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Abstract [currently 250 of 250 words] 91 
Emerging evidence supports the important role of the tumor microbiome in oncogenesis, cancer 92 
immune phenotype, cancer progression, and treatment outcomes in many malignancies. In this 93 
study, we investigated the metastatic melanoma tumor microbiome and potential roles in 94 
association with clinical outcomes, such as survival, in patients with metastatic disease treated 95 
with immune checkpoint inhibitors (ICIs). Baseline tumor samples were collected from 71 96 
patients with metastatic melanoma before treatment with ICIs. Bulk RNA-seq was conducted on 97 
the formalin-fixed paraffin-embedded (FFPE) tumor samples. Durable clinical benefit (primary 98 
clinical endpoint) following ICIs was defined as overall survival  >24 months and no change to 99 
the primary drug regimen (responders). We processed RNA-seq reads to carefully identify 100 
exogenous sequences using the {exotic} tool. The 71 patients with metastatic melanoma ranged 101 
in age from 24 to 83 years, 59% were male, and 55% survived >24 months following the 102 
initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA-seq, including 103 
bacteria, fungi, and viruses. We found differences in gene expression and microbe abundances 104 
in immunotherapy responsive versus non-responsive tumors. Responders showed significant 105 
enrichment of several microbes including Fusobacterium nucleatum, and non-responders 106 
showed enrichment of fungi, as well as several bacteria. These microbes correlated with 107 
immune-related gene expression signatures. Finally, we found that models for predicting 108 
prolonged survival with immunotherapy using both microbe abundances and gene expression 109 
outperformed models using either dataset alone. Our findings warrant further investigation and 110 
potentially support therapeutic strategies to modify the tumor microbiome in order to improve 111 
treatment outcomes with ICIs. 112 
 113 
Significance  114 
We analyzed the tumor microbiome and interactions with genes and pathways in metastatic 115 
melanoma treated with immunotherapy, and identified several microbes associated with 116 
immunotherapy response and immune-related gene expression signatures. Machine learning 117 
models that combined microbe abundances and gene expression outperformed models using 118 
either dataset alone in predicting immunotherapy responses. 119 
  120 
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INTRODUCTION 121 
Advances in immunotherapy, including immune checkpoint inhibitors (ICIs), have transformed 122 
the standard of care for many types of cancer, including melanoma. While ICIs have improved 123 
outcomes for melanoma patients, many patients suffer from primary or secondary tumor 124 
resistance. For example, at 6.5 years, the overall survival rates with ipilimumab plus nivolumab, 125 
nivolumab, and ipilimumab were 49%, 42%, and 23%, respectively, as reported in the pivotal 126 
CheckMate 067 trial (1). Furthermore, mechanisms of resistance to immunotherapy remain 127 
poorly understood, and many treatments are associated with immune-mediated toxicities. 128 
Therefore, there is an urgent need to develop and improve biomarkers predictive of benefit from 129 
ICI therapy.  130 
 131 
Numerous biomarkers that predict the response of melanoma to ICIs are under investigation, 132 
including those based on clinical characteristics, genomics, transcriptomics, and epigenomics. 133 
For genomics data, these predictive biomarkers include tumor mutational burden (TMB) (2), 134 
neoantigen load (3), genotypes of HLA-I (3,4), T-cell repertoire (5), aneuploidy (also known as 135 
somatic copy number alterations, SCNAs) (6), and germline variations (7). On the other hand, 136 
predictive biomarkers derived from transcriptomics data include tumor oncogene expression 137 
signatures such as genes related to MYC (8), WNT/ß-catenin (9,10), or RAS (11) signaling, or 138 
gene expression profiles within the tumor immune microenvironment (TIME) such as interferon-139 
γ (IFN-γ) responsive genes (12), chemokines (13,14), major histocompatibility complex (MHC) 140 
class I and II (15), and cytotoxic T-cell and T-cell effector (16,17) gene expression markers that 141 
have been reported to be predictive of ICI response in metastatic melanoma. Unfortunately, the 142 
predictive power remains low. For example, in terms of prediction of ICI response, TMB, IFN-γ-143 
responsive gene signatures, or the combination of TMB and IFN-γ gene signatures produce an 144 
area under the receiver operating characteristic curve (AUROC) of 0.60-0.84 in melanoma 145 
cohorts (18). 146 
 147 
Recently, high-throughput transcriptome, genome, or amplicon-based sequencing data 148 
demonstrated an abundance and variety of microbes’ nucleic acids inside tumors (8). In some 149 
cases, hundreds of negative controls and paraffin-only blocks were sequenced to ensure a 150 
thorough understanding of the background signal and reagent contamination. Further, the 151 
presence of microbes has been validated using fluorescence in situ hybridization (FISH) and 152 
immunohistochemistry (IHC) (19). The microbes showed cancer specificity (9,12,13), and blood-153 
based measurements could predict early-stage disease. These findings suggest that microbes 154 
observed in high-throughput sequencing data may also correlate with treatment outcomes. 155 
Recent efforts to use these microbes as biomarkers showed that while generally less predictive 156 
of prognosis than gene expression, when combined with gene expression they increase the 157 
predictive power (20). Further, the tumor microbiome was predictive of chemotherapy response. 158 
 159 
Here, we describe the use of tumor RNA sequencing (RNA-seq) to predict response to ICIs in 160 
patients with melanoma (Figure 1). We demonstrate the presence of microbes within tumors 161 
and show the existence of different microbial communities in patients whose tumors responded 162 
to treatment. We predict treatment response using human gene expression patterns that 163 
perform similarly to other ICI-response prediction efforts. Finally, we show how the presence of 164 
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microbes correlates with these signatures, suggesting an interaction with the immune system, 165 
and how including tumor microbes in these models improves their predictive accuracy. 166 
 167 
Figure 1. Overview of the research strategy 168 

