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92 ABSTRACT
93  Evidence supports significant interactions among microbes, immune cells, and tumor cells in at
94 least 10-20% of human cancers, emphasizing the importance of further investigating these
95 complex relationships. However, the implications and significance of tumor-related microbes
96  remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer
97  prevention and treatment responses. Understanding interactions between host microbes and
98 cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational
99 identification of cancer-specific microbes and their associations is still challenging due to the high
100  dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets
101  containing sufficient event observations to identify relationships, and the interactions within
102  microbial communities, the heterogeneity in microbial composition, and other confounding effects
103 that can lead to spurious associations. To solve these issues, we present a bioinformatics tool,
104 MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate
105 its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information
106  Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are
107 represented in a heterogeneous graph and learned by a graph attention network; it incorporates
108 metabolic and phylogenetic information to reflect intricate relationships within microbial
109 communities; and it provides multiple functionalities for association interpretations and
110  visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-
111 resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-
112  associated microbial signatures and refine their interactions with tumors.
113
114  SIGNIFICANCE
115  Studying the tumor microbiome in high-throughput sequencing data is challenging because of the

116  extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present
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117  a new deep-learning tool, microbial graph attention (MEGA), to refine the organisms that interact

118 with tumors.

119
120  INTRODUCTION

121 The study of microbial communities and their impact on human health has gained increasing
122  attention over the past decade (1). The role of intratumoral microbes in the tumor
123 microenvironment has become an increasingly important area in studying the development and
124  progression of cancer (2). The intratumoral microbiome affects outcomes in several cancers,
125 including Fusobacterium nucleatum in the development of colon cancer and Helicobacter pylori
126  in stomach cancer. To explore the relationship between the microbiome and cancer, large-scale
127  genomic datasets such as The Cancer Genome Atlas (TCGA) have been utilized. However,
128 limited attention has been given to the cancer-specific gene-microbe relationships. In this context,
129  the Oncology Research Information Exchange Network (ORIEN) provides a real-world dataset
130  consisting of clinical, genomic, and transcriptomic data collected under an institutional review
131  board (IRB)-approved common protocol known as Total Cancer Care. It represents a valuable
132  resource for identifying intratumoral microbes from various cancer types (3). Advances in
133  sequencing technologies have provided large-scale human tissue sequencing data, which
134  enables the characterization of the tissue-resident metagenome. However, exploring the links
135  between the intratumoral microbiome and cancer tissues is ongoing due to the difficulties in
136  obtaining clinical biopsies specifically dedicated to microbial profiling.

137

138  Here, we present Microbial Heterogeneous Graph Attention (MEGA), a deep learning-based
139  Python package for identifying cancer-associated intratumoral microbes. The model is trained on
140  ORIEN intratumoral microbial RNA sequencing (RNA-seq) data to identify microbial communities

141  associated with each of the 12 human cancer types. The core framework is a heterogeneous
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142  graph transformer (HGT) (4) that can learn the importance and contribution of species to cancer
143  samples. We have shown the superior performance of HGT in characterizing cell-gene relations
144 from single-cell multi-omics datasets (5) and identifying sample-species relations (6) from The
145  Cancer Microbiome Atlas (TCMA) data (7). To demonstrate the effectiveness and credibility of
146 MEGA on the more complicated ORIEN data, we focus on 2 widely studied cancer types: colon
147  adenocarcinoma (COAD) and thyroid carcinoma (THCA). By leveraging metabolic and
148  phylogenetic relationships, MEGA was able to capture the association of low attention score
149  microbes, suggesting the importance of integrating multiple types of data in identifying cancer-
150  associated microbes. We believe that MEGA offers a comprehensive and nuanced approach to
151 identifying cancer-associated intratumoral microbes in the ORIEN dataset, which could ultimately
152  serve as potential targets for further study and therapy development.

153

154 METHODS

155  Study Design

156  Established in 2014, the Oncology Research Information Exchange Network (ORIEN) is an
157  alliance of 18 US cancer centers. All ORIEN alliance members utilize a standard IRB-approved
158  protocol: Total Cancer Care® (TCC). As part of the TCC, participants agree to have their clinical
159  data followed over time, to undergo germline and tumor sequencing, and to be contacted in the
160  future by their provider if an appropriate clinical trial or other study becomes available (8). TCC is
161  a prospective cohort study where a subset of patients elect to be enrolled in the ORIEN Avatar
162  program, which provides research use only (RUO)-grade whole-exome tumor sequencing, RNA-
163  seq, germline sequencing, and collection of deep longitudinal clinical data with lifetime follow-up.
164  Nationally, over 325,000 participants have enrolled in TCC. M2GEN, the commercial and
165 operational partner of ORIEN, harmonizes all abstracted clinical data elements and molecular
166  sequencing files into a standardized, structured format to enable the aggregation of de-identified

167  data for sharing across the network. Data access was approved by the IRB in an Honest Broker
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168  protocol (2015H0185) and Total Cancer Care protocol (2013H0199) in coordination with M2GEN
169  and participating ORIEN members.

