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ABSTRACT

Molecular dynamics simulations of lipid membranes have become increasingly impactful in
biophysics because they offer atomistic resolution of structural fluctuations in relation to their
functional outputs. Yet quantitative characterization of multiscale processes is a formidable
challenge due to the distribution of motions that evade analysis of discrete simulation data. Here
we investigate the efficient calculation of CH bond relaxation rates from membrane simulations.
Widely used computational approaches offer numerical simplicity but fall short of capturing
crucial aspects of the orientation dependence of the dynamics. To circumvent this problem, we
introduced a robust framework based on liquid crystal theory which considers explicitly the CH
bond motions with respect to the director axis (bilayer normal). Analysis of the orientation
dependence of the dynamics shows excellent agreement with experiment, illustrating how the
ordering potential affects the calculated relaxation rates. Furthermore, a fit-based resampling of
the autocorrelation function of the bond fluctuations validates the new approach for low-temporal
resolution data. The recovered relaxation rates indicate that at short timescales, both with and
without cholesterol, the local motions of CH bonds describe the bilayer microviscosity and
resemble liquid hydrocarbons. Our results establish the critical role of the orientational anisotropy
in analysis of membrane simulations, explain fundamental aspects of lipid dynamics, and provide
guidelines for extracting information that can be compared to experimental data.

STATEMENT OF SIGNIFICANCE

Nuclear magnetic resonance data have been historically used to validate membrane simulations
through the average order parameters of the lipid chains. However, the bond dynamics that give
rise to this equilibrium bilayer structure have rarely been compared between in vitro and in silico
systems despite the availability of substantial experimental data. Here we investigate the
logarithmic timescales sampled by the lipid chain motions and confirm a recently developed
computational protocol that creates a dynamics-based bridge between simulations and NMR
spectroscopy. Our results establish the foundations for validating a relatively unexplored
dimension of bilayer behavior and thus have far-reaching applications in membrane biophysics.
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INTRODUCTION

Functions of membrane-associated molecules are often inextricably coupled to the structural
and dynamical properties of the lipid bilayer matrix. Various experimental techniques have been
transformative for probing the conformational and energetic landscapes of membrane lipids and
their dependence on composition, temperature, and pressure variables (1-7). Notably small-angle
scattering (SAXS and SANS) data characterize bilayer thickness and area packing per lipid (8);
fluorescence microscopy (9), resonance energy transfer (FRET) (10), and cryogenic electron
microscopy (cryo-EM) (11,12) reveal phase coexistence in lipid mixtures; flicker spectroscopy
(13,14) and neutron spin-echo measurements (15-18) report on bilayer elasticity; and fluorescence
correlation spectroscopy quantifies lipid diffusion in various biomedical contexts (19,20). While
experimental results have shaped our comprehension of lipid properties over a wide range of
length- and time scales, the inability to access individual molecules has created room for
computational and theoretical investigations (21-27). In particular, molecular dynamics (MD)
simulations have uncovered otherwise inaccessible mechanisms occurring at the nanoscale (21-
23,28,29), including the role of membrane deformation in peptide-mediated lipid flip-flop between
leaflets (30), the effect of cholesterol on electrostatics-driven protein binding to membranes (31),
contributions of interleaflet coupling to phase separation (32), and the pathway of spontaneous
lipid translocation between opposite leaflets (33). Often perceived as a computational microscope,
these MD studies have enabled the unifying comparison of different experimental techniques.
Moreover; they have guided the refinement of data-driven models critical for analysis of
experiments using the next generation of physics-based force fields (8,11,34,35).

Clearly the versatility and applicability of molecular simulations hinges upon the robust
validation of the trajectories against increasingly stringent experimental data (2,15,36-38). Studies
related to membrane structure and dynamics rely heavily on the accurate parameterization of the
interatomic and intermolecular interactions (28,39-41). Such sets of parameters or lipid force
fields, developed for both all-atom and coarse-grained molecular models, govern the bilayer
equilibrium and dynamical properties and have been optimized against bilayer structural
parameters obtained mostly from scattering (SAXS and SANS) and solid-state NMR
measurements (42,43). Ongoing refinements of these lipid force-field parameters have proven
successful in reproducing certain aspects of the experimental data, while missing others, affirming
the inherent need for more points of comparison (34). In that respect, investigations of membrane
dynamics, in addition to average structure, give a promising yet relatively less explored fourth
dimension of lipid biophysics. Recently we showed how the NMR relaxation rates of lipids in
lamellar samples can be directly compared to the carbon—-hydrogen (CH) bond motions in
simulated bilayers through mapping the spectral densities of the fluctuations (23). Analogous
calculations have been done in the past using the widely applied status quo approach developed
for isotropic motion in nonlamellar systems. Here we show that this classical methodology while
useful misses a crucial feature of CH bond motions—namely, the angular anisotropy relative to an
external frame. As a result, it provides only approximate results for the bond relaxation rates.

In the present article, we extend our approach to quantify the angular dependence of lipid
dynamics from the simulation trajectories, obtaining results in excellent agreement with
experimental measurements. This dependence of lipid fluctuations on the bilayer orientation is
explicitly incorporated into our recently developed computational protocol (23). While quantifying
the CH bond reorientations demands only knowledge of changes in atomic positions over time,
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calculating the respective spectral densities entails a Fourier transform of the autocorrelation
function of the fluctuations. This calculation turns out to be particularly challenging due to the
discrete nature of the multiscale simulation data. We describe the problem and its origins (35,44-
46), and demonstrate the validity of a solution that circumvents the sampling issues for data with
relatively low temporal resolution (23). For the current application, the simulated relaxation rates
are explained by collective lipid motions and membrane elasticity, while the bilayer core resembles
liquid hydrocarbons in agreement with experiments.

THEORETICAL METHODS

Simulation protocol. We investigated the properties of fully atomistic lipid bilayers: 1,2-
dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing 0, 33, and 50 mol% cholesterol.
Each bilayer contained 100 lipids per leaflet (200 lipids total) and 45 water molecules per lipid
with no added salt ions. The bilayers were simulated in the NPT ensemble at a constant temperature
of 317 K (44°C). The original 2-us-long trajectories, performed with OpenMM (47) and the
CHARMM36 force field for lipids (28), were taken from (23). These simulations employed a
timestep of 2 fs and atomic coordinates were saved every 40 ps. To analyze the dynamics at shorter
length scales, we resampled the DMPC trajectories with 0 and 33 mol% cholesterol by restarting
the simulation at different time points and running short simulations with more frequent data
output. In particular, starting at 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 us of the original trajectories we
ran 400-ps-long simulations by using stored restart files of both atom positions and velocities, and
outputting atomic coordinates every 10 fs. Except for the output frequency, these resampling
simulations were performed with the same simulation parameters as the original long trajectories
as described in detail in (23) including a timestep of 2 fs with constraints set to HBonds, a 10—12
A potential for van der Waals interactions, and Langevin dynamics maintaining a temperature of
317 K with a friction parameter of 1.0 per picosecond. In addition, starting from the ends of all
three 2-us-long trajectories, we ran additional 800-ns-long simulations, again with the same
simulation parameters but with an output interval of 4 ps. The data were used to evaluate the
accuracy of the mathematical resampling performed on data with lower temporal resolution as a
way to recover the unbiased relaxation rates.