 169 
RNA-seq data from tumor specimens are processed to microbe abundances and human gene expression. Each is 170 
associated with IO response, and then integrative analyses combine them into a model to predict outcomes.  171 
 172 

MATERIALS AND METHODS 173 

Study design  174 
Established in 2014, the Oncology Research Information Exchange Network (ORIEN) is an 175 
alliance of 18 US cancer centers. All ORIEN alliance members utilize a standard IRB-approved 176 
protocol: Total Cancer Care® (TCC). As part of the TCC, participants agree to have their clinical 177 
data followed over time, to undergo germline and tumor sequencing, and to be contacted in the 178 
future by their provider if an appropriate clinical trial or other study becomes available (21). TCC 179 
is a prospective cohort study where a subset of patients elect to be enrolled in the ORIEN 180 
Avatar program, which provides research use only (RUO)-grade whole-exome tumor 181 
sequencing, RNA-seq, germline sequencing, and collection of deep longitudinal clinical data 182 
with lifetime follow-up. Nationally, over 325,000 participants have enrolled in TCC. M2GEN, the 183 
commercial and operational partner of ORIEN, harmonizes all abstracted clinical data elements 184 
and molecular sequencing files into a standardized, structured format to enable the aggregation 185 
of de-identified data for sharing across the network. Data access was approved by the IRB in an 186 
Honest Broker protocol (2015H0185) and Total Cancer Care protocol (2013H0199) in 187 
coordination with M2GEN and participating ORIEN members.  188 
 189 
In this study, we assembled RNA-seq data from the tumor samples of 71 patients with 190 
metastatic melanoma treated with ICIs. We defined durable clinical benefit (primary clinical 191 
endpoint) following ICIs as overall survival  >24 months and no change to the primary drug 192 
regimen (hereafter referred to as responders).  193 
 194 
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Sequencing methods 195 
ORIEN Avatar specimens undergo nucleic acid extraction and sequencing at HudsonAlpha 196 
(Huntsville, AL) or Fulgent Genetics (Temple City, CA). For frozen and OCT tissue DNA 197 
extraction, Qiagen QIASymphony DNA purification is performed, generating a 213 bp average 198 
insert size. For frozen and OCT tissue RNA extraction, Qiagen RNAeasy plus mini kit is 199 
performed, generating 216 bp average insert size. For formalin-fixed paraffin-embedded (FFPE) 200 
tissue, a Covaris Ultrasonication FFPE DNA/RNA kit is utilized to extract DNA and RNA, 201 
generating a 165 bp average insert size. RNA-seq is performed using the Illumina TruSeq RNA 202 
Exome with single library hybridization, cDNA synthesis, library preparation, and sequencing 203 
(100 bp paired reads at Hudson Alpha, 150 bp paired reads at Fulgent) to a coverage of 100M 204 
total reads/50M paired reads.  205 

