

1 Cross-Protection Induced by Highly Conserved Human B, CD4⁺ and CD8⁺ T Cell Epitopes-Based
2 Coronavirus Vaccine Against Severe Infection, Disease, and Death Caused by Multiple SARS-CoV-
3 2 Variants of Concern

4

5 Swayam Prakash¹; Nisha R. Dhanushkodi¹; Latifa Zayou^{1,2}; Izabela Coimbra Ibraim^{2,3}; Afshana
6 Quadiri¹; Pierre Gregoire Coulon¹; Delia F Tifrea³; Berfin Suzler¹; Mohamed Amin¹; Amruth Chilukuri¹;
7 Robert A Edwards³, Hawa Vahed⁷; Anthony B Nesburn¹; Baruch D Kuppermann¹; Jeffrey B. Ulmer⁷;
8 Daniel Gil⁷, Trevor M. Jones⁷, Lbachir BenMohamed^{1,5,6,7} *

9

10 ¹Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of
11 California Irvine, School of Medicine, Irvine, CA 92697; ²High containment facility, University of
12 California Irvine, School of Medicine, Irvine, CA 92697; ³Department of Pathology and Laboratory
13 Medicine, School of Medicine, the University of California Irvine, Irvine, CA; ⁴Division of Trauma,
14 Burns, Critical Care, and Acute Care Surgery, Department of Surgery, School of Medicine, University
15 of California Irvine, Irvine, CA; ⁵Division of Infectious Diseases and Hospitalist Program, Department
16 of Medicine, School of Medicine, the University of California Irvine, Irvine, CA; and ⁶Institute for
17 Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697, ⁷Department of
18 Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA.

19 Running Title: A Universal Coronavirus Vaccine Cross-Protect Against Multiple SARS-CoV-2 Variants
20 of Concern

21 [#]Authors have contributed equally to this study

22 *Corresponding Author: Professor Lbachir BenMohamed, Laboratory of Cellular and Molecular
23 Immunology, Gavin Herbert Eye Institute, the University of California Irvine, School of Medicine,
24 Hewitt Hall, Room 2032; 843 Health Sciences Rd.; Irvine, CA 92697-4390; Phone: 949-824-8937.
25 Fax: 949-824-9626. E-mail: Lbenmoha@uci.edu.

26 Declaration of Interest: The University of California Irvine has filed a patent application on the results
27 reported in this manuscript.

28

29 Keywords: SARS-CoV-2, SL-CoVs, COVID-19, Variants of Concern, Vaccine, Epitopes, Antibodies,
30 CD4⁺ T cells, CD8⁺ T cells, Immunity, Immunopathology

31

32

33

34

35

36

ABSTRACT

37

38

39 **Background:** The Coronavirus disease 2019 (COVID-19) pandemic has created one of the largest
40 global health crises in almost a century. Although the current rate of SARS-CoV-2 infections has
41 decreased significantly; the long-term outlook of COVID-19 remains a serious cause of high death
42 worldwide; with the mortality rate still surpassing even the worst mortality rates recorded for the
43 influenza viruses. The continuous emergence of SARS-CoV-2 variants of concern (VOCs), including
44 multiple heavily mutated Omicron sub-variants, have prolonged the COVID-19 pandemic and outlines
45 the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs.

46 **Methods:** In the present study, we designed a multi-epitope-based Coronavirus vaccine that
47 incorporated B, CD4⁺, and CD8⁺ T cell epitopes conserved among all known SARS-CoV-2 VOCs and
48 selectively recognized by CD8⁺ and CD4⁺ T-cells from asymptomatic COVID-19 patients irrespective
49 of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-Coronavirus
50 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR
51 mouse model. **Results:** The Pan-Coronavirus vaccine: (i) is safe; (ii) induces high frequencies of
52 lung-resident functional CD8⁺ and CD4⁺ T_{EM} and T_{RM} cells; and (iii) provides robust protection against
53 virus replication and COVID-19-related lung pathology and death caused by six SARS-CoV-2 VOCs:
54 Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron
55 (B.1.1.529). **Conclusions:** A multi-epitope pan-Coronavirus vaccine bearing conserved human B and T
56 cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective
57 immunity that cleared the virus, and reduced COVID-19-related lung pathology and death caused by
58 multiple SARS-CoV-2 VOCs.

59

INTRODUCTION

60

61

While the Wuhan Hu1 variant of SARS-CoV-2 is the ancestral reference virus, Alpha (B.1.1.7),

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Beta (B.1.351), Gamma or P1 (B.1.1.28.1), and Delta (lineage B.1.617.2) variants of concern (VOCs) subsequently emerged in Brazil, India, and South Africa vaccines from 2020 to 2022 (1). The most recent SARS CoV-2 variants, including multiple heavily mutated Omicron (B.1.1.529) sub-variants, have prolonged the COVID-19 pandemic (2-6). These new variants emerged since December 2020 at a much higher rate, consistent with the accumulation of two mutations per month, and strong selective pressure on the immunologically important SARS-CoV-2 genes (7). The Alpha, Beta, Gamma, Delta, and Omicron Variants are defined as Variants of Concern (VOC) based on their high transmissibility associated with increased hospitalizations and deaths (8). This is a result of reduced neutralization by antibodies generated by previous variants and/or by the first-generation COVID-19 vaccines, together with failures of treatments and diagnostics (9, 10). Dr. Peter Marks, Director/CBER (Center for Biologics Evaluation and Research) for the FDA recently outlined the need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs (11, 12).

Besides SARS CoV-2 variants, two additional Coronaviruses from the severe acute respiratory

75

76

77

78

79

80

81

82

83

84

syndrome (SARS) like betacoronavirus (sarbecovirus) lineage, SARS coronavirus (SARS-CoV) and MERS-CoV, have caused epidemics and pandemics in humans over the past 20 years (13). In addition, the discovery of diverse Sarbecoviruses in bats together with the constant “jumping” of these zoonotic viruses from bats to intermediate animals raises the possibility of another COVID pandemic in the future (14-19). Hence, there is an urgent need to develop a pre-emptive universal pan-

Coronavirus vaccine to protect against all SARS-CoV-2 variants, SARS-CoV, MERS-CoV, and other zoonotic Sarbecoviruses with the potential to jump from animals into humans.

The Spike protein is a surface predominant antigen of SARS-CoV-2 that is involved in the

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

85 antibodies (23, 24). Nearly 56% of the 10 billion doses of first-generation COVID-19 vaccines are
86 based on the Spike antigen alone(25), while the remaining 44% of the COVID-19 vaccines were
87 based on whole virion inactivated (WVI) vaccines (26, 27). Both the Spike-based COVID-19 sub-unit
88 vaccines and the whole virion-inactivated vaccines were successful (20-22). However, because the
89 Spike protein is the most mutated SARS-CoV-2 antigen, these first-generation vaccines lead to
90 immune evasion by many new variants and subvariants, such as Omicron XBB1.5 sub-variant (25),
91 (28, 29). Therefore, the second-generation COVID-19 vaccines should be focused not only on the
92 highly variable Spike protein but also on other highly conserved structural and non-structural SARS-
93 CoV-2 antigens capable of inducing protection mediated by not only neutralizing antibodies but also
94 by cross-reactive CD4⁺ and CD8⁺ T cells (30-33).

95 We have previously mapped and characterized the antigenicity and immunogenicity of
96 genome-wide B cell, CD4⁺ T cell, and CD8⁺ T cell epitopes that are highly conserved and present a
97 larger global population coverage (33). We hypothesize that multi-epitope vaccine candidates that
98 express these highly conserved, antigenic, and immunogenic B and T cell epitopes will protect against
99 multiple SARS-CoV-2 VOCs. The present study: (1) Identified seven B cell epitopes, six CD4⁺ T cell
100 epitopes, and sixteen CD8⁺ T cell epitopes that are highly conserved within (i) 8.7 million genome
101 sequences of SARS-CoV-2, (ii) all previous and current SARS-CoV-2 Variants; (iii) SARS-CoV; (iv)
102 MERS-CoV; (v) common cold Coronaviruses (HKU, OC1,); and (vi) in animal CoV (i.e., Bats, Civet
103 Cats, Pangolin and Camels); (2) Established that those epitopes were selectively recognized by B
104 cells, CD4⁺ T cells, and CD8⁺ T cells from “naturally protected” asymptomatic COVID-19 patients; and
105 (3) Demonstrated that a multi-epitope pan-Coronavirus vaccine that includes the above B cell, CD4⁺ T
106 cell, and CD8⁺ T cell epitopes generated cross-protection against all the five known SARS-CoV-2
107 VOCs i.e., SARS-CoV-2 (USA-WA1/2020), Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta
108 (B.1.617.2), and Omicron (B.1.1.529) in a novel triple transgenic HLA-A*02:01/HLA-DR hACE-2
109 mouse model of COVID-19.

110

111

RESULTS

112

113 **1. Highly conserved SARS-CoV-2 epitopes are selectively recognized by CD8⁺ and CD4⁺**

114 **T-cells from asymptomatic COVID-19 patients irrespective of variants of concern infection:** To
115 identify “universal” SARS-CoV-2 epitopes to be included in a multi-epitope pan-Coronavirus Vaccine;
116 we previously screened the degree of conservancy for human CD8⁺ T cell, CD4⁺ T cell, and B-cell
117 epitopes that span the whole SARS-CoV-2 genome (33). CD8⁺ T cell epitopes were screened for their
118 conservancy against variants namely h-CoV-2/Wuhan (MN908947.3), h-CoV-2/WA/USA2020
119 (OQ294668.1), h-CoV-2/Alpha(B1.1.7) (OL689430.1), h-CoV-2/Beta(B 1.351) (MZ314998), h-CoV-
120 2/Gamma(P.1) (MZ427312.1), h-CoV-2/Delta(B.1.617.2) (OK091006.1), and h-CoV-
121 2/Omicron(B.1.1.529) (OM570283.1) (33). We observed 100% conservancy in all the SARS-CoV-2
122 variants of concern for 14 of our 16 predicted CD8⁺ T cell epitopes (ORF1ab₂₂₁₀₋₂₂₁₈, ORF1ab₃₀₁₃₋₃₀₂₁,
123 ORF1ab₄₂₈₃₋₄₂₉₁, ORF1ab₆₇₄₉₋₆₇₅₇, ORF6₃₋₁₁, ORF7b₂₆₋₃₄, ORF10₃₋₁₁, ORF10₅₋₁₃, S₉₅₈₋₉₆₆, S₁₀₀₀₋₁₀₀₈,
124 S₁₂₂₀₋₁₂₂₈, E₂₀₋₂₈, M₅₂₋₆₀, and M₈₉₋₉₇) (**Fig. S1**) and (33). The only exceptions were epitopes E₂₆₋₃₄ and
125 ORF8a₇₃₋₈₁ which showed an 88.8% conservancy against Beta (B.1.351) and Alpha (B.1.1.7) variants
126 respectively (**Fig. S1**) and (33). All of the 6 highly immunodominant “universal” CD4⁺ T cell epitopes
127 (ORF1a₁₃₅₀₋₁₃₆₅, ORF6₁₂₋₂₆, ORF8b₁₋₁₅, S₁₋₁₃, M₁₇₆₋₁₉₀, and N₃₈₈₋₄₀₃), we previously reported (33),
128 remained 100% conserved across all the SARS-CoV-2 VOCs (**Fig. S2**).

129 Next, we determined whether the highly conserved “universal” CD8⁺ and CD4⁺ T cell epitopes
130 were differentially recognized by T cells from asymptomatic (ASYMP) versus symptomatic (SYMP)
131 COVID-19 patients. We compared the magnitude of CD8⁺ and CD4⁺ T cell responses specific to each
132 of the conserved epitopes among 38 ASYMP and 172 SYMP COVID-19 patients. We recruited
133 COVID-19 patients infected with SARS-CoV-2 Beta (B.1.351) and SARS-CoV-2 Omicron (B.1.1.529)
134 spanning two years of the COVID-19 pandemic (**Fig. 1A**). Fresh PBMCs were isolated from SYMP

135 and ASYMP COVID-19 patients, on average within 4 days after reporting their first symptoms. PBMCs
136 were then stimulated *in vitro* for 72 hours using each of the 16 CD8⁺ T cell epitopes or each of the 6
137 CD4⁺ T cell epitopes. Numbers of responding IFN- γ -producing CD8⁺ and CD4⁺ T cells (quantified in
138 ELISpot assay as the number of IFN- γ -spot forming cells, or “SFCs”) were subsequently determined.

139 ASYMP COVID-19 patients showed significantly higher frequencies of SARS-CoV-2 epitope-
140 specific IFN- γ -producing CD8⁺ T cells (mean SFCs > 25 per 1 x 10⁶ pulmonary immune cells),
141 irrespective of infection with Beta ($P < 0.5$, **Fig. 1B, left panel**) or Omicron ($P < 0.$, **Fig. 1B, right panel**)
142 variants. In contrast, severely ill or hospitalized symptomatic COVID-19 patients showed significantly
143 lower frequencies of SARS-CoV-2 epitope-specific IFN- γ -producing CD8⁺ T cells ($P < 0.5$, **Fig. 1B, left**
144 **panel**) or Omicron ($P < 0.$, **Fig. 1B, right panel**) variants. This observation was consistent regardless of
145 whether CD8⁺ T cell's targeted epitopes were from structural or non-structural SARS-CoV-2 protein
146 antigens. suggesting that strong CD8⁺ T cell responses specific to selected “universal” SARS-CoV-2
147 epitopes were commonly associated with better COVID-19 outcomes. In contrast, low SARS-CoV-2-
148 specific CD8⁺ T cell responses were more commonly associated with severe onset of disease.

149 Similarly, we found higher frequencies of functional IFN- γ -producing CD4⁺ T cells ASYMP
150 COVID-19 patients (mean SFCs > 25 per 1 x 10⁶ pulmonary immune cells), irrespective of infection
151 with Beta ($P < 0.5$, **Fig. 1C, left panel**) or Omicron ($P < 0.$, **Fig. 1C, right panel**) variants. Whereas
152 reduced frequencies of IFN- γ -producing CD4⁺ T cells were detected in SYMP COVID-19 patients,
153 irrespective of infection with Beta ($P < 0.5$, **Fig. 1C, left panel**) or Omicron ($P < 0.$, **Fig. 1C, right panel**)
154 variants. This observation was consistent regardless of whether CD4⁺ T cell's targeted epitopes were
155 from structural or non-structural SARS-CoV-2 protein antigens. Our results suggest strong CD4⁺ T cell
156 responses specific to selected “universal” SARS-CoV-2 epitopes were commonly associated with
157 better COVID-19 outcomes. In contrast, low SARS-CoV-2-specific CD4⁺ T cell responses were more
158 commonly associated with severe disease onset.

159 Altogether these results: (1) demonstrate an important role of SARS-CoV-2-specific CD4⁺ and
160 CD8⁺ T cells directed against highly conserved structural and non-structural SARS-CoV-2 epitopes in
161 protection from severe COVID-19 symptoms, and (2) highlight the potential importance of these highly
162 conserved “asymptomatic” epitopes in mounting protected CD4⁺ and CD8⁺ T cell responses against
163 multiple SARS-CoV-2 VOCs.

164

165 **2. A pan-Coronavirus vaccine composed of a mixture of conserved “asymptomatic”**
166 **CD4⁺ and CD8⁺ T cell epitopes provides robust protection against infection and disease**
167 **caused by six SARS-CoV-2 variants of concern:** We next used a prototype pan-Coronavirus
168 vaccine composed of a mixture of 6 conserved “asymptomatic” CD4⁺ T cell epitopes and 16
169 conserved “asymptomatic” CD4⁺ and CD8⁺ T cell epitopes, previously identified that span the whole
170 SARS-CoV-2 genome (33). We focused mainly on CD4⁺ and CD8⁺ T cell epitopes that show
171 immunodominance selectively in SYMP COVID-19 patients infected with various SARS-CoV-2 VOCs.

172 A pool of peptides comprising 25 μ g each of 16 CD8⁺ T cell peptides (ORF1ab₂₂₁₀₋₂₂₁₈,
173 ORF1ab₃₀₁₃₋₃₀₂₁, ORF1ab₄₂₈₃₋₄₂₉₁, ORF1ab₆₇₄₉₋₆₇₅₇, ORF6₃₋₁₁, ORF7b₂₆₋₃₄, ORF8a₇₃₋₈₁, ORF10₃₋₁₁,
174 ORF10₅₋₁₃, S₉₅₈₋₉₆₆, S₁₀₀₀₋₁₀₀₈, S₁₂₂₀₋₁₂₂₈, E₂₀₋₂₈, E₂₆₋₃₄, M₅₂₋₆₀, and M₈₉₋₉₇), 6 CD4⁺ T cell epitopes
175 (ORF1a₁₃₅₀₋₁₃₆₅, ORF6₁₂₋₂₆, ORF8b₁₋₁₅, S₁₋₁₃, M₁₇₆₋₁₉₀, and N₃₈₈₋₄₀₃), and 7 B-cell peptides selected from
176 the Spike protein, were mixed with cpG1826 adjuvant and administered subcutaneously on Day 0 and
177 Day 14 to 7-8 week old triple transgenic HLA-A*02:01/HLA-DR hACE-2 mice (n = 30). The remaining
178 group of the mock-immunized received vehicle alone (n = 30) (**Fig. 2A**). Fourteen days after the
179 second immunization (i.e. day 28) mice were divided into 6 groups and intranasally infected with 1 x
180 10⁵ pfu of SARS-CoV-2 (USA-WA1/2020) (n = 10), 6 x 10³ pfu of SARS-CoV-2-Alpha (B.1.1.7) (n =
181 10), 6 x 10³ pfu of SARS-CoV-2-Beta (B.1.351) (n = 10), 5 x 10² pfu of SARS-CoV-2-Gamma (P.1) (n
182 = 10), 8 x 10³ pfu of SARS-CoV-2-Delta (B.1.617.2) (n = 10), and 6.9 x 10⁴ pfu of SARS-CoV-2-
183 Omicron (B.1.1.529) (n = 10) (**Fig. 2A**).

