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ABSTRACT  92 

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at 93 

least 10–20% of human cancers, emphasizing the importance of further investigating these 94 

complex relationships. However, the implications and significance of tumor-related microbes 95 

remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer 96 

prevention and treatment responses. Understanding interactions between host microbes and 97 

cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational 98 

identification of cancer-specific microbes and their associations is still challenging due to the high 99 

dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets 100 

containing sufficient event observations to identify relationships, and the interactions within 101 

microbial communities, the heterogeneity in microbial composition, and other confounding effects 102 

that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, 103 

MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate 104 

its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information 105 

Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are 106 

represented in a heterogeneous graph and learned by a graph attention network; it incorporates 107 

metabolic and phylogenetic information to reflect intricate relationships within microbial 108 

communities; and it provides multiple functionalities for association interpretations and 109 

visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-110 

resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-111 

associated microbial signatures and refine their interactions with tumors. 112 

 113 

SIGNIFICANCE 114 

Studying the tumor microbiome in high-throughput sequencing data is challenging because of the 115 

extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present 116 
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a new deep-learning tool, microbial graph attention (MEGA), to refine the organisms that interact 117 

with tumors.  118 

  119 

INTRODUCTION 120 

The study of microbial communities and their impact on human health has gained increasing 121 

attention over the past decade (1). The role of intratumoral microbes in the tumor 122 

microenvironment has become an increasingly important area in studying the development and 123 

progression of cancer (2). The intratumoral microbiome affects outcomes in several cancers, 124 

including Fusobacterium nucleatum in the development of colon cancer and Helicobacter pylori 125 

in stomach cancer. To explore the relationship between the microbiome and cancer, large-scale 126 

genomic datasets such as The Cancer Genome Atlas (TCGA) have been utilized. However, 127 

limited attention has been given to the cancer-specific gene-microbe relationships. In this context, 128 

the Oncology Research Information Exchange Network (ORIEN) provides a real-world dataset 129 

consisting of clinical, genomic, and transcriptomic data collected under an institutional review 130 

board (IRB)-approved common protocol known as Total Cancer Care. It represents a valuable 131 

resource for identifying intratumoral microbes from various cancer types (3). Advances in 132 

sequencing technologies have provided large-scale human tissue sequencing data, which 133 

enables the characterization of the tissue-resident metagenome. However, exploring the links 134 

between the intratumoral microbiome and cancer tissues is ongoing due to the difficulties in 135 

obtaining clinical biopsies specifically dedicated to microbial profiling. 136 

 137 

Here, we present Microbial Heterogeneous Graph Attention (MEGA), a deep learning-based 138 

Python package for identifying cancer-associated intratumoral microbes. The model is trained on 139 

ORIEN intratumoral microbial RNA sequencing (RNA-seq) data to identify microbial communities 140 

associated with each of the 12 human cancer types. The core framework is a heterogeneous 141 
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graph transformer (HGT) (4) that can learn the importance and contribution of species to cancer 142 

samples. We have shown the superior performance of HGT in characterizing cell-gene relations 143 

from single-cell multi-omics datasets (5) and identifying sample-species relations (6) from The 144 

Cancer Microbiome Atlas (TCMA) data (7). To demonstrate the effectiveness and credibility of 145 

MEGA on the more complicated ORIEN data, we focus on 2 widely studied cancer types: colon 146 

adenocarcinoma (COAD) and thyroid carcinoma (THCA). By leveraging metabolic and 147 

phylogenetic relationships, MEGA was able to capture the association of low attention score 148 

microbes, suggesting the importance of integrating multiple types of data in identifying cancer-149 

associated microbes. We believe that MEGA offers a comprehensive and nuanced approach to 150 

identifying cancer-associated intratumoral microbes in the ORIEN dataset, which could ultimately 151 

serve as potential targets for further study and therapy development. 152 

 153 

METHODS 154 

Study Design  155 

Established in 2014, the Oncology Research Information Exchange Network (ORIEN) is an 156 

alliance of 18 US cancer centers. All ORIEN alliance members utilize a standard IRB-approved 157 

protocol: Total Cancer Care® (TCC). As part of the TCC, participants agree to have their clinical 158 

data followed over time, to undergo germline and tumor sequencing, and to be contacted in the 159 

future by their provider if an appropriate clinical trial or other study becomes available (8). TCC is 160 

a prospective cohort study where a subset of patients elect to be enrolled in the ORIEN Avatar 161 

program, which provides research use only (RUO)-grade whole-exome tumor sequencing, RNA-162 

seq, germline sequencing, and collection of deep longitudinal clinical data with lifetime follow-up. 163 