Data processing and gene expression analyses 206 
RNA-seq Tumor Pipeline Analysis is processed according to the workflow outlined below using 207 
GRCh38/hg38 human genome reference sequencing and GenCode build version 32. Adapter 208 
sequences are trimmed from the raw tumor sequencing FASTQ file. Adapter trimming via k-mer 209 
matching is performed along with quality trimming and filtering, contaminant filtering, sequence 210 
masking, GC filtering, length filtering, and entropy filtering. The trimmed FASTQ file is used as 211 
input to the read alignment process. The tumor adapter-trimmed FASTQ file is aligned to the 212 
human genome reference (GRCh38/hg38) and the Gencode genome annotation v32 using the 213 
STAR aligner. The STAR aligner generates multiple output files for Gene Fusion Prediction and 214 
Gene Expression Analysis. RNA expression values are calculated and reported using estimated 215 
mapped reads, fragments per kilobase of transcript per million (FPKM) mapped reads, and 216 
transcripts per million (TPM) mapped reads at both the transcript and gene levels based on 217 
transcriptome alignment generated by STAR. RSEM pipeline and gene expressions were 218 
quantified as TPM. Gene expressions (GE) were log2(TPM+1) transformed, and downstream 219 
analyses were performed using the GE matrix. To determine differentially expressed genes  220 
(DEG) of responders vs. non-responders, we used the limma (v. 3.54.0) and edgeR (v. 3.40.0) 221 
packages where genes that have log2 fold change (log2FC) greater or less than 1 and adjusted 222 
p-value ≤0.1 were considered as significant DEG. For gene set enrichment analysis (GSEA) of 223 
responders vs. non-responders, we used the Java version of gsea (v. 4.3.2) using the gene set 224 
permutation of 1000 using Hallmark gene sets or TIMEx cell types. Gene sets or cell types that 225 
have adjusted p-value <0.1 were considered significant. Normalized enrichment score (NES) 226 
and adjusted p-value were provided in the plot.  227 

Microbe abundance and diversity 228 
RNA-seq reads are used to calculate microbe abundances using the {exotic} pipeline, as 229 
described previously (22). Briefly, reads are aligned first to the human reference genome, and 230 
then unaligned reads are mapped to a database of bacteria, fungi, archaea, viruses, and 231 
eukaryotic parasites. The observed microbes then proceed through a series of filtering steps to 232 
carefully and conservatively remove contaminants before batch correction and normalization. 233 
Diversity measures were estimated by calculating the Shannon and Simpson indices, as well as 234 
Chao1, ACE, and inverse Simpson using the R package vegan.  235 
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Signatures and pathways analyses  236 
Gene signature scores were calculated using the IOSig and tmesig R packages. In brief, for 237 
each published gene signature, we collected and harmonized gene names using the NCBI 238 
Entrez gene number. To quantify the published gene expression score, we first transformed the 239 
gene expressions across samples within a cohort into a Z-score. Next, we averaged the 240 
standardized Z-score across the number of genes in the signature as previously described 241 
(15,23,24). This score is used to compare responders and non-responders of immunotherapies 242 
within individual cohorts based on the AUROC as previously described (23). We performed 243 
clustering of gene signatures based on the correlation of AUROC across multiple cohorts. 244 
Within a cohort of patients, we stratified the patients into “high” or “low” groups based on the 245 
mean of the Z-score. A Mann-Whitney U test was performed in comparing the two groups to 246 
determine the difference, and the false discovery rate (FDR) of <0.05 was deemed to be 247 
significant. The list of published gene signatures are available as Supplementary Table S1. 248 
 249 
For pathway analysis, single-sample GSEA (ssGSEA), via the ssGSEA method in the GSVA R 250 
package, was utilized to investigate the enriched gene sets in each sample. GSVA was run 251 
using the log2(TPM+1) gene expression values with Gaussian kernel. The Hallmark gene sets, 252 
TIMEx cell types, and the collected previously published gene expression signatures were used 253 
as the gene sets. The Hallmark gene sets are a curated list of gene sets that signify well-254 
understood pathways that display reliable gene expression (25). The TIMEx cell types are 255 
formed from pan-cancer single-cell RNA-seq signatures and focus on illuminating immune cell 256 
infiltration from bulk RNA-seq data (26). A spearman correlation analysis was conducted using 257 
the differentially expressed microbe data and the 3 ssGSEA results. The gene sets were 258 
clustered according to the Euclidean distance with complete linkage, while the microbes were 259 
ordered from highest to lowest effect size. 260 
 261 
Prediction of response to treatment outcomes 262 
To assess the predictive ability of the RNA-seq and microbe data for tumor response to ICIs, 263 
random forest classifiers were created using the randomForest R package. Models were based 264 
on 5 sets of input data: (1) microbe data, (2) 31-gene signature Z-score, (3) immune-activated 265 
gene signature Z-score, (4) microbe and 31-gene signature Z-score combined, and (5) microbe 266 
and immune-activated gene signature Z-score combined. Models were constructed with 500 267 
trees and fivefold cross-validation. Additionally, 5 seeds were used for each model resulting in 268 
25 trained models based on each set of input features. The AUROC curve was used to assess 269 
the overall performance of the trained models. This metric assesses the model classification 270 
accuracy, where 1 is a perfect classifier and 0.5 is a random classifier. The overall performance 271 
for each input feature-based model was taken as the average of the 25 trained models. 272 