Representation of carbon-hydrogen bond orientations in Cartesian coordinates. The
fluctuations of the carbon-hydrogen (CH) bonds of the lipid acyl chains were quantified as in (23).
Briefly, the instantaneous orientation of a CH bond is described by the Euler angles Q =
(a,B,y) = (app, Brp, Ypp) in the director frame (Fig. 1A) where @ = 0 due to axial symmetry
about the CH bond axis, [ defines the angle that the CH bond (Principal axis) makes with the
bilayer normal (Director axis, Np) along the z-dimension of the simulation box, and y quantifies
the CH bond rotation around the director. The orientation of a CH bond at time t is then described
in 3-dimensional space by functions of  and y, the so-called Wigner rotation matrix elements
(48), given by:

DZ(@;t) = %(3 cos?(t) — 1), (1)

3 -
D, (@0) = £ [>sin(e) cos (1) ¥, )
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where D& (Q; ) = (1)™D{? (Q; t) with m being 0, +1, or +2, and the right-hand side
indicating the complex conjugate. The above functions are evaluated for every CH bond in the

bilayer and averaged over the respective carbon atoms across all lipids.
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Figure 1. Schematic illustration of angles and frames of reference used to analyze lipid dynamics. (A)
Representation of a carbon—hydrogen bond on a lipid chain and the Euler angles £ and y in different frames of
reference. These angles can describe orientations in the laboratory (lab) frame (Bpy, ¥pL), i-€., between the principal
(CH bond) axis and the fixed magnetic field or laboratory (B,) axis; or in the director frame (Bpp, Ypp) between the
principal (CH bond) axis and the director (bilayer normal, Ng) axis. The 8 angle is the angle that the CH bond makes
with the main-frame axis, and the angle y defines the rotation of the CH bond around that axis which is calculated
as described in (23). (B) The CH bond orientation with respect to any axis N can be defined in an analogous way in
spherical polar coordinates with the polar angle 8 and azimuthal angle ¢. (C) Using the spherical harmonic addition
theorem, the time-dependent reorientation of the CH bond is described with its positions at time 0, given by p(0),
and time t, given by p(t). The angle between these two vectors is f(t) which is different from the angles S, and
Bp., in (A) [or 8 in (B)] as it does not depend on the direction of the N axis. [1-column figure]

Mean director-frame relaxation rates from Wigner D-functions. As described in (23), the
relaxation rate Ri7 of the CH bond fluctuations is obtained by first calculating the correlation
function of the fluctuations, then performing a Fourier transform to obtain the spectral density, and
evaluating it at w, and 2w, where w, is the Larmor frequency of the NMR measurement. Since
the fluctuations are described by separate Wigner rotation matrix elements (Eqgs. 1-3) and each of
them has its own correlation function, R;7 is a linear combination of the corresponding spectral

-5-



densities at the frequencies of interest. In simulations, the measured fluctuations (and relaxation)
are with respect to the bilayer normal Ng, that is, the director frame, while in NMR experiments,
they are always with respect to the fixed magnetic field axis By, i.e., in the laboratory frame (Fig.
1A). This means that if Ny is parallel to B, the results from the two techniques would have perfect
correspondence. However, experiments are often done on liposome samples in which Ny adopts
all possible orientations relative to B, due to the spherical geometry of the vesicles. Therefore,
connecting the results from the simulations to the actual experimental data requires transforming
or averaging of the latter. Below we outline the steps of this transformation, which is described in
more detail in the supplemental material (SM) of (23).

We will refer to the coordinate system (X, Y, Z) as the laboratory (lab) and start by expressing
the CH bond fluctuations directly with respect to the lab frame. In that case, the correlation function
G0 (t), spectral density J12°(w), and relaxation rate R, can be all written as:

GEP(0) = (D@L ) — (DB@e)| [DS2 (01 0) — DEQ)), (@)

Ji(@) = Re [ aib@eer d, 5
3 —00
Riz = 725G i (wo) + 45" Qw,)] . (6)

In Egs. 4-6, Qp;, = (apy, BrL, Ypr) denotes the Euler angles between the CH bond (Principal axis)
and the magnetic field B, (Laboratory axis), see Fig. 1A. The subscript m is 0, +1, or +2, t is
time, and w is frequency with w, being the Larmor frequency of the measurement. In Eq. 4 the
Défz matrix elements are as defined in Eqs. 1-3 and the angular brackets (--) denotes a time or
ensemble average. In Eq. 6, the static quadrupolar coupling constant, xo = e?qQ/h = 170 kHz,
and the value of the numerical pre-factor is (3/4)m2(1.70 X 105)? = 2.1392 X 101 s72. The
reader should recall that for isotropic liquids there is no projection index, so that J,,(w) —
(Jm(w)) = J(w) = (1/5)j(w) where j(w) is the reduced spectral density (see Eq. S20 in the SM
of (23)).

In a simulation, the coordinate system is defined by the bilayer director Ng, i.e., (x, y, z) and
we will refer to it as the director frame. Here, the correlation function Ggir(t) and spectral density
]gir(a)) can be analogously written as:

G (®) = ([DZ @pp; ©) = (DL @pp))| [D2(Qpp; 0) = (DP @pp)]), (7

Jar(w) = Ref Gir(t)etwt dt, (8)

where Qpp = (app, Brp, Ypp) denotes the Euler angles with respect to the director frame (Fig.
1A). Note that here again the subscript p is a projection index that can be equal to 0, +1, or +2.
It follows that Eqs. 7 and 8 can be calculated from simulations and to connect with experiment, all
we need is to write Ry, from Eq. 6 as a function of /3" (w) using Eq. 8. This can be achieved by



following the principle of closure, where if Qp; = (@pL, BoL, ¥pL) denotes the Euler angles
between the director axis Ny and the laboratory frame axis B, (Fig. 1A), then:

DA Qi t) = 2 D (Qep; £) D (o) o)
Substituting Eq. 9 into Eq. 4 leads to

Gi® = Y 60| @) (10

P

and likewise, inserting Eq. 10 into Eq. 5 yields:
/0 (w) = 213“(w>|n(2) @) - (11)

Note that in Egs. 10 and 11 it is assumed the motions of the lipids are cylindrically (rotationally)
symmetric about the director axis.

