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Abstract 
 
INTRODUCTION 
In Alzheimer’s disease (AD) research, cerebrospinal fluid (CSF) Amyloid beta (Aβ), Tau and 
pTau are the most accepted and well validated biomarkers. Several methods and platforms 
exist to measure those biomarkers which leads to challenges in combining data across studies. 
Thus, there is a need to identify methods that harmonize and standardize these values.  
 
METHODS 
We used a Z-score based approach to harmonize CSF and amyloid imaging data from multiple 
cohorts and compared GWAS result using this method with currently accepted methods. We 
also used a generalized mixture modelling to calculate the threshold for biomarker-positivity.  
 
RESULTS 
Z-scores method performed as well as meta-analysis and did not lead to any spurious results. 
Cutoffs calculated with this approach were found to be very similar to those reported previously. 
 
DISCUSSION 
This approach can be applied to heterogeneous platforms and provides biomarker cut-offs 
consistent with the classical approaches without requiring any additional data. 
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Introduction 

Alzheimer’s disease (AD), a degenerative brain disease, is the most common form of dementia 

and is the sixth leading cause of death in United States 1. As the deaths due to other diseases 

such as stroke, heart diseases etc. continue to decrease, AD related death increased by 71% 

between 2000-2013 1. Thus, the need for increased focus on understanding the disease and its 

pathology has become more evident than ever before.  

 

Research suggests AD related brain pathology begins decades prior to onset of clinical 

symptoms 2. Although the diagnosis of AD is based on identification of amyloid plaque and tau 

tangle accumulation in brain post-mortem, early pathological changes can be tracked using 

closely related circulating protein biomarkers such as Amyloid (Aβ) and Tau particularly in 

cerebrospinal fluid (CSF) as well as radio tracers like 11C-labeled Pittsburgh compound B or F- 

florbetapir targeting plaque accumulation in brain using imaging techniques 3–5. The use of these 

endophenotypes is becoming increasingly popular as early detection of AD is of utmost 

importance given the fact that all current disease treatment modalities are focused on symptom 

management or disease progression 6,7.  

 

The close proximity of CSF to brain, with unrestricted protein flow between the two, and the 

comparative ease of access to it through lumbar puncture (LP) has made CSF an ideal choice 

for AD biomarkers among researchers 8. Besides the utilization of these proxy CSF biomarkers 

in AD diagnosis, they can also be used to monitor biological changes throughout the disease 

progression. Despite these advantages, CSF collection is more invasive when compared to 

other tissues such as plasma or blood, which has resulted in lower sample availability. This, in 

turn, has severely limited the ability of researchers to perform large-scale, statistically powerful 

analysis which could potentially reveal novel AD related pathways and/or biomarkers.  
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In addition to measuring these circulating protein levels, functional imaging techniques such as 

positron emission tomography (PET), to identify amyloid plaque and tau accumulation in brain, 

are also routinely used as a complimentary practice for AD diagnosis 5,9. This imaging-based 

approach allows the non-invasive detection of amyloid and tau aggregates in the brain, a core 

neuropathologic feature that characterizes AD. There is strong evidence from neuropathologic 

studies that the most widely used amyloid (i.e., 11C-labeled Pittsburgh compound B, 18F-

florbetapir, and 18F-flutemetamol) and Tau PET tracers (i.e., 18F-flortaucipir, 18F-MK6240, 18F-

RO948, and 18F-PI2620) bind amyloid and tau aggregates, respectively, formed in AD in the 

more advanced pathologic state (i.e., Braak stage ≥ IV)10–13. However, the use of different 

tracers also creates a problem of combining this data in single analysis. 

 

Since clinical diagnosis of AD is largely based on subjective measurement of cognitive function 

in patients, efforts have been made to develop a more objective and consistent scale for 

interpretation of biomarker findings. As a result of these efforts, Clifford et. al. (2016) proposed 

ATN classification framework which takes three AD biomarkers into account to categorize 

disease positivity or negativity 14. “A” component of the classification describes the Aβ biomarker 

measured through CSF Aβ level or amyloid PET, “T” refers to Tau, either CSF Tau or Tau PET, 

and “N” refers to neurodegeneration 14. Based on biomarker specific cutoffs, individuals are 

labelled as either biomarker positive or negative (A+/A-; T+/T-; N+/N-). These classifications are 

designed to have a consistent and clear format when interpreting results and communicating 

among clinicians and researchers rather than providing a diagnostic framework.  

 

To increase the quantity and depth of data availability, collaborative research in multi-centers 

have emerged as a norm to address issues caused by data fragmentation. However, in the 

absence of an established standards for sample collection and handling as well as 
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measurement techniques and analytical approaches, lack of homogeneity in data has become a 

glaring obstacle in any data sharing effort. Even when we consider previously described 

standardization effort such as the ATN classification, the lack of consensus in universal 

biomarker cutoffs is a major caveat as biomarker level, and subsequently their cutoffs for 

dichotomization, can be influenced by the technique of measurement. Thus, the need for 

standard data harmonization approaches exists, particularly those that are focused on 

endophenotypes such as CSF biomarkers and amyloid imaging among others. One of the 

special focuses on these endophenotypes is because of their demonstrated utility in genetic 

studies 15–17. Not only have these been used to identify risk variant and genes in context of AD 

but also in identification of previously unknown disease mechanism. Cruchaga et al., (2013) 

utilized CSF Tau and pTau in their genome wide association study (GWAS) to identify 

independent association between these biomarkers and the APOE region. Similarly, by using 

CSF sTREM2 as endophenotype, Deming et.al., (2019) were able to demonstrate the role of 

MS4A gene cluster in AD mechanism 18. These endophenotypes have also been used to 

identify sex specific AD risk variants 19. 

 

Current practice in terms of data harmonization is focused on re-running previously generated 

samples using one platform in order to be able to combine samples from different studies. Even 

with this approach, differences in sample collection can still lead to a technical variation or 

variation by factors other than the biological nature of the samples called batch effect, which can 

render the effort of re-running samples useless. In addition, this approach is not practical 

because of the burden on financial and other resources. Also, with the collection of new 

samples, the process will have to be repeated. Another approach that is used in genetic studies 

is meta-analysis, a statistical approach that combines data from multiple independent research 

geared towards same underlying hypothesis. Doing so is not only tedious as each dataset has 

to be analyzed individually before it can be meta-analyzed but it also significantly diminishes the 
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power to detect rare variants. As researchers are realizing the importance of conditional and 

stratified (by sex or disease status) analyses, instead of one size fits all models, these issues 

become even more cumbersome as they add several time and resource intensive layers to the 

process. Another major obstacle that we are seeing in data harmonization efforts is lack of 

consensus among researchers on one standard harmonization approach. As such, the issues 

that these approaches were designed to address i.e., ease of data sharing and use with 

consistent replication of results, is still persistent albeit to a lesser degree.  