RESULTS 273 

Patient Characteristics  274 
From the ORIEN networks, we included 71 patients with metastatic melanoma in this study 275 
(IO_NOVA_Mel). The age of the patients in this cohort ranges from 24 to 83; 59% were male; 276 
and 55% survived >24 months following the initiation of ICI treatment (Table 1). ICI treatments 277 
included nivolumab (34.4% of non-responders, 10.3% of responders), pembrolizumab (25% of 278 
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non-responders, 46.2% of responders), and others. Mean progression-free survival of 279 
responders (49.58 months) and non-responders (10.82 months) was significantly different (p-280 
value <0.001).  281 
 282 
Table 1. Patient Demographics, stratified by response to ICIs. 283 

 284 
Gene expression analysis and its association with response to ICIs 285 
Gene expression profiles for the 71 patients with metastatic melanoma treated with ICIs were 286 
obtained from ORIEN. We performed DEG analysis and identified five 5 genes (CLEC12A, 287 
GBP1P1, CD96, CCL4, IDO1) that were over-expressed in the responders as compared to the 288 
non-responders with log2FC >1 and adjusted p-value <0.1 (Figure 2A). Interestingly, these 5 289 
genes were involved in immune modulation and have been previously identified in other studies 290 
as predictive biomarkers associated with responders to ICIs. For example, CCL4 has been 291 
previously identified as a biomarker in the 12-chemokine signature (13,14), as well as other 292 
gene signatures predictive of neoadjuvant ipilimumab response (27). IDO1 has been identified 293 
as a key marker in the IFN-γ signature (12) and gene signature predictive of response to ICIs in 294 
lung cancer (28). CD96 is a marker that estimates CD8+ T cell infiltration (29,30). CD96 and 295 
TIGIT along with the co-stimulatory receptor CD226 form a pathway that affects the immune 296 
response in an analogous way to the CD28/CTLA-4 pathway (31). CLEC12A (32,33) and 297 
GBP1P1 (34,35) were identified in immune-related gene expression signatures predictive of ICI 298 
responses.  299 
 300 
Figure 2. Immune-related gene expression associates with the response to ICIs.  301 
 302 

 
NON-RESPONDER (N = 32) RESPONDER (N = 39) P-VALUE 

AGE (MEAN (SD)) 57.48 (15.85) 58.62 (13.93) 0.748 

SEX = MALE (%) 18 (56.2)      24 (61.5)    0.835       

IO (N (%)) 

Atezolizumab 1 (3.1) 
Ipilimumab            6 (18.8) 
Ipilimumab + 
Nivolumab 6 (18.8) 

Nivolumab 11 (34.4) 
Pembrolizumab 8 (25.0) 

 

Atezolizumab 0 (0.0) 
Ipilimumab            16 (41.0) 
Ipilimumab + 
Nivolumab 1 (2.6) 

Nivolumab 4 (10.3) 
Pembrolizumab 18 (46.2) 