184 Mice that received the pan-Coronavirus vaccine showed significant protection from weight loss
185 (**Fig. 2B**) and death (**Fig. 2C**) following infection with each of the six SARS-CoV-2 variants of concern:
186 WA/USA2020, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron
187 (B.1.1.529). All mice immunized with the conserved pan-Coronavirus vaccine survived infection with
188 SARS-CoV-2 variants of concern. In contrast to mock-immunized mice where 60% mortality was
189 detected among WA/USA2020 infected mice, 80% mortality among Alpha (B.1.1.7) and Beta
190 (B.1.351) infected mice, 40% mortality among Gamma (P.1) and Delta (B.1.617.2) variants infected
191 mice (**Fig. 2C**). Mortality was not observed for mock-immunized mice infected with the SARS-CoV-2
192 Omicron (B.1.1.529) variant (**Fig. 2C**).

193 Throat swabs were collected from the vaccinated and mock-vaccinated groups of mice on
194 days 2, 4, 6, 8, 10, and 14 post-infection (p.i.) and were processed to detect the viral RNA copy
195 number by qRT-PCR (**Fig. 2D**). Compared to the viral RNA copy number detected from the mock-
196 vaccinated group of mice, we detected a statistically significant decrease in the viral RNA copy
197 number among vaccinated groups of mice on day 4 p.i. for SARS-CoV-2 WA/USA2020 ($P = 0.04$),
198 Delta (B.1.617.2) ($P = 0.00009$), and Omicron (B.1.1.529) ($P = 0.007$); on day 6 p.i. for SARS-CoV-2
199 WA/USA2020 ($P = 0.002$), Alpha (B.1.1.7) ($P = 0.002$), Delta (B.1.617.2) ($P = 0.001$), and Omicron
200 (B.1.1.529) ($P = 0.001$); on day 8 p.i. for SARS-CoV-2 WA/USA2020 ($P = 0.006$), Alpha (B.1.1.7) ($P =$
201 0.0002), Beta (B.1.351) ($P = 0.002$), Gamma (P.1) ($P = 0.04$), and Omicron (B.1.1.529) ($P = 0.0001$);
202 on day 10 p.i. for SARS-CoV-2 WA/USA2020 ($P = 0.005$), Gamma (P.1) ($P = 0.008$); and on day 14
203 p.i. for SARS-CoV-2 WA/USA2020 ($P = 0.02$) (**Fig. 2D**). This result suggests that the pan-Coronavirus
204 vaccine showed significant protection from virus replication for most of SARS-CoV-2 variants and
205 confirms a plausible anti-viral effect following immunization with asymptomatic B, CD4⁺ and CD8⁺ T
206 cell epitopes carefully selected as being highly conserved from multiple SARS-CoV-2 variants.

207

208 **3. Immunization with the Pan-Coronavirus vaccine bearing conserved epitopes reduced**
209 **COVID-19-related lung pathology and virus replication associated with increased infiltration of**

210 ***CD8⁺ and CD4⁺ T cells in the lungs:*** Hematoxylin and eosin staining of lung sections at day 14 p.i.
211 showed a significant reduction in COVID-19-related lung pathology in the mice immunized with
212 conserved Pan-Coronavirus vaccine compared to mock-vaccinated mice (**Fig. 3A**). This reduction in
213 lung pathology was observed for all six SARS-CoV-2 variants: USA-WA1/2020, Alpha (B.1.1.7), Beta
214 (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) showed severe lung
215 pathogenicity (**Fig. 3A**). We further performed SARS-CoV-2 Nucleocapsid Antibody-based
216 Immunohistochemistry (IHC) staining on lung tissues obtained from vaccinated and mock-vaccinated
217 groups of mice infected with SARS-CoV-2 variants. We detected significantly lower antibody staining
218 in the lung tissues of the vaccinated compared mock-vaccinated group of mice following infection with
219 each of the six SARS-CoV-2 variants of concern. This indicated higher expression of the target viral
220 proteins in the lungs of the mock-vaccinated compared to the vaccinated group of mice (**Fig. 3B**).
221 Furthermore, IHC staining was performed to compare the infiltration CD8⁺ and CD4⁺ T cells into lung
222 tissues of vaccinated and mock-vaccinated mice infected with various SARS-CoV-2 variants. Forten
223 days following infection with each of the six variants, we observed a significant increase in the
224 infiltration of both CD8⁺ T cells (**Fig. 3C**) and CD4⁺ T cells (**Fig. 3D**) in the lungs of vaccinated mice
225 compared to mock-vaccinated mice.

226 Altogether these results indicate that immunization with the Pan-Coronavirus vaccine bearing
227 conserved epitopes induced cross-protective CD8⁺ and CD4⁺ T cells that infiltrated the lungs cleared
228 the virus, and reduced COVID-19-related lung pathology following infection with various multiple
229 SARS-CoV-2 variants.

230

231 ***4. Increased frequencies of lung-resident functional CD8⁺ and CD4⁺ T_{EM} and T_{RM} cells***
232 ***induced by the Pan-Coronavirus vaccine are associated with protection against multiple***
233 ***SARS-CoV-2 variants:*** To determine whether increased frequencies of lung-resident functional CD8⁺
234 and CD4⁺ T cells induced by the pan-Coronavirus vaccine are associated with protection against
235 multiple SARS-CoV-2 variants, we used flow cytometry and compared the frequencies of IFN- γ CD8⁺

236 T cells and CD69 CD8⁺ T cells (**Fig. 4A**), IFN- γ CD4⁺ T cells and CD69 CD4⁺ T cells (**Fig. 4B**) in cell
237 suspensions from the lungs of vaccinated versus mock-vaccinated groups of mice.

238 Relatively higher frequencies of IFN- γ CD8⁺ T cells were detected in the lungs of protected mice
239 that received the pan-Coronavirus vaccine compared to non-protected mock-vaccinated mice
240 following infections with various SARS-CoV-2 variants: USA-WA1/2020 (Vaccinated = 17.4% vs.
241 Mock = 12.2%, $P = 0.5178$), Alpha (B.1.1.7) (Vaccinated = 9.2% vs. Mock = 4.4%, $P = 0.0076$), Beta
242 (B.1.351) (Vaccinated = 7.5% vs Mock = 2.1%, $P = 0.05$), Gamma (P.1) (Vaccinated = 12.9% vs.
243 Mock = 8.1%, $P = 0.14$), Delta (B.1.617.2) (Vaccinated = 8.3% vs. Mock = 2.23%, $P < 0.0001$), and
244 Omicron (B.1.1.529) (Vaccinated = 8.7% vs. Mock = 5.8%, $P = 0.02$) (**Fig. 4A**, top row). Similarly,
245 increased frequencies for CD8⁺CD69⁺ T cells were detected in the lungs of protected mice that
246 received the pan-Coronavirus vaccine compared to non-protected mock-vaccinated mice following
247 infections with various SARS-CoV-2 variants: Alpha (B.1.1.7) (Vaccinated = 6.9% vs Mock = 3.4%, P
248 = 0.0033), Beta (B.1.351) (Vaccinated = 7.4% vs Mock = 2.9%, $P = 0.05$), Gamma (P.1) (Vaccinated
249 = 12.3% vs Mock = 10.4%, $P = 0.95$), Delta (B.1.617.2) (Vaccinated = 8.1% vs Mock = 2.5%, $P <$
250 0.0001), and Omicron (B.1.1.529) (Vaccinated = 9.8% vs Mock = 5.6%, $P = 0.01$) (**Fig. 4A**, bottom
251 row).

252 Moreover, higher frequencies of IFN- γ CD4⁺ T cells were detected in the lungs of protected mice
253 that received the pan-Coronavirus vaccine compared to non-protected mock-vaccinated mice
254 following infections with various SARS-CoV-2 variants: USA-WA1/2020 (Vaccinated = 21.4% vs Mock
255 = 10.1%, $P = 0.5696$), Alpha (B.1.1.7) (Vaccinated = 5.6% vs Mock = 4%, $P = 0.35$), Beta (B.1.351)
256 (Vaccinated = 4.5% vs Mock = 1.4%, $P = 0.12$), Gamma (P.1) (Vaccinated = 8.8% vs Mock = 3%, P
257 = 0.02), Delta (B.1.617.2) (Vaccinated = 3.7% vs Mock = 1.2%, $P = 0.0002$), and Omicron (B.1.1.529)
258 (Vaccinated = 4.5% vs Mock = 2.4%, $P = 0.01$) (**Fig. 4B**, top row). Similarly, increased frequencies for
259 CD4⁺CD69⁺ T cells were detected in the lungs of protected mice that received the pan-Coronavirus
260 vaccine compared to non-protected mock-vaccinated mice following infections with various SARS-

261 CoV-2 variants: Alpha (B.1.1.7) (Vaccinated = 5.3% vs Mock = 4.2%, $P = 0.1748$), Beta (B.1.351)
262 (Vaccinated = 9.5% vs Mock = 4%, $P = 0.009$), Gamma (P.1) (Vaccinated = 14.9% vs Mock = 12.2%,
263 $P = 0.7155$), Delta (B.1.617.2) (Vaccinated = 8.5% vs Mock = 3.3%, $P < 0.0001$), and Omicron
264 (B.1.1.529) (Vaccinated = 10.4% vs Mock = 5%, $P = 0.003$) (**Fig. 4B**, bottom row).

265

266 FACS-based immunophenotyping, confirmed higher frequencies of the memory CD8⁺ T_{EM}
267 (CD44⁺CD62L⁻) cell subset in immunized mice with a pool of pan-Coronavirus peptides and subjected
268 to infection against USA-WA1/2020 (Vaccinated = 12.2% vs Mock = 5%, $P < 0.0001$), Alpha (B.1.1.7)
269 (Vaccinated = 6.5% vs Mock = 3.7%, $P = 0.0017$), Beta (B.1.351) (Vaccinated = 7.2% vs Mock =
270 3.4%, $P = 0.0253$), and Omicron (B.1.1.529) (Vaccinated = 5.9% vs Mock = 3%, $P = 0.9765$) (**Fig.**
271 **4C**). Similarly, when the frequencies for the memory CD8⁺ T_{RM} (CD69⁺CD103⁺) cell subset was
272 evaluated, we found higher CD8⁺ T_{RM} cell subset frequencies for immunized mice infected with USA-
273 WA1/2020 (Vaccinated = 3.4% vs Mock = 3.1%, $P = 0.4004$), Alpha (B.1.1.7) (Vaccinated = 5.4% vs
274 Mock = 2.5%, $P = 0.0160$), Beta (B.1.351) (Vaccinated = 6.6% vs Mock = 2.1%, $P = 0.0420$), Gamma
275 (P.1) (Vaccinated = 11.1% vs Mock = 9.2%, $P = 0.9961$), Delta (B.1.617.2) (Vaccinated = 7.1% vs
276 Mock = 1.5%, $P < 0.0001$), and Omicron (B.1.1.529) (Vaccinated = 8.5% vs Mock = 5%, $P = 0.0139$)
277 (**Fig. 4C**).

278 Moreover, in context to memory CD4⁺ T_{EM} (CD44⁺CD62L⁻) cell subset, relatively higher
279 frequencies were observed for immunized mice subjected to infection with SARS-CoV-2 variants
280 USA-WA1/2020 (Vaccinated = 15.4% vs Mock = 8.3%, $P = 0.0001$), Alpha (B.1.1.7) (Vaccinated =
281 12.3% vs Mock = 8.7%, $P < 0.0001$), and Beta (B.1.351) (Vaccinated = 6.8% vs Mock = 6%, $P <$
282 0.0004) (**Fig. 4D**). Higher frequencies of the CD4⁺ T_{RM} (CD69⁺CD103⁺) cell subset were found in
283 immunized mice infected with SARS-CoV-2 variants Alpha (B.1.1.7) (Vaccinated = 5.2% vs Mock =
284 4%, $P = 0.0828$), Beta (B.1.351) (Vaccinated = 10% vs Mock = 4%, $P = 0.005$), Gamma (P.1)
285 (Vaccinated = 15.4% vs Mock = 13.1%, $P = 0.7860$), Delta (B.1.617.2) (Vaccinated = 8.9% vs Mock =

286 3.5%, $P < 0.0001$), and Omicron (B.1.1.529) (Vaccinated = 10.3% vs Mock = 5.1%, $P = 0.0021$) (**Fig. 4D**).

288 Altogether, our findings confirmed that immunization with the pan-Coronavirus vaccine bearing
289 conserved epitopes induced high frequencies of functional CD8 $^{+}$ and CD4 $^{+}$ T_{EM} and T_{RM} cells that
290 infiltrate the lungs associated with a significant decrease in virus replication and a reduction in
291 COVID-19-related lung pathology following infection with various multiple SARS-CoV-2 variants.

292

293 **5. Increased SARS-CoV-2 epitopes-specific IFN- γ -producing CD8 $^{+}$ T cells in the lungs of
294 vaccinated mice in comparison to mock-vaccinated mice:** To determine whether the functional
295 lung-resident CD8 $^{+}$ T cells are specific to SARS-CoV-2, we stimulated lung-cell suspension from
296 vaccinated and mock-vaccinated mice with each of the 14 “universal” human CD8 $^{+}$ T cell epitopes
297 (ORF1ab₂₂₁₀₋₂₂₁₈, ORF1ab₃₀₁₃₋₃₀₂₁, ORF1ab₄₂₈₃₋₄₂₉₁, ORF1ab₆₇₄₉₋₆₇₅₇, ORF6₃₋₁₁, ORF7b₂₆₋₃₄, ORF10₃₋₁₁,
298 ORF10₅₋₁₃, S₉₅₈₋₉₆₆, S₁₀₀₀₋₁₀₀₈, S₁₂₂₀₋₁₂₂₈, E₂₀₋₂₈, M₅₂₋₆₀, and M₈₉₋₉₇) and quantified the number of IFN- γ -
299 producing CD8 $^{+}$ T cells using ELISpot, as detailed in the *Materials & Methods* section (**Fig. 5**). To
300 determine where cross-reactive IFN- γ -producing CD8 $^{+}$ T cell responses will be detected regardless of
301 SARS-CoV-2 variant, the number IFN- γ -producing CD8 $^{+}$ T cells were determined in the lung tissues
302 of vaccinated and mock-vaccinated mice after challenge with each of six different SARS-CoV-2
303 variants of concern.

304 Overall, a significant increase in the number of IFN- γ -producing CD8 $^{+}$ T cells was detected in the
305 lungs of protected mice that received the pan-Coronavirus vaccine compared to non-protected mock-
306 vaccinated mice (mean SFCs > 25 per 0.5×10^6 pulmonary immune cells), irrespective of the SARS-
307 CoV-2 variants of concern: WA/USA2020 (**Fig. 5A**), Alpha (B.1.1.7) (**Fig. 5B**), Beta (B.1.351) (**Fig.**
308 **5C**), Gamma (P.1) (**Fig. 5D**), Delta (B.1.617.2) (**Fig. 5E**), or Omicron (B.1.1.529) (**Fig. 5F**). All the
309 comparisons among vaccinated and mock-vaccinated groups of mice, irrespective of SARS-CoV-2
310 variants of concern were found to be statistically significant regardless of whether CD8 $^{+}$ T cells

311 targeted epitopes were from structural (Spike, Envelope, Membrane), or non-structural (ORF1ab,
312 ORF6, ORF7b, ORF10) SARS-CoV-2 protein antigens ($P < 0.5$).

313 Taken together, these results: (1) Confirm that immunization with the pan-Coronavirus vaccine
314 bearing conserved epitopes induced high frequencies of functional CD8 $^{+}$ T cells that infiltrate the
315 lungs associated with cross-protection against multiple SARS-CoV-2 variants; (2) Demonstrate that
316 increased SARS-CoV-2 epitopes-specific IFN- γ -producing CD8 $^{+}$ T cells in the lungs of vaccinated
317 triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice are associated with protection from
318 multiple variants of concern. In contrast, low frequencies of lung-resident SARS-CoV-2-specific IFN- γ -
319 producing CD8 $^{+}$ T cells were associated with severe disease onset in mock-vaccinated triple
320 transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice. In this report, we suggest an important role
321 for functional lung-resident SARS-CoV-2-specific CD8 $^{+}$ T cells specific to highly conserved “universal”
322 epitopes from structural and non-structural antigens in cross-protection against SARS-CoV-2 VOCs.
323

324 **6. Increased SARS-CoV-2 epitopes-specific IFN- γ -producing CD4 $^{+}$ T cells in the lungs of
325 vaccinated mice in comparison to mock-vaccinated mice:** We stimulated lung-cell suspension
326 from vaccinated and mock-vaccinated groups of mice with each of the 6 “universal” human CD4 $^{+}$ T
327 cell epitopes (ORF1a₁₃₅₀₋₁₃₆₅, ORF6₁₂₋₂₆, ORF8b₁₋₁₅, S₁₋₁₃, M₁₇₆₋₁₉₀, and N₃₈₈₋₄₀₃) and quantified the
328 number of IFN- γ -producing CD4 $^{+}$ T cells using ELISpot, to determine whether the functional lung-
329 resident CD4 $^{+}$ T cells are specific to SARS-CoV-2 (**Fig. 6**).

330 Overall, we detected a significant increase in the number of IFN- γ -producing CD4 $^{+}$ T cells in the
331 lungs of protected mice that received the pan-Coronavirus vaccine compared to non-protected mock-
332 vaccinated mice (mean SFCs > 25 per 0.5×10^6 pulmonary immune cells), irrespective of the SARS-
333 CoV-2 VOCs: WA/USA2020 (**Fig. 6A**), Alpha (B.1.1.7) (**Fig. 6B**), Beta (B.1.351) (**Fig. 6C**), Gamma
334 (P.1) (**Fig. 6D**), Delta (B.1.617.2) (**Fig. 6E**), or Omicron (B.1.1.529) (**Fig. 6F**). All the comparisons
335 among vaccinated and mock-vaccinated groups of mice, irrespective of SARS-CoV-2 VOCs were

336 statistically significant regardless of whether CD4⁺ T cells targeted epitopes were from structural or
337 non-structural SARS-CoV-2 protein antigens ($P < 0.5$).