 

The goal of this paper is to highlight the application of Z-score based data harmonization 

approaches to CSF biomarker and amyloid imaging. Such approaches would not only help 

researchers in future collaboration effort but also would allow the use of heterogenous data 

retrospectively. Increased availability of data is directly translated into statistically powerful 

genetic studies and better representation of samples, thus making stratified (such as by sex or 

ethnicity) analysis possible. Z-score has been used previously in genetic studies with great 

success but its application in data models outside the genetic study framework needs to be 

evaluated. In this paper, by comparing z-scores with routinely used methods such as Meta-

analysis, ATN classification framework, we present evidence that Z-scores based analysis do 

not lead to spurious results and this method has a potential to be an alternative to traditional 

approaches. We also demonstrate a data-driven approach to generate cutoffs for ATN 

classification. Both methods are easy to follow, implement, and are scalable which makes them 

ideal to be used in collaborative research.  

 

 

Methods 

Cohort and Samples  

 

We obtained CSF biomarker levels for Aβ42, Tau and pTau from 23 different cohorts, including 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Knight Alzheimer Disease Research 
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Center (Knight ADRC) cohort among others, encompassing 16,066 total samples that included 

longitudinal datapoints. CSF measurements were obtained using different platforms such as 

Elecsys, Lumipulse, Innotest across the cohorts (Supplementary Table 1). Similarly, amyloid 

imaging data measured using variety of tracers were obtained for 7557 samples 

(Supplementary Table 2). These subjects were recruited from ADNI, Knight-ADRC, Dominantly 

Inherited Alzheimer Network (DIAN), Anti-Amyloid Treatment in Asymptomatic Alzheimer's 

Disease (A4), ADNI Department of Defense (ADNIDOD), Australian Imaging, Biomarkers and 

Lifestyle (AIBL), The Harvard Aging Brain Study (HABS) and University of Pittsburgh (UPitt) 

cohorts. Demographic details of the CSF samples and the amyloid imaging samples is 

presented in Supplementary Table 1 and Supplementary Table 2 respectively. A subset of the 

samples was further used to perform GWAS and GMM based cut-off determination analysis. 

 

Data Quality Control and Standardization  

We tested an approach that allows us to combine values from dissimilar cohorts without 

introducing any batch effect or spurious results. This method is based on the calculation of Z-

scores, also known as normal deviate or a standardized score. Z-score shows how many 

standard deviations (SD) a biomarker value is away from the mean (M) of the dataset 20. 

Mathematically Z-scores are calculated as,  

� �
� ��

�
 

Where, x = observed biomarker value, m = sample mean and s = sample standard deviation. Z-

scores can be calculated for each value in a dataset and are easy to interpret as a positive 

score indicates a raw level above mean and a negative score indicates levels below mean with 

higher scores showing higher deviation from the average 21. 
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Here, we implemented this approach to 23 cohorts with CSF Aβ42, Tau and pTau level and 

calculated their Z-scores (Supplementary Table 1). Prior to Z-score calculation, quality control 

(QC) was done to remove duplicated samples or samples with missing biomarker level. Raw 

protein values were log transformed followed by outlier removal. Outliers were defined using the 

Interquartile range (IQR) approach. Any biomarker level lower than Q1-1.5*IQR and higher than 

Q3+1.5*IQR, where Q1 and Q3 are the first and the third quartile calculated from the 

distribution, were marked as outlier data points and excluded from the analysis. Outlier 

detection and removal is a highly recommended step in biomarker-based analysis to exclude 

technical (e.g., ceiling values) and biological artifacts (e.g., cell lysis) within the dataset to 

produce robust findings. Z-scores were then calculated using base “scale” function in R 

statistical software (v3.5.0).  The QC steps as well as Z-score calculation were performed for 

each cohort and each biomarker individually. To demonstrate that the applicability of this 

framework extends beyond harmonizing CSF specific data types, we employed the same Z-

score based harmonization approach for processing amyloid imaging data from the 8 different 

cohorts. Z-scores were calculated for each cohort and tracer similar to the CSF biomarker 

datasets as described earlier.  

 

Comparison against meta-analysis approach  

Z-score based data standardization approach has been previously used in several studies 

focused on identifying genetic variants associated with CSF and amyloid imaging 15,17,22–25. 

However, it is important to demonstrate that this standardization approach does not lead to 

spurious results. To address this, we performed a joint-GWAS using the CSF Aβ, Tau and pTau 

Z-scores from 23 cohorts (N =7,231) as phenotype and compared the results with those 

obtained from meta-analyzing each individual cohort GWAS. First, we used the z-scores 

obtained from raw biomarker levels from all 23 cohorts, as described earlier, and performed a 

single variant association analysis for each biomarker, hereby referred to as joint analysis, with 
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these scores as continuous endophenotypes using PLINK v2.0 26. The analysis was adjusted for 

biological and technical covariates such as age, gender, and genotyping arrays. In parallel and 

as comparative analysis, each cohort was analyzed independently and the resulting summary 

statistics were meta analyzed using METAL 27, which would constitute the current state-of-the-

art approach to combine GWAS result from different cohorts. The inverse variance weighted 

approach in METAL was used for meta-analysis. Finally, we analyzed the correlation between 

the effect sizes and p-values from both approaches to determine if both methods would lead to 

the same results. We implement the same approach for amyloid imaging where we first 

performed GWAS for eight individual cohorts followed by meta-analysis using METAL and 

compared the results with those obtained from GWAS using amyloid imaging data z-scores as 

continuous trait. To further demonstrate the validity of this approach, we asked if conducting an 

association study using harmonized vs raw endophenotype or log normalized biomarker levels 

would lead to similar results. We conducted two independent linear regression analyses using 

amyloid-PET endophenotype as a harmonized (Z-score) and raw Centiloid (CL) scale, available 

from the Knight ADRC (N = 549) and ADNI (N = 1,134) cohorts and compared their results to 

check the concordance or lack thereof. We also compared the effect size and p-values from the 

joint analysis of the eight cohorts using z-scores from amyloid imaging data as phenotype with 

the meta-analysis result of individual cohort GWAS summary statistics using log transformed 

biomarker values as phenotypes.  