Nationally, over 325,000 participants have enrolled in TCC. M2GEN, the commercial and 164 

operational partner of ORIEN, harmonizes all abstracted clinical data elements and molecular 165 

sequencing files into a standardized, structured format to enable the aggregation of de-identified 166 

data for sharing across the network. Data access was approved by the IRB in an Honest Broker 167 
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protocol (2015H0185) and Total Cancer Care protocol (2013H0199) in coordination with M2GEN 168 

and participating ORIEN members.  169 

 170 

Sequencing Methods 171 

ORIEN Avatar specimens undergo nucleic acid extraction and sequencing at HudsonAlpha 172 

(Huntsville, AL) or Fulgent Genetics (Temple City, CA). For frozen and OCT tissue DNA extraction, 173 

Qiagen QIASymphony DNA purification is performed, generating a 213 bp average insert size. 174 

For frozen and OCT tissue RNA extraction, Qiagen RNAeasy plus mini kit is performed, 175 

generating 216 bp average insert size. For formalin-fixed paraffin-embedded (FFPE) tissue, a 176 

Covaris Ultrasonication FFPE DNA/RNA kit is utilized to extract DNA and RNA, generating a 165 177 

bp average insert size. RNA-seq is performed using the Illumina TruSeq RNA Exome with single 178 

library hybridization, cDNA synthesis, library preparation, and sequencing (100 bp paired reads 179 

at Hudson Alpha, 150 bp paired reads at Fulgent) to a coverage of 100M total reads/50M paired 180 

reads. 181 

 182 

Microbe Abundance and Diversity 183 

RNA-seq reads are used to calculate microbe abundances using the {exotic} pipeline, as 184 

described previously (3). Briefly, reads are aligned first to the human reference genome, and then 185 

unaligned reads are mapped to a database of bacteria, fungi, archaea, viruses, and eukaryotic 186 

parasites. The observed microbes then proceed through a series of filtering steps to carefully and 187 

conservatively remove contaminants before batch correction and normalization. Diversity 188 

measures were estimated by calculating the Shannon and Simpson indices, as well as Chao1, 189 

ACE, and inverse Simpson using the R package vegan. 190 

 191 

The input dataset for MEGA includes the microbiome matrix and the sample metadata of the 192 

cancer types. The raw counts of the ORIEN microbiome matrix consist of 2603 species in 2891 193 
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samples. The sample metadata is a two-column matrix that describes the label of the total of 12 194 

cancer types at each sample. The NJS16 metabolic database (9) is a literature-curated 195 

interspecies network of the human gut microbiota, composed of approximately 570 microbial 196 

species and 3 human cell types metabolically interacting through more than 4400 small-molecule 197 

transport and macromolecule degradation events. We utilized the R package taxizedb to access 198 

the National Center for Biotechnology Information (NCBI) taxonomy database (10). It was 199 

integrated to prepare for the taxonomy ID to taxonomy name conversion and to extract additional 200 

phylogenetic relationships from the ORIEN data (see Figure 1 – Data Sources). 201 

 202 

 203 

Figure 1. Overview of the MEGA workflow. Four main steps were included in carrying out model training and 204 
biological gene network inference. MEGA uses ORIEN datasets and two database dependencies as the data sources. 205 
Preprocessing steps are employed to generate artificial intelligence (AI)-ready data for graph neural network training. 206 
After deep learning model training, the cancer-associated microbial signatures were selected based on the attention 207 
scores of each species at the sample level. The final results of the identified cancer-associated microbial communities 208 
have been provided in a tabular format and are available for additional visualization. 209 
 210 

Data Preprocessing 211 

We initially converted the organism’s name to a standard taxonomy ID using the taxizedb package. 212 

Species were filtered by removing those that expressed less than 0.1% of the total species. After 213 
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filtering, 2,266 species were obtained. To normalize the microbiome matrix, we scaled the values 214 

in each sample of the matrix that summed to 1. This method ensures that the contribution of each 215 

feature to the total sum is proportional to its relative abundance in the sample. We used the 216 

normalized matrix as the basis for downstream analyses. Specifically, we generated the metabolic 217 

relationship network by comparing the total species list in the ORIEN matrix with the NJS16 218 

metabolic database. In this network, an edge was placed between two species if they shared the 219 

same metabolic compound shown in the NJS16 database. Similarly, for the phylogenetic relation 220 

network, we compared the total species list in the ORIEN matrix with the NCBI taxonomy 221 

database, placing an edge that links two species if they share the same genus information. The 222 

processed data, including the normalized abundance matrix, metabolic relationship network, and 223 

phylogenetic relation network, served as artificial intelligence (AI)-ready data for model training 224 