170

171  Sequencing Methods

172  ORIEN Avatar specimens undergo nucleic acid extraction and sequencing at HudsonAlpha
173  (Huntsville, AL) or Fulgent Genetics (Temple City, CA). For frozen and OCT tissue DNA extraction,
174 Qiagen QIASymphony DNA purification is performed, generating a 213 bp average insert size.
175  For frozen and OCT tissue RNA extraction, Qiagen RNAeasy plus mini kit is performed,
176  generating 216 bp average insert size. For formalin-fixed paraffin-embedded (FFPE) tissue, a
177  Covaris Ultrasonication FFPE DNA/RNA kit is utilized to extract DNA and RNA, generating a 165
178  bp average insert size. RNA-seq is performed using the lllumina TruSeq RNA Exome with single
179 library hybridization, cDNA synthesis, library preparation, and sequencing (100 bp paired reads
180 at Hudson Alpha, 150 bp paired reads at Fulgent) to a coverage of 100M total reads/50M paired
181  reads.

182

183  Microbe Abundance and Diversity

184 RNA-seq reads are used to calculate microbe abundances using the {exotic} pipeline, as
185  described previously (3). Briefly, reads are aligned first to the human reference genome, and then
186 unaligned reads are mapped to a database of bacteria, fungi, archaea, viruses, and eukaryotic
187  parasites. The observed microbes then proceed through a series of filtering steps to carefully and
188  conservatively remove contaminants before batch correction and normalization. Diversity
189  measures were estimated by calculating the Shannon and Simpson indices, as well as Chao1,
190 ACE, and inverse Simpson using the R package vegan.

191

192  The input dataset for MEGA includes the microbiome matrix and the sample metadata of the

193  cancer types. The raw counts of the ORIEN microbiome matrix consist of 2603 species in 2891
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194  samples. The sample metadata is a two-column matrix that describes the label of the total of 12
195 cancer types at each sample. The NJS16 metabolic database (9) is a literature-curated
196 interspecies network of the human gut microbiota, composed of approximately 570 microbial
197  species and 3 human cell types metabolically interacting through more than 4400 small-molecule
198 transport and macromolecule degradation events. We utilized the R package taxizedb to access
199 the National Center for Biotechnology Information (NCBI) taxonomy database (10). It was
200 integrated to prepare for the taxonomy ID to taxonomy name conversion and to extract additional

201  phylogenetic relationships from the ORIEN data (see Figure 1 — Data Sources).
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204 Figure 1. Overview of the MEGA workflow. Four main steps were included in carrying out model training and
205 biological gene network inference. MEGA uses ORIEN datasets and two database dependencies as the data sources.
206 Preprocessing steps are employed to generate artificial intelligence (Al)-ready data for graph neural network training.
207 After deep learning model training, the cancer-associated microbial signatures were selected based on the attention
208 scores of each species at the sample level. The final results of the identified cancer-associated microbial communities
209 have been provided in a tabular format and are available for additional visualization.

210
211  Data Preprocessing
212 Weiinitially converted the organism’s name to a standard taxonomy ID using the taxizedb package.

213  Species were filtered by removing those that expressed less than 0.1% of the total species. After
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214  filtering, 2,266 species were obtained. To normalize the microbiome matrix, we scaled the values
215  in each sample of the matrix that summed to 1. This method ensures that the contribution of each
216  feature to the total sum is proportional to its relative abundance in the sample. We used the
217  normalized matrix as the basis for downstream analyses. Specifically, we generated the metabolic
218  relationship network by comparing the total species list in the ORIEN matrix with the NJS16
219  metabolic database. In this network, an edge was placed between two species if they shared the
220  same metabolic compound shown in the NJS16 database. Similarly, for the phylogenetic relation
221  network, we compared the total species list in the ORIEN matrix with the NCBI taxonomy
222  database, placing an edge that links two species if they share the same genus information. The
223 processed data, including the normalized abundance matrix, metabolic relationship network, and
224 phylogenetic relation network, served as artificial intelligence (Al)-ready data for model training
225  (see Figure 1 — Data Processing).