338 Taken together, our findings demonstrate that increased SARS-CoV-2 epitopes-specific IFN- γ -
339 producing CD4⁺ T cells in the lungs of vaccinated triple transgenic HLA-A*02:01/HLA-DRB1*01:01-
340 hACE-2 mice are associated with protection from multiple variants of concern. In contrast, low
341 frequencies of lung-resident SARS-CoV-2-specific IFN- γ -producing CD4⁺ T cells were associated with
342 severe disease onset in mock-vaccinated triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2
343 mice. The findings suggest an important role of functional lung-resident SARS-CoV-2-specific CD4⁺ T
344 cells specific to highly conserved “universal” epitopes from structural and non-structural antigens in
345 cross-protection against SARS-CoV-2 VOCs.

346

347 **7. Universal B cell epitopes from SARS-CoV-2 Spike protein showed a high degree of**
348 **immunogenicity across SARS-CoV-2 variants based on antibody response in COVID-19**
349 **patients and triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2:** We next determined
350 whether the antibody responses were associated with protection since the prototype pan-Coronavirus
351 vaccine used herein also contains nine conserved B cell epitopes selected from the Spike glycoprotein
352 of SARS-CoV-2. The nine B-cell epitopes were screened for their conservancy against variants
353 namely h-CoV-2/Wuhan (MN908947.3), h-CoV-2/WA/USA2020 (OQ294668.1), h-CoV-
354 2/Alpha(B1.1.7) (OL689430.1), h-CoV-2/Beta(B 1.351) (MZ314998), h-CoV-2/Gamma(P.1)
355 (MZ427312.1), h-CoV-2/Delta(B.1.617.2) (OK091006.1), and h-CoV-2/Omicron(B.1.1.529)
356 (OM570283.1). We observed 100% conservancy in three of our earlier predicted B cell epitopes
357 namely S₂₈₇₋₃₁₇, S₅₂₄₋₅₅₈, and S₅₆₅₋₅₉₈ (**Fig. S3**).

358 The antibody titer specific to each of the nine “universal” B-cell epitopes was determined by
359 ELISA in COVID-19 patients infected with multiple SARS-CoV-2 variants of concern (**Fig. S4, left**
360 **panel**) and in vaccinated and mock-vaccinated triple transgenic HLA-A*02:01/HLA-DRB1*01:01-

361 hACE-2 mice challenged with same SARS-CoV-2 VOCs (**Fig. S4, right panel**). The peptide binding
362 IgG level was significantly higher for all nine “universal” B cell epitopes in COVID-19 patients (**Fig. S4,**
363 *left panel*) as well as in vaccinated triple transgenic mice (**Fig. S4, right panel**), irrespective of SARS-
364 CoV-2 variant. Reduced peptide binding IgG level was observed for severely ill COVID-19 patients
365 (**Fig. S4, left panel**) and in mock-vaccinated triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2
366 mice (**Fig. S4, right panel**).

367 Altogether, these results indicate that immunization with the pan-Coronavirus vaccine bearing
368 conserved “universal” B and T cell epitope induced cross-protective antibodies, CD8⁺ and CD4⁺ T
369 cells that infiltrated the lungs, cleared the virus, and reduced COVID-19-related lung pathology
370 following infection with various multiple SARS-CoV-2 VOCs.

371

372

373

374

375

DISCUSSION

376 Current Spike-based COVID-19 vaccines have contributed to a significantly decreased rate
377 of SARS-CoV-2 infections. However, the long-term outlook of COVID-19 remains a serious cause of
378 high death worldwide; with the mortality rate still surpassing even the worst mortality rates recorded
379 for the influenza viruses. The continuous emergence of SARS-CoV-2 variants and sub-variants of
380 concern, including the recent heavily mutated and highly transmissible Omicron sub-variants, has led
381 to vaccine breakthroughs that contributed to prolonging the COVID-19 pandemic. The decrease over
382 time in neutralizing antibody titers induced by current Spike-based vaccines, along with these vaccine
383 breakthrough infections due to mutations on the Spike protein in recent variants and sub-variants,
384 point to the urgent need to develop a next-generation B- and T-cell-based pan-Coronavirus vaccine-
385 coronavirus vaccine, that would be based not only on Spike protein but also on less-mutated non-
386 Spike structural and non-structural antigens and epitopes. Such a universal CoV vaccine could induce
387 strong and durable protective immunity against infections and diseases caused by multiple emerging
388 SARS-CoV-2 variants and sub-variants.

389

390 Much of the data on the efficacy of the current modified messenger RNA (mRNA) vaccines
391 has shown that these vaccines elicited lower levels of neutralizing antibodies against newer SARS-
392 CoV-2 variants than against the older variants. In the present report, we have identified “universal”
393 CD8⁺ & CD4⁺ T cell and B cell epitopes conserved among all known SARS-CoV-2 variants, previous
394 SARS and MERS coronavirus strains, and strains specific to different species which were reported to
395 be hosts for SARS/MERS (bat, civet cat, pangolin, camel). The screening of these “universal”
396 epitopes is limited to the spike alone and all the remaining structural and non-structural proteins of
397 SARS-CoV-2. We used a combination of these highly conserved CD8⁺ & CD4⁺ T cell and B cell
398 epitopes to design our first multi-epitope pan-Coronavirus vaccine.

399

400 We demonstrated that immunization of triple transgenic h-ACE-2-HLA-A2/DR mice with a
pool of “universal” CD8⁺ T cell, CD4⁺ T cell, and B cell peptides produced protection against 6 variants

401 including Washington, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and
402 Omicron (B.1.1.529), variants of SARS-CoV-2. The Pan-Coronavirus vaccine was found to be safe,
403 as no local or systemic side effects were observed in the vaccinated mice. Moreover, we found that
404 protection correlated with high frequencies of IFN- γ CD4 $^{+}$ T cells, CD69 CD4 $^{+}$ T cells, IFN- γ CD8 $^{+}$ T
405 cells, and CD69 CD8 $^{+}$ T cells infuriating the lungs. We also found higher frequencies for the CD8 $^{+}$ T_{EM}
406 (CD44 $^{+}$ CD62L $^{-}$) cell population in the lungs of protected mice. High levels of peptide-specific IgG
407 were also detected in protected animals suggesting the contribution of Spike-specific antibodies in
408 protection. A stark difference in the level of neutralizing viral titer was also observed between the
409 vaccinated and mock-vaccinated groups of mice for all the studied variants. We observed no mortality
410 in the vaccinated mice, irrespective of the SARS-CoV-2 variant. In contrast, high mortality was
411 observed in the mock-vaccinated mice when challenged with 6 SARS-CoV-2 variants. Overall, the
412 reported universal Coronavirus vaccine was safe, immunogenic, and provided cross-protection
413 against multiple SARS-CoV-2 variants of Concern.

414 A typical SARS-CoV-2 virus accumulates 1-2 single-nucleotide mutations in its genome per
415 month, which is $\frac{1}{2}$ the rate of influenza and $\frac{1}{4}$ of the rate of HIV. Part of the reason that SARS-CoV-2
416 appears to be mutating more slowly is that, unlike most RNA viruses, coronaviruses have a novel
417 exoribonuclease (ExoN) encoded in their genomes, which researchers suspect is correcting many of
418 the errors that occur during replication. Genetic inactivation of this exonuclease in SARS-CoV and
419 Murine coronavirus (MHV) increased mutation rates by 15 to 20-fold. The molecular basis of this CoV
420 proofreading complex is being investigated as a possible therapeutic target for SARS-CoV-2.
421 Importantly, nucleotide deletions, unlike substitutions, cannot be corrected by this proofreading
422 mechanism, which is a factor that may accelerate adaptive evolution to some degree. Depending on
423 the specific mutation, and where in the genome the nucleotide substitution, addition, or deletion
424 occurs, mutations may be neutral, beneficial, or harmful to an organism. SARS-CoV-2's spike (S)
425 protein is 1273 amino acids long and is the main target of current COVID-19 vaccines, as well as
426 those in development. It is the portion of the virus that recognizes and binds to host cellular receptors

427 and mediates viral entry. SARS-CoV-2 is unable to infect host cells without it. Because of this,
428 mutations in the S gene, particularly those that affect portions of the protein that are critical for
429 pathogenesis and normal function (such as the receptor binding domain (RBD) or furin cleavage site)
430 or those that cause conformational changes to the S protein, are of the greatest interest. If these
431 changes are not recognized by “first-wave” antibodies, these mutations may provide an avenue for the
432 virus to escape from immunity to the original SARS-CoV-2 strain.

433 The first reported SARS-CoV-2 mutation, D614G, which has now become common to nearly
434 all sequenced SARS-CoV-2 genomes worldwide, followed by an analysis of additional key S protein
435 mutations of several identified SARS-CoV-2 variants: B.1.1.7, commonly dubbed the U.K. variant;
436 B.1.351, also known as 501Y.V2 or the South African variant, P.1., also known as 501Y.V3 or the
437 Brazilian variant; B.1.427 and B.1.429, also recognized as CAL.20C or the California variant; B.1.526,
438 or the New York variant and multiple lineages of variants that contain mutations at amino acid position
439 677.

440 Initial reports that a mutation had been identified in the SARS-CoV-2 genome began
441 circulating in March 2020, and by the end of June, D614G, which constitutes the replacement of
442 aspartate (D) with glycine (G) at the 614th amino acid of S protein, was found in nearly all SARS-CoV-
443 2 samples worldwide. D614G has been found to enhance viral replication in human lung epithelial
444 cells and primary human airway tissues by increasing the infectivity and stability of virions. Additional
445 research has suggested that the increased infectivity may be the result of enhanced functional S
446 protein assembly on the surface of the virion. Several other studies have reported that D614G may be
447 associated with higher viral loads. Fortunately, since this mutation became common to nearly all
448 sequenced SARS-CoV-2 genomes before the release of COVID-19 vaccines, we can be confident
449 that vaccines with proven efficacy against SARS-CoV-2 are protective against the D614G mutation.

450 The N-terminal S1 subunit of the S protein is responsible for the virus-receptor binding of
451 SARS-CoV-2. Research indicates that the acquisition of nucleotide deletions in the amino (N)-terminal
452 domain (NTD) of the S protein may alter antigenicity. According to the Centers for Disease Control

453 and Prevention (CDC), the deletion of amino acids 69 and 70 in B.1.1.7, is likely to cause a
454 conformational change in the spike protein. And the creation of a $\Delta 69\Delta 70$ deletion mutant via site-
455 directed mutagenesis and lentiviral pseudo typing resulted in 2-fold higher infectivity than the WT
456 (D614G background), indicating that this linked pair of amino acid deletions may improve SARS-CoV-
457 2 fitness. Deletion of amino acid 144 in B.1.1.7 and amino acids 242-244 in B.1.351 have also been
458 associated with a reduced binding capacity of certain neutralizing antibodies. Substitution of aspartate
459 with glycine at position 253 (D253G), a mutation that appears in one of the 2 identified forms of
460 B.1.526, has been correlated with an escape from monoclonal antibodies against the NTD, as have
461 L18F, a leucine (L) to phenylalanine (F) substitution at position 18 in P.1 and R246I, an arginine (R) to
462 isoleucine (I) substitution at position 246 in B.1.351. B.1.351, P.1, B.1.427/B.1.429, and B.1.526 all
463 have additional amino acid substitutions in the NTD that are still of unknown significance.

464 The receptor binding domain (RBD) of the S protein is comprised of amino acids 319-541. It
465 binds directly to ACE-2 receptors in human cells. Therefore, mutations in this portion of the genome
466 are particularly significant to SARS-CoV-2 fitness and antigenicity. B.1.1.7, B.1.351, and P.1 all have
467 a mutation that replaces asparagine (N) with tyrosine (Y) at position 501 of the RBD. N501Y has been
468 shown to increase the binding capacity of SARS-CoV-2 to human ACE-2 receptors, disrupt antibody
469 binding to RBD, and has been implicated in reduced antibody production via weakened T and B cell
470 cooperation. Together, these findings suggest that SARS-CoV-2 variants possessing the N501Y
471 mutation may have an increased potential for immune escape. B.1.351 and P.1 have 2 additional
472 RBD mutations in common, K417N or K417T, a lysine (K) to asparagine (N) or threonine (T)
473 substitution at position 417, and E484K, a glutamate (E) to lysine (K) substitution at position 484.
474 E484K increases the affinity of RBD for ACE-2, increases resistance to SARS-CoV-2 neutralizing
475 antibodies, is less responsive to monoclonal antibody therapy, and reduces neutralization against
476 convalescent plasma. Studies have demonstrated that, in combination, these 3 RBD mutations induce
477 a relatively high conformational change, compared to N501Y alone or the WT strain, indicating the
478 increased potential for immune escape. As mentioned above, B.1.526, has been detected by West Jr.

479 et al. in 2 forms. One of these contains E484K, while the other contains S477N, a serine (S) to
480 asparagine (N) substitution at position 477 that has also been shown to increase receptor binding
481 affinity, suggesting that both forms may demonstrate increased viral infectivity. The variant introduced
482 by Zhang et al. as CAL.20C has also been detected in two forms, B.1.427 and B.1.429, both of which
483 contain the same 3 S gene mutations that are not present in B.1.1.7, B.1.351, P.1 or B.1.526. One of
484 these, L452R, is a substitution that replaces leucine (L) with arginine (R) at position 452 of the RBD
485 and increases the affinity of RBD for ACE-2. Reports of a study conducted by Chui et al. at UCSF,
486 indicate that B.1.429 is less susceptible to neutralizing antibodies and may be linked to worse
487 outcomes of disease.

488 The furin cleavage site of S protein subunits S1 and S2 is essential for the membrane fusion of
489 SARS-CoV-2. Loss of this structure or function has a major negative impact on the pathogenesis of
490 the virus. B.1.1.7 has a proline (P) to histidine (H) substitution at position 681 which is located near
491 the furin cleavage site. This mutation may further impact viral infectivity, although it is not yet clear if
492 P681H enhances or decreases infectivity. B.1.351 and B.1.526 both have an alanine (A) to valine (V)
493 substitution located adjacent to the furin cleavage site at position 701 (A701V) that is still of unknown
494 significance. Hodcroft et al., have identified a rapid rise of SARS-CoV-2 infections that possess a
495 substitution at position 677 of the S gene (34). It was suspected that the proximity of the mutation to
496 the furin cleavage site may impact the virus' ability to enter host cells, and parallel evolution in multiple
497 lineages could suggest a selective advantage to the virus. So far, one sub-lineage carrying Q677P,
498 glutamine (Q) to proline (P) substitution, and at least 6 distinct sub-lineages carrying Q677H,
499 glutamine (Q) to histidine (H) substitution have been detected, demonstrating the importance of
500 continued research to evaluate these S:677 polymorphisms.

501 In conclusion, we report the first universal Coronavirus vaccine was safe, immunogenic, and
502 provided cross-protection against six SARS-CoV-2 variants of Concern.

503

504

505

MATERIALS & METHODS

506 **Viruses:** SARS-CoV-2 viruses specific to six variants, namely (i) SARS-CoV-2-USA/WA/2020
507 (Batch Number: G2027B); (ii) Alpha (B.1.1.7) (isolate England/204820464/2020 Batch Number:
508 C2108K); (iii) Beta (B.1.351) (isolate South Africa/KRISP-EC-K005321/2020; Batch Number:
509 C2108F), (iv) Gamma (P.1) (isolate hCoV-19/Japan/TY7-503/2021; Batch Number: G2126A), (v)
510 Delta (B.1.617.2) (isolate h-CoV-19/USA/MA29189; Batch number: G87167), and Omicron (BA.1.529)
511 (isolate h-CoV-19/USA/FL17829; Batch number: G76172) were procured from Microbiologics (St.
512 Cloud, MN). The initial batches of viral stocks were propagated to generate high-titer virus stocks.
513 Vero E6 (ATCC-CRL1586) cells were used for this purpose using an earlier published protocol (35).
514 Procedures were completed only after appropriate safety training was obtained using an aseptic
515 technique under BSL-3 containment.

516 ***Triple transgenic mice immunization with SARS-CoV-2 conserved peptides and***
517 ***Infection:*** The University of California-Irvine conformed to the Guide for the Care and Use of
518 Laboratory Animals published by the US National Institute of Health (IACUC protocol # AUP-22-086).
519 Seven to eight-week-old triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice (n=60) were
520 included in this experiment. Mice were subcutaneously immunized with a pool of conserved Pan-
521 Coronavirus peptides. The peptide pool administered per mouse comprised 25 μ g each of the 9-mer
522 long 16 CD8 $^{+}$ T cell peptides (ORF1ab₂₂₁₀₋₂₂₁₈, ORF1ab₃₀₁₃₋₃₀₂₁, ORF1ab₄₂₈₃₋₄₂₉₁, ORF1ab₆₇₄₉₋₆₇₅₇,
523 ORF6₃₋₁₁, ORF7b₂₆₋₃₄, ORF8a₇₃₋₈₁, ORF10₃₋₁₁, ORF10₅₋₁₃, S₉₅₈₋₉₆₆, S₁₀₀₀₋₁₀₀₈, S₁₂₂₀₋₁₂₂₈, E₂₀₋₂₈, E₂₆₋₃₄,
524 M₅₂₋₆₀, and M₈₉₋₉₇), 15-mer long 6 CD4 $^{+}$ T cell epitopes (ORF1a₁₃₅₀₋₁₃₆₅, ORF6₁₂₋₂₆, ORF8b₁₋₁₅, S₁₋₁₃,
525 M₁₇₆₋₁₉₀, and N₃₈₈₋₄₀₃), and 9 B-cell peptides. The pool of peptides was then mixed with 25 μ g of CpG
526 and 25 μ g of Alum to prepare the final composition. Mice were immunized with the peptide pool on
527 Day 0 and Day 14 of the experiment. Fourteen days following the second immunization, on Day 28,
528 mice were divided into 6 groups and intranasally infected with 1 x 10⁵ pfu of SARS-CoV-2 (USA-
529 WA1/2020) (n=10), 6 x 10³ pfu of SARS-CoV-2-Alpha (B.1.1.7) (n=10), 6 x 10³ pfu of SARS-CoV-2-

530 Beta (B.1.351) (n=10), 5×10^2 pfu of SARS-CoV-2-Gamma (P.1) (n=10), 8×10^3 pfu of SARS-CoV-2-
531 Delta (B.1.617.2) (n=10), and 6.9×10^4 pfu of SARS-CoV-2-Omicron (B.1.1.529) (n=10). The viruses
532 were diluted, and each mouse was administered intranasally with 20 μ l volume. Mice were monitored
533 daily for weight loss and survival until Day 14 p.i. Throat swabs were collected for viral titration on
534 Days 2, 4, 6, 8, 10, and 14 post-infection.