 

0.003       

RACE = WHITE (%) 32 (100.0)     39 (100.0)    

PFS (MEAN (SD)) 
MONTHS 10.82 (6.23)    49.58 (19.24) <0.001      
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 303 
(A) Gene expression differences between the tumors that were responsive (right) and non-responsive (left) to ICI 304 
treatment. Significantly different genes after FDR correction are colored and labeled. (B) and (C) Gene set 305 
enrichment analysis comparing responders vs. non-responders using the Hallmark gene set and TIMEx cell types. 306 
FDR <0.1 was used as a cutoff. (D) Mann Whitney comparison of responders and non-responders for signatures 307 
reaching the 0.05 FDR threshold. 308 
 309 
Next, we asked what gene sets and pathways were enriched or depleted in responders to ICIs. 310 
We performed GSEA using the MSigDB Hallmark gene sets on the RNA-seq and found that 311 
several immune-related gene sets were significantly enriched in responders (Figure 2B), for 312 
example, IFN-α response (NES = 1.98, FDR < 0.001), IFN-γ response (NES = 1.79, FDR < 313 
0.001), and allograft rejection (NES = 1.65, FDR = 0.002). The other two gene sets enriched in 314 
responders were spermatogenesis (NES = 1.56, FDR = 0.005) and the pancreas beta cell gene 315 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.24.542123doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542123
http://creativecommons.org/licenses/by/4.0/


sets (NES = 1.40, FDR = 0.036). In contrast, many cell-intrinsic gene sets were enriched in ICI 316 
non-responders as shown in Figure 2B. The GSEA results identified in this cohort are similar to 317 
previously published studies (23). 318 
 319 
We next hypothesized that tumor-infiltrating immune cells could associate with responses to 320 
ICIs. To test this hypothesis, we performed cell-type deconvolution of the bulk RNA-seq using 321 
CIBERSORT. From CIBERSORT results, we observed that responders had significantly (p-322 
value <0.05) higher abundances of CD8+ T-cells, activated CD4+ memory T-cells, activated NK 323 
cells, and M1 macrophages relative to non-responders, who were shown to have a significantly 324 
higher amount of resting mast cells (Suppl. Figure 1). Similarly, when we performed GSEA 325 
using TIMEx gene sets, we observed that 13 CD4+, CD8+, and NK-related cell types were 326 
enriched in responders (FDR < 0.1), whereas the stromal cell type was enriched in non-327 
responders (Figure 2C). This suggests that the tumor microenvironment of responders had an 328 
“immune-inflamed” phenotype, whereas non-responders had either “immune-excluded” or 329 
“immune-desert” TME phenotypes. 330 
 331 
Supplementary Figure 1. Association of CIBERSORT cell types with the response to ICIs.  332 
 333 

 334 
To further delineate the immune phenotypes of responders vs. non-responders of ICIs, we used 335 
previously published gene signatures. We collected 30 gene expression signatures from the 336 
literature that have been implicated to be predictive of ICIs (23). By performing a Z-score for 337 
each signature and associating them with responders vs. non-responders, we identified 16 gene 338 
signatures (Supplementary Figure 2) where high Z-scores are associated with ICIs 339 
responsiveness in this cohort (FDR <0.05), and the top 4 gene signatures were illustrated in 340 
Figure 2D. These 16 gene signatures were related to immune activation and inflammation 341 
signatures (Supplementary Figure 2) (23).  342 
 343 
 344 
 345 
 346 
 347 
 348 
 349 
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Supplementary Figure 2. 16 gene signatures where high Z-scores are associated with 350 
ICIs responsiveness in this cohort (FDR <0.05). 351 
 352 

 353 
 354 
We next used our recently developed IOSig portal (23) to evaluate the predictive values of these 355 
16 gene signatures in our ORIEN cohort (IO_NOVA_Mel), as well as 22 other melanoma 356 
cohorts treated with ICIs. We used AUROC to assess the predictive value of these signatures. 357 
For the 16 gene signatures, the AUROC ranged from 0.78 to 0.66 in the IO_NOVA_Mel cohort 358 
(Supplementary Figure 3). On average, the AUROCs for these 16 gene signatures ranged 359 
from 0.61 to 0.68 in the separate 22 melanoma cohorts (Supplementary Figure 3).   360 
 361 
Supplementary Figure 3. Predictive values (AUROC) of the 16 gene signatures in the 362 
ORIEN cohort (IO_NOVA_Mel) and 22 other melanoma cohorts.  363 
 364 
 365 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.24.542123doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542123
http://creativecommons.org/licenses/by/4.0/


