses

Gene signature scores were calculated using the I0Sig and tmesig R packages. In brief, for
each published gene signature, we collected and harmonized gene names using the NCBI
Entrez gene number. To quantify the published gene expression score, we first transformed the
gene expressions across samples within a cohort into a Z-score. Next, we averaged the
standardized Z-score across the number of genes in the signature as previously described
(15,23,24). This score is used to compare responders and non-responders of immunotherapies
within individual cohorts based on the AUROC as previously described (23). We performed
clustering of gene signatures based on the correlation of AUROC across multiple cohorts.
Within a cohort of patients, we stratified the patients into “high” or “low” groups based on the
mean of the Z-score. A Mann-Whitney U test was performed in comparing the two groups to
determine the difference, and the false discovery rate (FDR) of <0.05 was deemed to be
significant. The list of published gene signatures are available as Supplementary Table S1.

For pathway analysis, single-sample GSEA (ssGSEA), via the ssGSEA method in the GSVA R
package, was utilized to investigate the enriched gene sets in each sample. GSVA was run
using the log2(TPM+1) gene expression values with Gaussian kernel. The Hallmark gene sets,
TIMEX cell types, and the collected previously published gene expression signatures were used
as the gene sets. The Hallmark gene sets are a curated list of gene sets that signify well-
understood pathways that display reliable gene expression (25). The TIMEX cell types are
formed from pan-cancer single-cell RNA-seq signatures and focus on illuminating immune cell
infiltration from bulk RNA-seq data (26). A spearman correlation analysis was conducted using
the differentially expressed microbe data and the 3 ssGSEA results. The gene sets were
clustered according to the Euclidean distance with complete linkage, while the microbes were
ordered from highest to lowest effect size.

Prediction of response to treatment outcomes

To assess the predictive ability of the RNA-seq and microbe data for tumor response to ICls,
random forest classifiers were created using the randomForest R package. Models were based
on 5 sets of input data: (1) microbe data, (2) 31-gene signature Z-score, (3) immune-activated
gene signature Z-score, (4) microbe and 31-gene signature Z-score combined, and (5) microbe
and immune-activated gene signature Z-score combined. Models were constructed with 500
trees and fivefold cross-validation. Additionally, 5 seeds were used for each model resulting in
25 trained models based on each set of input features. The AUROC curve was used to assess
the overall performance of the trained models. This metric assesses the model classification
accuracy, where 1 is a perfect classifier and 0.5 is a random classifier. The overall performance
for each input feature-based model was taken as the average of the 25 trained models.

RESULTS

Patient Characteristics
From the ORIEN networks, we included 71 patients with metastatic melanoma in this study

(IO_NOVA_Mel). The age of the patients in this cohort ranges from 24 to 83; 59% were male;
and 55% survived >24 months following the initiation of ICI treatment (Table 1). ICI treatments
included nivolumab (34.4% of non-responders, 10.3% of responders), pembrolizumab (25% of
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non-responders, 46.2% of responders), and others. Mean progression-free survival of
responders (49.58 months) and non-responders (10.82 months) was significantly different (p-
value <0.001).

Table 1. Patient Demographics, stratified by response to ICls.

NON-RESPONDER (N = 32) RESPONDER (N = 39) P-VALUE
AGE (MEAN (SD)) 57.48 (15.85) 58.62 (13.93) 0.748
SEX = MALE (%) 18 (56.2) 24 (61.5) 0.835
Atezolizumab 1(3.1) Atezolizumab 0 (0.0)
Ipilimumab 6 (18.8) Ipilimumab 16 (41.0)
Ipilimumab + Ipilimumab +
10 (N (%)) Nivolumab 3 () Nivolumab 1(26) BHeaE
Nivolumab 11 (34.4) Nivolumab 4 (10.3)
Pembrolizumab 8 (25.0) Pembrolizumab 18 (46.2)
RACE = WHITE (%) 32 (100.0) 39 (100.0)
PFS (MEAN (SD))
MONTHS 10.82 (6.23) 49.58 (19.24) <0.001