(see Figure 1 – Data Processing). 225 

 226 

Model Training 227 

The main MEGA model was implemented in PyTorch (11) (v1.4.0) and was trained on an NVIDIA 228 

A100 graphics processing unit (GPU) for 50 epochs (approximately 15 minutes). We utilized our 229 

previously developed heterogeneous graph transformer model for model training (6). The input 230 

graph incorporates both species and sample nodes, along with the relations among them as 231 

edges. By capturing both neighbor and global topological features among samples and species, 232 

the model was able to construct sample-sample and species-species relations simultaneously. 233 

We used two autoencoders to generate the initial embeddings for the heterogeneous graph. This 234 

allowed the representation of each node as a dense vector, which can be used as input for the 235 

deep learning model. Meanwhile, we were able to reduce the dimensionality of each species and 236 

sample, resulting in an initial embedding size of 256 dimensions for all nodes in the graph. The 237 

complete heterogeneous graph embedding was subsequently passed to a graph attention 238 

transformer, which was trained to learn the relations between sample and species. MEGA adopts 239 
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a heterogeneous multi-head attention mechanism to model the overall topological information 240 

(global relationships) and neighbor message passing (local relationships) on the heterogeneous 241 

graph. We used the Adam optimizer with a learning rate of 0.003 and default settings for other 242 

hyperparameters: n_hid=128, KL_COEF=0.00005, and THRES=3. The Focal Loss function was 243 

used to quantify the differences between the predicted cancer type labels and true cancer type 244 

labels. The learning rate was reduced by a factor of 0.5 when the evaluation metric stopped 245 

improving for 5 epochs. The heterogeneous graph representation learning facilitated the 246 

embedding of samples and species simultaneously using the transformer, yielding the attention 247 

score as an important training outcome. This score represents the importance of a source node 248 

to a target node. We extracted the attention scores from source nodes spanning from species to 249 

sample. A high attention score between a given species and a sample indicates that the species 250 

was highly represented in the sample. We leveraged this information to identify microbial 251 

signatures associated with specific cancer types. We accomplished this by counting the number 252 

of samples within the cancer type for each species with high attention scores. Species with a p-253 

value less than 0.05 were considered to be significantly associated with the cancer type. These 254 

reliable microbial signatures were selected and served as the final output of MEGA (see Figure 255 

1 – Model Training). 256 

 257 

Results Interpretation and Visualization 258 

The final output of MEGA is a tab-delimited list, where each row represents each cancer type 259 

followed by identified microbial signatures. The results can be visualized in UpSet plots (12) and 260 

Cytoscape networks (13). UpSet plots are a powerful visualization technique designed to display 261 

complex set data with more than 3 intersecting sets. This method provides an intuitive and 262 

comprehensive means of exploring the relationships between sets and their overlaps, allowing 263 

for a more nuanced interpretation of the underlying data. Cytoscape is a widely used open-source 264 

software platform that offers a suite of tools for the visualization, analysis, and modeling of 265 
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complex networks. To leverage the strengths of Cytoscape’s capabilities, the RCy3 R package 266 

(14) was utilized to implement the network visualization aspect of MEGA. Through the use of 267 

Rcy3’s REST application programming interface (API), users can seamlessly access the full 268 

feature set of Cytoscape within the R programming environment. Users can import network works 269 

directly to Cytoscape with the predefined layout and theme using MEGA output files. The network 270 

comprises cancer-species nodes, with the thickness of the edges reflecting the attention weight 271 

scores. In addition, phylogenetic or metabolic relationships between species are represented by 272 

additional edges. This approach allows for a comprehensive and nuanced exploration of the 273 

relationships between cancer and species, providing valuable insights into the underlying 274 

biological processes and pathways involved. The attention weight scores, represented by the 275 

edge thickness, highlight the key connections and interactions within the network, enabling 276 

researchers to effectively identify potential targets for further study (see Figure 1 – Results 277 

Interpretation & Visualization). Additional tutorials on generating both UpSet plots and 278 

Cytoscape networks can be found in the MEGA GitHub repository https://github.com/OSU-279 

BMBL/MEGA. 280 

 281 

Implementation 282 

MEGA was developed using Python 3.7.12 with PyTorch v1.4.0 and torch-geometric v1.4.3. The 283 

MEGA GPU mode was tested in CUDA v11.6 on a Red Hat Enterprise 7 Linux system 8.3, which 284 

featured 128-core AMD Epic central processing units (CPUs), NVIDIA A100-PCIE-80GB GPUs, 285 

and 1TB RAM. Similarly, the MEGA CPU mode was tested on the Ohio Supercomputer Center 286 