Since in a typical liposome sample Ng adopts all possible orientations relative to By on the
timescale of the NMR measurement, the mean-square Wigner rotation matrix elements for the
transformation from the director frame to the lab frame are averaged to their isotropic values,
leading to (|Dg,)l (Qpp)|?) = 1/5. The factor of 1/5 comes from considering the spherical
("powder") averaging as part of a 2-step process: first, the CH bond rotation with respect to the
director axis, and then rotation about the director axis versus the magnetic field axis. This makes
the right-hand side of Eq. 11 independent of m, corresponding to the mean director-frame spectral
density. Because the summation is over all p € [0,+1,+2] and Ji"(w) = J%(w), we can
explicitly write that:

Ji (@) = (P (@) = J(w) = %[]Sir(w) +2/{" (w) + 2J3" (w)]. (12)

Lastly, substituting Eq. 12 into Eq. 6 gives us an expression for the orientationally averaged
experimental R;; rate as a function of the computationally accessible ]gir(a)) spectral
densities:

Rz = 7T XQ {] "(wo) + 4]gir(2wo)
+2[J{" (W) + 4 2wy)] (13)

+2[J8" (wo) + 45" 2wo)]}

where the pre-factor is equal to (372/20)(1.70 X 10° s71)2 =4.2785 x 1010572,



Orientation-independent relaxation rates from spherical harmonics. In addition to
expressing R;; as a function of the director-frame spectral densities ]gir(a)) as in Eq. 13, the
experimentally measured value from Eq. 6 can be approximated by an orientation-independent
relaxation rate. As mentioned above, due to the distribution of the bilayer normal in a liposome
sample, the spectral density J12°(w) in the laboratory frame can be orientationally averaged to its
isotropic limit J (w), which does not depend on the projection index m (Eq. 12). Analogously, the

correlation function G12°(t) from Eq. 10 can be written as:
Glab — Glab =G — 1 Gdir
) = G ) = 60 = £ Y 6", (14)
P

where the angular brackets denote a time or ensemble average. In Eq. 14 G(¥) represents the
mean director-frame correlation function, which corresponds to an anisotropic liquid-crystal
model. The factor of 1/5 comes from the orientational average of the director (bilayer normal) as
mentioned above.

As described in the supporting material (SM) of (23), the correlation functions Ggir(t), which
in Eq. 7 are functions of the Euler angles in Cartesian coordinates, can be expressed in terms of
spherical harmonics, G3"(t), as follows:

4T
5

In Eq. 15 and throughout, the tilde refers to functions of the spherical harmonics that are
distinguished from those using Wigner D-functions. From here, the mean director-frame
correlation function G (t) from Eq. 14 becomes:

GIr(t) = — G (o). (15)

1 . 1/4 < 114
6= 2 ) 68" © =< (7)) Gir® = 2|7 ) W@ Y@ o)|  (16)
p p

p

where the Y2, () functions are the spherical harmonic equivalents to the Dé;) (Q0) functions:

Déf,)(ﬂ:t)= EYZP(Q;LL): EYZP(H,@LL). (17)

Note that in Eq. 17 the orientation of the CH bond can be represented using either the Euler (Q;
Fig. 1A) or spherical polar (8, ¢; Fig. 1B) angles as the basis, with the correspondence shown in
Fig. S1 of (23).

Next, if we now assume spherical symmetry with no dependence on the specific orientation of
the CH bond with respect to Ny (or By), then we can apply the spherical harmonic addition theorem
to simplify the expression in the square brackets in Eq. 16, yielding:



1 1 ~
6(8) = 2 (P,(n(0) - K(D)) = = (Ps[cos FO)]). (18)

The reader should take note that in Eq. 18, the second-order Legendre polynomial P, has the same

functional expression as Déé) (Q;t) in Eq. 1, where (t) is the angle between the CH bond at time
0 and time t. In other words, if the unit vector p(t) describes the direction of the CH bond at time
t as shown in Fig. 1C, then the reorientation of the bond in Eq. 18 is defined by the scalar product
of n(0) and u(t), i.e., the cosine of the angle S(t) between the two vectors. Because the scalar
product is invariant, the spherical harmonic addition theorem eliminates the dependence of the
correlation function on the direction of the bilayer normal N (or laboratory axis B,) by
considering the change in B described by # (Fig. 1C), and not £8 itself (Fig. 1A). Whether this is
actually the case for lipid membranes is further discussed below.

Notably in Eq. 18, the mean P, function of cos S(t) is typically denoted as C(t) (49), where
the corresponding spectral density /- (w) is written as:

Jc(w) = Re fooC(t)e‘i“’t dt = Re foo(Pz[cos B(O)]ye~ @t dt. (19)

The above formula corresponds to a 1-step motional process, i.e., the CH bond motion is
considered with respect to an arbitrary axis. From Eq. 19 we then obtain the orientation-
independent relaxation rate in terms of the computationally accessible spherical harmonics,
which reads:

3
(Riz) = %”2)(5[/6(0)0) + 4Jc(2wo)], (20)

where J-(w) is the two-sided Fourier transform of the C(t) correlation function. The above
expression, Eq. (20), is the same as in the textbook case for solution NMR spectroscopy (50) with
the substitution J(w) — (1/5)/.(w) (compare Egs. 6 and 20 above). Because the director axis is
not included, the orientational ("powder") average is attributed entirely to the CH bond motion,
e.g., as in (but not restricted to) the Debye model for rotational relaxation of an isotropic liquid.
Inclusion of an alignment frame (e.g., director) leads to the generalized model-free (GMF)
approach as originally described (44).

Calculation of experimental relaxation rates from molecular simulations . Next, we can
calculate G;}ir(t) and ]gir(a)) from Egs. 7 and 8, using the simulation trajectories as described in

g? (Qpp; t) can be written as Délzj) (a,B,y;1)
where p € [0,1,2], the angle @ = 0, and we drop the subscript PD for convenience, since all Euler

angles in flat bilayer simulations are with respect to the director frame whose z-axis is the

(23). Briefly, for each of the time series, the element D

membrane normal (Fig. 1A). For every carbon Cl(;l) where 1 < [ < Ny, is an individual DMPC lipid



(N, being the total number of DMPC lipids in the bilayer), and 2 < n < 14 is the carbon number
on the sn-1 (s = 1) or sn-2 (s = 2) chain, the autocorrelation function can thus be obtained from:

Gyry (k) = 5 N z 2 Gyys (k) @1

with

i 1 :
63750 = 2 D B 00D Bt + 0 - [0LE| . ()

In Eq. 21 the inner summation is over the two hydrogen atoms i = (1,2) at carbon Cl(;l) and in Eq.
22 the second term is the squared mean of the fluctuations; k is the lag time, N is the total number
of trajectory frames (or time points), and D(Z)*(ﬂ y; t) denotes the complex conjugate of the

D(Z) (B,y; t) rotation matrix element At zero lag time, i.e., k = 0, the autocorrelation function in
Eq. 22 yields the variance of D (,8 y), which reads:

¢(0) = (IDP (B, 1)12) — DD B )I? = var D (B, 1)]. (23)

From Eq. 22 the spectral density function of the fluctuations is the two-sided Fourier transform
(FT) of the autocorrelation function. Numerically however we can calculate only the single-sided
FT, so that we can estimate the double-sided FT as follows:

Np/2-1

J () ~ 2 z G (k) cos wty, At| + G (0)AL, (24)

Note that in Eq. 24, the frequency w is related to the Larmor frequency vo of the NMR instrument
by wy = 2mv,, At is the sampling time interval, and t, = kAt is the time at lag k. The discrete
spectral density is fit to either a power-law function (if a fit of the correlation function is used, see
Results) or to a simple smoothing spline function to access values at specific frequencies.
Following Eq. 13, the relaxation rate is then calculated as:

3
R, = 55w Y6 (o) + 4157 (2wo)
+2[J7 (o) + 477 (200) (25)
+2[7 (wo) + 45 (20,)]}
with the pre-factor equal to (372/20)(1.70 x 10°s71)2 = 4.2785 x 101° s72. The relaxation

rate in Eq. (25) represents an average over all director orientations as discussed above, and we
refer to it as the mean director-frame relaxation rate.