535 ***Human study population cohort and HLA genotyping:*** In this study, we have included 210
536 subjects from a pool of over 682 subjects. Written informed consent was obtained from participants
537 before inclusion. The subjects were categorized as mild to severe COVID-19 groups and have
538 undergone treatment at the University of California Irvine Medical Center between July 2020 to July
539 2022 (Institutional Review Board protocol #-2020-5779). SARS-CoV-2 positivity was defined by a
540 positive RT-PCR on nasopharyngeal swab samples. All the subjects were genotyped by PCR for
541 class I HLA-A*02:01 and class II HLA-DRB1*01:01 among the 682 patients (and after excluding a few
542 for which the given amount of blood was insufficient – i.e., less than 6ml), we ended up with 210 that
543 were genotyped for HLA-A*02:01⁺ or/and HLA-DRB1*01:01⁺^(36, 37). Based on the severity of symptoms
544 and ICU admission/intubation status, the subjects were divided into five broad severity categories
545 namely: Severity 5: patients who died from COVID-19 complications; Severity 4: infected COVID-19
546 patients with severe disease that were admitted to the intensive care unit (ICU) and required
547 ventilation support; Severity 3: infected COVID-19 patients with severe disease that required
548 enrollment in ICU, but without ventilation support; Severity 2: infected COVID-19 patients with
549 moderate symptoms that involved a regular hospital admission; Severity 1: infected COVID-19
550 patients with mild symptoms; and Severity 0: infected individuals with no symptoms. Demographically,
551 the 210 patients included were from mixed ethnicities (Hispanic (34%), Hispanic Latino (29%), Asian
552 (19%), Caucasian (14%), Afro-American (3%), and Native Hawaiian and Other Pacific Islander
553 descent (1%).

554 ***Sequence comparison among variants of SARS-CoV-2 and animal CoV strains:*** We
555 retrieved nearly 8.5 million human SARS-CoV-2 genome sequences from the GISAID database

556 representing countries from North America, South America, Central America, Europe, Asia, Oceania,
557 Australia, and Africa. This comprised all the VOCs and VBM_s of SARS-CoV-2 (B.1.177, B.1.160,
558 B.1.1.7, B.1.351, P.1, B.1.427/B.1.429, B.1.258, B.1.221, B.1.367, B.1.1.277, B.1.1.302, B.1.525,
559 B.1.526, S:677H.Robin1, S:677P.Pelican, B.1.617.1, B.1.617.2, B.1.1.529) and common cold SARS-
560 CoV strains (SARS-CoV-2-Wuhan-Hu-1 (MN908947.3), SARS-CoV-Urbani (AY278741.1), HKU1-
561 Genotype B (AY884001), CoV-OC43 (KF923903), CoV-NL63 (NC_005831), CoV-229E (KY983587))
562 and MERS (NC_019843)). Also, for evaluating the evolutionary relationship among the SARS-CoV-2
563 variants and common cold CoV strains, we have included whole-genome sequences from the bat
564 ((RATG13 (MN996532.2), ZXC21 (MG772934.1), YN01 (EPI_ISL_412976), YN02(EPI_ISL_412977),
565 WIV16 (KT444582.1), WIV1 (KF367457.1), YNLF_31C (KP886808.1), Rs672 (FJ588686.1)), pangolin
566 (GX-P2V (MT072864.1), GX-P5E (MT040336.1), GX-P5L (MT040335.1), GX-P1E (MT040334.1), GX-
567 P4L (MT040333.1), GX-P3B (MT072865.1), MP789 (MT121216.1), Guangdong-P2S
568 (EPI_ISL_410544)), camel (KT368891.1, MN514967.1, KF917527.1, NC_028752.1), and civet
569 (Civet007, A022, B039)). All the sequences included in this study were retrieved either from the NCBI
570 GenBank (www.ncbi.nlm.nih.gov/nuccore) or GISAID (www.gisaid.org). Multiple sequence alignment
571 was performed keeping SARS-CoV-2-Wuhan-Hu-1 (MN908947.3) protein sequence as a reference
572 against all the SARS-CoV-2 VOCs, common cold, and animal CoV strains. The sequences were
573 aligned using the ClustalW algorithm in DIAMOND (38).

574 **SARS-CoV-2 CD8⁺ and CD4⁺ T Cell Epitope Prediction:** Epitope prediction was performed
575 considering the spike glycoprotein (YP_009724390.1) for the reference SARS-CoV-2 isolate, Omicron
576 BA.2. The reference spike protein sequence was used to screen CD8⁺ T cell and CD4⁺ T cell
577 epitopes. The tools used for CD8+ T cell-based epitope prediction were SYFPEITHI, MHC-I binding
578 predictions, and Class I Immunogenicity. Of these, the latter two were hosted on the IEDB platform.
579 We used multiple databases and algorithms for the prediction of CD4⁺ T cell epitopes, namely
580 SYFPEITHI, MHC-II Binding Predictions, Tepitool, and TEPITOPEpan. For CD8⁺ T cell epitope
581 prediction, we selected the 5 most frequent HLA-A class I alleles (HLA-A*01:01, HLA-A*02:01, HLA-

582 A*03:01, HLA-A*11:01, HLA-A*23:01) with nearly 91.48% coverage of the world population,
583 regardless of race and ethnicity, using a phenotypic frequency cutoff $\geq 6\%$. Similarly, for CD4 $^{+}$ T cell
584 epitope prediction, selected HLA-DRB1*01:01, HLA-DRB1*11:01, HLA-DRB1*15:01, HLA-
585 DRB1*03:01, HLA-DRB1*04:01 alleles with population coverage of 86.39%. Subsequently, using
586 NetMHC we analyzed the SARS-CoV-2 protein sequence against all the MHC-I and MHC-II alleles.
587 Epitopes with 9-mer lengths for MHC-I and 15-mer lengths for MHC-II were predicted. Subsequently,
588 the peptides were analyzed for binding stability to the respective HLA allotype. Our stringent epitope
589 selection criteria were based on picking the top 1% epitopes focused on prediction percentile scores.
590 N and O glycosylation sites were screened using NetNGlyc 1.0 and NetOGlyc 4.0 prediction servers,
591 respectively.

592 ***Population-Coverage-Based T Cell Epitope Selection:*** For a robust epitope screening, we
593 evaluated the conservancy of CD8 $^{+}$ T cell, CD4 $^{+}$ T cell, and B cell epitopes within spike glycoprotein of
594 Human-SARS-CoV-2 genome sequences representing North America, South America, Africa,
595 Europe, Asia, and Australia. As of April 20th, 2022, the GISAID database extrapolated 8,559,210
596 human-SARS-CoV-2 genome sequences representing six continents. Population coverage calculation
597 (PPC) was carried out using the Population Coverage software hosted on the IEDB platform. PPC
598 was performed to evaluate the distribution of screened CD8 $^{+}$ and CD4 $^{+}$ T cell epitopes in the world
599 population at large in combination with HLA-I (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-
600 A*11:01, HLA-A*23:01), and HLA-II (HLA-DRB1*01:01, HLA-DRB1*11:01, HLA-DRB1*15:01, HLA-
601 DRB1*03:01, HLA-DRB1*04:01) alleles.

602 ***T cell epitopes screening, selection, and peptide synthesis:*** Peptide-epitopes from twelve
603 SARS-CoV-2 proteins, including 9-mer long 16 CD8 $^{+}$ T cell epitopes (ORF1ab₂₂₁₀₋₂₂₁₈,
604 ORF1ab₃₀₁₃₋₃₀₂₁, ORF1ab₄₂₈₃₋₄₂₉₁, ORF1ab₆₇₄₉₋₆₇₅₇, ORF6₃₋₁₁, ORF7b₂₆₋₃₄, ORF8a₇₃₋₈₁, ORF10₃₋₁₁,
605 ORF10₅₋₁₃, S₉₅₈₋₉₆₆, S₁₀₀₀₋₁₀₀₈, S₁₂₂₀₋₁₂₂₈, E₂₀₋₂₈, E₂₆₋₃₄, M₅₂₋₆₀, and M₈₉₋₉₇) and 15-mer long 6 CD4 $^{+}$ T cell
606 epitopes (ORF1a₁₃₅₀₋₁₃₆₅, ORF6₁₂₋₂₆, ORF8b₁₋₁₅, S₁₋₁₃, M₁₇₆₋₁₉₀, and N₃₈₈₋₄₀₃) that we formerly identified
607 were selected as described previously. (33) The Epitope Conservancy Analysis tool was used to

608 compute the degree of identity of CD8⁺ T cell and CD4⁺ T cell epitopes within a given protein
609 sequence of SARS-CoV-2 set at 100% identity level (33). Peptides were synthesized as previously
610 described (21st Century Biochemicals, Inc, Marlborough, MA). The purity of peptides determined by
611 both reversed-phase high-performance liquid chromatography and mass spectroscopy was over
612 95%. Peptides were first diluted in DMSO and later in PBS (1 mg/mL concentration). The helper T-
613 lymphocyte (HTL) epitopes for the selected SARS-CoV-2 proteins were predicted using the MHC-II
614 epitope prediction tool from the Immune Epitope Database (IEDB, <http://tools.iedb.org/mhcii/>).
615 Selected epitopes had the lowest percentile rank and IC₅₀ values. Additionally, the selected epitopes
616 were checked by the IFN epitope server (<http://crdd.osdd.net/raghava/ifnepitope/>) for the capability to
617 induce Th1 type immune response accompanied by IFN- \square production. Cytotoxic T-lymphocyte (CTL)
618 epitopes for the screened proteins were predicted using the NetCTL1.2 server
619 (<http://www.cbs.dtu.dk/services/NetCTL/>). B-cell epitopes for the screened SARS-CoV-2 proteins
620 were predicted using the ABCPredserver (<http://crdd.osdd.net/raghava/abcpred/>). The prediction of
621 the toxic/non-toxic nature of all the selected HTL, CTL, and B-cell epitopes was checked using the
622 ToxinPred module(http://crdd.osdd.net/raghava/toxinpred/multi_submit.php).

623 ***Immunogenicity and allergenicity prediction:*** The immunogenicity of the vaccine was
624 determined using the VaxiJen server (<http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html>)
625 and ANTIGEN pro module of SCRATCH protein predictor (<http://scratch.proteomics.ics.uci.edu/>). The
626 allergenicity of the vaccine was checked using AllerTOPv2.0 (<http://www.ddg-pharmfac.net/AllerTOP/>) and AlgPredServer (<http://crdd.osdd.net/raghava/algpred/>).

628 ***SARS-CoV-2 B Cell Epitope Prediction:*** Linear B cell epitope predictions were carried out on
629 the spike glycoprotein (S), the primary target of B cell immune responses for SARS-CoV. We used the
630 BepiPred 2.0 algorithm embedded in the B cell prediction analysis tool hosted on the IEDB platform.
631 For each protein, the epitope probability score for each amino acid and the probability of exposure
632 was retrieved. Potential B cell epitopes were predicted using a cutoff of 0.55 (corresponding to a
633 specificity greater than 0.81 and sensitivity below 0.3) and considering sequences having more than 5

634 amino acid residues. This screening process resulted in 8 B-cell peptides. These epitopes represent
635 all the major non-synonymous mutations reported among the SARS-CoV-2 variants. One B-cell
636 epitope (S₄₃₉₋₄₈₂) was observed to possess the maximum number of variant-specific mutations.
637 Structure-based antibody prediction was performed using Discotope 2.0, and a positivity cutoff greater
638 than -2.5 was applied (corresponding to specificity greater than or equal to 0.80 and sensitivity below
639 0.39), using the SARS-CoV-2 spike glycoprotein structure (PDB ID: 6M1D).

640 ***Determination of physicochemical properties:*** The physicochemical characteristics of the
641 vaccine were determined using the ProtParam tool of the ExPASy database server
642 (<http://web.expasy.org/protparam/>).

643 ***Structure prediction, validation, and docking with the receptor:*** The secondary structure
644 of the subunit, the vaccine construct was predicted using PSIPred4.0 Protein Sequence Analysis
645 Workbench(<http://bioinf.cs.ucl.ac.uk/psipred/>), while the tertiary structure was predicted by de novo
646 structure prediction based trRosetta modeling suite, which uses a deep residual neural network to
647 predict the inter-residue distance and orientation distribution of the input sequence. Then it converts
648 predicted distance and orientation distribution into smooth restraints to build a 3D structure model
649 based on direct energy minimization. The model of the vaccine construct with the best TM-score was
650 validated by PROCHECKv3.5 (<https://servicesn.mbi.ucla.edu/PROCHECK/>) and
651 ProSA(<https://prosa.services.came.sbg.ac.at/prosa.php>) web servers.

652 ***Molecular dynamics simulations:*** Molecular dynamics (MD) simulation is an effective
653 method to study the molecular interactions and dynamics of the vaccine-ACE-2 complex. The
654 complex structure of the vaccine was initially optimized using Schrödinger Maestro (Schrödinger
655 Release 2016–4: Maestro, Schrödinger, New York) and subsequently used as the starting structure
656 for MD simulations. First, hydrogen atoms were added to the complex which was then solvated in an
657 octahedral box with a simple point charge (SPC) water in the center at least 1.0nm from the box
658 edge. The system was subsequently electrostatically neutralized by the addition of appropriate
659 counter ions. MD simulation was carried out with GROMACS 5.1.2 software package using the

660 gromos9654A7 force field. A standard MD simulation protocol started with 50,000 steps of energy
661 minimization until no notable change of energy was observed, followed by a heating step from 0 to
662 300K in 200ps (canonical ensemble) and 1000 psat300K (isobaric isothermal ensemble) by constant
663 temperature equilibration. During this, Parrinello-Rahman barostat pressure coupling was used to
664 avoid the impact of velocity. As a final step of the simulation, a 40ns production run was carried out at
665 300K with periodic boundary conditions in the NPT ensemble with modified Bendensen temperature
666 coupling and at a constant pressure of 1 atm. Furthermore, the LINCSalgorithm, along with the
667 Particlelest Ewald method, was used for the calculation of the long-range electrostatic forces.
668 Fourier grid pacing and Coulomb radius were set at 0.16 and 1.4 nm respectively, during the
669 simulations. The van der Waals (VDW) interactions were limited to 1.4nm, and structures were saved
670 at every 10ps for structural and dynamic analysis.

671 **Sequence-based variant effect prediction:** Fourteen spike glycoprotein-specific non-
672 synonymous mutations found on different SARS-CoV-2 variants were subjected to Variant Effect
673 Predictor (VEP) online server for effect prediction against SARS-CoV-2 genome assembly hosted by
674 Ensemble database. VEP was set to return (i) Combined Annotation Dependent Depletion (CADD)
675 score, (ii) Genomic Evolutionary Rate Profiling (GERP ++ Raw Score), (iii) phastCons conservation
676 score based on the multiple alignments of 7 vertebrate genomes, (iv) phylogenetic p-values (PhyloP)
677 conservation score based on the multiple alignments of 7 vertebrate genomes, (v) Shifting Intolerant
678 From Tolerant (SIFT) score and prediction, (vi) Polymorphism Phenotyping (PolyPhen) score and
679 prediction, (vii) Consensus Deleteriousness (Condel) rank score and prediction, (viii) Protein Variation
680 Effect Analyzer (PROVEAN) score and prediction, and (ix) Mutation Accessor score and prediction.

681 **Blood Differential Test (BDT):** Total White Blood Cells (WBCs) count and Lymphocytes
682 count per μ L of blood were performed by the University of California Irvine Medical Center clinicians
683 using CellavisionTM DM96 automated microscope. Monolayer smears were prepared from
684 anticoagulated blood and stained using the May Grunwald Giemsa (MGG) technique. Subsequently,
685 slides were loaded onto the DM96 magazines and scanned using a 10-x objective focused on

686 nucleated cells to record their exact position. Images were obtained using the 100-x oil objective and
687 analyzed by Artificial Neural Network (ANN).

688 ***TaqMan quantitative polymerase reaction assay for the screening of SARS-CoV-2***

689 ***Variants in COVID-19 patients:*** We utilized a laboratory-developed modification of the CDC SARS-
690 CoV-2 RT-PCR assay, which received Emergency Use Authorization by the FDA on 17 April 2020.
691 (<https://www.fda.gov/media/137424/download> [accessed 24 March 2021]).

692 Mutation screening assays: SARS-CoV-2-positive samples were screened by four
693 multiplex RT-PCR assays. Through the qRT-PCR, we screened for 11 variants of SARS-CoV-2
694 in our patient cohort. The variants which were screened include B.1.1.7 (Alpha), B.1.351 (Beta),
695 P.1 (Gamma), and B.1.427/B.1.429 (Epsilon), B.1.525 (Eta), R.1, P.2 (Zeta), B.1.526 (Iota),
696 B.1.2/501Y or B.1.1.165, B.1.1.529 (BA.1) (Omicron), B.1.1.529 (BA.2) (Omicron), and B.1.617.2
697 (Delta). The sequences for the detection of Δ69–70 were adapted from a multiplex real-time RT-
698 PCR assay for the detection of SARS-CoV-2 (Zhen et al., 2020). The probe overlaps with the
699 sequences that contain amino acids 69 to 70; therefore, a negative result for this assay predicts
700 the presence of deletion S-Δ69–70 in the sample. Using a similar strategy, a primer/probe set
701 that targets the deletion S- Δ242–244 was designed and was run in the same reaction with S-
702 Δ69-70. In addition, three separate assays were designed to detect spike mutations S-501Y, S-
703 484K, and S-452R and wild-type positions S-501N, S-484E, and S-452L.