 
Unbiased biomarker dichotomization and ATN classification  
 
We used a gaussian mixture model (GMM) to identify z-score driven biomarker cut-off for AT 

classification of CSF Aβ and pTau from ADNI and Knight ADRC cohorts that used different 

platform to measure the protein levels. GMM is a probabilistic model approach based on the 

assumption that all data points within a population can be grouped under a finite number of 

gaussian distribution thereby identifying subpopulation within them. GMM was implemented 
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through “mclust” package (V 6.0.0) in R statistical software. Within ADNI cohort, xMAP platform 

was utilized for CSF Aβ measurement and Elecsys platform was used for CSF pTau biomarker 

measurement. We also leveraged Innotest and Lumipulse data from the Knight ADRC cohort for 

the measurement of CSF Aβ and pTau levels, respectively. Z-score values for dichotomization 

were calculated using the same approach as described earlier. The platform-specific cutoffs 

were determined for each biomarker of interest and each cohort individually, as explained 

above. From the Z-score cutoff thus identified, the corresponding raw value cutoffs were 

inferred thereby providing a biologically meaningful biomarker level. We applied the same 

approach for dichotomizing the amyloid imaging data using different amyloid imaging tracers 

from ADNI and Knight ADRC. Finally, we assessed the performance of this method in 

comparison to more classical approaches of biomarker cut-off determination by comparing the 

agreement of biomarker status determined by our approach within ADNI cohort to that assigned 

by using previously reported cut-offs for CSF biomarkers. In addition, we also compared the 

performance of our proposed method with other statistical approach employed for biomarker 

positivity determination by comparing the agreement between A/T label assigned by each 

approach in an external dataset.  

 
Results 
 

Z-scores transforms dissimilar biomarker levels to a uniform scale:  

We utilized Z-scores to harmonize CSF Aβ, Tau and pTau biomarker levels from 23 different 

cohorts measured using various platforms (Supplementary Table 1). The distribution plot of 

absolute raw biomarkers level and their corresponding Z-scores for Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and Knight Alzheimer Disease Research Center (Knight ADRC) 

shows that the dissimilar raw values are transformed into a uniform Z-score based scale ranging 

from -3 to 3 in both cohorts (Figure 1A). This is because all biomarker values are standardized 
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with mean 0 and variance 1 regardless of the difference in range of absolute values. The ±3 

limits are results of the QC steps we implemented to remove any outlier values prior to Z-score 

calculation. Similar harmonization and resulting plots were generated for the remaining 21 

cohorts as well (Supplementary Figure 1-3). This consensus in scales resulting from z-score 

standardization allows the use of the biomarkers data from dissimilar sources as one continuous 

measure. We can also appreciate the fact that the bimodal nature of raw Aβ levels within ADNI 

cohort, which is an expected observation given the difference between Aβ levels in cases and 

controls, has been preserved when using Z-score thereby highlighting the ability of Z-scores in 

capturing underlying biological patterns.  

To demonstrate the utility of this approach in more than one class of endophenotype, we 

applied Z-score harmonization approach to amyloid imaging data obtained for 7,557 individuals 

from 8 different cohorts measured using various tracers (Supplementary Table 2). The 

standardization approach appropriately overlaid all data sets onto a uniform scale with a mean 

of 0 and SD of ±3, as seen in the case of CSF biomarker data presented above, regardless of 

underlying difference in the tracers. Notably, the Z-score transformation preserved the 

underlying bimodality of the raw amyloid PET data (Figure 1B), suggesting it to be equally 

favorable for further dichotomizing the harmonized quantitative endophenotype into amyloid-

positive and negative populations. Altogether, these observations provide support to the 

potential utility of Z-scores as a powerful tool in terms of retrospective data harmonization 

needs. 

Z-score based analysis yields results comparable to meta-analysis  

To assess that the Z-score based data standardization does not lead to spurious results, we 

performed GWAS analysis with z-scores derived using CSF biomarker data (N =7,231) from 

diverse platform and cohorts, as a continuous quantitative trait and compared the findings with 

metanalysis of individual cohort GWAS. Both analyses were adjusted for appropriate covariates 
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(Supplementary Figure 4). We found significantly strong correlation between both the effect 

sizes (rAβ = 0.969, p < 1×10-300; rtau = 0.966, p < 1×10-300; rptau = 0.958, p < 1×10-300, Figure 2B) 

and p-values between the two methods (rAβ = 0.957, p < 1×10-300; rtau = 0.938, p < 1×10-300; rptau = 

0.925, p < 1×10-300,Supplementary Figure 5) thereby highlighting the utility of z-score based joint 

analysis as an alternative to meta-analysis.  

To demonstrate the utility of this approach in diverse endophenotypes, we applied this 

harmonization technique to amyloid imaging data obtained for 7,557 individuals from eight 

different cohorts (Supplementary Table 2) using different imaging tracers (e.g., AV45, FBP, and 

PiB). As expected, we observed a very high correlation between the p-values (r = 0.980; p < 

1×10-300; Supplementary Figure 6A-6B) from the joint using amyloid imaging Z-scores as 

continuous quantitative trait and meta-analysis of individual cohort summary statistics. The 

strong agreement between joint and meta-analysis approaches highlights the ability of Z-score 

in data harmonization across different cohorts without producing any false-positive results and 

increasing the statistical power of the study. 

Further, we compared the results from these harmonized values-based analysis with both raw 

amyloid imaging (Centiloid) endophenotypes based GWAS in Knight ADRC (N = 549) and ADNI 

(N = 1,134) cohort as well as from meta-analysis of all eight cohorts with log10 transformed 

biomarker levels as phenotypes. In our analysis comparing results from GWAS with harmonized 

scores and the raw phenotype, we observed a very strong positive correlation between the 

effect sizes (rKnight ADRC = 0.951, pKnight ADRC < 1×10-300; rADNI = 0.966, pADNI< 1×10-300) and their 

corresponding p-values (rKnight ADRC = 0.889, pKnight ADRC< 1×10-300; rADNI = 0.923, pADNI < 1×10-300) 

in both the Knight ADRC cohort (Figure 2C; Supplementary Figure 7A) and ADNI cohort (Figure 

2C, Supplementary Figure 7B). We found similar strong correlation between results from the 

joint Z-scores based GWAS and meta-analysis of individual summary statistics using log 

transformed imaging endophenotype as variable of interest (Supplementary Figure 8). The 
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overall correlation between effect size and p-value for this analysis were 0.98 (p < 1×10-300, 

Supplementary Figure 8) and 0.94 (p < 1×10-300, Supplementary Figure 8) respectively.  

To summarize, we observed a very strong and significant correlation between joint analysis 

using Z-scores as phenotype and meta-analysis of individual cohort summary statistics in both 

CSF and amyloid imaging biomarker. Similar strong correlation was observed when the results 

from the Z-scores based analysis were compared to results from raw and log transformed 

amyloid imaging data. These results suggest that the transformation of raw values into a 

uniform Z-score based scale does not alter the inherent properties of the raw data, thereby, 

making it an ideal framework for within- and across-cohort data harmonization. Our results also 

show that using Z-scores as phenotype produces comparable results to log transforming raw 

endophenotypes. However, since Z-scores based analysis can be performed as single stage 

analysis by the virtue of uniform variance as a result of the standardization, compared to the 

two-stage analysis required if using only log transformed values, they become ideal choice 

when diverse, large-scale data needs to be analyzed.  