-10-



To calculate the orientation-independent relaxation rate with Eq. 20, we first need to compute
the two-sided Fourier transform of the C(t) correlation function. Traditionally, this is done by
using the single-sided FT, j-(w) and multiplying the result by 2 which gives:

Np/2—1

Jo(w) = 2jc(w) =2 Z C (k) cos(wty At)|. (26)
k=0
The corresponding orientation-independent relaxation rate is then written as:

3
(Riz) = Eﬂz)((zg lc(wo) + 4jc(2wy)], (27)

in which the pre-factor is equal to 8.557 X 101 s™2 and is the same as the pre-factor in Eq. 2.5 in

(51).

Analogously to Eq. 24, the spectral density /-(w) can be approximated from the single-sided
FT by ensuring that the zeroth element of the correlation function, C(0) = 1, is not counted twice.
We will refer to the resulting relaxation rate as the mean corrected orientation-independent
relaxation rate (R1z)corr:

Np/2-1
Jo(w) ~ 2 z C(k) cos(wty At) | + At (28)
k=1
in which
3
<R12>corr = %T[ZX(% UC((UO) + 4]6(2(‘)0)]- (29)

Here the pre-factor in Eq. 29 is equal to 4.2785 x 101° s72. In both cases (Eqs. 26 and 28), the
spectral density is fit to a smoothing spline function to estimate the values at w, and 2w,.

Calculation of effective correlation times. In our approach, the correlation times of the CH
bond fluctuations are described by the functions in Egs. 1-3 and can be obtained from the
corresponding autocorrelation functions GZSZ) (k) with Eq. 21. However, in general a broad
distribution of correlation times is to be expected for either collective or noncollective lipid bilayer

motions (44). For a more recent discussion please see Refs. (35,52). In the case of lipid motions,
we follow the procedure of Giovanni Lipari and Attila Szabo (49) based on Padé approximants

(53), where the effective correlation time, ., is related to the integral of Gé? (k) as follows:

Np/2-1

¢ (k) At. (30)
var[D$2) (8, 1)] 2 8

Tofr = (n} f wczgf;)(k) dk =
Gps (0) Jo
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Analysis of isomerization rates. For all consecutive 4-carbon segments along the lipid chains,
the isomerization rates were analyzed following the approach outlined in (54). First, the dihedral
angles of all segments were calculated and used to determine the cutoff angle that classifies the
segment conformation as trans versus gauche (£120 degrees). Then for each segment a time series
Nj(t) was constructed such that in every frame (i.e., at every time point t) a value of 1 or 0 was
assigned to N, (t) depending on whether the segment had a trans (0) or gauche (1) isomerization.
The resulting number correlation function Cy(t) was calculated from SN, (t) = Np(t) — (N, )
following Eq. 7a from (54) with the MATLAB xcorr function specifying the "normalized" option
which ensures that Cy(0) = 1. The correlation functions for all lipids and in all frames were
averaged, and Eq. 30 was used to calculate the effective correlation time for the segment. Note
that due to the noise the averaged correlation functions decayed to a value slightly different from
0, so that the mean of the last quarter of the correlation function was subtracted from Cy(t) prior
to calculation of the 7.4 correlation time. This quantification of the carbon segment dynamics
makes them directly comparable to the effective correlation times of lipid CH bond fluctuations.

RESULTS

Molecular simulations capture the angular dependence of bond relaxations and yield
orientationally averaged relaxation rates. Knowing what exactly gives rise to the relaxation
rates measured in a solid-state NMR (ssNMR) experiment is essential for properly translating data
to MD simulations. In the context of CH bond fluctuations, there are two main frames of reference
in the experiment: the laboratory (or lab) frame defined by the fixed magnetic field axis By, and
the director frame specified by the normal to the bilayer surface, Ng (Fig. 1A). Any quantity
measured with ssNMR is in the lab frame, that is the dynamics are always with respect to By. The
CH bonds of lipids, for example, have restricted fluctuations in the director frame, and the ordering
potential induced by the Ng director gives rise to the well-known order parameters of the
fluctuations (1,55). The order parameter is an average property measured from the NMR lineshape
that comes from the reorientation of all lipid CH bonds relative to the lab frame B, e.g., as
described by a mean-torque model (56).

For a typical liposome sample, the bilayer directors adopt all orientations with respect to the
fixed axis of the magnetic field. This orientation of the directors does not affect the average order
parameters; however, it is relevant for interpretation of the R;; relaxation rates of the CH bonds.
That is due to the fact that the experimentally measured R;; value depends on the angle that the
bilayer director makes with the magnetic field axis. This was shown in work with oriented bilayer
samples in the 1990s by various research groups (57-60). There the bilayers were gradually rotated
with respect to B, yielding distinct changes in the measured relaxation rates. This angular
dependence is not apparent in relaxation measurements of multilamellar lipid dispersions but is
clearly visible in data from microcrystalline powders (61). Specifically, Brown and Davis (62)
were able to show experimentally that the relaxation anisotropy present in multilamellar vesicles
(MLVs) is orientationally averaged by lipid translational diffusion, which happens on timescales
shorter than those of the actual spectral measurements.

The orientational distribution of the directors in liposome samples can be modeled as uniform

on the surface of a unit sphere due to the geometry of the vesicles. Here we consider a solid angle
() defined by spherical polar coordinate (8, ¢) with the differential solid angle dQ2 = sin6d0d¢,
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where 0 is the polar angle (colatitude or zenith) and ¢ is the azimuthal angle (longitude) in the x-
v plane from the x-axis. Conservation of probability then leads to P(Q)dQ = P(8, ¢)d0d¢ for the
infinitesimal probability, in which the probability density function is given by P(6,¢) =
sin 6 /4m. For a fluid lipid bilayer with axial symmetry about the bilayer normal (director), the
azimuthal probability density entails integrating P(8, ¢) over the polar angle 6 in the interval 6 €
[0, ] yielding P(¢) = 1/2m. Alternatively, we can integrate P (6, ¢) over the azimuthal angle ¢
in the interval ¢ € [0,2) to get the probability density for the polar angle. The normalized
probability density function is thus mathematically described by

P() = (1)

in which 6 € [0, ] is the polar angle; with d() = sinfdfd¢ for the differential solid angle. As
illustrated by Eq. 31, the uniform distribution on a unit sphere does not imply equal probability
but instead, orientations with 8~90° are most likely. The measured relaxation rate is then an
orientational average of contributions from the various directors, that is, the sum of relaxation rates
for the distinct orientations, each scaled by the probability P(6, ¢) of that orientation. Take note
that P(8, ¢) is invariant with respect to the ¢ angle due to the spherical symmetry.