 366 

The melanoma tumor microbiome and its association with response to ICIs 367 
Exogenous taxa were identified in the tumor RNA-seq, including bacteria, fungi, and viruses. A 368 
total of 54 phyla were observed, with Firmicutes being the most abundant phylum, followed by 369 
Uroviricota (Figure 3A). Within the tumors responsive to immunotherapy, we found a significant 370 
enrichment of several microbes, including Fusobacterium nucleatum, Porphyromonas 371 
asaccharolytica, Nocardia mangyaensis, and Mollivirus sibericum. Comparatively, the cohort of 372 
non-responsive tumors was found to have significant intratumoral enrichment of fungi and the 373 
bacteria Delftia lacustris, Enterobacter hormaechei, Pseudomonas fluorescens, and Moraxella 374 
osloensis (Figure 3B). We observed no significant differences between alpha diversity metrics 375 
of responders and non-responders (Welch 2 sample t-tests p-value >0.4) (Figure 3C). We 376 
found that the random forest classifiers based on microbe diversity measures with 5 rounds of 377 
5-fold cross-validation performed poorly relative to our other microbe-based classifers (Figure 378 
3D).  379 
 380 
Figure 3. Melanoma tumors that respond to ICIs have a distinct tumor microbiome 381 
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 382 
(A) The relative abundances of the tumor microbiome at the phylum level showed wide intersample variation in the 383 
abundances of fungi (Ascomycota (yellow)) and viruses (Uroviricota (maroon)), without gross differences between 384 
non-responders (NR) and responders (R). (B) Differential abundance analysis of taxa found within tumor RNA-seq 385 
data. Colored points represent significantly (p-value <0.05) enriched taxa with a high (>1.00) fold difference in 386 
abundance between responders and non-responders to ICIs. (C) The diversity of the tumor microbiome between 387 
responders and non-responders shows no significant differences. (D) The diversity of the microbiome is a poor 388 
predictor of outcomes. 389 

Correlation of tumor RNA-seq (GSEA) with microbes 390 
We next asked whether microbe abundance in the tumor could be associated with tumor 391 
intrinsic pathways or the composition of cell types in the tumor immune microenvironment. We 392 
focused on the 15 microbes identified to be differentially expressed in relation to immunotherapy 393 
response in melanoma. For the 15 microbes, 7 and 8 were associated with responders and non-394 
responders of immunotherapy, respectively (Figure 4A). To investigate the intrinsic pathways 395 
that correlated with the microbes, we performed ssGSEA on melanoma patients using MSigDB 396 
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Hallmark gene sets. Interestingly, we observed that the two microbes highly abundant in 397 
responders, Fusobacterium nucleatum and Porphyromonas asaccharolytica, were correlated 398 
with inflammation and immune-related gene sets and pathways (Figure 4B). Conversely, we 399 
observed that the microbes that were highly abundant in non-responders, Theileria annulata 400 
and Moraxella osloensis, were correlated with intrinsic gene regulation (e.g., MYC target gene 401 
sets, E2F target genes), DNA damage repairs, intrinsic cell signaling pathways (e.g., MTORC1 402 
signaling, PI3K-AKT-MTOR signaling), and metabolisms (e.g., fatty acid metabolism, glycolysis) 403 
(Figure 4B). These results are consistent with our previous findings, where we observed the 404 
same Hallmark gene sets and pathways enriched in responders vs. non-responders across 5 405 
melanoma cohorts of immunotherapy-treated patients with pre-treatment and on-treatment 406 
tumor biopsies (23). 407 
 408 
Figure 4. Association of microbes and gene signatures 409 