 
Z-score based dichotomization identifies robust biomarker positivity cut-offs 
 

Next, we utilized a GMM based data driven approach using Z-scores to determine biomarker 

positivity cut-offs without the need of additional information such as amyloid imaging status 

information and compared the calculated cut-off values with that reported previously for those 

specific platforms and/or cohort 28–33. The assumed biomarker positivity distribution from GMM 

model is presented in Figure 3. Cut-offs were calculated from both cross-sectional as well as 

longitudinal data points based on availability. The data-driven cut-off were in agreement with 

biomarker positivity thresholds reported in the literature (Table 1). For example, in case of the 

ADNI xMAP CSF Aβ level (N=1244), the data-driven method led to a cut-off of 196 pg/ml, which 

closely matches with the reported cutoff of 192 pg/ml 28. When the analysis was extended to 

include longitudinal data points (N=2,163), we observed that the cutoff remained consistent with 
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197 pg/ml being detected as the dichotomization value. In case of CSF pTau biomarker from the 

Elecsys pTau in ADNI (N=745), our method led to a cut-off of 27.8 pg/ml which is even closer to 

the one previously reported (27 pg/ml) 29. The platform (Innotest) used for measuring CSF Aβ 

was different in the Knight ADRC cohort (N=1,044) but the estimated cutoff (527 pg/ml) was 

fairly close to the literature-derived threshold (500 pg/ml) for this platform 30. Similarly, for pTau 

we found a cut-off of 58.9 pg/ml when using cross-sectional data points (N= 1,178) and 58.4 

pg/ml with longitudinal data points (N=1,961) in comparison to 58.1 pg/ml previously reported 

for the platform 31. We also applied the same approach for dichotomizing the amyloid imaging 

data from different tracers and cohorts and obtained similar results (Figure 3; Supplementary 

Figure 9). For example, in case of Knight ADRC cohort, the amyloid imaging data was obtained 

using two different tracers (PiB [N=332] and Centiloid [N=494]) but harmonized by the same Z-

score based approach. As expected, we observed different amyloid positivity cutoff for PiB 

(0.12) and Centiloid (33.01), that were in close proximity to what has been previously reported 

for both these tracers (0.18 and 21.6 respectively) 32,33. Overall, the Z-score based empirical 

cutoff values determined using this mixture model approach showed good agreement with 

previously reported cutoffs, further validating the practicality of the introduced data 

harmonization technique. 

Next, we wanted to determine if this method would also lead to comparable ATN classification 

as reported by other approaches. To this end, we first compared the consistency of biomarker 

status identified by the mixture modeling in ADNI cohort with those obtained by applying 

previously reported cutoffs for the biomarkers for the cohort (Table 2). Of the 745 samples with 

both Aβ42 and pTau levels, 721 samples were assigned same biomarker status by both 

approaches resulting in an agreement of 96.78% (Table 2). This high concordance between our 

approach and classical cut-offs provides evidence that the data driven approach can detect 

reasonable cut-offs for biomarker dichotomization. To further evaluate the performance of our 

approach, we then utilized CSF biomarker data with known ATN classification of 629 samples, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

and performed GMM based AT classification for the samples using Z-scores. The previous 

labels were assigned based on dichotomization cut-offs determined through a Youden’s J index 

maximization approach 34. Our approach determined the Aβ and pTau raw value cutoffs to be 

856 pg/ml and 67 pg/ml respectively for this dataset. Two groups with assumed normal 

distribution were identified by the mixture model using Aβ and pTau individually (Supplementary 

Figure 10). Using these cutoffs, 219 samples were classified as A- and 412 were labelled as A+. 

Using pTau cutoffs, 303 samples were assigned to T- status and the rest 327 were assigned to 

T+ status. When compared to the previously assigned ATN class for these samples, we found a 

moderate agreement between both approaches with 86.49% of the total samples being 

assigned same label by both (Table 3). The previously assigned classification did not account 

for intermediate category like A+/T- or A-/T+. Only 52 samples that were previously assigned as 

A- were assigned A+ by our approach and 33 samples assigned as T+ previously were 

assigned as T-. More importantly, no sample classified as A+/T+ were classified as A-/T-, or 

vice versa. Overall, the concordance observed in both analyses further provides evidence in 

support of using data driven approaches for dichotomization like the one we have presented 

here. 

 

Discussion 
 

CSF Aβ, Tau and pTau as well as amyloid imaging are among the most established biomarkers 

in AD research 11,35. These have been used in many studies, and are the basis for the current 

ATN framework which defines the individual’s disease status based on the objective biomarker 

levels rather than subjective clinical diagnosis scale 14. The field of biomarker discovery and 

study is experiencing exponential growth with more and more proteins being proposed as 

biomarkers. CSF or plasma neurogranin has been proposed as a cognitive biomarker in CSF 

and blood exosomes for AD 36. NFL reflects neuronal death and is one of the promising blood 
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biomarkers for AD and neurodegeneration in general 37. CSF and plasma GFAP, a biomarker 

for astroglial pathology in neurological diseases 38,39 and CSF TREM2 as a biomarker for 

microglia activation 18,40.  

 

Even though more researchers are opting for CSF and PET imaging-based biomarker study, 

their potential has been stifled by the low sample availability owing to the invasive nature of the 

CSF sample collection via lumbar puncture and the high cost of the PET imaging. Availability of 

multiple platforms for biomarker measurement such as Luminex, Elecsys, Innotest and 

multitude of radiotracers such as 11C-labeled Pittsburgh compound B, 18F-florbetapir have 

resulted in heterogenous data that cannot be reliably combined. Even when the same platform 

is used, the absolute raw biomarker values may still be significantly different between studies 

because of the differences in sample collection and handling techniques due to lack of a 

universally accepted protocol. Although plasma biomarkers are emerging, the issues of data 

heterogeneity that has plagued the field of CSF biomarker and imaging are bound to be 

perpetuated further with the availability of platforms like C2N 41,42 Simoa 43 and MSD 44,45 among 

others. For this reason, it is necessary to identify harmonization protocols that allow researchers 

to combine data across studies and identify individuals that are biomarker positive in an 

unbiased and consistent manner. 

 

Here, we presented standardized scores as a potential measure for data harmonization. Z-

scores are easy to implement and interpret without involving any taxing statistical 

methodologies and allows researchers to combine biomarker data from different distribution. 