One way to directly relate the experimental results to numerical simulations is to first estimate
the relaxation rate from the MD trajectories in the laboratory frame. Simulated bilayers are usually
flat membrane patches with a single bilayer director parallel to the z-dimension of the simulation
box. In that respect, they resemble oriented bilayers that can be rotated to examine the angular
dependence of the relaxation. Accordingly, we analyzed two fluid bilayer trajectories from (23),
DMPC with and without 50% cholesterol, simulated at 44°C. We assumed that B, is initially
parallel to the bilayer normal Ng, i.e., the angle 8 between B, and the z-dimension of the simulation
box was 0 degrees. The B, axis was then gradually rotated by increasing 8 as shown in Fig. 2A,
and the relaxation rates calculated directly with respect to By, i.e., in the lab frame using Eq. 6.
Rotating B, relative to Ny is analogous to keeping the orientation of B fixed and rotating the
bilayer patch, as done in the actual NMR experiment. Indeed, using this approach we were able to
recover almost perfectly the angular dependence observed experimentally with solid-state NMR
spectroscopy (Fig. 2B—C, red and black symbols). This dependence spanned a broader range of
relaxation rates for more highly ordered bilayers like DMPC/Chol (Fig. 2B), and a narrower range
for more fluid bilayers like DMPC (Fig. 2C), as seen in the experimental data (60,63).

Following the above protocol, the relaxation rates can thus be calculated relative to the fixed
B, laboratory frame for different angles 6 without any averaging (Fig. 2). From the results, we
estimated the orientationally averaged relaxation rate (Rqz)g 4 by fitting the calculated angular
dependence between 0 and 90 degrees, as well as its mirror image from 90 to 180 degrees to a
smoothing spline function. Using the fit, we multiplied the results by P(8, ¢) from Eq. 31 and
their sum yielded the mean value (R7)g ¢, Which is plotted in Figs. 2B—C as a gray line. The
(R17)9,¢4 rate calculated for the DMPC/Chol bilayer (16.1 s~ 1y is clearly different from the average
relaxation rate assuming constant probability at all 8 (18.5 s™1), consistent with the dependence
of 8 on sinf (Eq. 31). Together with the good agreement with experimental data, these
observations thus further confirm the angular dependence of the CH bond fluctuations and
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demonstrate that simulations can provide a model-free estimate of the relaxation rate calculated
directly in the lab frame.

A B DMPC/Chol c DMPC

t

l,,,,§» - 1
F Y\\ -
.\ r<R1Z >dir 2 <Rlz >corr
L X ] 3 1
. R
<R12 )con ( 1z )‘/)'” \‘\\\‘\ ¢ 10 (RIZ )dir

51 (Riz)g0

0 20 40 60 80 0 20 40 60 80
rotation angle ¢ rotation angle 6

Figure 2. Angular dependence of CH bond dynamics in lipid simulations allows the calculation of orientationally
averaged relaxation rates. (A) Schematic illustration of a bilayer in a simulation box. The magnetic field axis B,
is initially parallel to the bilayer director axis Nj (i.e., the z-dimension of the simulation box) so that the angle
between them, 6, is 0 degrees. The By, axis is then gradually rotated away from Ny by increasing the angle 8, and
the CH bond relaxation rate is calculated with Eq. 6 in the laboratory frame, i.e., with respect to the B, frame.
(B) Calculated relaxation rate as a function of 8 (red symbols) for carbon C9 on the sn-1 chain of DMPCin a bilayer
with 50% cholesterol at 44°C. The orientationally averaged relaxation rate (grey) was calculated from the
simulated angular dependence weighted by the uniform distribution of the directors on the surface of a sphere
from Eq. 31. Shown for comparison are: experimental NMR data for carbons C7—C8 in oriented bilayers of
DMPC/Chol 1:1 measured at 40°C from (60) (black symbols); the mean (green) and mean corrected (blue)
orientation-independent relaxation rates; and the mean director-frame relaxation rate from Eq. 25 (red). (C)
Calculated relaxation rate as a function of 8 for carbon C12 on the sn-1 chain of DMPC in a single-component
DMPC bilayer. Experimental NMR data are for carbon C13 in oriented DMPC bilayers measured at 40°C from (63)
and all colors and symbols are the same as in (B). [2-column figure]

Angular anisotropy explains difference of orientation-independent and mean director-
frame correlation functions. Notably, the orientationally averaged relaxation rates can also be
approximated from numerical simulation data without explicitly considering the angular
dependence of the relaxation. This is achieved by expressing the relaxation rate defined in the lab
frame in Eq. 6, with the correlation functions and spectral densities in the director frame (Eq. 13),
which are readily obtainable from MD simulations. We recently developed a framework that
implements this approach by: (1) quantifying the CH bond orientations with respect to the bilayer
normal (director) in Cartesian coordinates (Eqs. 1-3), (2) calculating their correlation functions
(Eq. 22) and corresponding spectral densities in the director frame (Eq. 24), and (3) obtaining the
R,z rates from the latter functions evaluated at the Larmor frequency w, and 2w, corresponding
to the NMR measurement (Eq. 25). This approach assumes spherical averaging of the spectral
densities in the lab frame (J12P(w)) = J(w) due to the uniform distribution of the bilayer directors
(Eq. 12), but explicitly considers the three director-frame spectral densities ]gir(a)) with respect
to Ny that come from the ordering of the CH bonds relative to Ng (Eq. 8). We refer to the resulting
MD-simulated values as the mean director-frame relaxation rates (R;z)qir, Since they are
quantified from the CH bond fluctuations relative to the director axis (bilayer normal). These
calculated (R,z)q;ir values, which are orientationally averaged by virtue of the averaged lab-frame
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spectral density J(w) (Eq. 12), are plotted in Figs. 2B—C as horizontal red lines. For both bilayers
with and without cholesterol, they are very similar to the corresponding orientationally averaged
(R17)9,¢ relaxation rates.

For larger undulating membranes the calculation of the bilayer director Ny can be rather
cumbersome, and an alternative approach circumvents the need for its explicit consideration.
According to the well-established and widely used analysis of small molecules freely tumbling in
solution, the model assumes that the measured relaxation rate does not have an angular
dependence. This assumption simplifies the calculation significantly by allowing the application
of the spherical harmonic addition theorem, which relates the orientationally averaged lab frame
spectral density J(w) from Eq. 12 to fluctuations of the angle /5 in Fig. 1C (Eq. 19). This angle
quantifies the change in direction of the CH bond over time, rather than its orientation relative to
a specific axis such as the Ny or B, axes. The correlation function of the fluctuations, C(t), is

expressed with the second-order Legendre polynomial of cos f§ and is mathematically invariant to
the rotation of the fixed axis as illustrated in Fig. 3 (64). We thus refer to the resulting relaxation
rate (R,z) as the orientation-independent relaxation rate (Eq. 20).