Pitzer cluster, which incorporated Intel Xeon Gold 6148 CPUs and 64GB RAM. MEGA was 287 

versioned and uploaded to the Python Package Index (PyPI) using Python-Versioneer, a tool that 288 

simplifies the management of version numbers in a software project. By subjecting the software 289 

to extensive testing in both GPU and CPU modes, we were able to ensure that MEGA functions 290 
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effectively and efficiently across a range of computational architectures, ultimately providing users 291 

with a reliable and versatile tool. 292 

 293 

RESULTS 294 

MEGA Identifies Intratumoral Microbes from 12 Cancer Types in the ORIEN Dataset 295 

Overall, MEGA is a deep learning package for identifying cancer-associated intratumoral 296 

microbes. It consists of 4 main steps: (1) Collect the ORIEN dataset, Human NJS16 metabolic 297 

database [2], and NCBI taxonomy database; (2) Preprocess ORIEN dataset as input for the deep 298 

learning model; (3) Train the graph attention transformer using a heterogeneous graph; and (4) 299 

Interpret cancer-associated intratumoral microbes. MEGA identified microbial communities that 300 

consist of 73 unique species from 12 cancer types in the ORIEN data (see Figure 2 and 301 

Supplementary Table S1). Our analysis revealed that 15 species were shared across all 12 302 

cancer types. Notably, 8 species were uniquely shared among COAD, rectum adenocarcinoma 303 

(READ), and other colorectal cancer (OtherCR). This group of 8 species represented the second-304 

highest number of shared species across all intersections, and their shared presence is consistent 305 

with the fact that these cancers all originate in the large intestine, as in the case of colorectal 306 

cancer (CRC) (see Supplementary Figure S1).  307 
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 308 

Figure 2.  Circos plot representation of the distribution of identified species and cancer types. The segment 309 
length for each cancer type is proportional to the ratio of the total number of detected species within that cancer type, 310 
and individual ribbons are linked to their respective species. The cancer types are abbreviated as COAD (Colon 311 
Adenocarcinoma); LUAD (Lung Adenocarcinoma); LUSC (Lung Squamous Cell Carcinoma); OtherCR (Other colorectal 312 
cancer types not specified); OtherLung (Other lung cancer types not specified); OtherPancreatic (Other pancreatic 313 
cancer types not specified); PAAD (Pancreatic Adenocarcinoma); READ (Rectum Adenocarcinoma); SARC (Sarcoma); 314 
SCLC (Small Cell Lung Cancer); SKCM (Skin Cutaneous Melanoma); and THCA (Thyroid Carcinoma). 315 
 316 
MEGA Identifies Cancer-associated Microbes in Colon Adenocarcinoma and Thyroid 317 

Carcinoma 318 

To demonstrate the data analysis and interpretation capabilities of MEGA, we focused on case 319 

studies in COAD and THCA. These cancers were chosen for their contrasting levels of attention 320 
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within the tumor microbiome research community. COAD has been relatively well studied in 321 

relation to its associations with tumor microbes, whereas THCA has not yet received significant 322 

attention. By using these well-known cases as a benchmark, we validated the effectiveness and 323 

credibility of MEGA. COAD is a common malignant tumor in the digestive tract (15). Increased 324 

evidence suggests that intestinal microbiota was crucial in developing CRC (16). Our analysis 325 

revealed that 8 microbial species were uniquely shared among the CRC types COAD, READ, and 326 

OtherCR. These species are Bacteroides fragilis, Ruminococcus gnavus, Bacteroides ovatus, 327 

Lacrimispora saccharolytica, Odoribacter splanchnicus, Phocaeicola dorei, Phocaeicola vulgatus, 328 

and Streptococcus porcinus. Notably, 3 of these species—Bacteroides fragilis, Ruminococcus 329 

gnavus, and Bacteroides ovatus—were found to be consistent with previously validated 330 

experimental results (17-22). MEGA successfully identified these species by integrating metabolic 331 

and phylogenetic relationships in the model training process. 332 

 333 

By integrating metabolic relationships, MEGA was able to capture the association even when a 334 

relatively low attention score is presented. For instance, Fusobacterium nucleatum shows high 335 

attention scores among the identified species in COAD, and its infection promotes CRC 336 

progression by changing the mucosal microbiota and colon transcriptome in a mouse model (17). 337 