 410 
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(A) Effect size plot showing the top 15 most significantly enriched species. (B), (C), and (D) Spearman correlation 411 
coefficients between the significantly enriched species and the most significantly correlated signatures, and other 412 
gene sets, shown in a heatmap.  413 
 414 
To further dissect the association of microbe abundance and the composition of cell types in the 415 
context of immunotherapy responses in melanoma, we performed cell type deconvolution using 416 
the bulk RNA-seq with TIMEx. We found that the two microbes, Fusobacterium nucleatum and 417 
Porphyromonas asaccharolytica, were highly correlated with the enrichment of tumor-infiltrated 418 
immune cell types, including CD8+ T cells, which are known predictors of immunotherapy 419 
response (Figure 4C). In contrast, the lack of tumor-infiltrated immune cell types was correlated 420 
with microbes associated with non-responders. In particular, we observed that malignant and 421 
stromal cell types were enriched in association with the 2 tumor microbes noted in non-422 
responders, Theileria annulata and Moraxella osloensis (Figure 4C). The tumor immune cell 423 
composition corroborated our previous findings (23). 424 
 425 
Next, we asked whether the microbe abundance was associated with any gene signatures 426 
predictive of immunotherapy responses. To investigate this question, we utilized 31 previously 427 
published gene signatures that have been indicated to be associated with immunotherapy 428 
responses (23). We correlated microbe abundance with these signatures, and found that gene 429 
signatures associated with inflammation or immune activation were highly associated with 430 
microbes abundant in responders (Figure 4D). On the other hand, gene signatures associated 431 
with immune-suppressive or intrinsic signaling were highly associated with microbes abundant 432 
in non-responders (Figure 4D). These results suggest that microbe abundance could provide a 433 
different dimension in understanding the tumor immune microenvironment in predicting 434 
immunotherapy responsiveness in melanoma. 435 

Prediction of response using tumor gene expression and microbe abundance 436 
We further hypothesized that combining microbe abundance features with gene expression 437 
signatures could improve response prediction of melanoma to immunotherapy. To test this 438 
hypothesis, we developed an ensemble learning random forest classifier using microbe 439 
abundance and gene signatures identified to be associated with immunotherapy responses in 440 
melanoma. We first developed the random forest classifier based on microbe abundance with 441 
15 input features (microbe) and performed 5 rounds of 5-fold cross-validation on the melanoma 442 
cohort (Figure 5). The average AUROC for the microbe classifier was 0.651. We also 443 
constructed a random forest classifier based on 31 gene signatures (GeneSig_Z_score) or the 444 
16 immune-activated gene signatures (Imm_Act_Z_score), and the AUROC values for GeneSig 445 
or Imm_Act classifiers were 0.72 and 0.744, respectively (Figure 5). Notably, when we 446 
combined the microbe abundance and gene signatures to develop the random forest classifier, 447 
the ensemble learning random forest classifiers for gene signatures plus microbe 448 
(GS_Z_microbe) and immune-activated gene signatures plus microbe (Imm_Act_Z_microbe) 449 
achieved 0.772 and 0.805, respectively (Figure 5). This suggests that microbe abundance 450 
features provide a distinct layer of information in predicting response to immunotherapy and, 451 
when combined with gene expression signatures, can improve the prediction of response to 452 
immunotherapy in melanoma.  453 
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 454 
Figure 5. Prediction of response using gene expression and microbes 455 