Figure 3. lllustration of why the spherical harmonic
addition theorem is inapplicable to lipid membranes.
The theorem considers the time-dependent angle E of
the CH bond vector (solid blue lines) with itself and gives
rise to the orientation-independent correlation
function C(t). (A) Since there is no dependence on a
specific fixed axis, ﬁ stays the same when the director
N; rotates, while the angles {solid blue, dashed red
lines) it makes with the CH bond and the magnetic field
axis By change. (B) In contrast, the director-frame
Orientation-independent Director-frame correlation function G (t) is specific for the director axis

correlation function correlation function and hence, rotation of Ny and the CH bonds {solid blue,
dashed red lines) are not independent. Thus, as opposed
to C(t), the G(t) function captures both the ordering
potential characterized by Ny and the angular
dependence of motion due to the director orientation
Nj relative to the B, frame. [1-column figure]

Analysis of orientation-independent relaxation rates does not fully capture lipid
dynamics. The spectral densities of CH bond fluctuations are two-sided Fourier transforms (FTs)
whereas from simulations we can calculate FTs only as one-sided. The latter functions can be
theoretically multiplied by a factor of two to yield the two-sided FTs (Eq. 26), from which the
relaxation rate is then obtained (Eq. 27). Numerically however, this approach results in
overcounting of the zeroth element of the correlation function which can artificially increase the
result (see below). One approach to alleviate this problem is to completely disregard the zeroth (k
=0) element, i.e., to perform a Fourier transform of the correlation function C (t) for t > At, which
will introduce a frequency-dependent phase shift of the spectral density. An alternative approach
is to include the zeroth element, but to ensure it is not overcounted (Eq. 28) to yield what we will
call the mean corrected (R17)corr Orientation-independent relaxation rate.
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The orientation-independent relaxation rates (R;z) calculated for t > 0 and for t > At are
plotted in Figs. 2B—C as horizontal green lines. They are quite different from each other, and even
though one of them overlaps almost perfectly with (R7)g ¢ in the DMPC bilayer (Fig. 2C), neither
falls inside the range defined by the angular dependence of R;; for both the DMPC/Chol and
DMPC bilayers (Figs. 2B—C). This is not surprising considering the previously observed
sensitivity of the results to the incorporation of the zeroth (k = 0) element of the C(t) orientation-
independent correlation function (23). In comparison, the corrected mean orientation-independent
relaxation rate (Ryz)corr (horizontal blue lines) has an intermediate value, and is closer to the
orientationally averaged (R;z)g 4 rate and the mean director-frame relaxation rate (R;z)qir in
DMPC/Chol (Fig. 2B) but still outside of the angular range for the DMPC bilayer (Fig. 2C). Here
the main difference between the orientation-independent relaxation rates (R17) and (Rz)corr and
the orientationally averaged (R;7)4 ¢ relaxation rate is the assumption of the spherical harmonic
addition theorem with no angular dependence. Thus, the inability of (Riz) or (Riz)corr tO
accurately quantify the dynamics of the CH bonds with and without cholesterol can be explained
by the different mobility and order of the bilayers. When the lipid chains are more disordered as
in DMPC, the CH bonds sample a wider range of angles with respect to the bilayer director in
contrast to DMPC/Chol, where they are more ordered and exhibit restrained motions within a
confined orientation. These motional regimes affect the diffusion of the lipids in the bilayer and
the angular dependence of the relaxation, which is either more enhanced or suppressed.
Consequently, the approximation of the CH bond dynamics by monitoring only changes in /3 fails
to capture this full spectrum of molecular dynamics.

Output frequency of atomic coordinates affects accuracy of calculated relaxation rates.
In simulations the relaxation rates are obtained from the spectral densities of the CH bond
fluctuations (Egs. 6, 13, 20) near the resonance (Larmor) frequency w, and twice this value.
Regardless of how the fluctuations are quantified, e.g., in Cartesian coordinates with Wigner D-
functions as in Eqs. 1-3 or with the angle § and spherical harmonics as in Eq. 19, the spectral
density is calculated from the Fourier transform of the respective autocorrelation function. In
theory, that should be a two-sided continuous Fourier transform (or CFT) [see Eq. 11 in (23)].
However, simulations are run with a discrete time step At;,, and atomic coordinates are output at
some fixed sampling time interval At > At;,,, making the simulation data points spaced At time
units apart. Consequently, the calculated spectral density is inherently a one-sided and discrete
Fourier transform (or DFT). A related aspect is that for a correlation function with a sampling time
interval of At there is an upper limit to the frequency that can be detected. Beyond this limit, positive
difference frequencies cannot be distinguished from negative difference frequencies. Thus, in the
Fourier transform all frequencies greater than 1/2At are backfolded onto the spectral density, i.e.,
frequencies of 1/2At + v cannot be distinguished from frequencies of 1/2At — v, contributing to
the offset (Eq. 24). The highest frequency in the DFT that can be sampled is given by 1/2At
according to the Nyquist-Shannon sampling theorem.

A one-sided DFT can then be used to approximate the two-sided CFT by multiplying the
former by a factor of two. Yet, special care must be taken not to overcount the element at the lag
time k = 0, which is the largest element of the autocorrelation function. That is why the director-
frame spectral densities in Eq. 24 and J.(w) in Eq. 28 are written as the sum of the Fourier
transform of the correlation function at k = 0 and twice the Fourier transform of the correlation

-16-



function for k > 1. For a generalized spectral density Jgen(w) and correlation function Gge, (k),
this summation reads follows:

Np/2-1

Jgon(@) = 2 Z Gyen (k) COS Wty At | + Gyon (0)AL. (32)

k=1

Since Ggen(0) is equal to the variance of the fluctuations for G(t) (Eq. 23), or 1 for C(t), the

second term in Eq. 32 is independent of the frequency w and represents a constant term
proportional to the sampling time interval At. This constant is added to the spectral density at every
w giving a frequency-independent offset. In theory, when At — 0 this term becomes
infinitesimally small. Yet, in simulations the choice of At is bounded below by the simulation time
step At (usually 2 fs for fully atomistic simulations) but is often orders of magnitude larger,
At > Atg,,, e.g., pico- or nanoseconds, and is somewhat arbitrary. This can introduce an artificial
shift in the spectral density across all frequencies and directly affect the accuracy of the calculated
relaxation rates.