704 Briefly, 5 ml of the total nucleic acid eluate was added to a 20-ml total-volume reaction
705 mixture (1x TaqPath 1-Step RT-qPCR Master Mix, CG [Thermo Fisher Scientific, Waltham, MA], with
706 0.9 mM each primer and 0.2 mM each probe). The RT-PCR was carried out using the ABI
707 StepOnePlus thermocycler (Life Technologies, Grand Island, NY). The S-N501Y, S-E484K, and S-
708 L452R assays were carried out under the following running conditions: 25°C for 2 min, then 50°C
709 for 15 min, followed by 10 min at 95°C and 45 cycles of 95°C for 15 s and 65°C for 1 min. The Δ
710 69–70 / Δ242–244 assays were run under the following conditions: 25°C for 2 min, then 50°C for
711 15 min, followed by 10 min at 95°C and 45 cycles of 95°C for 15 s and 60°C for 1 min. Samples

712 displaying typical amplification curves above the threshold were considered positive. Samples that
713 yielded a negative result or results in the S-Δ69–70/ Δ242–244 assays or were positive for S-501Y
714 P2, S-484K P2, and S-452R P2 were considered screen positive and assigned to a VOC.

715 ***Neutralizing antibody assays for SARS-CoV-2:*** Serially diluted heat-inactivated plasma
716 (1:3) and 300 PFU of SARS-CoV-2 variants are combined in Dulbecco's Modified Eagle's Medium
717 (DMEM) and incubated at 37°C 5% CO₂ for 30 minutes. After neutralization, the antibody-virus
718 inoculum was transferred onto Vero E6 cells (ATCC C1008) and incubated at 34°C 5% CO₂ for 1
719 hour. The Vero cells were seeded in a 96-well plate at 3.5×10⁴ cells/well 24 hours before the assay.
720 After 1 hour, 1% methylcellulose (Sigma Aldrich) at a 1:1 ratio was overlaid on the infected Vero cell
721 layer. Plates were incubated at 34°C 5% CO₂ for 24 hours. After 24 hours, the medium was carefully
722 removed, and the plates were fixed with 100µl of 10% neutral buffered formalin for 1 hour at room
723 temperature. Following fixation, plates were washed 3 times using deionized (DI) water, and 50µl of
724 ice-cold Methanol supplemented with 0.3% hydrogen peroxide was added to each well. Plates were
725 incubated at -20°C for 10 minutes followed by 20 minutes at room temperature. Methanol/Hydrogen
726 peroxide was removed by washing the plates 3 times with DI water. Once washed, plates were
727 blocked for 1 hour with 5% non-fat dry milk in PBS. The blocking solution was removed and 40µl/well
728 of anti-SARS Nucleocapsid antibody (Novus Biologicals NB100-56576) at 1:1000 in 5% non-fat dry
729 milk/PBS was added. Plates were incubated overnight at 4°C followed by a 2-hour room temperature
730 incubation (with agitation). Plates were washed 4 times with PBS and 40µl of HRP anti-rabbit IgG
731 antibody (Biolegend) 1:1500 was added to each well and incubated for 2 hours at room temperature.
732 Plates were developed using True Blue HRP substrate and imaged on an ELIPOT reader. Each plate
733 was set up with a positive neutralization control and a negative control (Virus/no plasma). The half
734 maximum inhibitory concentration (IC₅₀) was calculated by non-linear regression analysis using
735 normalized counted foci on Prism 7 (GraphPad Software). 100% infectivity was obtained by
736 normalizing the number of foci counted in the wells derived from the cells infected with the SARS-
737 CoV-2 virus in the absence of plasma.

738 ***Histology of animal lungs:*** Mouse lungs were preserved in 10% neutral buffered formalin for
739 48 hours before transferring to 70% ethanol. The tissue sections were then embedded in paraffin
740 blocks and sectioned at 8 μ m thickness. Slides were deparaffinized and rehydrated before staining for
741 hematoxylin and eosin for routine immunopathology. IHC was performed on mice lung tissues probed
742 with SARS/SARS-CoV-2 Coronavirus NP Monoclonal Antibody (B46F) (Product # MA1-7404) at a
743 dilution of 1:100. The antibody showed significant staining in lung tissues of non-immunized, SARS-
744 CoV-2 infected mice when compared to the tissues of the vaccinated group of mice. This method was
745 meant to demonstrate the relative expression of the Nucleocapsid protein between non-immunized
746 Mock and immunized samples. Further CD8 $^{+}$ T cell and CD4 $^{+}$ T cell-specific staining were performed
747 to identify the T cell infiltration among the immunized and Mock groups.

748 ***Peripheral blood mononuclear cells isolation and T cell stimulation:*** Peripheral blood
749 mononuclear cells (PBMCs) from COVID-19 patients were isolated from the blood using Ficoll (GE
750 Healthcare) density gradient media and transferred into 96-well plates at a concentration of 2.5 \times
751 10^6 viable cells per ml in 200 μ l (0.5 \times 10^6 cells per well) of RPMI-1640 media (Hyclone) supplemented
752 with 10% (v/v) FBS (HyClone), Sodium Pyruvate (Lonza), L-Glutamine, Nonessential Amino Acids,
753 and antibiotics (Corning). A fraction of the blood was kept separated to perform HLA genotyping of
754 the patients and select only the HLA-A*02:01 and/or DRB1*01:01 positive individuals. Subsequently,
755 cells were then stimulated with 10 μ g/ml of each one of the 22 individual T cell peptide-epitopes (16
756 CD8 $^{+}$ T cell peptides and 6 CD4 $^{+}$ T cell peptides) and incubated in humidified 5% CO₂ at 37°C. Post-
757 incubation, cells were stained by flow cytometry analysis, or transferred in IFN- γ ELISpot plates. The
758 same isolation protocol was followed for healthy donor (HD) samples obtained in 2018. PBMC
759 samples were kept frozen in liquid nitrogen in 10% FBS in DMSO. Upon thawing, HD PBMCs were
760 stimulated in the same manner for the IFN- γ ELISpot technique.

761 ***ELISpot assay:*** COVID-19 patients were first screened for their HLA status (DRB1*01:01 $^{+}$
762 positive = 108, HLA-A*02:01 $^{+}$ positive = 83, DRB1*01:01 $^{+}$ and HLA-A*02:01 $^{+}$ positive = 19). The 108
763 DRB1*01:01 positive individuals were used to assess the CD4 $^{+}$ T-cell response against our SL-CoVs-

764 conserved SARS-CoV-2-derived class-II restricted epitopes by IFN- γ ELISpot. Subsequently, we
765 assessed the CD8 $^{+}$ T cell response against our SL-CoVs conserved SARS-CoV-2 derived class-I
766 restricted epitopes in the 83 HLA-A*02:01 positive individuals representing different disease severity
767 categories. ELISpot assay was performed as described previously in (33, 39).

768 **Flow cytometry analysis:** After 72 hours of stimulation with each SARS-CoV-2 class-I or
769 class-II restricted peptide, PBMCs (0.5×10^6 cells) from 147 patients were stained for the detection of
770 surface markers and subsequently analyzed by flow cytometry. First, the cells were stained with a
771 live/dead fixable dye (Zombie Red dye, 1/800 dilution – BioLegend, San Diego, CA) for 20 minutes at
772 room temperature, to exclude dying/apoptotic cells. Cells were stained for 45 minutes at room
773 temperature with five different HLA-A*02*01 restricted tetramers and/or five HLA-DRB1*01:01
774 restricted tetramers (PE-labelled) specific toward the SARS-CoV-2 CD8 $^{+}$ T cell epitopes Orf1ab₂₂₁₀₋
775 ₂₂₁₈, Orf1ab₄₂₈₃₋₄₂₉₁, S₁₂₂₀₋₁₂₂₈, ORF10₃₋₁₁ and toward the CD4 $^{+}$ T cell epitopes ORF1a₁₃₅₀₋₁₃₆₅, S₁₋₁₃,
776 M₁₇₆₋₁₉₀, ORF6₁₂₋₂₆, respectively. We have optimized our tetramer staining according to the
777 instructions published by Dolton et al. (40) As a negative control aiming to assess tetramer staining
778 specificity, we stained HLA-A*02*01-HLA-DRB1*01:01-negative patients with our four tetramers.
779 Subsequently, we used anti-human antibodies for surface marker staining: anti-CD62L, anti-CD69,
780 anti-CD4, anti-CD8, and anti-IFN- γ . mAbs against these various cell markers were added to the cells
781 in phosphate-buffered saline (PBS) containing 1% FBS and 0.1% sodium azide (fluorescence-
782 activated cell sorter [FACS] buffer) and left for 30 minutes at 4°C. At the end of the incubation period,
783 the cells were washed twice with FACS buffer and fixed with 4% paraformaldehyde (PFA, Affymetrix,
784 Santa Clara, CA). A total of ~200,000 lymphocyte-gated PBMCs (140,000 alive CD45 $^{+}$) were
785 acquired by Fortessa X20 (Becton Dickinson, Mountain View, CA) and analyzed using FlowJo
786 software (TreeStar, Ashland, OR).

787 **Enzyme-linked immunosorbent assay (ELISA):** Serum antibodies specific for epitope
788 peptides and SARS-CoV-2 proteins were detected by ELISA. 96-well plates (Dynex Technologies,
789 Chantilly, VA) were coated with 0.5 μ g peptides, 100 ng S or N protein per well at 4°C overnight,

790 respectively, and then washed three times with PBS and blocked with 3% BSA (in 0.1% PBST) for 2 h
791 at 37°C. After blocking, the plates were incubated with serial dilutions of the sera (100 µl/well, in two-
792 fold dilution) for 2 hours at 37°C. The bound serum antibodies were detected with HRP-conjugated
793 goat anti-mouse IgG and chromogenic substrate TMB (ThermoFisher, Waltham, MA). The cut-off for
794 seropositivity was set as the mean value plus three standard deviations (3SD) in HBC-S control sera.
795 The binding of the epitopes to the sera of SARS-CoV-2 infected samples was detected by ELISA
796 using the same procedure, 96-well plates were coated with 0.5 µg peptides and sera were diluted at
797 1:50. All ELISA studies were performed at least twice.

798 **Data and Code Availability:** The human-specific SARS-CoV-2 complete genome sequences
799 were retrieved from the GISAID database, whereas the SARS-CoV-2 sequences for pangolin (*Manis*
800 *javanica*), and bat (*Rhinolophus affinis*, *Rhinolophus malayanus*) were retrieved from NCBI. Genome
801 sequences of previous strains of SARS-CoV for humans, bats, civet cats, and camels were retrieved
802 from the NCBI GenBank.

803

ACKNOWLEDGMENTS

804 This work is supported by the Fast-Grant PR12501 from Emergent Ventures, by a Gavin
805 Herbert Eye Institute internal grant, by Public Health Service Research grants AI158060, AI174383,
806 AI150091, AI143348, AI147499, AI143326, AI138764, AI124911, and AI110902 from the National
807 Institutes of Allergy and Infectious Diseases (NIAID) to LBM.

808

809

810

811

812

813

814

815

816

817

818

819

REFERENCES

820 1. Zheng, C., W. Shao, X. Chen, B. Zhang, G. Wang, and W. Zhang. 2022. Real-world
821 effectiveness of COVID-19 vaccines: a literature review and meta-analysis. *Int J Infect Dis*
822 114: 252-260.

823 2. Planas, D., T. Bruel, L. Grzelak, F. Guivel-Benhassine, I. Staropoli, F. Porrot, C. Planchais, J.
824 Buchrieser, M. M. Rajah, E. Bishop, M. Albert, F. Donati, M. Prot, S. Behillil, V. Enouf, M.
825 Maquart, M. Smati-Lafarge, E. Varon, F. Schortgen, L. Yahyaoui, M. Gonzalez, J. De Seze, H.
826 Pere, D. Veyer, A. Seve, E. Simon-Loriere, S. Fafi-Kremer, K. Stefic, H. Mouquet, L.
827 Hocqueloux, S. van der Werf, T. Prazuck, and O. Schwartz. 2021. Sensitivity of infectious
828 SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. *Nat Med* 27: 917-924.

829 3. Washington, N. L., K. Gangavarapu, M. Zeller, A. Bolze, E. T. Cirulli, K. M. Schiabor Barrett, B.
830 B. Larsen, C. Anderson, S. White, T. Cassens, S. Jacobs, G. Levan, J. Nguyen, J. M.
831 Ramirez, 3rd, C. Rivera-Garcia, E. Sandoval, X. Wang, D. Wong, E. Spencer, R. Robles-
832 Sikisaka, E. Kurzban, L. D. Hughes, X. Deng, C. Wang, V. Servellita, H. Valentine, P. De Hoff,
833 P. Seaver, S. Sathe, K. Gietzen, B. Sickler, J. Antico, K. Hoon, J. Liu, A. Harding, O. Bakhtar,
834 T. Basler, B. Austin, D. MacCannell, M. Isaksson, P. G. Febbo, D. Becker, M. Laurent, E.
835 McDonald, G. W. Yeo, R. Knight, L. C. Laurent, E. de Feo, M. Worobey, C. Y. Chiu, M. A.
836 Suchard, J. T. Lu, W. Lee, and K. G. Andersen. 2021. Emergence and rapid transmission of
837 SARS-CoV-2 B.1.1.7 in the United States. *Cell* 184: 2587-2594 e2587.

838 4. Burki, T. K. 2022. Omicron variant and booster COVID-19 vaccines. *Lancet Respir Med* 10:
839 e17.

840 5. Liu, L., S. Iketani, Y. Guo, J. F. Chan, M. Wang, L. Liu, Y. Luo, H. Chu, Y. Huang, M. S. Nair,
841 J. Yu, K. K. Chik, T. T. Yuen, C. Yoon, K. K. To, H. Chen, M. T. Yin, M. E. Sobieszczky, Y.
842 Huang, H. H. Wang, Z. Sheng, K. Y. Yuen, and D. D. Ho. 2022. Striking antibody evasion
843 manifested by the Omicron variant of SARS-CoV-2. *Nature* 602: 676-681.

844 6. Konings, F., M. D. Perkins, J. H. Kuhn, M. J. Pallen, E. J. Alm, B. N. Archer, A. Barakat, T.
845 Bedford, J. N. Bhiman, L. Caly, L. L. Carter, A. Cullinane, T. de Oliveira, J. Druce, I. El Masry,
846 R. Evans, G. F. Gao, A. E. Gobalenya, E. Hamblion, B. L. Herring, E. Hodcroft, E. C. Holmes,
847 M. Kakkar, S. Khare, M. P. G. Koopmans, B. Korber, J. Leite, D. MacCannell, M. Marklewitz,
848 S. Maurer-Stroh, J. A. M. Rico, V. J. Munster, R. Neher, B. O. Munnink, B. I. Pavlin, M. Peiris,
849 L. Poon, O. Pybus, A. Rambaut, P. Resende, L. Subissi, V. Thiel, S. Tong, S. van der Werf, A.
850 von Gottberg, J. Ziebuhr, and M. D. Van Kerkhove. 2021. SARS-CoV-2 Variants of Interest
851 and Concern naming scheme conducive for global discourse. *Nat Microbiol* 6: 821-823.

852 7. Harvey, W. T., A. M. Carabelli, B. Jackson, R. K. Gupta, E. C. Thomson, E. M. Harrison, C.
853 Ludden, R. Reeve, A. Rambaut, C.-G. U. Consortium, S. J. Peacock, and D. L. Robertson.
854 2021. SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev Microbiol* 19: 409-
855 424.

856 8. Focosi, D., R. Quiroga, S. McConnell, M. C. Johnson, and A. Casadevall. 2023. Convergent
857 Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves
858 Emerge. *Int J Mol Sci* 24.

859 9. Hvidt, A. K., E. A. M. Baerends, O. S. Sogaard, N. B. Staerke, D. Raben, J. Reekie, H.
860 Nielsen, I. S. Johansen, L. Wiese, T. L. Benfield, K. K. Iversen, A. B. Mustafa, M. R. Juhl, K. T.
861 Petersen, S. R. Ostrowski, S. O. Lindvig, L. D. Rasmussen, M. H. Schleimann, S. D.
862 Andersen, A. K. Juhl, L. L. Dietz, S. R. Andreasen, J. Lundgren, L. Ostergaard, M. Tolstrup,
863 and E. S. Group. 2022. Comparison of vaccine-induced antibody neutralization against SARS-
864 CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. *Front
865 Med (Lausanne)* 9: 994160.

866 10. Hawman, D. W., K. Meade-White, J. Archer, S. S. Leventhal, D. Wilson, C. Shaia, S. Randall,
867 A. P. Khandhar, K. Krieger, T. Y. Hsiang, M. Gale, P. Berglund, D. H. Fuller, H. Feldmann, and
868 J. H. Erasmus. 2022. SARS-CoV2 variant-specific replicating RNA vaccines protect from
869 disease following challenge with heterologous variants of concern. *Elife* 11.

870 11. Marks, P. W., P. A. Gruppuso, and E. Y. Adashi. 2023. Urgent Need for Next-Generation
871 COVID-19 Vaccines. *Jama* 329: 19-20.

872 12. Rubin, E. J., L. R. Baden, P. Marks, and S. Morrissey. 2022. Audio Interview: The FDA and
873 Covid-19 Vaccines. *The New England journal of medicine* 387: e60.

874 13. Tai, W., X. Zhang, Y. Yang, J. Zhu, and L. Du. 2022. Advances in mRNA and other vaccines
875 against MERS-CoV. *Transl Res* 242: 20-37.

876 14. Alkhovsky, S., S. Lenshin, A. Romashin, T. Vishnevskaya, O. Vyshemirsky, Y. Bulycheva, D.
877 Lvov, and A. Gitelman. 2022. SARS-like Coronaviruses in Horseshoe Bats (*Rhinolophus* spp.)
878 in Russia, 2020. *Viruses* 14.

879 15. Delaune, D., V. Hul, E. A. Karlsson, A. Hassanin, T. P. Ou, A. Baidaliuk, F. Gambaro, M. Prot,
880 V. T. Tu, S. Chea, L. Keatts, J. Mazet, C. K. Johnson, P. Buchy, P. Dussart, T. Goldstein, E.
881 Simon-Loriere, and V. Duong. 2021. A novel SARS-CoV-2 related coronavirus in bats from
882 Cambodia. *Nat Commun* 12: 6563.