 456 
Mann Whitney comparisons of the mean AUROCs from random forest model comparisons 457 
 458 

DISCUSSION 459 
We utilized tumor RNA-seq from melanoma patients to explore the tumor microbiome’s 460 
influence on clinical outcomes, specifically in response to ICIs. We observed microbes in all 461 
samples, and showed that tumors that responded to ICIs had significantly different taxa present 462 
from those that didn’t respond to treatment. Consistent with previous findings, gene expression 463 
seems to be predictive of response to ICIs. In addition, we showed that microbes are also 464 
predictive of response to ICIs, particularly when combined with gene expression, suggesting 465 
that the inclusion of microbes in these models enhances predictive ability.  466 
 467 
A correlation between the gut microbiome and response to ICIs has been consistently indicated 468 
in previous research (36–38). Altering the gut microbiome via responder-derived fecal 469 
microbiota transplantation has been shown to induce a clinical response to anti-PD-1 treatment 470 
in melanoma patients (39,40). However, many of the efforts in this area have focused solely on 471 
the gut microbiome. Therefore, we assessed the tumor microbiome to further explore the impact 472 
of microbes on clinical outcomes in body sites beyond the gut.  473 
 474 
We observed the presence of microbiota in all 71 tumor samples, as is consistent with previous 475 
findings regarding the tumor microbiome (41,42). Our study explicitly exhibits the microbial 476 
characteristics of tumors in patients with metastatic melanoma. Previous research has shown 477 
that the tumor microbiome in this specific subset of cancer is predictive of response to 478 
treatment, but these findings have been limited in scope due to samples having been collected 479 
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before the use of modern ICIs as a standard treatment regimen for metastatic melanoma (20). 480 
We showed distinct, significantly enriched taxa, including fungi, at baseline for patients treated 481 
with contemporary ICI-based treatment plans.  482 
 483 
The mechanisms by which tumor microbes affect response to ICIs may relate to interactions 484 
with the immune system or several other established mechanisms (43).The World Health 485 
Organization (WHO) has officially recognized a causal association between 11 microbes and 486 
cancer (44). However, in recent years, the number of likely carcinogenic microbes and more 487 
loosely related “complicit” microbes has increased dramatically. These have been shown to 488 
interact with the host via diverse mechanisms. For example, in colon cancer, Bacteroides fragilis 489 
biofilms on colon polyps have been found to secrete a toxin that directly damages DNA (45,46), 490 
as have some Escherichia coli (47). In another mechanism, Helicobacter pylori secrete a series 491 
of molecules eliciting an inflammatory cascade shown to drive tumorigenesis in gastric 492 
adenocarcinoma and mucosa-associated lymphoma (48,49). The fungal genus Malassezia 493 
caused pancreatic ductal adenocarcinoma growth through activation of the C3 complement 494 
pathway (50). Several microbes enriched in responders have strong precedence for interacting 495 
with the human immune system. Fusobacterium nucleatum, which correlated most strongly with 496 
responders, has been shown to increase tumor growth rates in colorectal cancer (51), as it 497 
produces a pro-inflammatory microenvironment favorable to tumor growth (52,53). On the other 498 
hand, Porphorymonas has not been associated with the tumor microbiome or response to ICIs 499 
although it is an established pathogen that has been linked to colorectal cancer (54). In our 500 
study, it is associated with the same immune expression pathways as Fusobacterium 501 
nucleatum, suggesting it acts through a similar mechanism. The diversity of mechanisms and 502 
taxa suggests that additional mechanisms are likely. Furthermore, recent studies have identified 503 
bacteria-derived human leucocyte antigen (HLA)-bound peptides in melanoma presented by 504 
tumor cells could elicit immune reactivity. This intratumoral bacteria peptide repertoire could be 505 
further explored to understand the mechanism by which bacteria modulate the immune system 506 
and responses to therapy (55). The demonstration of the utility of high-throughput sequencing to 507 
explore these correlations warrants a broader search. 508 
 509 
Efforts have been made to identify predictors of response and resistance to ICIs. As previously 510 
discussed, expression signatures have been established as predictors of ICI response in 511 
metastatic melanoma (9,12,14,15,23,56). One such study assessing the model combining IFNγ 512 
and TMB found that it was predicitve of response but not resistance (56). Another such study 513 
developed a multi-omic-based classifier that successfully predicted response, but was also 514 
unable to predict resistance (20). We showed significantly enriched taxa in both response 515 
groups. We also showed that microbes alone are predictive of response/resistance to 516 
immunotherapy and, when combined with gene expression, enhance the model’s predictive 517 
ability. Further studies are warranted to combine tumor microbiome abundance with other 518 
clinical and “omics” (e.g., genomics and pathomics) for developing an accurate classifier for 519 
predicting immunotherapy responses in melanoma. Our findings also warrant further research to 520 
evaluate whether these correlations are causally associated with outcomes and their effect on 521 
the tumor immune microenvironment and immune cell infiltration.  522 
 523 
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In conclusion, we found that the tumor microbiome in patients with metastatic melanoma was 524 
significantly different in those that responded (>24 months survival) to treatment with ICIs from 525 
those who didn’t respond. Furthermore, the microbial communities had the ability to predict 526 
response when incorporated into machine learning models. The tumor microbiome further 527 
enhanced models to predict response when combined with gene expression data. Future 528 
research has the potential to support therapeutic strategies to modify the tumor microbiome to 529 
improve ICI treatment outcomes. 530 
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