70 A 5 Figure 4. Calculated relaxation rates depend on the
—4— At =4ps —$— At =4ps . .

- At 40ps 3 At = 40ps o'utput frequency of a'tomlc coordinates. (A) Mean

60 —%— At = 80ps|| —&— At = 80ps director-frame relaxation rates and (B) corrected

orientation-independent relaxation rates calculated
from the same 800-ns trajectory of a DMPC bilayer
with 50 mol% cholesterol but with different output
frequencies of atomic coordinates. The simulation
was run with a 2-fs timestep and data for analysis
were taken every At ps. An apparent increase in the
relaxation is observed as the temporal resolution is
lowered due to the discrete calculation of the Fourier
transform of the fluctuations’ autocorrelation
L S function. All simulations were performed at 44°C. [1-
4 6 8 10 12 4 6 8 10 12 column figure]
carbon carbon

(R1Z )dir <R12 )corr

50

Figure 4 shows this problem for the mean director-frame relaxation rate (R;)qir (left), as well
as for the corrected orientation-independent relaxation rate (R1z)corr (right). In both cases there is
an apparent increase in the calculated relaxation rate as At increases. However, while for (R17)corr
the change is a constant offset as expected from Eq. 28, the differences in the (R17)q;r Values vary
along the chain and are consistent with the respective dynamics of the chain segments. For
instance, the CH bonds closer to the bilayer midplane which are more disordered and have shorter
correlation times (see below) show greater sensitivity as At is increased from 4 ps to 40 ps and 80
ps, while the CH bonds closer to the headgroup whose correlation times are on the order of 30 ps
(see below), begin to increase only when At goes up to 80 ps.

Carbon—hydrogen bonds exhibit both slow and fast dynamics in lipid bilayers. According
to the Nyquist-Shannon sampling theorem, the discrete Fourier transform in Eq. 32 can accurately
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A 4500 Figure 5. Carbon—hydrogen (CH) bond dynamics of lipid
—-7, 0% Chol

4000} . 8- 1, 33% Chol |- membranes have both slow and fast relaxations. (A) Effective
3500 N | correlation time of CH bond fluctuations calculated from 2-us-
5000 / \ | long trajectories of fluid DMPC bilayers with 0 and 33 mol%
” / cholesterol. Atomic coordinates were output every 40 ps. (B)
gzsoov/ \ | Effective correlation time of CH bond fluctuations calculated
£ 2000 \ ] from short 400-ps-resampling simulations with output time
1500 [ ] interval of 10 fs. (C) Isomerization times of carbon segments
1000} ] along the sn-2 chain of DMPC calculated from the short
500l | resampling simulations from (B). Shown are the correlation
o times of trans-to-gauche and gauche-to-trans isomerizations
2 4 6 8 10 12 14 of four consecutive carbon segments quantified from changes
carbon . . . . .
B 4o ‘ ‘ in their dihedral angles. All simulations were performed at
—4—Tiage 0% Chol 44°C. [1-column figure]

35 %Tfast' 33% Chol |

% \ represent the underlying continuous Fourier

transform if At is smaller than half the period of the
fastest CH bond motion in the bilayer. To determine
the range of CH bond motions in a bilayer, we first
analyzed the autocorrelation function of the
fluctuations in 2-us-long simulation trajectories of

5 ] DMPC without and with 33 mol% cholesterol from
0 Ref. (23). Following the approach of Lipari and
2o e S0 Szabo (49), we calculated the effective correlation
C T oe ] time, 7.y, of the CH bond reorientations at all
% G 33% Chol | carbons on the sn-2 chain of DMPC using Padé
%0 | approximants (see Eq. 30 in Methods). Figure 5A
”s shows the results for the bilayer without cholesterol,
k<3 where . was between 0.5 and 1 ns, while in the
_fgjzo bilayer with cholesterol 7.4 reached 4 ns, consistent
1 . with the slower dynamics and higher ordering of the
10 . CH bonds due to the sterol. For these simulations,
5 1 output coordinates were saved every At = 40 ps,
0 which according to Fig. 5A is smaller than one-half

2 *aring cabon 10 of T, that is At < (1/2)7, across all carbons.

To examine the potential contributions of faster dynamics of the CH bonds, we resampled the
long simulations by running multiple short simulations. Here we chose a value of At = 10 fs
instead, starting at different time points of the original trajectories as described in Methods.
Calculation of 7.4 from these resampling simulations at higher temporal resolution showed a much
faster reorientation of the CH bonds, 7, occurring on a sub-40-ps timescale (Fig. 5B). These fast
correlation times ranged between 5 and 35 ps and were independent of cholesterol concentration.
This observation is consistent with results from !3C relaxation time experiments which are
sensitive to fast motions (high frequencies) and reveal no significant effect of cholesterol on the
local fast lipid dynamics (46). Importantly, their existence makes the above analysis inconsistent
with the Nyquist-Shannon sampling theorem with standard choices of At >> At,, including the 40-
ps output interval employed in the original long trajectories from Ref. (23).
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; \ original At = 40 ps Figure 6. Mathematical resampling of CH bond
0.02 ' resampled Aty = 1.9 ps autocorrelation function bypasses sampling limit in

3

©

g
3& discrete  Fourier transformation for lipid
%00'01 I membranes. (A) The autocorrelation function of the
‘ ‘ ; ) CH bonds at carbon C9 on the sn-2 chain of DMPC in

0
0 50 100 150 200 250 the bilayer with 33 mol% cholesterol, Gégz)(k),
B lag time / ps L

40— ‘ ‘ ‘ ‘ ‘ ‘ calculated every 40 ps from the original long
—3—74» 0% Chol trajectories (gray) and resampled every 1.9 ps from
3511 —f- T 33% Chol the best power-law fit to Gégz)(k) (red). (B) The

30l —&-Aty, 0% Chol | | . . . : :
1 At,. 33% Ghol smallest resampling time interval Atg, obtained from

1

best fits to autocorrelation functions Gé_iz)(k) for
carbons 2 <i <14 in the two simulations (open
symbols). Shown for comparison are fast correlation
151 B o g | times 7, for the corresponding CH bonds calculated
from short resampling simulations with output time
interval of 10 fs and replotted from Fig. 2B. All
simulations were performed at 44°C. [1-column
figure]
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Next, we further investigated the origins of the fast CH bond correlation times by analyzing
the isomerization rates of the carbons along the acyl chains (Fig. 5C). Every four consecutive
carbons along a lipid chain can exist in either ¢trans or gauche isomers as defined by their dihedral
angle. The rate with which each segment changes its isomerization has been shown to be very fast
in alkanes, having correlation times of ~20 ps (65,66). While these calculations have caveats, e.g.,
they are model-based and do not consider the concerted transitions between conformers (67), they
provide an estimate of the timescale of the dynamics. We therefore followed the approach
introduced by Richard Pastor et al. for analysis of isomerization rates of peptide chains (Eqs. 57
in (54)) to estimate the isomerization rates of the lipid chain segments in our simulated bilayers.
We classified the instantaneous conformation of a segment as trans or gauche based on its dihedral
angle and used the resulting time series to calculate a number correlation function Cy(t), as
described in Methods. The corresponding effective correlation times Ty;0q, calculated from Cy (t)
with Eq. 30, are plotted in Fig. 5C. For both bilayers, with and without cholesterol, the
isomerization rates were very similar to the respective 7, values in Fig. 5B, indicating that the
cholesterol-independent fast correlation times of the CH bond motions likely arise from the rapid
isomerizations of the chain segments. Taken as a whole, our results confirm that the CH bond
dynamics span multiple timescales that are orders of magnitude apart. This characteristic feature
of the fluctuations has consequences for any type of multiscale analysis that relies on proper
sampling of the fastest motions.