226

227  Model Training

228  The main MEGA model was implemented in PyTorch (11) (v1.4.0) and was trained on an NVIDIA
229  A100 graphics processing unit (GPU) for 50 epochs (approximately 15 minutes). We utilized our
230  previously developed heterogeneous graph transformer model for model training (6). The input
231  graph incorporates both species and sample nodes, along with the relations among them as
232  edges. By capturing both neighbor and global topological features among samples and species,
233  the model was able to construct sample-sample and species-species relations simultaneously.
234  We used two autoencoders to generate the initial embeddings for the heterogeneous graph. This
235 allowed the representation of each node as a dense vector, which can be used as input for the
236  deep learning model. Meanwhile, we were able to reduce the dimensionality of each species and
237  sample, resulting in an initial embedding size of 256 dimensions for all nodes in the graph. The
238 complete heterogeneous graph embedding was subsequently passed to a graph attention

239 transformer, which was trained to learn the relations between sample and species. MEGA adopts
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240  a heterogeneous multi-head attention mechanism to model the overall topological information
241  (global relationships) and neighbor message passing (local relationships) on the heterogeneous
242  graph. We used the Adam optimizer with a learning rate of 0.003 and default settings for other
243  hyperparameters: n_hid=128, KL_COEF=0.00005, and THRES=3. The Focal Loss function was
244 used to quantify the differences between the predicted cancer type labels and true cancer type
245  labels. The learning rate was reduced by a factor of 0.5 when the evaluation metric stopped
246  improving for 5 epochs. The heterogeneous graph representation learning facilitated the
247  embedding of samples and species simultaneously using the transformer, yielding the attention
248  score as an important training outcome. This score represents the importance of a source node
249  to atarget node. We extracted the attention scores from source nodes spanning from species to
250 sample. A high attention score between a given species and a sample indicates that the species
251  was highly represented in the sample. We leveraged this information to identify microbial
252  signatures associated with specific cancer types. We accomplished this by counting the number
253  of samples within the cancer type for each species with high attention scores. Species with a p-
254  value less than 0.05 were considered to be significantly associated with the cancer type. These
255  reliable microbial signatures were selected and served as the final output of MEGA (see Figure
256 1 —Model Training).

257

258  Results Interpretation and Visualization

259  The final output of MEGA is a tab-delimited list, where each row represents each cancer type
260  followed by identified microbial signatures. The results can be visualized in UpSet plots (12) and
261  Cytoscape networks (13). UpSet plots are a powerful visualization technique designed to display
262  complex set data with more than 3 intersecting sets. This method provides an intuitive and
263  comprehensive means of exploring the relationships between sets and their overlaps, allowing
264  for a more nuanced interpretation of the underlying data. Cytoscape is a widely used open-source

265  software platform that offers a suite of tools for the visualization, analysis, and modeling of
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266  complex networks. To leverage the strengths of Cytoscape’s capabilities, the RCy3 R package
267  (14) was utilized to implement the network visualization aspect of MEGA. Through the use of
268  Rcy3’'s REST application programming interface (API), users can seamlessly access the full
269  feature set of Cytoscape within the R programming environment. Users can import network works
270  directly to Cytoscape with the predefined layout and theme using MEGA output files. The network
271  comprises cancer-species nodes, with the thickness of the edges reflecting the attention weight
272  scores. In addition, phylogenetic or metabolic relationships between species are represented by
273  additional edges. This approach allows for a comprehensive and nuanced exploration of the
274  relationships between cancer and species, providing valuable insights into the underlying
275  Dbiological processes and pathways involved. The attention weight scores, represented by the
276  edge thickness, highlight the key connections and interactions within the network, enabling
277  researchers to effectively identify potential targets for further study (see Figure 1 — Results
278 Interpretation & Visualization). Additional tutorials on generating both UpSet plots and

279  Cytoscape networks can be found in the MEGA GitHub repository https://github.com/OSU-

280 BMBL/MEGA.

281

282  Implementation

283  MEGA was developed using Python 3.7.12 with PyTorch v1.4.0 and torch-geometric v1.4.3. The
284  MEGA GPU mode was tested in CUDA v11.6 on a Red Hat Enterprise 7 Linux system 8.3, which
285  featured 128-core AMD Epic central processing units (CPUs), NVIDIA A100-PCIE-80GB GPUs,
286 and 1TB RAM. Similarly, the MEGA CPU mode was tested on the Ohio Supercomputer Center
287  Pitzer cluster, which incorporated Intel Xeon Gold 6148 CPUs and 64GB RAM. MEGA was
288  versioned and uploaded to the Python Package Index (PyPl) using Python-Versioneer, a tool that
289  simplifies the management of version numbers in a software project. By subjecting the software

290 to extensive testing in both GPU and CPU modes, we were able to ensure that MEGA functions


https://github.com/OSU-BMBL/MEGA
https://github.com/OSU-BMBL/MEGA
https://doi.org/10.1101/2023.05.24.541982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.24.541982; this version posted May 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

291  effectively and efficiently across a range of computational architectures, ultimately providing users
292  with a reliable and versatile tool.