883 16. Zhou, H., J. Ji, X. Chen, Y. Bi, J. Li, Q. Wang, T. Hu, H. Song, R. Zhao, Y. Chen, M. Cui, Y.
884 Zhang, A. C. Hughes, E. C. Holmes, and W. Shi. 2021. Identification of novel bat
885 coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. *Cell*
886 184: 4380-4391 e4314.

887 17. Wacharapluesadee, S., C. W. Tan, P. Maneeorn, P. Duengkae, F. Zhu, Y. Joyjinda, T.
888 Kaewpom, W. N. Chia, W. Ampoot, B. L. Lim, K. Worachotsueptrakun, V. C. Chen, N.
889 Sirichan, C. Ruchisrisarod, A. Rodpan, K. Noradechanon, T. Phaichana, N. Jantarat, B.
890 Thongnumchaima, C. Tu, G. Crameri, M. M. Stokes, T. Hemachudha, and L. F. Wang. 2021.
891 Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in
892 Southeast Asia. *Nat Commun* 12: 972.

893 18. Starr, T. N., S. K. Zepeda, A. C. Walls, A. J. Greaney, S. Alkhovsky, D. Veesler, and J. D.
894 Bloom. 2022. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. *Nature* 603:
895 913-918.

896 19. Letko, M., A. Marzi, and V. Munster. 2020. Functional assessment of cell entry and receptor
897 usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat Microbiol* 5: 562-569.

898 20. Abeywardhana, S., M. Premathilaka, U. Bandaranayake, D. Perera, and L. D. C. Peiris. 2023.
899 In silico study of SARS-CoV-2 spike protein RBD and human ACE-2 affinity dynamics across
900 variants and Omicron subvariants. *J Med Virol* 95: e28406.

901 21. Solanki, K., S. Rajpoot, A. Kumar, J. Z. KY, T. Ohishi, N. Hirani, K. Wadhonkar, P. Patidar, Q.
902 Pan, and M. S. Baig. 2022. Structural analysis of spike proteins from SARS-CoV-2 variants of
903 concern highlighting their functional alterations. *Future virology*.

904 22. Kumar, S., T. S. Thambiraja, K. Karuppanan, and G. Subramaniam. 2022. Omicron and Delta
905 variant of SARS-CoV-2: A comparative computational study of spike protein. *J Med Virol* 94:
906 1641-1649.

907 23. Sunagar, R., A. Singh, and S. Kumar. 2023. SARS-CoV-2: Immunity, Challenges with Current
908 Vaccines, and a Novel Perspective on Mucosal Vaccines. *Vaccines (Basel)* 11.

909 24. Sharma, S., T. Vercruyse, L. Sanchez-Felipe, W. Kerstens, M. Rasulova, L. Bervoets, C. De
910 Keyzer, R. Abdelnabi, C. S. Foo, V. Lemmens, D. Van Looveren, P. Maes, G. Baele, B.
911 Weynand, P. Lemey, J. Neyts, H. J. Thibaut, and K. Dallmeier. 2022. Updated vaccine
912 protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents
913 transmission in hamsters. *Nat Commun* 13: 6644.

914 25. Mallapaty, S., E. Callaway, M. Kozlov, H. Ledford, J. Pickrell, and R. Van Noorden. 2021. How
915 COVID vaccines shaped 2021 in eight powerful charts. *Nature* 600: 580-583.

916 26. Tanriover, M. D., H. L. Doganay, M. Akova, H. R. Guner, A. Azap, S. Akhan, S. Kose, F. S.
917 Erdinc, E. H. Akalin, O. F. Tabak, H. Pullukcu, O. Batum, S. Simsek Yavuz, O. Turhan, M. T.
918 Yildirmak, I. Koksal, Y. Tasova, V. Korten, G. Yilmaz, M. K. Celen, S. Altin, I. Celik, Y.
919 Bayindir, I. Karaoglan, A. Yilmaz, A. Ozkul, H. Gur, S. Unal, and G. CoronaVac Study. 2021.
920 Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim

921 results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. *Lancet* 398:
922 213-222.

923 27. Ella, R., S. Reddy, W. Blackwelder, V. Potdar, P. Yadav, V. Sarangi, V. K. Aileni, S. Kanungo,
924 S. Rai, P. Reddy, S. Verma, C. Singh, S. Redkar, S. Mohapatra, A. Pandey, P. Ranganadin,
925 R. Gumashta, M. Multani, S. Mohammad, P. Bhatt, L. Kumari, G. Sapkal, N. Gupta, P.
926 Abraham, S. Panda, S. Prasad, B. Bhargava, K. Ella, K. M. Vadrevu, and C. S. Group. 2021.
927 Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine
928 (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. *Lancet* 398:
929 2173-2184.

930 28. Polack, F. P., S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, J. L. Perez, G.
931 Perez Marc, E. D. Moreira, C. Zerbini, R. Bailey, K. A. Swanson, S. Roychoudhury, K. Koury,
932 P. Li, W. V. Kalina, D. Cooper, R. W. Frenck, Jr., L. L. Hammitt, O. Tureci, H. Nell, A.
933 Schaefer, S. Uhal, D. B. Tresnan, S. Mather, P. R. Dormitzer, U. Sahin, K. U. Jansen, W. C.
934 Gruber, and C. C. T. Group. 2020. Safety and Efficacy of the BNT162b2 mRNA Covid-19
935 Vaccine. *N Engl J Med* 383: 2603-2615.

936 29. Baden, L. R., H. M. El Sahly, B. Essink, K. Kotloff, S. Frey, R. Novak, D. Diemert, S. A.
937 Spector, N. Roush, C. B. Creech, J. McGettigan, S. Khetan, N. Segall, J. Solis, A. Brosz, C.
938 Fierro, H. Schwartz, K. Neuzil, L. Corey, P. Gilbert, H. Janes, D. Follmann, M. Marovich, J.
939 Mascola, L. Polakowski, J. Ledgerwood, B. S. Graham, H. Bennett, R. Pajon, C. Knightly, B.
940 Leav, W. Deng, H. Zhou, S. Han, M. Ivarsson, J. Miller, T. Zaks, and C. S. Group. 2021.
941 Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *N Engl J Med* 384: 403-416.

942 30. Thiele, T., K. Weisser, L. Schonborn, M. B. Funk, G. Weber, A. Greinacher, and B. Keller-
943 Stanislawski. 2022. Laboratory confirmed vaccine-induced immune thrombotic
944 thrombocytopenia: Retrospective analysis of reported cases after vaccination with ChAdOx-1
945 nCoV-19 in Germany. *Lancet Reg Health Eur* 12: 100270.

946 31. Ghafouri, F., R. A. Cohan, F. Noorbakhsh, H. Samimi, and V. Haghpanah. 2020. An in-silico
947 approach to develop of a multi-epitope vaccine candidate against SARS-CoV-2 envelope (E)
948 protein. *Res Sq.*

949 32. Palatnik-de-Sousa, C. B. 2020. What Would Jenner and Pasteur Have Done About COVID-19
950 Coronavirus? The Urges of a Vaccinologist. *Front Immunol* 11: 2173.

951 33. Prakash, S., R. Srivastava, P. G. Coulon, N. R. Dhanushkodi, A. A. Chentoufi, D. F. Tifrea, R.
952 A. Edwards, C. J. Figueroa, S. D. Schubl, L. Hsieh, M. J. Buchmeier, M. Bouziane, A. B.
953 Nesburn, B. D. Kuppermann, and L. BenMohamed. 2021. Genome-Wide B Cell, CD4(+), and
954 CD8(+) T Cell Epitopes That Are Highly Conserved between Human and Animal
955 Coronaviruses, Identified from SARS-CoV-2 as Targets for Preemptive Pan-Coronavirus
956 Vaccines. *J Immunol* 206: 2566-2582.

957 34. Hodcroft, E. B., D. B. Domman, D. J. Snyder, K. Y. Oguntuyo, M. Van Diest, K. H. Densmore,
958 K. C. Schwalm, J. Femling, J. L. Carroll, R. S. Scott, M. M. Whyte, M. W. Edwards, N. C. Hull,
959 C. G. Kevil, J. A. Vanchiere, B. Lee, D. L. Dinwiddie, V. S. Cooper, and J. P. Kamil. 2021.
960 Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting
961 amino acid position 677. *medRxiv*.

962 35. Case, J. B., A. L. Bailey, A. S. Kim, R. E. Chen, and M. S. Diamond. 2020. Growth, detection,
963 quantification, and inactivation of SARS-CoV-2. *Virology* 548: 39-48.

964 36. Gatz, S. A., H. Pohla, and D. J. Schendel. 2000. A PCR-SSP method to specifically select
965 HLA-A*0201 individuals for immunotherapeutic studies. *Tissue Antigens* 55: 532-547.

966 37. Olerup, O., and H. Zetterquist. 1991. HLA-DRB1*01 subtyping by allele-specific PCR
967 amplification: a sensitive, specific and rapid technique. *Tissue antigens* 37: 197-204.

968 38. Buchfink, B., K. Reuter, and H. G. Drost. 2021. Sensitive protein alignments at tree-of-life
969 scale using DIAMOND. *Nat Methods* 18: 366-368.

970 39. Coulon, P.-G., S. Prakash, N. R. Dhanushkodi, R. Srivastava, L. Zayou, D. F. Tifrea, R. A.
971 Edwards, J. F. Cesar, S. D. Schubl, L. Hsieh, A. B. Nesburn, B. D. Kuppermann, E. Bahraoui,

972 H. Vahed, D. Gil, T. M. Jones, J. B. Ulmer, and L. BenMohamed. 2022. High Frequencies of
973 PD-1⁺TIM3⁺TIGIT⁺CTLA4⁺ Functionally Exhausted SARS-CoV-2-Specific CD4⁺ and CD8⁺ T
974 Cells Associated with Severe Disease in Critically ill COVID-19 Patients. *bioRxiv*:
975 2022.2001.2030.478343.

976 40. Dolton, G., K. Tungatt, A. Lloyd, V. Bianchi, S. M. Theaker, A. Trimby, C. J. Holland, M. Donia,
977 A. J. Godkin, D. K. Cole, P. T. Straten, M. Peakman, I. M. Svane, and A. K. Sewell. 2015.
978 More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers.
979 *Immunology* 146: 11-22.

980

981

FIGURE LEGENDS

982 **Figure 1.** Screening of COVID-19 patients based on SARS-CoV-2 variants and
983 subsequent evaluation of IFN- γ CD8 $^{+}$ and CD4 $^{+}$ T cell responses for conserved CD8 $^{+}$, and CD4 $^{+}$
984 T cell “asymptomatic” epitopes: (A) Experimental plan showing screening process of COVID-19
985 patients ($n = 210$) into Asymptomatic and Symptomatic categories based on clinical parameters.
986 Blood and nasopharyngeal swabs were collected from all the subjects and a qRT-PCR assay was
987 performed. Six novel nonsynonymous mutations ($\Delta 69-70$, $\Delta 242-244$, N501Y, E484K, L452R, and
988 T478K) were used to identify the haplotypes unique to different SARS-CoV-2 variants of concern
989 (Omicron (B.1.1.529 (BA.1)), Omicron (B.1.1.529 (BA.2)), Alpha (B.1.1.7), Beta (B.1.351), Gamma
990 (P.1), Delta (B.1.617.2), and Epsilon (B.1.427/B.1.429)) and variants of interest (Eta (B.1.525), R.1,
991 Zeta (P.2), Iota (B.1.526) and B.1.2/501Y or B.1.1.165). (B) ELISpot images and bar diagrams
992 showing average frequencies of IFN- γ producing cell spots from immune cells from PBMCs (1×10^6
993 cells per well) of COVID-19 infected with highly pathogenic SARS-CoV-2 variants of concern Beta
994 (B.1.351) (*left panel*) and Omicron (B.1.1.529) (*right panel*). Cells were stimulated for 48 hours with
995 10mM of 16 immunodominant CD8 $^{+}$ T cell peptides derived from SARS-CoV-2 structural (Spike,
996 Envelope, Membrane) and nonstructural (orf1ab, ORF6, ORF7b, ORF8a, ORF10) proteins. (C)
997 ELISpot images and bar diagrams showing average frequencies of IFN- γ producing cell spots from
998 immune cells from PBMCs (1×10^6 cells per well) of COVID-19 infected with SARS-CoV-2 variants of
999 concern Alpha (B.1.1.7) (*left panel*) and Omicron (B.1.1.529) (*right panel*). Cells were stimulated for
1000 48 hours with 10mM of 6 immunodominant CD4 $^{+}$ T cell peptides derived from SARS-CoV-2 structural
1001 (Spike, Membrane, Nucleocapsid) and nonstructural (ORF1a, ORF6, ORF8a) proteins. The bar
1002 diagrams show the average/mean numbers (\pm SD) of IFN- γ -spot forming cells (SFCs) after CD8 $^{+}$ T
1003 cell peptide-stimulation PBMCs of Asymptomatic and Symptomatic COVID-19 patients. Dotted lines
1004 represent an arbitrary threshold set to evaluate the relative magnitude of the response. A strong

1005 response is defined for mean SFCs > 25 per 1×10^6 stimulated PBMCs. Results were considered
1006 statistically significant at $P < 0.05$.

1007 **Figure 2. Protection induced against six SARS-CoV-2 variants of concern in triple**
1008 **transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice following immunization with a pan-**
1009 **Coronavirus vaccine incorporating conserved human B, CD4⁺, and CD8⁺ T cell “asymptomatic”**
1010 **epitopes: (A)** Experimental scheme of vaccination and challenge triple transgenic HLA-A*02:01/HLA-
1011 DRB1*01:01-hACE-2 mice. Triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice (7-8-
1012 week-old, $n = 60$) were immunized subcutaneously on Days 0 and 14 with a multi-epitope pan-
1013 Coronavirus vaccine consisting of a pool of conserved B, CD4⁺ T cell and CD8⁺ T cell human epitope
1014 peptides. The pool of peptides comprised 25 μ g of each of the 16 CD8⁺ T cell peptides, 6 CD4⁺ T cell
1015 peptides, and 7 B-cell peptides. The final composition of peptides was mixed with 25 μ g of CpG and
1016 25 μ g of Alum. Mock-vaccinated mice were used as controls (*Mock*). Fourteen days following the
1017 second immunization, mice were intranasally challenged with each of the six different SARS-CoV-2
1018 variants of concern (WA/USA2020, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2),
1019 and Omicron (B.1.1.529)). Vaccinated and mock-vaccinated mice were followed 14 days post-
1020 challenge for COVID-like symptoms, weight loss, survival, and virus replication. **(B)** Percent weight
1021 change recorded daily for 14 days p.i. in vaccinated and mock-vaccinated mice following the
1022 challenge with each of the six different SARS-CoV-2 variants. **(C)** Kaplan-Meir survival plots for
1023 vaccinated and mock-vaccinated mice following the challenge with each of the six different SARS-
1024 CoV-2 variants. **(D)** Virus replication in vaccinated and mock-vaccinated mice following the challenge
1025 with each of the six different SARS-CoV-2 variants detected in throat swabs on Days 2, 4, 6, 8, 10,
1026 and 14. The indicated P values are calculated using the unpaired *t*-test, comparing results obtained in
1027 vaccinated VERSUS mock-vaccinated mice.

1028 **Figure 3. Histopathology and immunohistochemistry of the lungs from in triple**
1029 **transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice vaccinated and mock-vaccinated mice.**

1030 (A) Representative images of hematoxylin and Eosin (H & E) staining of the lungs harvested on day
1031 14 p.i. from vaccinated (*left panels*) and mock-vaccinated (*right panels*) mice. (B) Representative
1032 immunohistochemistry (IHC) sections of the lungs were harvested on Day 14 p.i. from vaccinated (*left*
1033 *panels*) and mock-vaccinated (*right panels*) mice and stained with SARS-CoV-2 Nucleocapsid
1034 antibody. Black arrows point to the antibody staining. Fluorescence microscopy images showing
1035 infiltration of CD8⁺ T cells (C) and of CD4⁺ T cells (D) in the lungs from vaccinated (*left panels*) and
1036 mock-vaccinated (*right panels*) mice. Lung sections were co-stained using DAPI (*blue*) and mAb
1037 specific to CD8⁺ T cells (*Pink*) (magnification, 20x). The white arrows point to CD8⁺ and CD4⁺ T cells
1038 infiltrating the infected lungs.

1039 **Figure 4. The effect of Pan-Coronavirus immunization on CD8⁺ and CD4⁺ T cell function**

1040 **and memory response:** FACS plots and bar graphs showing the (A) expression of CD8⁺ T cell
1041 function markers, (B) CD4⁺ T cell function associated markers, (C) CD8⁺ T effector memory response
1042 (CD44⁺CD62L⁻), and CD8⁺ T resident memory (CD103⁺CD69⁺) response, and (D) CD4⁺ T effector
1043 memory response (CD44⁺CD62L⁻), and CD4⁺ resident memory (CD103⁺CD69⁺) response in the lung
1044 of vaccinated and mock-vaccinated groups of mice infected with multiple SARS-CoV-2 variants. Bars
1045 represent means \pm SEM. Data were analyzed by student's *t*-test. Results were considered statistically
1046 significant at $P < 0.05$.

1047 **Figure 5. Immunogenicity of conserved SARS-CoV-2 CD8⁺ T cell epitopes in triple**

1048 **transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice:** ELISpot images and bar diagrams
1049 showing average frequencies of IFN- γ producing cell spots from mononuclear cells from lung tissue (1
1050 $\times 10^6$ cells per well) of vaccinated and mock-vaccinated mice challenged with (A) WA/USA2020, (B)
1051 Alpha (B.1.1.7), (C) Beta (B.1.351), (D) Gamma (P.1), (E) Delta (B.1.617.2), and (F) Omicron
1052 (B.1.1.529). The cells were stimulated for 48 hours with 10mM of 16 immunodominant CD8⁺ T cell
1053 peptides. The bar diagrams show the average/mean numbers (\pm SD) of IFN- γ -spot forming cells
1054 (SFCs) after CD8⁺ T cell peptide stimulation in lung tissues of vaccinated and mock-vaccinated mice.