Gene expression analysis and its association with response to ICls

Gene expression profiles for the 71 patients with metastatic melanoma treated with ICls were
obtained from ORIEN. We performed DEG analysis and identified five 5 genes (CLEC12A,
GBP1P1, CD96, CCL4, IDO1) that were over-expressed in the responders as compared to the
non-responders with log2FC >1 and adjusted p-value <0.1 (Figure 2A). Interestingly, these 5
genes were involved in immune modulation and have been previously identified in other studies
as predictive biomarkers associated with responders to ICls. For example, CCL4 has been
previously identified as a biomarker in the 12-chemokine signature (13,14), as well as other
gene signatures predictive of neoadjuvant ipilimumab response (27). IDO1 has been identified
as a key marker in the IFN-y signature (12) and gene signature predictive of response to ICls in
lung cancer (28). CD96 is a marker that estimates CD8+ T cell infiltration (29,30). CD96 and
TIGIT along with the co-stimulatory receptor CD226 form a pathway that affects the immune
response in an analogous way to the CD28/CTLA-4 pathway (31). CLEC12A (32,33) and
GBP1P1 (34,35) were identified in immune-related gene expression signatures predictive of ICI
responses.

Figure 2. Immune-related gene expression associates with the response to ICls.
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304 (A) Gene expression differences between the tumors that were responsive (right) and non-responsive (left) to ICI
305 treatment. Significantly different genes after FDR correction are colored and labeled. (B) and (C) Gene set

306 enrichment analysis comparing responders vs. non-responders using the Hallmark gene set and TIMEXx cell types.
307 FDR <0.1 was used as a cutoff. (D) Mann Whitney comparison of responders and non-responders for signatures
308  reaching the 0.05 FDR threshold.

309

310  Next, we asked what gene sets and pathways were enriched or depleted in responders to ICls.
311 We performed GSEA using the MSigDB Hallmark gene sets on the RNA-seq and found that
312  several immune-related gene sets were significantly enriched in responders (Figure 2B), for
313  example, IFN-a response (NES = 1.98, FDR < 0.001), IFN-y response (NES = 1.79, FDR <

314 0.001), and allograft rejection (NES = 1.65, FDR = 0.002). The other two gene sets enriched in
315  responders were spermatogenesis (NES = 1.56, FDR = 0.005) and the pancreas beta cell gene
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316  sets (NES = 1.40, FDR = 0.036). In contrast, many cell-intrinsic gene sets were enriched in ICI
317  non-responders as shown in Figure 2B. The GSEA results identified in this cohort are similar to
318  previously published studies (23).

319

320  We next hypothesized that tumor-infiltrating immune cells could associate with responses to
321 ICls. To test this hypothesis, we performed cell-type deconvolution of the bulk RNA-seq using
322 CIBERSORT. From CIBERSORT results, we observed that responders had significantly (p-
323  value <0.05) higher abundances of CD8+ T-cells, activated CD4+ memory T-cells, activated NK
324  cells, and M1 macrophages relative to non-responders, who were shown to have a significantly
325  higher amount of resting mast cells (Suppl. Figure 1). Similarly, when we performed GSEA
326  using TIMEXx gene sets, we observed that 13 CD4+, CD8+, and NK-related cell types were

327  enriched in responders (FDR < 0.1), whereas the stromal cell type was enriched in non-

328 responders (Figure 2C). This suggests that the tumor microenvironment of responders had an

329  “immune-inflamed” phenotype, whereas non-responders had either “immune-excluded” or
330  “immune-desert” TME phenotypes.
331

332  Supplementary Figure 1. Association of CIBERSORT cell types with the response to ICls.
333
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334
335  To further delineate the immune phenotypes of responders vs. non-responders of ICls, we used

336  previously published gene signatures. We collected 30 gene expression signatures from the
337 literature that have been implicated to be predictive of ICls (23). By performing a Z-score for
338 each signature and associating them with responders vs. non-responders, we identified 16 gene
339 signatures (Supplementary Figure 2) where high Z-scores are associated with ICls

340 responsiveness in this cohort (FDR <0.05), and the top 4 gene signatures were illustrated in
341 Figure 2D. These 16 gene signatures were related to immune activation and inflammation
342  signatures (Supplementary Figure 2) (23).