This is possible because standardizing the values to the mean removes effects introduced by 

external sources such as different measurement unit or techniques among others. The 

possibility of combining heterozygous data from diverse settings is of particular importance in 
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case of CSF biomarker research where limited sample size is a consistent challenge 46,47. Z-

scores can also be used in case of longitudinal data thereby making them scalable in nature. 

We then demonstrated that these scores can be applied across multiple cohorts and can be 

used for joint analyses in genetic studies as an alternative to metanalysis without leading to any 

spurious results. We utilized data from 23 neurodegenerative disease specific cohorts to 

highlight that joint analysis is comparable to meta-analysis of individual study results. However, 

joint analysis of standardized values has an edge over meta analyzing independent results from 

each cohort due to its several advantage. First, joint analysis provides more statistical power for 

detection of rare variants which may not be detected in individual cohort GWAS. Next, joint 

analysis allows us to implement more flexible study designs such as sex or disease status 

stratified analysis in a streamlined manner. By comparing the GWAS summary statistics of 

imaging data from ADNI and Knight ADRC cohort, we have also shown that these standardized 

values lead to the same results as raw endophenotypes based analysis. We have successfully 

used the same approach in multiple studies before 15,17,25,48. Deming et.al., (2017) used z-scores 

to harmonize phenotype data from nine different centers and were able to replicate expected 

APOE locus in their AD genome wide study in addition to identifying new loci. The replication of 

APOE region provides evidence to support the assumption that z-scores are able to conserve 

the biological characteristics of the underlying raw biomarker levels. Ali et al., (2022) replicated 

previously reported association of variants in Klotho gene region and AD through a z-score 

based GWAS using PET imaging or CSF biomarker data from 17 different cohorts. Similarly, Ali 

et al., (2023) used z-scores to harmonize the largest amyloid imaging data to date and identified 

five novel signals associated with brain amyloidosis. Taken together, the Z-score transformation 

provides an ideal framework for normalizing the within- and across-cohort variation in the raw 

endophenotypic data without masking its inherent biological characteristics. One may argue the 

some of the positive attributes of z-scores highlighted here are shared with the log 

transformation performed prior to the standardization, but the uniformity of variance across 
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dissimilar dataset that allows for the use of the diverse biomarker data as a continuous trait is 

inherent to Z-score and cannot be achieved through log normalization in itself.  

We have also extended the use of standardized scores to identify the cut-off point that defines 

biomarker positive from negative using a GMM approach. Here we demonstrate that using this 

approach leads to very similar cut-off values to those reported using more classical approaches 

(Table 1). This can be leveraged to perform the ATN classification at individual level, which 

leads to also very consistent and replicable results, as shown by our analysis comparing the 

ATN labels assigned by the method with previously identified labels in an external cohort. 

Current ATN classification approaches are calculated per dataset and are based on comparing 

a specific biomarker; such as CSF Aβ, with a different standard (for example amyloid imaging) 

to identify the cut-off for biomarker positivity. This approach requires to have multiple 

comparable biomarkers for the same individual and in a large number of samples which make 

these analyses more complicated. Data driven approaches such as the one presented here 

could be an alternative approach to identify the cut-off point to define biomarker positivity 

without the need of additional markers. The real value of this approach is in use cases where 

we do not have any information on the platform used for biomarker measurement, when tested 

in a new population, when a new assay or platform is being used or to determine gender or race 

specific cut-off. Several studies have previously reported difference in biomarker levels between 

these population subgroups 49,50, therefore this approach can be easily implemented without the 

need to have access to additional data. 

 

Despite these demonstrated strengths, there are some limitations to this method. One potential 

critique of this method is that by using standardized values, the mean of the distribution 

becomes or approximates 0 which is not informative and does not correspond to any biological 

value or biomarker cut-off. The mean of any marker distribution is a property of the cohort and is 

representative of the cohort characteristics. For example, in a cohort enriched for AD cases 
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compared to controls, the average CSF Aβ will shift to the left in comparison to the cut-off for 

biomarker positive and in a cohort with more controls the mean will be shift to the right. As such, 

by setting the mean to be 0 we are losing this biological information thereby providing credibility 

to the argument.  However, this can be addressed by combining the standardized values with 

the dichotomization approach presented here. First, the raw biomarker values and standardized 

values can be calculated as shown here. This gives a distribution with a mean of 0 and standard 

deviation of 1. However, in contrast to other methods, such as rank based scores, this method 

preserves the overall distribution of protein levels. Second the cut off for biomarker positivity is 

calculated using the same GMM approach as presented here. As shown by our results here, 

this data-driven method does not require any other information to identify the cut-off and is 

highly replicable. Third, once the cut-off is calculated, new values can be re-calculated by 

centering the raw values using the cut-off. In this way, for all the different studies and 

biomarkers, 0 will be always the point of separation between biomarker positive and negative 

individuals. Finally, as all datasets will have similar standard deviation and are centered around 

the cutoff, the value for each individual will be highly informative as it will inform whether the 

value corresponds to biomarkers positive and negative status, and how far are from the cut off 

or how extreme it is even though these values do not correspond to any absolute values in 

protein levels and cannot be represented in pg/ml or any other scale. This has the advantage 

that there will not be a need to have specific cut off values for each assay. However, since the 

resulting distribution is not Z-score distribution, the biological feature and utility of the new 

distribution as a proxy will need further evaluation using similar approaches as presented in this 

paper for z-score distribution. Another limitation of this method is that in order to identify a 

reliable cut-off, we need a sample size of at least 200 individuals with a relatively good balance 

of both cases and controls. However, as more and more biomarker and imaging data becomes 

available, we foresee that this would not be a limitation in near future.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

Currently there is an effort to perform harmonization of multiple endophenotypes (cognition, raw 

imaging, neuropath, CSF biomarkers) for individuals included in the ADSP study and We 

harmonization of the CSF biomarkers using the standardized values as well as the ATN 

classification for all cohorts with available biomarkers data. We are depositing our results in 

NIAGADS (Alzheimer’s Disease Sequencing Project Phenotype Harmonization Consortium 

(ADSP-PHC) – ADSP (niagads.org) as part of the U24 harmonization consortium. We are 

currently implementing the additional harmonization as described here, and expect to release 

the data in near future. 