1055 Dotted lines represent an arbitrary threshold set to evaluate the relative magnitude of the response. A
1056 strong response is defined for mean SFCs > 25 per 1×10^6 stimulated PBMCs. Results were
1057 considered statistically significant at $P < 0.05$.

1058 **Figure 6. The magnitude of the IFN- γ CD4 $^+$ T cell responses for 6 conserved SARS-CoV-
1059 2 CD4 $^+$ T cell epitopes in triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 mice: ELISpot**
1060 images and bar diagrams showing average frequencies of IFN- γ producing cell spots from
1061 mononuclear cells from lung tissue (1×10^6 cells per well) of vaccinated and mock-vaccinated mice
1062 challenged with (A) WA/USA2020, (B) Alpha (B.1.1.7), (C) Beta (B.1.351), (D) Gamma (P.1), (E)
1063 Delta (B.1.617.2), and (F) Omicron (B.1.1.529). Cells were stimulated for 48 hours with 10mM of 6
1064 immunodominant CD4 $^+$ T cell peptides derived from SARS-CoV-2 structural (Spike, Envelope,
1065 Membrane) and nonstructural (orf1ab, ORF6, ORF7b, ORF8a, ORF10) proteins. The bar diagrams
1066 show the average/mean numbers (\pm SD) of IFN- γ -spot forming cells (SFCs) after CD8 $^+$ T cell peptide
1067 stimulation in lung tissues of vaccinated and mock-vaccinated mice. The dotted lines represent an
1068 arbitrary threshold set to evaluate the relative magnitude of the response. A strong response is
1069 defined for mean SFCs > 25 per 1×10^6 stimulated PBMCs. Results were considered statistically
1070 significant at $P \leq 0.05$.

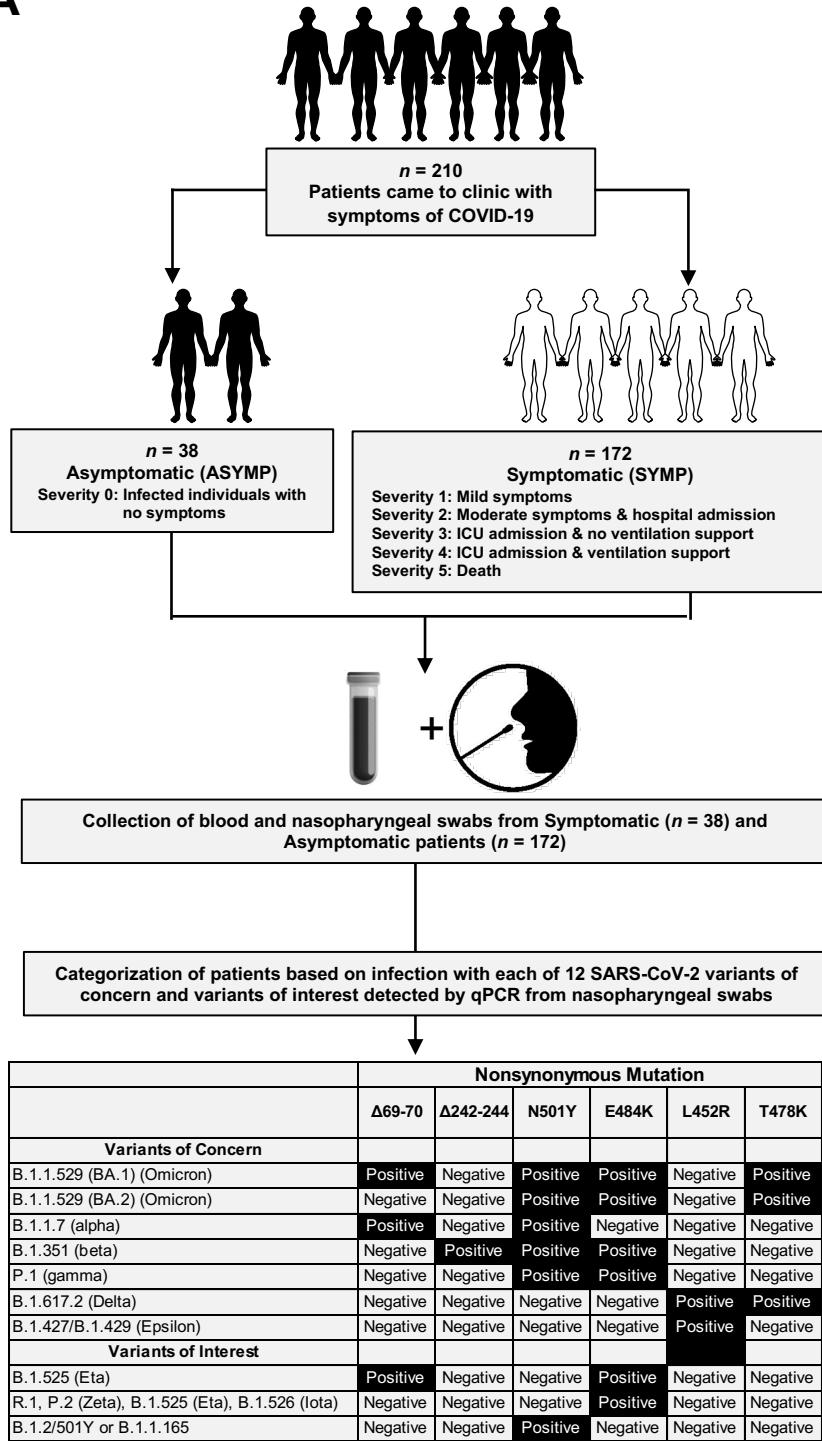
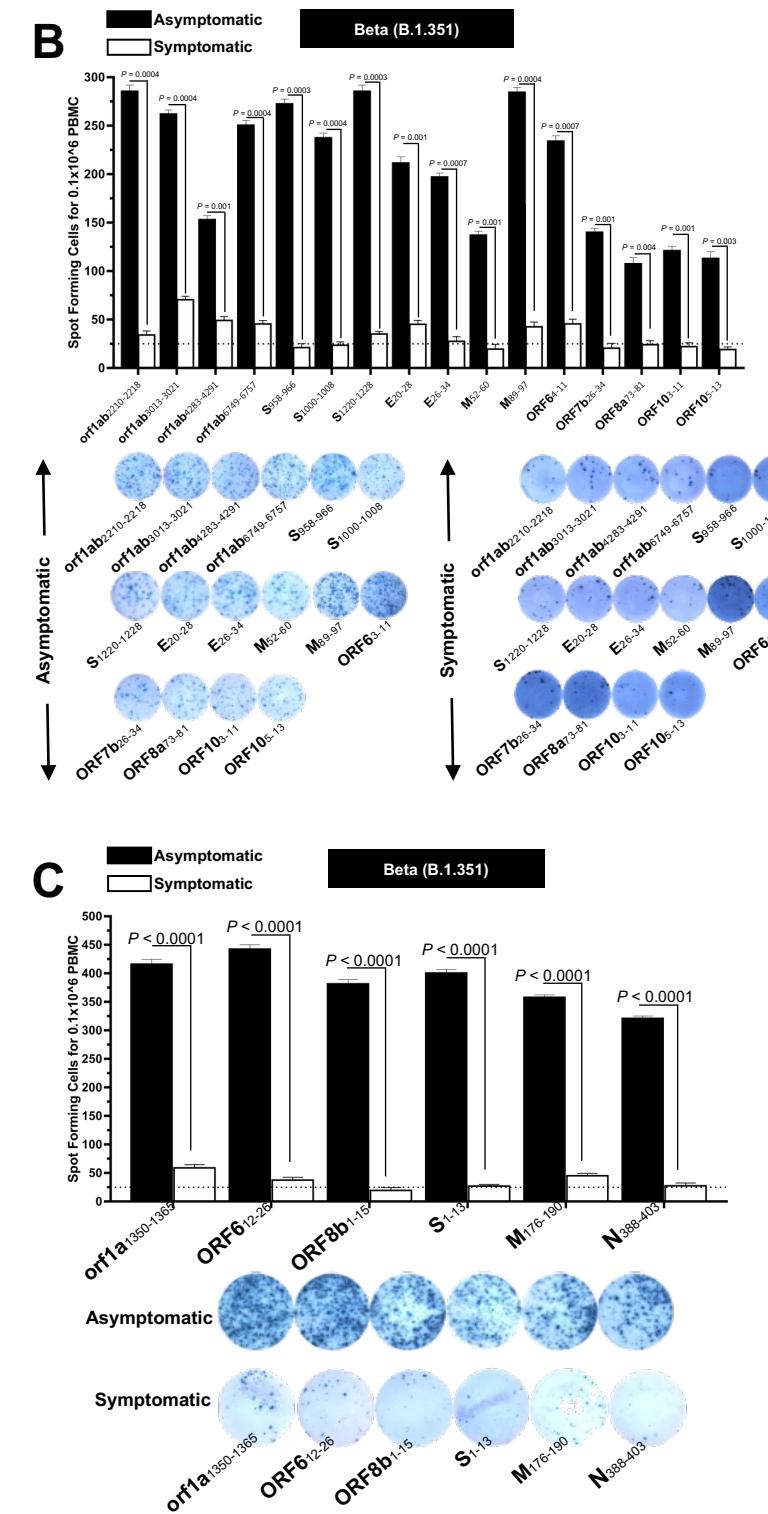
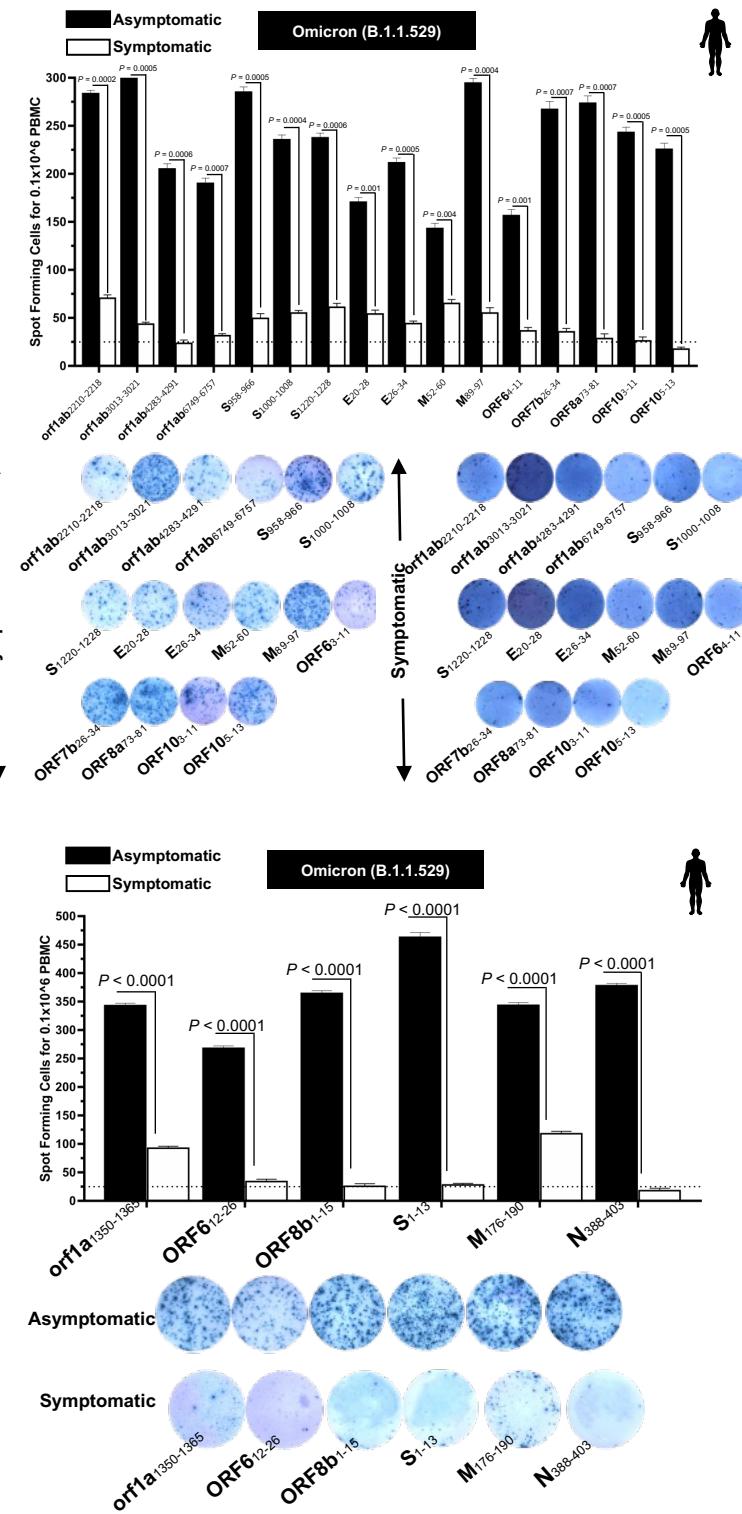
1071 **Supplemental Figure S1. Sequence homology analysis to identify the degree of the
1072 conservancy of the immunodominant CD8 $^+$ T cell epitopes among SARS-CoV-2 VOCs:**
1073 Sequence homology data for the CD8 $^+$ T cell epitopes is shown. The 16 epitopes, found to be highly
1074 immunodominant against SARS-CoV-2 variants of concern WA/USA2020, Alpha (B.1.1.7), Beta
1075 (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) were subjected to the sequence
1076 homology analysis.

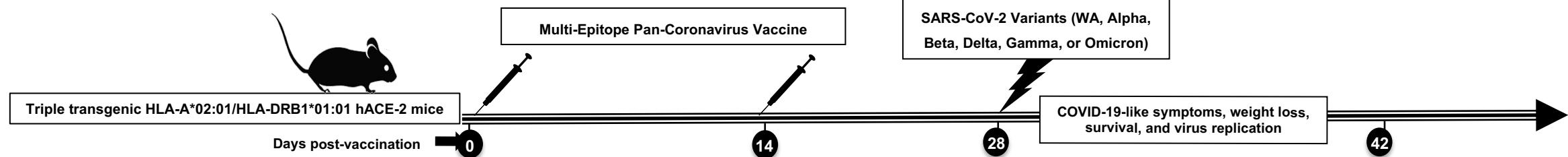
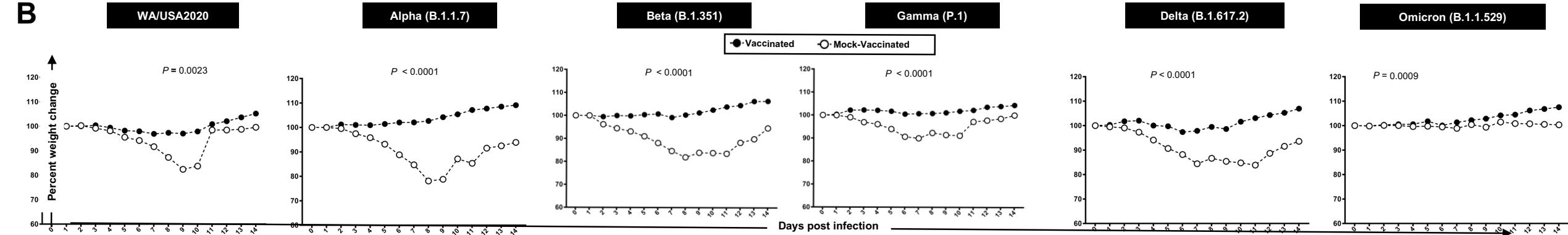
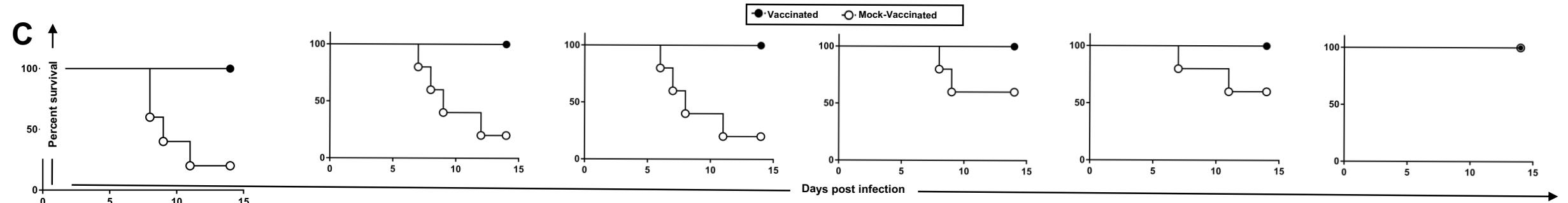
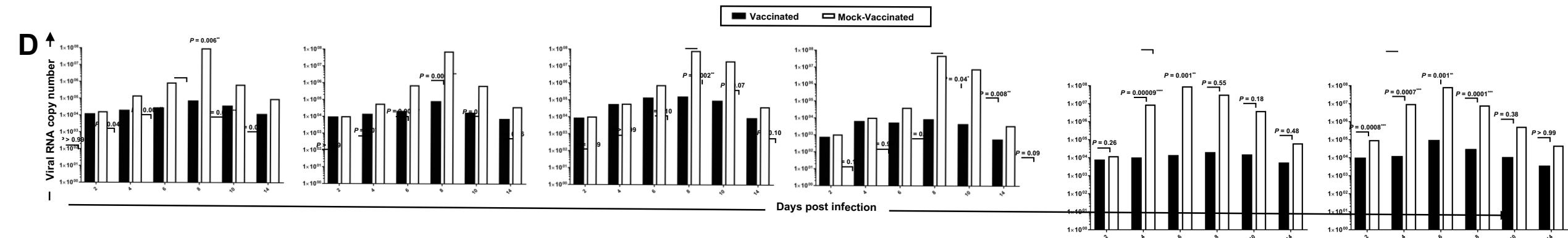
1077 **Supplemental Figure S2. Sequence homology analysis to identify the degree of the
1078 conservancy of the immunodominant CD4 $^+$ T cell epitopes among SARS-CoV-2 variants of
1079 concern:** Sequence homology data for the CD4 $^+$ T cell epitopes is shown. The 6 epitopes, found to