Ruminococcus gnavus has a low attention score and the abundance was shown to have a 338 

significant negative correlation with CRC tumor numbers and disease score (18). Fusobacterium 339 

nucleatum and Ruminococcus gnavus shared the same compound C00270: N-340 

Acetylneuraminate acid, where the intercellular adhesive events may play an important role in 341 

tumor angiogenesis, metastasis, and growth control in COAD (19). Ruminococcus gnavus also 342 

shared the same compound C01019: L-Fucose with Bacteroides fragilis. Recent studies found 343 

that Bacteroides fragilis toxin can contribute to COAD formation (20), while fucose-bound 344 

liposomes carrying anticancer drugs could serve as a new strategy for the treatment of CRC 345 

patients (21) (see Figure 3A). THCA has increased substantially in many countries during the 346 
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past few decades (23). The species related to compound C00422: Triacylglycerol, including 347 

Pseudomonas aeruginosa and Staphylococcus aureus were found in THCA groups. Recent 348 

studies suggest that elevated triglyceride levels may be a potential biomarker for identifying 349 

individuals at a higher risk of developing thyroid cancer (24) (see Figure 3B). The full metabolic 350 

relationships for all 12 cancer types can be found in Supplementary Table S2. 351 

 352 

 353 

Figure 3. Network visualization of identified microbial communities in COAD and THCA. The cancer-type nodes 354 
were highlighted by an octagon shape, while the microbial species nodes were highlighted in a circle shape. The 355 
thickness of the edges in the network reflects the attention weight scores, indicating the strength of the relationship 356 
between the species and cancer. In addition, the metabolic compound nodes were highlighted with a yellow triangle 357 
shape, while the phylogenetic relationship edges were highlighted in gray. (A) COAD-associated microbes highlighted 358 
with metabolic compound. (B) THCA-associated microbes highlighted with metabolic compound. (C) COAD-associated 359 
microbes highlighted with phylogenetic relationships. (D) THCA-associated microbes highlighted with phylogenetic 360 
relationships. 361 
 362 
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By integrating phylogenetic relationships, MEGA was able to capture associations with relatively 363 

low attention scores. A previous study found that Bacteroides ovatus may be one of the dominant 364 

species in colon cancer (22). Although Bacteroides ovatus had a relatively low attention score, 365 

MEGA can identify it using the phylogenetic association with Bacteroides fragilis, which has a 366 

high attention score (see Figure 3C). We found that Pseudomonas mendocina, Pseudomonas 367 

putida, and Pseudomonas yamanorum were uniquely identified in the Pseudomonas genus in 368 

THCA, in contrast to COAD. This aligns with the study showing the predominance of 369 

Pseudomonas in THCA (see Figure 3D) (25). The phylogenetic relationships for all 12 cancer 370 

types can be found in Supplementary Table S3. 371 

 372 

DISCUSSION 373 

The development of MEGA represents a significant step forward in identifying and interpreting 374 

cancer-associated intratumoral microbes. The deep learning package presented in this study 375 

utilizes RNA-seq data from the ORIEN dataset to identify microbial signatures associated with 12 376 

different cancer types. By leveraging the power of graph attention transformers, MEGA can 377 

capture both local and global topological features of the heterogeneous graph, resulting in a more 378 

comprehensive and nuanced understanding of the underlying biological processes and pathways 379 

involved. The application of MEGA to the ORIEN dataset has provided valuable insights into the 380 

role of intratumoral microbes in cancer. The analysis revealed 73 unique species associated with 381 

the 12 cancer types studied. Notably, 15 species were shared across all 12 cancer types, 382 

highlighting the potential importance of these microbes in cancer development and progression.  383 

 384 

As a next step, we will further compare the cancer-associated intratumoral microbes identified 385 

from TCMA and ORIEN data using MEGA to provide a more comprehensive understanding of 386 

the role of intratumoral microbes in relation to cancer biology and host immunology. In the long 387 

run, the genotype-tissue expression (GTEx) data can be involved as control samples to identify 388 
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relationships specific to tumors. In addition, applying MEGA to single-cell RNA-seq data could 389 

provide a more detailed understanding of the interactions between microbial communities and 390 

tumor cells at the cellular level. It may give us a new angle to characterize tumor heterogeneity 391 

based on intratumoral microbiome diversities. In conclusion, the development of MEGA 392 

represents an important advance in identifying cancer-associated intratumoral microbes. Our 393 

analysis of ORIEN data using MEGA revealed the presence of unique microbial signatures in 394 

specific cancer types, which may provide new targets for therapeutic intervention.  395 

 396 
SUPPLEMENTARY DATA 397 
Supplementary Table S1. Identified microbial signatures with normalized attention weights. 398 
Supplementary Table S2. Metabolic compounds relationships microbial signatures. 399 
Supplementary Table S3. Phylogenetic relationships of microbial signatures. 400 
 401 
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