 

Conclusion 
In conclusion, to address the need of data harmonization in the field of CSF biomarker and 

amyloid imaging field, we presented a Z-score-based approach. Not only does this method 

allows the combination of data from dissimilar platforms and studies, but also preserves the 

characteristics of underlying raw data and produces comparable results in genetic studies. In 

addition, when used in combination with mixed modelling approach, they are helpful in 

identifying biologically relevant cutoffs for distinguishing biomarker positive and negative 

individuals that are close to reported cutoffs currently being used. Overall, Z-score based 

method can be a powerful solution for data harmonization.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 

Funding 
This work was supported by grants from the National Institutes of Health (R01AG044546 (CC), 
P01AG003991(CC, JCM), RF1AG053303 (CC), RF1AG058501 (CC), U01AG058922 (CC), 
RF1AG074007 (YJS)), the Chan Zuckerberg Initiative (CZI), the Michael J. Fox Foundation ( 
CC), the Department of Defense (LI- W81XWH2010849), and the Alzheimer’s Association 
Zenith Fellows Award (ZEN-22-848604, awarded to CC). 
 
This work was supported by access to equipment made possible by the Hope Center for 
Neurological Disorders, the NeuroGenomics and Informatics Center (NGI: 
https://neurogenomics.wustl.edu/)and the Departments of Neurology and Psychiatry at 
Washington University School of Medicine. 
 
 

Consent Statements 

All applicable informed consent were obtained from study participants by individual cohorts as 

such no new consent was necessary for this project.   

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

References 

1. Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2016 Alzheimer’s disease facts and 

figures. Alzheimer’s & Dementia. 2016;12(4):459-509. doi:10.1016/J.JALZ.2016.03.001 

2. Beason-Held LL, Goh JO, An Y, et al. Changes in Brain Function Occur Years before the 

Onset of Cognitive Impairment. The Journal of Neuroscience. 2013;33(46):18008. 

doi:10.1523/JNEUROSCI.1402-13.2013 

3. Holtzman DM. CSF biomarkers for Alzheimer’s disease: Current utility and potential 

future use. Neurobiol Aging. 2011;32(Suppl 1):S4. 

doi:10.1016/J.NEUROBIOLAGING.2011.09.003 

4. Dayon L, Núñez Galindo A, Wojcik J, et al. Alzheimer disease pathology and the 

cerebrospinal fluid proteome. Alzheimers Res Ther. 2018;10(1):1-12. 

doi:10.1186/S13195-018-0397-4/FIGURES/4 

5. Suppiah S, Didier MA, Vinjamuri S. The Who, When, Why, and How of PET Amyloid 

Imaging in Management of Alzheimer’s Disease—Review of Literature and Interesting 

Images. Diagnostics. 2019;9(2). doi:10.3390/DIAGNOSTICS9020065 

6. Yiannopoulou KG, Papageorgiou SG. Current and Future Treatments in Alzheimer 

Disease: An Update. https://doi.org/101177/1179573520907397. 

2020;12:117957352090739. doi:10.1177/1179573520907397 

7. Koseoglu E. New treatment modalities in Alzheimer’s disease. World J Clin Cases. 

2019;7(14):1764. doi:10.12998/WJCC.V7.I14.1764 

8. Niemantsverdriet E, Valckx S, Bjerke M, Engelborghs S. Alzheimer’s disease CSF 

biomarkers: clinical indications and rational use. Acta Neurol Belg. 2017;117(3):591. 

doi:10.1007/S13760-017-0816-5 

9. Marcus C, Mena E, Subramaniam RM. Brain PET in the diagnosis of Alzheimer’s disease. 

Clin Nucl Med. 2014;39(10):e413-e426. doi:10.1097/RLU.0000000000000547 

10. Fleisher AS, Pontecorvo MJ, Devous MD, et al. Positron Emission Tomography Imaging 

With [18F]flortaucipir and Postmortem Assessment of Alzheimer Disease 

Neuropathologic Changes. JAMA Neurol. 2020;77(7):829-839. 

doi:10.1001/JAMANEUROL.2020.0528 

11. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with 

Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306-319. doi:10.1002/ANA.20009 

12. Groot C, Villeneuve S, Smith R, Hansson O, Ossenkoppele R. Tau PET Imaging in 

Neurodegenerative Disorders. J Nucl Med. 2022;63(Suppl 1):20S-26S. 

doi:10.2967/JNUMED.121.263196 

13. Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β 

proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 

2018;14(4):225-236. doi:10.1038/NRNEUROL.2018.9 

14. Jack CR, Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification 

scheme for Alzheimer disease biomarkers. Neurology. 2016;87(5):539-547. 

doi:10.1212/WNL.0000000000002923 

15. Cruchaga C, Kauwe JSK, Harari O, et al. GWAS of cerebrospinal fluid tau levels identifies 

risk variants for Alzheimer’s disease. Neuron. 2013;78(2):256-268. 

doi:10.1016/J.NEURON.2013.02.026 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

16. Yan Q, Nho K, Del-Aguila JL, et al. Genome-wide association study of brain amyloid 

deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry. 

2021;26(1):309-321. doi:10.1038/S41380-018-0246-7 

17. Deming Y, Li Z, Kapoor M, et al. Genome-wide association study identifies four novel loci 

associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 

2017;133(5):839-856. doi:10.1007/S00401-017-1685-Y 

18. Deming Y, Filipello F, Cignarella F, et al. The MS4A gene cluster is a key modulator of 

soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. 2019;11(505):21. 

doi:10.1126/SCITRANSLMED.AAU2291/SUPPL_FILE/AAU2291_TABLE_S2.XLSX 

19. Deming Y, Dumitrescu L, Barnes LL, et al. Sex-Specific Genetic Predictors of Alzheimer’s 

Disease Biomarkers. Acta Neuropathol. 2018;136(6):857. doi:10.1007/S00401-018-1881-

4 

20. Colan SD. The Why and How of Z Scores. Journal of the American Society of 

Echocardiography. 2013;26(1):38-40. doi:10.1016/J.ECHO.2012.11.005 

21. Curtis AE, Smith TA, Ziganshin BA, Elefteriades JA. The Mystery of the Z-Score. AORTA 

Journal. 2016;4(4):124. doi:10.12945/J.AORTA.2016.16.014 

22. Jansen IE, van der Lee SJ, Gomez-Fonseca D, et al. Genome-wide meta-analysis for 

Alzheimer’s disease cerebrospinal fluid biomarkers. Acta Neuropathol. 2022;144(5):821-

842. doi:10.1007/S00401-022-02454-Z 

23. Deming Y, Xia J, Cai Y, et al. Genetic studies of plasma analytes identify novel potential 

biomarkers for several complex traits. Scientific Reports 2016 6:1. 2016;6(1):1-17. 

doi:10.1038/srep18092 

24. Raghavan NS, Dumitrescu L, Mormino E, et al. Association Between Common Variants in 

RBFOX1, an RNA-Binding Protein, and Brain Amyloidosis in Early and Preclinical 

Alzheimer Disease. JAMA Neurol. 2020;77(10):1288-1298. 

doi:10.1001/JAMANEUROL.2020.1760 

25. Ali M, Archer DB, Gorijala P, et al. Large multi-ethnic genetic analyses of amyloid imaging 

identify new genes for Alzheimer disease. Acta Neuropathologica Communications 2023 