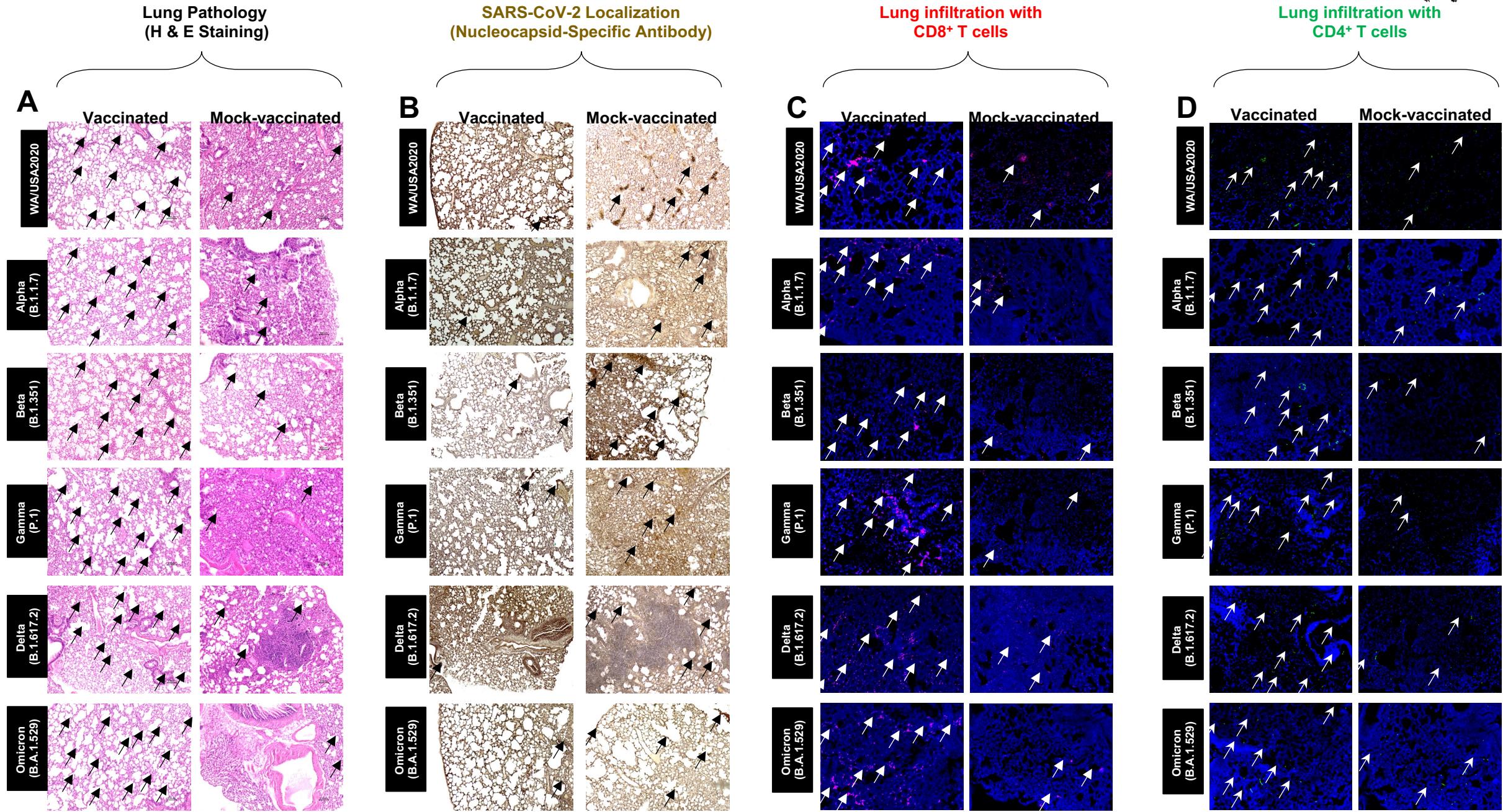
1080 be highly immunodominant against SARS-CoV-2 variants of concern WA/USA2020, Alpha (B.1.1.7),
1081 Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) were subjected to the
1082 sequence homology analysis.

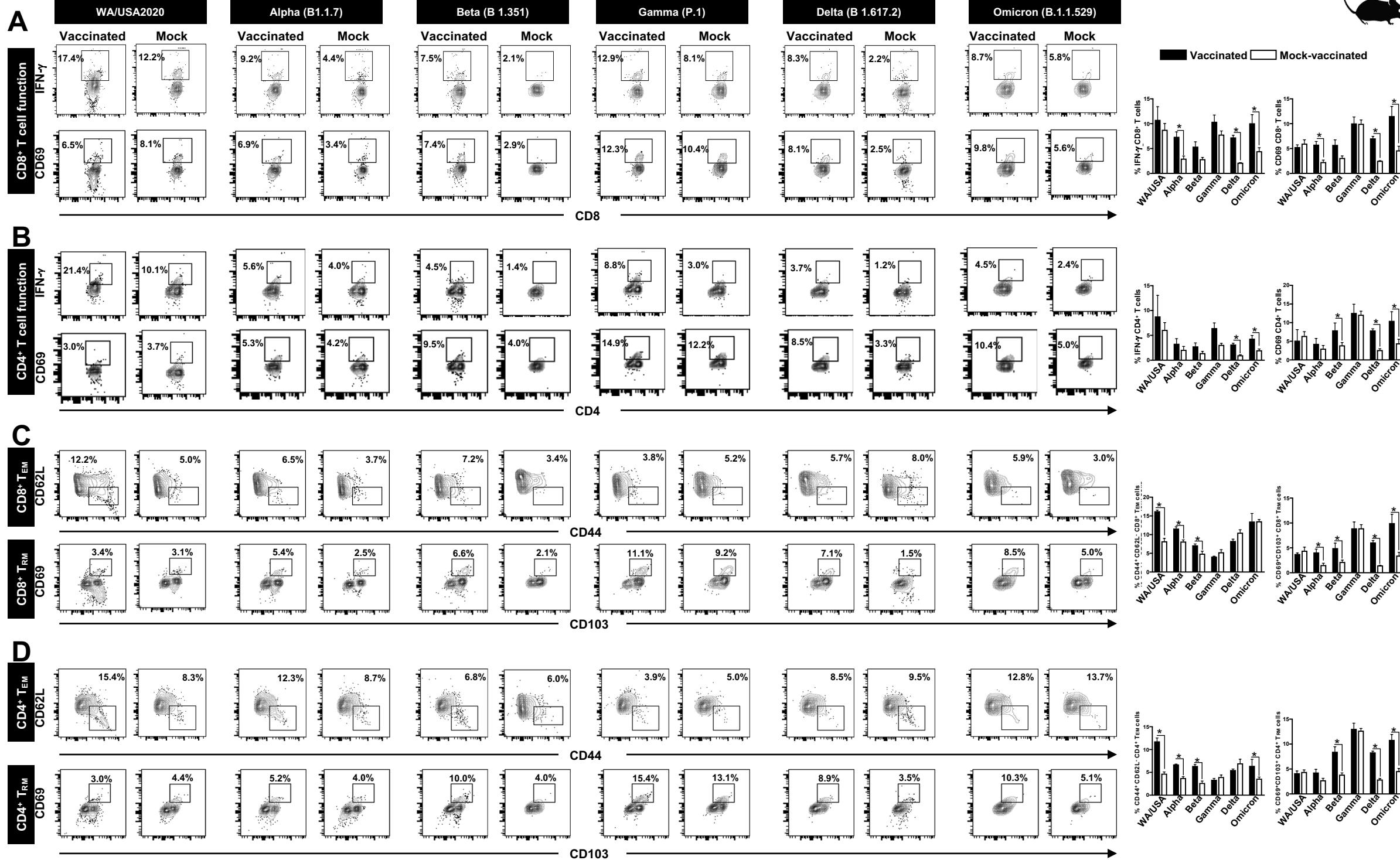
1083 **Supplemental Figure S3. Sequence homology analysis to identify the degree of the**
1084 **conservancy of the immunodominant B cell epitopes among SARS-CoV-2 variants of concern:**
1085 **The sequence homology data for the B cell epitopes are shown.** The 9 epitopes, found to be
1086 highly immunodominant against SARS-CoV-VOCs WA/USA2020, Alpha (B.1.1.7), Beta (B.1.351),
1087 Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) were subjected to the sequence homology
1088 analysis.

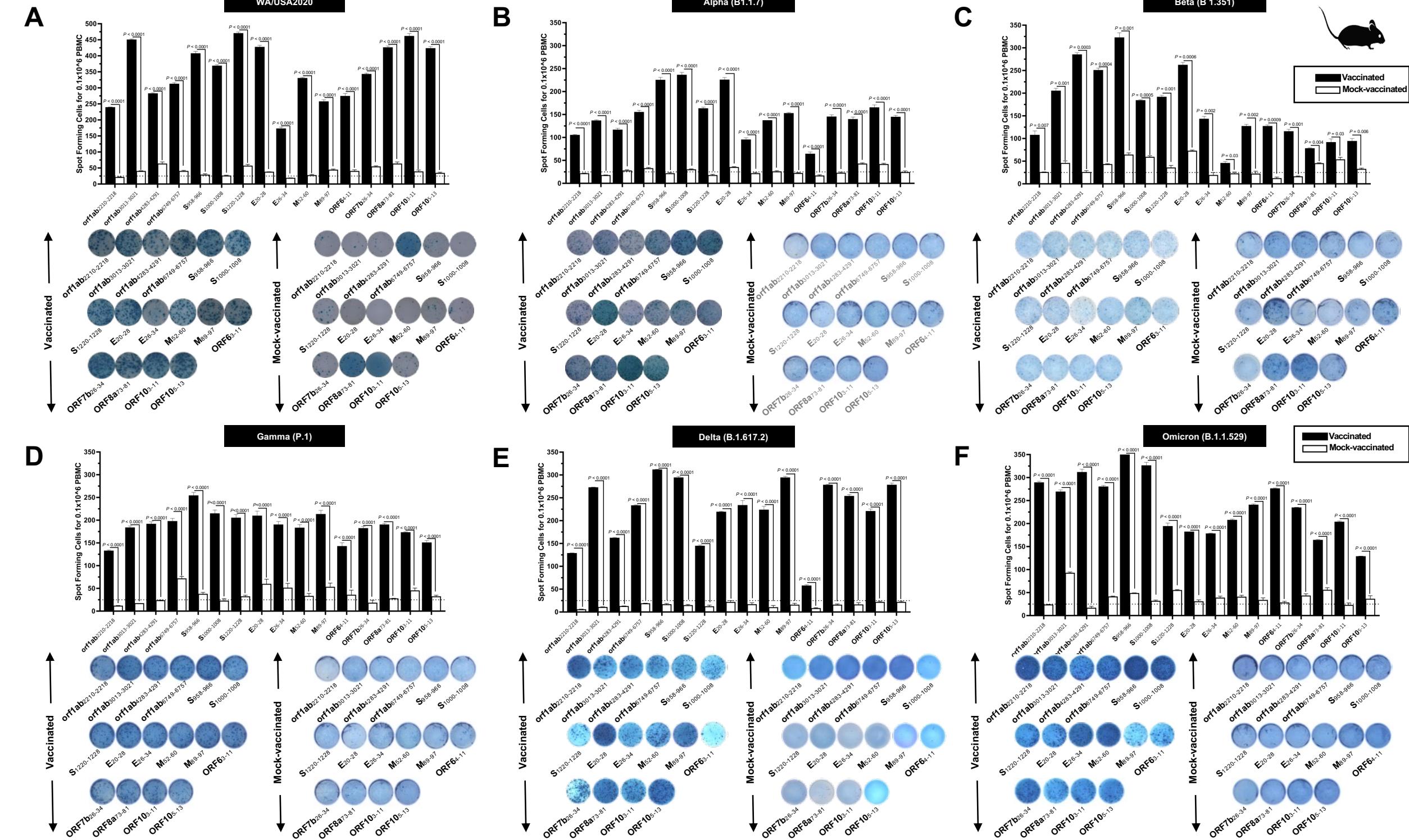
1089 **Supplemental Figure S4. Pan-Coronavirus vaccine evaluation of immunogenicity based**
1090 **on antibody response against “universal” B-cell epitopes in COVID-19 patients and triple**
1091 **transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2 exposed to different SARS-CoV-2 variants of**
1092 **concern:** Bar graphs show the peptide binding IgG level for the 9 “universal” B cell epitopes (**A**)
1093 among COVID-19 patients screened to be infected with SARS-CoV-2 variants of concern Alpha
1094 (B.1.1.7), Beta (B.1.351), Epsilon (B.1.427/B.1.429), Delta (B.1.617.2), and Omicron (B.1.1.529) and
1095 (**B**) in vaccinated versus mock-vaccinated triple transgenic HLA-A*02:01/HLA-DRB1*01:01-hACE-2
1096 mice. Bars represent means \pm SEM. Data were analyzed by student's *t*-test and multiple *t*-tests.
1097 Results were considered statistically significant at $P < 0.05$. Statistical correction for multiple
1098 comparisons was applied using the Holm-Sidak method.

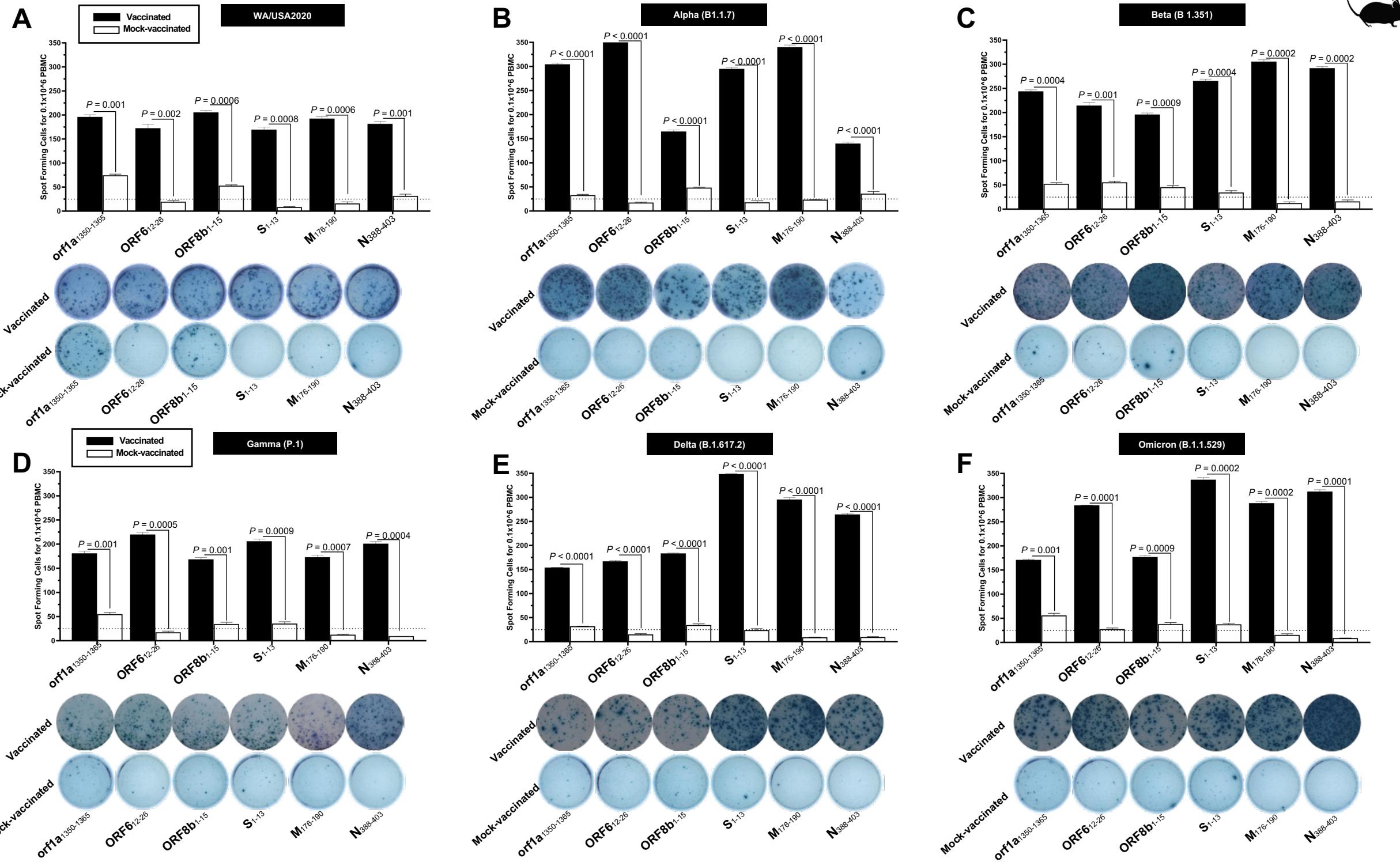



1099
1100





Cross-Protection Induced by Highly Conserved Human B, CD4⁺, and CD8⁺ T Cell Epitopes-Based Coronavirus Vaccine Against Severe Infection, Disease, and Death Caused by Multiple SARS-CoV-2 Variants of Concern


Swayam Prakash and ALL


ABSTRACT


Background: The Coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of SARS-CoV-2 infections has decreased significantly; the long-term outlook of COVID-19 remains a serious cause of high death worldwide; with the mortality rate still surpassing even the worst mortality rates recorded for the influenza viruses. The continuous emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, have prolonged the COVID-19 pandemic and outlines the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. **Methods:** In the present study, we designed a multi-epitope-based Coronavirus vaccine that incorporated B, CD4⁺, and CD8⁺ T cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8⁺ and CD4⁺ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-Coronavirus vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. **Results:** The Pan-Coronavirus vaccine: (i) is safe; (ii) induces high frequencies of lung-resident functional CD8⁺ and CD4⁺ T_{EM} and T_{RM} cells; and (iii) provides robust protection against virus replication and COVID-19-related lung pathology and death caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron (B.1.1.529). **Conclusions:** A multi-epitope pan-Coronavirus vaccine bearing conserved human B and T cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective


A**B****C**

A**B****C****D**

