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Abstract  
 
Summary:  
Highly multiplexed imaging enables single-cell-resolved detection of numerous biological 
molecules in their spatial tissue context. Interactive data visualization of multiplexed 
imaging data is necessary for quality control and hypothesis examination. Here, we 
describe cytoviewer, an R/Bioconductor package for interactive visualization and 
exploration of multi-channel images and segmentation masks. The cytoviewer package 
supports flexible generation of image composites, allows side-by-side visualization of 
single channels, and facilitates the spatial visualization of single-cell data in the form of 
segmentation masks. The package operates on SingleCellExperiment, 
SpatialExperiment and CytoImageList objects and therefore integrates with the 
Bioconductor framework for single-cell and image analysis. Users of cytoviewer need little 
coding expertise, and the graphical user interface allows user-friendly navigation. We 
showcase the functionality of cytoviewer by analysis of an imaging mass cytometry 
dataset of cancer patients. 
 
Availability:  
The cytoviewer package can be installed from Bioconductor via 
https://www.bioconductor.org/packages/release/bioc/html/cytoviewer.html. The 
development version and further instructions can be found on GitHub at 
https://github.com/BodenmillerGroup/cytoviewer. We provide an R script to exemplify the 
usage of cytoviewer in the supplementary information.  
 
Supplementary information:  
Supplementary data are available online.  
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Introduction 
 
Highly multiplexed imaging allows spatially and single-cell-resolved detection of dozens 
of biological molecules, including proteins and nucleic acids, in situ. These technologies 
facilitate an in-depth analysis of complex systems and diseases such as the tumor 
microenvironment (Hoch et al., 2022; Jackson et al., 2020; Risom et al., 2022) and type 
1 diabetes progression (Damond et al., 2019). Imaging-based spatial proteomics methods 
(Moffitt et al., 2022) can be broadly divided into fluorescent cyclic approaches such as 
tissue-based cyclic immunofluorescence (t-CyCIF) (Lin et al., 2018) and one-step mass-
tag based approaches that include multiplexed ion beam imaging (MIBI) (Angelo et al., 
2014) and imaging mass cytometry (IMC) (Giesen et al., 2014).   
 
To fully leverage the information contained in multiplexed imaging data, computational 
tools are necessary. The main analysis steps, irrespective of the biological question, are 
1) image quality control, 2) image pre-processing and segmentation, and 3) single-cell 
and spatial analysis (Windhager et al., 2021). Interactive image visualization greatly 
benefits image and segmentation quality control and hypothesis generation and 
verification. However, commonly used programs, such as histoCAT (Schapiro et al., 
2017), QuPath (Bankhead et al., 2017), and others (Schindelin et al., 2012; Somarakis et 
al., 2021), have little interoperability with other frameworks and programming languages. 
The recently developed napari image viewer, which operates in Python, bridges the gap 
between multiplexed image visualization and data analysis (Chiu et al., 2022), but similar 
tools that operate in the statistical programming language R have not been developed. 
 
Here, we present the R/Bioconductor cytoviewer package for interactive multi-channel 
image and segmentation mask visualization in R. The cytoviewer package builds on the 
cytomapper R/Bioconductor package (Eling et al., 2020) and extends its static 
visualization abilities via an interactive and user-friendly shiny application It provides 
interactive visualization strategies in a similar fashion as the iSEE package (Rue-Albrecht 
et al., 2018) offers for single-cell data and can be seamlessly harmonized with any step 
of the data analysis workflow in R. Users can overlay individual images with segmentation 
masks, visualize cell-specific metadata, and download generated images. The cytoviewer 
package integrates into the Bioconductor framework (Gentleman et al., 2004) for single-
cell and image analysis leveraging the image handling and analysis strategies from the 
EBImage Bioconductor package (Pau et al., 2010) and building on commonly used 
Bioconductor classes such as SingleCellExperiment, SpatialExperiment (Amezquita et al., 
2020; Righelli et al., 2022), and CytoImageList (Eling et al., 2020). We showcase the 
functionality and potential application fields of cytoviewer by demonstrating visual 
exploration of an IMC dataset of cancer patients.  
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Results 
 