11:1. 2023;11(1):1-20. doi:10.1186/S40478-023-01563-4 

26. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation 

PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):7. 

doi:10.1186/S13742-015-0047-8/2707533 

27. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide 

association scans. Bioinformatics. 2010;26(17):2190-2191. 

doi:10.1093/BIOINFORMATICS/BTQ340 

28. Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker 

signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 

2009;65(4):403-413. doi:10.1002/ANA.21610 

29. Blennow K, Shaw LM, Stomrud E, et al. Predicting clinical decline and conversion to 

Alzheimer’s disease or dementia using novel Elecsys Aβ(1–42), pTau and tTau CSF 

immunoassays. Scientific Reports 2019 9:1. 2019;9(1):1-11. doi:10.1038/s41598-019-

54204-z 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

30. Fagan AM, Head D, Shah AR, et al. Decreased cerebrospinal fluid Abeta(42) correlates 

with brain atrophy in cognitively normal elderly. Ann Neurol. 2009;65(2):176-183. 

doi:10.1002/ANA.21559 

31. Chen CD, Ponisio MR, Lang JA, et al. Tau PET visual reads find sources of tau not 

explained by typical Alzheimer disease pathophysiology. medRxiv. Published online 

December 22, 2022:2022.12.20.22283743. doi:10.1101/2022.12.20.22283743 

32. Fagan AM, Mintun MA, Shah AR, et al. Cerebrospinal fluid tau and ptau181 increase with 

cortical amyloid deposition in cognitively normal individuals: Implications for future 

clinical trials of Alzheimer’s disease. EMBO Mol Med. 2009;1(8-9):371-380. 

doi:10.1002/EMMM.200900048 

33. Royse SK, Minhas DS, Lopresti BJ, et al. Validation of amyloid PET positivity thresholds in 

centiloids: a multisite PET study approach. Alzheimers Res Ther. 2021;13(1). 

doi:10.1186/S13195-021-00836-1 

34. Orellana A, García-gonzález P, Valero S, et al. Establishing In-House Cutoffs of CSF 

Alzheimer’s Disease Biomarkers for the AT(N) Stratification of the Alzheimer Center 

Barcelona Cohort. Int J Mol Sci. 2022;23(13). doi:10.3390/IJMS23136891 

35. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma 

biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6(3):131-144. 

doi:10.1038/NRNEUROL.2010.4 

36. Liu W, Lin H, He X, et al. Neurogranin as a cognitive biomarker in cerebrospinal fluid and 

blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl 

Psychiatry. 2020;10(1). doi:10.1038/S41398-020-0801-2 

37. Mattsson N, Andreasson U, Zetterberg H, et al. Association of Plasma Neurofilament 

Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 

2017;74(5):557. doi:10.1001/JAMANEUROL.2016.6117 

38. Ishiki A, Kamada M, Kawamura Y, et al. Glial fibrillar acidic protein in the cerebrospinal 

fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar 

degeneration. J Neurochem. 2016;136(2):258-261. doi:10.1111/JNC.13399 

39. Chatterjee P, Pedrini S, Stoops E, et al. Plasma glial fibrillary acidic protein is elevated in 

cognitively normal older adults at risk of Alzheimer’s disease. Translational Psychiatry 

2021 11:1. 2021;11(1):1-10. doi:10.1038/s41398-020-01137-1 

40. Heslegrave A, Heywood W, Paterson R, et al. Increased cerebrospinal fluid soluble 

TREM2 concentration in Alzheimer’s disease. Mol Neurodegener. 2016;11(1):1-7. 

doi:10.1186/S13024-016-0071-X/TABLES/1 

41. Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts 

current and future brain amyloidosis. Neurology. 2019;93(17):e1647-e1659. 

doi:10.1212/WNL.0000000000008081 

42. Kirmess KM, Meyer MR, Holubasch MS, et al. The PrecivityAD
TM

 test: Accurate and 

reliable LC-MS/MS assays for quantifying plasma amyloid beta 40 and 42 and 

apolipoprotein E proteotype for the assessment of brain amyloidosis. Clinica Chimica 

Acta. 2021;519:267-275. doi:10.1016/J.CCA.2021.05.011 

43. Bayoumy S, Verberk IMW, den Dulk B, et al. Clinical and analytical comparison of six 

Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231. Alzheimers 

Res Ther. 2021;13(1):1-15. doi:10.1186/S13195-021-00939-9/FIGURES/4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

44. Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β 

biomarkers for Alzheimer’s disease. Nature 2018 554:7691. 2018;554(7691):249-254. 

doi:10.1038/nature25456 

45. Thijssen EH, la Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in 

Alzheimer’s disease and frontotemporal lobar degeneration. Nature Medicine 2020 26:3. 

2020;26(3):387-397. doi:10.1038/s41591-020-0762-2 

46. Charidimou A, Friedrich JO, Greenberg SM, Viswanathan A. Core cerebrospinal fluid 

biomarker profile in cerebral amyloid angiopathy: A meta-analysis. Neurology. 

2018;90(9):e754. doi:10.1212/WNL.0000000000005030 

47. Badji A, Pereira JB, Shams S, et al. Cerebrospinal Fluid Biomarkers, Brain Structural and 

Cognitive Performances Between Normotensive and Hypertensive Controlled, 

Uncontrolled and Untreated 70-Year-Old Adults. Front Aging Neurosci. 2022;13. 

doi:10.3389/FNAGI.2021.777475 

48. Ali M, Sung YJ, Wang F, et al. Leveraging large multi-center cohorts of Alzheimer disease 

endophenotypes to understand the role of Klotho heterozygosity on disease risk. PLoS 

One. 2022;17(5):22. doi:10.1371/JOURNAL.PONE.0267298 

49. Koran MEI, Wagener M, Hohman TJ. Sex differences in the association between AD 

biomarkers and cognitive decline. Brain Imaging Behav. 2017;11(1):205-213. 

doi:10.1007/S11682-016-9523-8 

50. Schindler SE, Karikari TK, Ashton NJ, et al. Effect of Race on Prediction of Brain 

Amyloidosis by Plasma Aβ42/Aβ40, Phosphorylated Tau, and Neurofilament Light. 