343
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350
351

Supplementary Figure 2. 16 gene signatures where high Z-scores are associated with
ICIs responsiveness in this cohort (FDR <0.05).
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We next used our recently developed |0Sig portal (23) to evaluate the predictive values of these
16 gene signatures in our ORIEN cohort (I0O_NOVA_Mel), as well as 22 other melanoma

cohorts treated with ICls. We used AUROC to assess the predictive value of these signatures.
For the 16 gene signatures, the AUROC ranged from 0.78 to 0.66 in the IO_NOVA_Mel cohort
(Supplementary Figure 3). On average, the AUROCSs for these 16 gene signatures ranged

from 0.61 to 0.68 in the separate 22 melanoma cohorts (Supplementary Figure 3).

Supplementary Figure 3. Predictive values (AUROC) of the 16 gene signatures in the
ORIEN cohort (I0_NOVA_Mel) and 22 other melanoma cohorts.
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The melanoma tumor microbiome and its association with response to ICls

Exogenous taxa were identified in the tumor RNA-seq, including bacteria, fungi, and viruses. A
total of 54 phyla were observed, with Firmicutes being the most abundant phylum, followed by
Uroviricota (Figure 3A). Within the tumors responsive to immunotherapy, we found a significant
enrichment of several microbes, including Fusobacterium nucleatum, Porphyromonas
asaccharolytica, Nocardia mangyaensis, and Mollivirus sibericum. Comparatively, the cohort of
non-responsive tumors was found to have significant intratumoral enrichment of fungi and the
bacteria Delftia lacustris, Enterobacter hormaechei, Pseudomonas fluorescens, and Moraxella
osloensis (Figure 3B). We observed no significant differences between alpha diversity metrics
of responders and non-responders (Welch 2 sample t-tests p-value >0.4) (Figure 3C). We
found that the random forest classifiers based on microbe diversity measures with 5 rounds of
5-fold cross-validation performed poorly relative to our other microbe-based classifers (Figure
3D).

Figure 3. Melanoma tumors that respond to IClIs have a distinct tumor microbiome
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(A) The relative abundances of the tumor microbiome at the phylum level showed wide intersample variation in the
abundances of fungi (Ascomycota (yellow)) and viruses (Uroviricota (maroon)), without gross differences between
non-responders (NR) and responders (R). (B) Differential abundance analysis of taxa found within tumor RNA-seq
data. Colored points represent significantly (p-value <0.05) enriched taxa with a high (>1.00) fold difference in
abundance between responders and non-responders to ICls. (C) The diversity of the tumor microbiome between
responders and non-responders shows no significant differences. (D) The diversity of the microbiome is a poor
predictor of outcomes.

Correlation of tumor RNA-seq (GSEA) with microbes
We next asked whether microbe abundance in the tumor could be associated with tumor
intrinsic pathways or the composition of cell types in the tumor immune microenvironment. We
focused on the 15 microbes identified to be differentially expressed in relation to immunotherapy
response in melanoma. For the 15 microbes, 7 and 8 were associated with responders and non-
responders of immunotherapy, respectively (Figure 4A). To investigate the intrinsic pathways
that correlated with the microbes, we performed ssGSEA on melanoma patients using MSigDB
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Hallmark gene sets. Interestingly, we observed that the two microbes highly abundant in
responders, Fusobacterium nucleatum and Porphyromonas asaccharolytica, were correlated
with inflammation and immune-related gene sets and pathways (Figure 4B). Conversely, we
observed that the microbes that were highly abundant in non-responders, Theileria annulata
and Moraxella osloensis, were correlated with intrinsic gene regulation (e.g., MYC target gene
sets, E2F target genes), DNA damage repairs, intrinsic cell signaling pathways (e.g., MTORC1
signaling, PI3K-AKT-MTOR signaling), and metabolisms (e.g., fatty acid metabolism, glycolysis)
(Figure 4B). These results are consistent with our previous findings, where we observed the
same Hallmark gene sets and pathways enriched in responders vs. non-responders across 5
melanoma cohorts of immunotherapy-treated patients with pre-treatment and on-treatment

tumor biopsies (23).