293

294 RESULTS

295 MEGA Identifies Intratumoral Microbes from 12 Cancer Types in the ORIEN Dataset

296  Overall, MEGA is a deep learning package for identifying cancer-associated intratumoral
297  microbes. It consists of 4 main steps: (1) Collect the ORIEN dataset, Human NJS16 metabolic
298 database [2], and NCBI taxonomy database; (2) Preprocess ORIEN dataset as input for the deep
299 learning model; (3) Train the graph attention transformer using a heterogeneous graph; and (4)
300 Interpret cancer-associated intratumoral microbes. MEGA identified microbial communities that
301 consist of 73 unique species from 12 cancer types in the ORIEN data (see Figure 2 and
302 Supplementary Table S1). Our analysis revealed that 15 species were shared across all 12
303  cancer types. Notably, 8 species were uniquely shared among COAD, rectum adenocarcinoma
304 (READ), and other colorectal cancer (OtherCR). This group of 8 species represented the second-
305  highest number of shared species across all intersections, and their shared presence is consistent
306  with the fact that these cancers all originate in the large intestine, as in the case of colorectal

307 cancer (CRC) (see Supplementary Figure S1).
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309 Figure 2. Circos plot representation of the distribution of identified species and cancer types. The segment
310 length for each cancer type is proportional to the ratio of the total number of detected species within that cancer type,
311 and individual ribbons are linked to their respective species. The cancer types are abbreviated as COAD (Colon
312 Adenocarcinoma); LUAD (Lung Adenocarcinoma); LUSC (Lung Squamous Cell Carcinoma); OtherCR (Other colorectal
313 cancer types not specified); OtherLung (Other lung cancer types not specified); OtherPancreatic (Other pancreatic
314 cancer types not specified); PAAD (Pancreatic Adenocarcinoma); READ (Rectum Adenocarcinoma); SARC (Sarcoma);
315 SCLC (Small Cell Lung Cancer); SKCM (Skin Cutaneous Melanoma); and THCA (Thyroid Carcinoma).

316

317 MEGA Identifies Cancer-associated Microbes in Colon Adenocarcinoma and Thyroid
318 Carcinoma
319 To demonstrate the data analysis and interpretation capabilities of MEGA, we focused on case

320  studies in COAD and THCA. These cancers were chosen for their contrasting levels of attention
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321  within the tumor microbiome research community. COAD has been relatively well studied in
322  relation to its associations with tumor microbes, whereas THCA has not yet received significant
323  attention. By using these well-known cases as a benchmark, we validated the effectiveness and
324  credibility of MEGA. COAD is a common malignant tumor in the digestive tract (15). Increased
325 evidence suggests that intestinal microbiota was crucial in developing CRC (16). Our analysis
326  revealed that 8 microbial species were uniquely shared among the CRC types COAD, READ, and
327  OtherCR. These species are Bacteroides fragilis, Ruminococcus gnavus, Bacteroides ovatus,
328  Lacrimispora saccharolytica, Odoribacter splanchnicus, Phocaeicola dorei, Phocaeicola vulgatus,
329 and Streptococcus porcinus. Notably, 3 of these species—Bacteroides fragilis, Ruminococcus
330 gnavus, and Bacteroides ovatus—were found to be consistent with previously validated
331  experimental results (17-22). MEGA successfully identified these species by integrating metabolic
332  and phylogenetic relationships in the model training process.