Neurology. 2022;99(3):e245-e257. doi:10.1212/WNL.0000000000200358 

  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26

Table:  

Table 1: The Z-score cutoff and their corresponding raw values determined using Gaussian Mixture 
Model approach 
Cohort Modality Biomarker Platform/Tracer Z-score 

threshold 
Raw value 
threshold 

Reported 
Raw value 
threshold 

ADNI CSF 
(pg/ml) 

Aβ 
(Cross-sectional) 

xMAP 0.60 196 192 28    

Aβ 
(Longitudinal) 

xMAP 0.57 197 192 28 

pTau Elecsys 0.197 27.8 27 29  

PET 
imaging 

Aβ Centiloid 0.43 48.93 20 33 

Knight 
ADRC 

CSF 
(pg/ml) 

Aβ Innotest -0.33 527 500 30  

pTau 
(Cross-sectional) 

Lumipulse 0.73 
 

58.9 
 

58.131  
 

pTau 
(Longitudinal) 

Lumipulse 0.70 58.4 58.131 

PET 
imaging 

Aβ PiB -0.29 0.12 0.18 32 
Aβ Centiloid 0.55 33.01 21.6 31 
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Table 2: Table showing the comparison between AT classification using GMM and using previously 
reported cut-offs in ADNI cohort 

  
Reported Cut-offs assigned AT class 

A-T- A-T+ A+T- A+T+ 

GMM assigned AT 
class 

A-T- 224 2 0 0 

A-T+ 0 25 0 0 

A+T- 5 0 188 16 

A+T+ 0 1 0 284 

N= 745; "A” represents Aβ status; “T” represents pTau status; “+” symbol denotes a biomarker positivity 
status; "-” denotes biomarker negative status. 
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Table 3: Table showing the comparison between AT classification using GMM and 
previously determined classification in an external validation cohort 

  
Previously assigned AT class 

A-T- A+T+ 

GMM assigned AT class 

A-T- 218 0 

A+T- 52 33 

A+T+ 0 326 
N= 629; "A” represents Aβ status; “T” represents pTau status; “+” symbol denotes a 
biomarker positivity status; "-” denotes biomarker negative status. 
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Figure legend: 

Figure 1: Histogram showing the distribution of raw values and their corresponding Z-

score for Aβ, Tau and pTau (A) and Amyloid PET centiloid values (B) in ADNI and Knight 

ADRC cohort. Red bins represent raw values and blue bins represent Z-scores The raw values 

have been assigned a Z-score based on the mean and SD from their distribution in each cohort 

and scaled to range between -3 to 3. The skewed nature of the raw values was addressed using 

an intermediate step involving log transformation prior to z-score calculation. Alzheimer’s 

Disease Neuroimaging Initiative (ADNI); Knight Alzheimer Disease Research Center (Knight 

ADRC) 

 

Figure 2: Schematic presentation of Z-score based GWAS result validation process and 

results. (A)Workflow for joint and meta-analysis GWAS. (B)Correlation between the log10 

(effect size) from Z-score based joint GWAS and meta-analysis of individual cohort GWAS for 

CSF A� (r = 0.969, p < 1×10-300), Tau (r= 0.966, p < 1×10-300) and pTau (r=0.958, p < 1×10-

300) (C) Correlation between the log10 (effect size) from Z-score based and raw centiloid 

values based GWAS for ADNI (r = 0.966, p < 1×10-300) and Knight ADRC (r=0.951, p < 1×10-

300). 

 

Figure 3: Density plot showing the assumed normal distribution by z-scores based GMM 

approach in ADNI (A) and Knight ADRC (B) data using CSF biomarkers and Centiloid 

data from PET imaging. X-axis shows the z-scores values in the dataset. A+/A- and T+/T- 

denotes biomarker positivity or negativity status. Green bins represent samples assigned 

biomarker negative (Amyloid/pTau negative) status and bins colored purple represents samples 

assigned biomarker positive (Amyloid /pTau positive) status. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tau (Raw value) Tau (Z−score)

ABeta (Raw value) ABeta (Z−score)

0 100 200 300 −3 −2 −1 0 1 2 3

100 200 300 −3 −2 −1 0 1 2

0

100

200

0

50

100

150

200

250

0

100

200

pTau (Raw value) pTau (Z−score)

0 50 100 150 −2 0 2

0

100

200

300

0

100

200

300

400

0

100

200

300

400

value

co
un

t
ADNI

A.1.

Tau (Raw value) Tau (Z−score)

ABeta (Raw value) ABeta (Z−score)

0 500 1000 1500 −3 −2 −1 0 1 2 3

1000 2000 −3 −2 −1 0 1 2 3

0

50

100

150

200

0

100

200

0

100

200

pTau (Raw value) pTau (Z−score)

0 50 100 150 −3 −2 −1 0 1 2 3

0

100

200

300

0

100

200

300

400

0

100

200

300

400

value

co
un

t

Knight ADRC
A.2.

A. CSF Biomarker distrib ution

0

50

100

Centiloid (Raw Value) Centiloid (Z−score)

0 50 100 150 200 −2 −1 0 1 2

0

50

100

150

200

value

co
un

t

ADNI
B.1.

0

25

50

75

Centiloid (Raw Value) Centiloid (Z−score)

0 50 100 150 −3 −2 −1 0 1 2

0

50

100

150

value

co
un

t

Knight ADRC
B.2.

B. Amyloid PET Centiloid distrib ution

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. B.

C.

Cohort 1 Cohort 2 Cohort 3

Cohort 1 

Z-scores

Cohort 2 

Z-scores

Cohort 3 

Z-scores

In
it

ia
l 

r
a
w

 

B
io

m
a
r
k
e
r
 d

a
ta

 

Q
C

 a
n

d
 Z

s
c
o

r
e
 

c
a
lc

u
la

ti
o

n

Correlation

Independent 

Single Variant 

GWAS per 

Cohort

Meta-Analysis

Joint phenotype 

using Z-scores as 

continuous 

variable 

GWAS

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.3

0.6

0.9

−2 −1 0 1 2
CSF AB42 (z−score)

de
ns

ity

Group A− A+

A.1 Amyloid Beta

0.00

0.25

0.50

0.75

−2 −1 0 1 2 3
CSF pTau (z−score)

de
ns

ity
Group T− T+

A.2 pTau

0.00

0.25

0.50

0.75

−2 −1 0 1 2
Centiloid (z−score)

de
ns

ity

Group A− A+

A.3 Centiloid

A. ADNI

0.0

0.2

0.4

0.6

0.8

−2 −1 0 1 2
CSF AB42 (z−score)

de
ns

ity

Group A− A+

B.1 Amyloid Beta 

0.00

0.25

0.50

0.75

−3 −2 −1 0 1 2 3
CSF pTau (z−score)

de
ns

ity

Group T− T+

B.2 pTau

0.00

0.25

0.50

0.75

1.00

−3 −2 −1 0 1 2
Centiloid (z−score)

de
ns

ity

Group A− A+

B.3 Centiloid 

B. Knight ADRC

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542118doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542118
http://creativecommons.org/licenses/by-nc-nd/4.0/