Figure 4. Association of microbes and gene signatures
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(A) Effect size plot showing the top 15 most significantly enriched species. (B), (C), and (D) Spearman correlation
coefficients between the significantly enriched species and the most significantly correlated signatures, and other
gene sets, shown in a heatmap.

To further dissect the association of microbe abundance and the composition of cell types in the
context of immunotherapy responses in melanoma, we performed cell type deconvolution using
the bulk RNA-seq with TIMEx. We found that the two microbes, Fusobacterium nucleatum and
Porphyromonas asaccharolytica, were highly correlated with the enrichment of tumor-infiltrated
immune cell types, including CD8+ T cells, which are known predictors of immunotherapy
response (Figure 4C). In contrast, the lack of tumor-infiltrated immune cell types was correlated
with microbes associated with non-responders. In particular, we observed that malignant and
stromal cell types were enriched in association with the 2 tumor microbes noted in non-
responders, Theileria annulata and Moraxella osloensis (Figure 4C). The tumor immune cell
composition corroborated our previous findings (23).

Next, we asked whether the microbe abundance was associated with any gene signatures
predictive of immunotherapy responses. To investigate this question, we utilized 31 previously
published gene signatures that have been indicated to be associated with immunotherapy
responses (23). We correlated microbe abundance with these signatures, and found that gene
signatures associated with inflammation or immune activation were highly associated with
microbes abundant in responders (Figure 4D). On the other hand, gene signatures associated
with immune-suppressive or intrinsic signaling were highly associated with microbes abundant
in non-responders (Figure 4D). These results suggest that microbe abundance could provide a
different dimension in understanding the tumor immune microenvironment in predicting
immunotherapy responsiveness in melanoma.

Prediction of response using tumor gene expression and microbe abundance

We further hypothesized that combining microbe abundance features with gene expression
signatures could improve response prediction of melanoma to immunotherapy. To test this
hypothesis, we developed an ensemble learning random forest classifier using microbe
abundance and gene signatures identified to be associated with immunotherapy responses in
melanoma. We first developed the random forest classifier based on microbe abundance with
15 input features (microbe) and performed 5 rounds of 5-fold cross-validation on the melanoma
cohort (Figure 5). The average AUROC for the microbe classifier was 0.651. We also
constructed a random forest classifier based on 31 gene signatures (GeneSig_Z_score) or the
16 immune-activated gene signatures (Imm_Act_Z_score), and the AUROC values for GeneSig
or Imm_Act classifiers were 0.72 and 0.744, respectively (Figure 5). Notably, when we
combined the microbe abundance and gene signatures to develop the random forest classifier,
the ensemble learning random forest classifiers for gene signatures plus microbe

(GS_Z _microbe) and immune-activated gene signatures plus microbe (Imm_Act Z microbe)
achieved 0.772 and 0.805, respectively (Figure 5). This suggests that microbe abundance
features provide a distinct layer of information in predicting response to immunotherapy and,
when combined with gene expression signatures, can improve the prediction of response to
immunotherapy in melanoma.
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Figure 5. Prediction of response using gene expression and microbes
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DISCUSSION

We utilized tumor RNA-seq from melanoma patients to explore the tumor microbiome’s
influence on clinical outcomes, specifically in response to ICls. We observed microbes in all
samples, and showed that tumors that responded to ICls had significantly different taxa present
from those that didn’t respond to treatment. Consistent with previous findings, gene expression
seems to be predictive of response to ICls. In addition, we showed that microbes are also
predictive of response to ICls, particularly when combined with gene expression, suggesting
that the inclusion of microbes in these models enhances predictive ability.

A correlation between the gut microbiome and response to ICls has been consistently indicated
in previous research (36-38). Altering the gut microbiome via responder-derived fecal
microbiota transplantation has been shown to induce a clinical response to anti-PD-1 treatment
in melanoma patients (39,40). However, many of the efforts in this area have focused solely on
the gut microbiome. Therefore, we assessed the tumor microbiome to further explore the impact
of microbes on clinical outcomes in body sites beyond the gut.