The R/Bioconductor cytoviewer package leverages the reactive programming framework 
of the popular R shiny and shinydashboard packages (Jia et al., 2022), is cross-platform 
compatible, and launches an interactive web application. The graphical user interface of 
the cytoviewer package has three main parts: body, sidebar, and header (Figure 1A). 
The body of cytoviewer features the image viewer. The viewer can switch between image-
level visualization, which shows the pixel-level intensities of all selected markers either 
combined (Composite) or separately (Channels), and cell-level visualization, which 
displays cell-level information on segmentation masks (Masks) (Supplementary Note 
S1.1). Controls for sample selection and image and mask visualization settings as well 
as image appearance/filters are found in the sidebar menu. The header section contains 
the package version, R session information, a help page, and a drop-down menu for 
image downloads.  
 
The cytoviewer function call takes up to five arguments (Figure 1B). Images must be 
provided as a CytoImageList object containing one or multiple multi-channel images 
where each channel represents the pixel intensities of one marker. Segmentation masks 
in CytoImageList format can be added if desired. Segmentation masks are represented 
as single-channel images containing integer values for cells or zero for background. 
Furthermore, SingleCellExperiment or SpatialExperiment class objects can be provided 
to allow single-cell specific metadata visualization. The full functionality of cytoviewer is 
leveraged when images, segmentation masks, and a metadata object are provided 
(Figure 1B). This allows comprehensive image-level and cell-level visualization, enables 
image overlays with segmentation masks, and cell-specific metadata visualization. 
 
To demonstrate the functionality and potential applications of cytoviewer, we explored an 
example IMC dataset from the Integrated iMMUnoprofiling of large adaptive CANcer 
patient cohort project (immucan.eu) (Supplementary Note S1.2). For IMC, tissue 
sections are stained with antibodies tagged with isotopically pure rare earth metals, the 
tissue is laser ablated, and tags are detected by mass spectrometry to produce high-
dimensional images (Giesen et al., 2014). Here, we demonstrate the different viewing 
modes of cytoviewer by analyses of images from a breast cancer patient (Patient2_003) 
(Figure 1C, Supplementary Figure S1). 
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Figure 1: cytoviewer interface and functionality. (A) The graphical user interface of cytoviewer 
is divided into a body, header, and sidebar. The body of cytoviewer includes the image viewer, 
which has three tabs: Composite (Image-level), Channels (Image-level), and Mask (Cell-level). 
Zooming is supported for Composite and Mask tabs. The package version, R session information, 
help page, and a drop-down menu for image downloads are located in the header. The sidebar 
menu has controls for sample selection, image visualization, mask visualization, and general 
settings. In the image shown, the scale bar is 150 µm. (B) The supported functionality (right) of 
cytoviewer depends on the data inputs provided (left). To match information between the objects, 
cell (cell_id) and image (img_id) identifiers can be provided. SCE/SPE = 
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SingleCellExperiment/SpatialExperiment. (C) cytoviewer supports different viewing modes. Top: 
The “channels” tab of image-level visualization displays selected channels in individual images. 
Shown are Ecad (magenta), CD8a (cyan), and CD68 (yellow) marking tumor cells, CD8+ T cells, 
and myeloid cells, respectively. Center: The “composite” tab of image-level visualization can be 
overlayed with cell outlines, which can be colored by cell-specific metadata. Shown here are cell 
area (continuous; plasma) and cell type (categorical; tumor cells in white) information. Channel 
color settings are as follows for all markers: Contrast: 2,5; Brightness: 1; Gamma: 1.2. Bottom: 
The “mask” tab can be used to visualize segmentation mask outlines that can be colored by cell-
specific metadata. Shown here are cell area (continuous; plasma) and cell type (categorical; 
tumor cells in magenta) information. Scale bars in all images are 150 µm. (D) “Image appearance” 
controls can be used to add legends or titles and to change the scale bar length for image-level 
(top) and cell level (bottom) visualization. The cell-level mask plot shown depicts tumor (magenta), 
myeloid (yellow), and CD8+ T cells (cyan). Scale bars are 100 µm. 
 