333

334 By integrating metabolic relationships, MEGA was able to capture the association even when a
335 relatively low attention score is presented. For instance, Fusobacterium nucleatum shows high
336  attention scores among the identified species in COAD, and its infection promotes CRC
337  progression by changing the mucosal microbiota and colon transcriptome in a mouse model (17).
338  Ruminococcus gnavus has a low attention score and the abundance was shown to have a
339  significant negative correlation with CRC tumor numbers and disease score (18). Fusobacterium
340 nucleatum and Ruminococcus gnavus shared the same compound C00270: N-
341  Acetylneuraminate acid, where the intercellular adhesive events may play an important role in
342  tumor angiogenesis, metastasis, and growth control in COAD (19). Ruminococcus gnavus also
343  shared the same compound C01019: L-Fucose with Bacteroides fragilis. Recent studies found
344  that Bacteroides fragilis toxin can contribute to COAD formation (20), while fucose-bound
345 liposomes carrying anticancer drugs could serve as a new strategy for the treatment of CRC

346  patients (21) (see Figure 3A). THCA has increased substantially in many countries during the
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347  past few decades (23). The species related to compound C00422: Triacylglycerol, including
348  Pseudomonas aeruginosa and Staphylococcus aureus were found in THCA groups. Recent
349  studies suggest that elevated triglyceride levels may be a potential biomarker for identifying
350 individuals at a higher risk of developing thyroid cancer (24) (see Figure 3B). The full metabolic

351 relationships for all 12 cancer types can be found in Supplementary Table S2.
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354 Figure 3. Network visualization of identified microbial communities in COAD and THCA. The cancer-type nodes
355 were highlighted by an octagon shape, while the microbial species nodes were highlighted in a circle shape. The
356 thickness of the edges in the network reflects the attention weight scores, indicating the strength of the relationship
357 between the species and cancer. In addition, the metabolic compound nodes were highlighted with a yellow triangle
358 shape, while the phylogenetic relationship edges were highlighted in gray. (A) COAD-associated microbes highlighted
359 with metabolic compound. (B) THCA-associated microbes highlighted with metabolic compound. (C) COAD-associated
360 microbes highlighted with phylogenetic relationships. (D) THCA-associated microbes highlighted with phylogenetic
361  relationships.
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363 By integrating phylogenetic relationships, MEGA was able to capture associations with relatively
364  low attention scores. A previous study found that Bacteroides ovatus may be one of the dominant
365  species in colon cancer (22). Although Bacteroides ovatus had a relatively low attention score,
366 MEGA can identify it using the phylogenetic association with Bacteroides fragilis, which has a
367  high attention score (see Figure 3C). We found that Pseudomonas mendocina, Pseudomonas
368 putida, and Pseudomonas yamanorum were uniquely identified in the Pseudomonas genus in
369 THCA, in contrast to COAD. This aligns with the study showing the predominance of
370 Pseudomonas in THCA (see Figure 3D) (25). The phylogenetic relationships for all 12 cancer
371  types can be found in Supplementary Table S3.

372

373  DISCUSSION

374  The development of MEGA represents a significant step forward in identifying and interpreting
375  cancer-associated intratumoral microbes. The deep learning package presented in this study
376  utilizes RNA-seq data from the ORIEN dataset to identify microbial signatures associated with 12
377  different cancer types. By leveraging the power of graph attention transformers, MEGA can
378  capture both local and global topological features of the heterogeneous graph, resulting in a more
379  comprehensive and nuanced understanding of the underlying biological processes and pathways
380 involved. The application of MEGA to the ORIEN dataset has provided valuable insights into the
381  role of intratumoral microbes in cancer. The analysis revealed 73 unique species associated with
382  the 12 cancer types studied. Notably, 15 species were shared across all 12 cancer types,
383  highlighting the potential importance of these microbes in cancer development and progression.
384

385 As a next step, we will further compare the cancer-associated intratumoral microbes identified
386 from TCMA and ORIEN data using MEGA to provide a more comprehensive understanding of
387  the role of intratumoral microbes in relation to cancer biology and host immunology. In the long

388  run, the genotype-tissue expression (GTEx) data can be involved as control samples to identify
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389 relationships specific to tumors. In addition, applying MEGA to single-cell RNA-seq data could
390 provide a more detailed understanding of the interactions between microbial communities and
391  tumor cells at the cellular level. It may give us a new angle to characterize tumor heterogeneity
392 based on intratumoral microbiome diversities. In conclusion, the development of MEGA
393 represents an important advance in identifying cancer-associated intratumoral microbes. Our
394 analysis of ORIEN data using MEGA revealed the presence of unique microbial signatures in
395  specific cancer types, which may provide new targets for therapeutic intervention.

396

397 SUPPLEMENTARY DATA

398  Supplementary Table S1. Identified microbial signatures with normalized attention weights.
399  Supplementary Table S2. Metabolic compounds relationships microbial signatures.

400  Supplementary Table S3. Phylogenetic relationships of microbial signatures.
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