We observed the presence of microbiota in all 71 tumor samples, as is consistent with previous
findings regarding the tumor microbiome (41,42). Our study explicitly exhibits the microbial
characteristics of tumors in patients with metastatic melanoma. Previous research has shown
that the tumor microbiome in this specific subset of cancer is predictive of response to
treatment, but these findings have been limited in scope due to samples having been collected
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480 before the use of modern ICls as a standard treatment regimen for metastatic melanoma (20).
481  We showed distinct, significantly enriched taxa, including fungi, at baseline for patients treated
482  with contemporary ICl-based treatment plans.

483

484  The mechanisms by which tumor microbes affect response to ICls may relate to interactions
485  with the immune system or several other established mechanisms (43).The World Health

486  Organization (WHO) has officially recognized a causal association between 11 microbes and
487  cancer (44). However, in recent years, the number of likely carcinogenic microbes and more
488 loosely related “complicit” microbes has increased dramatically. These have been shown to
489 interact with the host via diverse mechanisms. For example, in colon cancer, Bacteroides fragilis
490 biofilms on colon polyps have been found to secrete a toxin that directly damages DNA (45,46),
491  as have some Escherichia coli (47). In another mechanism, Helicobacter pylori secrete a series
492  of molecules eliciting an inflammatory cascade shown to drive tumorigenesis in gastric

493 adenocarcinoma and mucosa-associated lymphoma (48,49). The fungal genus Malassezia

494  caused pancreatic ductal adenocarcinoma growth through activation of the C3 complement
495  pathway (50). Several microbes enriched in responders have strong precedence for interacting
496  with the human immune system. Fusobacterium nucleatum, which correlated most strongly with
497  responders, has been shown to increase tumor growth rates in colorectal cancer (51), as it

498  produces a pro-inflammatory microenvironment favorable to tumor growth (52,53). On the other
499  hand, Porphorymonas has not been associated with the tumor microbiome or response to ICls
500 although it is an established pathogen that has been linked to colorectal cancer (54). In our

501  study, it is associated with the same immune expression pathways as Fusobacterium

502  nucleatum, suggesting it acts through a similar mechanism. The diversity of mechanisms and
503 taxa suggests that additional mechanisms are likely. Furthermore, recent studies have identified
504  bacteria-derived human leucocyte antigen (HLA)-bound peptides in melanoma presented by
505 tumor cells could elicit immune reactivity. This intratumoral bacteria peptide repertoire could be
506 further explored to understand the mechanism by which bacteria modulate the immune system
507 and responses to therapy (55). The demonstration of the utility of high-throughput sequencing to
508 explore these correlations warrants a broader search.

509

510 Efforts have been made to identify predictors of response and resistance to ICls. As previously
511 discussed, expression signatures have been established as predictors of ICI response in

512  metastatic melanoma (9,12,14,15,23,56). One such study assessing the model combining IFNy
513 and TMB found that it was predicitve of response but not resistance (56). Another such study
514  developed a multi-omic-based classifier that successfully predicted response, but was also

515  unable to predict resistance (20). We showed significantly enriched taxa in both response

516  groups. We also showed that microbes alone are predictive of response/resistance to

517  immunotherapy and, when combined with gene expression, enhance the model’s predictive
518 ability. Further studies are warranted to combine tumor microbiome abundance with other

519 clinical and “omics” (e.g., genomics and pathomics) for developing an accurate classifier for
520 predicting immunotherapy responses in melanoma. Our findings also warrant further research to
521 evaluate whether these correlations are causally associated with outcomes and their effect on
522  the tumor immune microenvironment and immune cell infiltration.

523
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In conclusion, we found that the tumor microbiome in patients with metastatic melanoma was
significantly different in those that responded (>24 months survival) to treatment with ICls from
those who didn’t respond. Furthermore, the microbial communities had the ability to predict
response when incorporated into machine learning models. The tumor microbiome further
enhanced models to predict response when combined with gene expression data. Future
research has the potential to support therapeutic strategies to modify the tumor microbiome to
improve ICl treatment outcomes.
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