 
Image visualization control is split into basic and advanced control modes. Basic 
controls support the selection of up to six channels with separate color control settings  
for each (contrast, brightness, gamma, and channel color). In the example shown here, 
we visualized expression of Ecad, CD8a, and CD68, which are markers for epithelial and  
tumor cells, CD8+ T cells, and myeloid cells, respectively (Figure 1A, Figure 1C - top). 
This image visualization step can support qualitative assessment of signal sensitivity and 
specificity.  
 
In the advanced image control mode, the user can choose to overlay the displayed 
images with provided segmentation masks (Figure 1C – center). Outline color and 
thickness can be adjusted by the user. Of note, this step can support evaluation of cell 
segmentation quality, which is essential for downstream data analysis. Moreover, the 
masks can be outlined by cell-specific metadata from the 
SingleCellExperiment/SpatialExperiment object. For categorical and continuous 
metadata entries, the user can choose between discrete colors and continuous color 
palettes (viridis, inferno, plasma), respectively. By outlining the masks with the cell area 
and cell type information (e.g., tumor), correct phenotype assignment can be visually 
confirmed (e.g., tumor cells are Ecad+ and tumor cells have larger areas than other cells).  
 
The user can decide to display the provided segmentation masks (Figure 1C – bottom). 
Coloring of the masks by cell-specific metadata (categorical and continuous) is possible 
and can be used for visual assessment of, for example, tumor cell areas and structures.  
 
Using image appearance controls, the user can adjust the scale bar length and include 
legends or image titles. These features can be used for image-level and cell-level 
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visualization and can aid in interpretation of phenotype co-localization such as infiltration 
of CD8+ T cells into the tumor core (Figure 1D). Furthermore, from the image filters 
section, the user can control pixel-wise interpolation (default) and apply Gaussian filters 
on the image-level (Supplementary Figure S2).  
 
The cytoviewer package also supports rapid download of the generated images in 
publication quality. For download, the user specifies a file name, selects the image of 
interest (Composite, Channels, Mask) and the file format (pdf, png) (Supplementary 
Note S1.3). 
 
 
Conclusion  
 
The cytoviewer package provides a versatile and easy-to-use graphical user interface for 
interactive visualization of highly multiplexed imaging data in R. cytoviewer is accessible 
to researchers with little bioinformatics training and can support every step of the highly 
multiplexed data analysis workflow in R (Windhager et al., 2021) including visual cell-
segmentation quality control, cell phenotype confirmation, and hypothesis examination.   
Here, we demonstrated the use of cytoviewer by exploring IMC data. However, data from 
other technologies such as t-CyCIF (Lin et al., 2018) or MIBI (Angelo et al., 2014), which 
produce pixel-level intensities and (optionally) segmentation masks, can be interactively 
visualized with cytoviewer as long as the input format is appropriate. The cytoviewer 
package, together with the related cytomapper package (Eling et al., 2020), are a well-
integrated R/Bioconductor toolbox for highly multiplexed imaging data visualization in R 
relying on data containers such as SingleCellExperiment/SpatialExperiment (Amezquita 
et al., 2020; Righelli et al., 2022) and CytoImageList (Eling et al., 2020).  
We envision that the cytoviewer package will meet the needs of the fast-growing 
community of highly multiplexed imaging users (Hickey et al., 2022) by providing user-
friendly and rich data visualization that seamlessly integrates and supports the highly 
multiplexed imaging data analysis workflow in R.  
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