Multiscale simulations can overcome the Nyquist limit by resampling carbon—hydrogen
bond fluctuations. The existence of fast CH bond dynamics presents both a challenge and an
opportunity for the accurate calculation of a continuous Fourier transform from multiscale discrete
simulation data (Eq. 32). This is due to the relatively large time interval employed for practical
outputting of the atomic coordinates, especially in long trajectories, which prevents adequate
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sampling of the dynamics of the system according to the Nyquist-Shannon theorem. In other
words, the data points of the autocorrelation function of the fluctuations from Eq. 22 are spaced
too far apart, making the last constant term on the right in Eq. 32 (also Eqgs. 24 and 28) too large
and introducing an artificial shift in the spectral density (Fig. 4). One way to alleviate this problem
is to reduce At as we did in the 400-ps resampling simulations utilizing At of 10 fs. However,
the poor sampling in each individual trajectory limits the accessible frequencies and makes the
accurate calculation of relaxation rates challenging.

Alternatively, we have shown that the autocorrelation function GZSZ) (k) of the lipid CH bond
fluctuations, quantified by the Euler angles  and y and the Wigner rotation matrix elements from
Eqgs. 1-3, follows a simple mathematical expression (23). In particular, it can be fit to a power-law
of the form ax? + c as shown in Fig. 2A in (23). This is important because it allows us to use the

best fit ng,?ﬁt to resample the correlation function at a much smaller Aty << At. Since ng,? 0) =

Var[DS? (B,y)] is the largest element of the autocorrelation function (ACF), we can perform the

fit on Gé? (k) for k = 1 and find the smallest Atg;, that allows the ACF to smoothly approach the
variance of the data as k — 0 as shown in Fig. 6A. For that, we start from Atg; of 100 fs and
increment it by 100 fs until at lag k = 1 (or equivalently, t = Atg;,), the value of ngn)ﬁt(l) <

S,
Gg;) (0). This approach yields Atg; values between 0 and 30 ps, which are one-half or less than

one-half of the corresponding fast correlation times 7, for most carbons (Fig. 6B). The recovered
spectral density then reads:

NF fit

SR @) =2 ) 650 (k) cos oty Aty + G (00t (33)
k=1

According to the Nyquist-Shannon theorem, it accurately describes the two-sided continuous
Fourier transform (CFT) of the correlation function, thus alleviating the sampling problem
introduced by the large output interval of atomic coordinates. Calculating the spectral density with
Eq. 33 produced relaxation rates in excellent agreement with experiment using 2-us simulations
with output frequency At of 40 ps for DMPC bilayers with increasing amounts of cholesterol (23).

To examine in more detail the accuracy of our estimate obtained using Eq. 33, we extended
the original 2-us trajectories of DMPC and DMPC/Chol by an additional 800 ns, during which the
atomic coordinates were output every 4 ps. According to the results in Fig. 5B, a At of 4 ps should
meet the criteria of the Nyquist-Shannon theorem, and allow for direct calculation of the relaxation
rates without having to first fit the correlation function, i.e., the spectral density can be obtained
from Eq. 24 instead of Eq. 33. Figure 7 shows a comparison between the mean director-frame
relaxation rates calculated with Eq. 25 by using either At of 4 or 40 ps without fitting the
correlation function, or At = Atg, from Fig. 6B obtained by fitting the correlation function from
the raw data output every 40 ps. As seen in both bilayers, fitting the correlation function
successfully removes the artificial increase in the relaxation rates introduced by the larger output
frequency of 40 ps, and recovers almost perfectly the results obtained when At is 4 ps. Thus, this
approach represents an effective solution that can be used to calculate reliable estimates of the
mean director-frame relaxation rates of CH bonds from data with lower temporal resolution. Since
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the orientation-independent C(t) function does not follow a power-law, such mathematical
resampling cannot be applied to alleviate the At-dependence of the mean (R;z) and mean corrected
(R1z)corr Orientation-independent relaxation rates (Fig. 4B).

Figure 7. Fitting the correlation function of bond
—&— At =4ps fluctuations produces reliable estimates of their
M- relaxation rates. (A) The CH bond relaxation rates

PAt= Aty calculated with Eq. 25 from simulation data with 40-ps
(Riz)air | (blue) or 4-ps (black) resolution without fitting the
correlation function show differences due to the
dependence on At (cf. Fig. 4A). Fitting the correlation
function of the bond fluctuations from the low-
resolution data and resampling it at a much smaller At
(red) alleviates this problem and recovers the results
from the higher resolution data. (B) The plotted mean
director-frame relaxation rates are for the carbons on

DMPC/Chol the sn-2 chain of DMPC in the bilayer without
‘ ‘ ‘ ‘ ‘ cholesterol (left) or with 33 mol% cholesterol (right). All
4 6 8 10 12 4 6 8 10 12 simulations were performed at 44°C. [1-column figure]
carbon carbon
DISCUSSION

Biomolecular simulations are uniquely informative in detecting the functional motions of lipids
in membranes together with complementary theoretical and experimental biophysical methods
(1,22,29,68-78). Theoretical simulations in particular have attracted recent notice with the advent
of artificial intelligence (AI) approaches in addition to physics-based force fields (79). Such
techniques are expected to contribute strongly to future data-driven methods in structural and
cellular biology. As an ideal benchmarking technique, solid-state NMR delivers experimental
order parameters for the carbon—hydrogen (CH) bond fluctuations along the lipid chains, while the
relaxation rates access the corresponding dynamics. However, while actual CH bond reorientations
occur on pico- and nanosecond timescales, their NMR relaxation rates at the Larmor frequencies
of conventional instruments are in the millisecond regime (44,45,63,80,81). Relatively short
multiscale simulations allow the study of femto-, pico-, and nanosecond dynamics, which can be
used to quantify longer millisecond-time relaxation rates by Fourier transformation of the
autocorrelation function of the CH bond fluctuations. To accomplish this goal, the liposome
geometry in an actual NMR sample (62) requires evaluation of the orientational averaging of the
simulated dynamics obtained from flat bilayer patches over the longer experimental time scale.
Here we show that such averaging can efficiently be performed while accounting for the angular
dependence of the relaxation, which is critical for validating results for membranes with different
mobility. Present computational approaches yield an efficient framework for numerical
calculations but are unable to capture these crucial aspects of the orientational dependence of the
bond dynamics in lipid membranes.

We previously developed a robust framework that enables this calculation to be efficiently

carried out and allows for the simulation results to be directly compared to experimental NMR
values (23). In the process, we discovered a strong dependency of the calculated relaxation rates
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on the time resolution of the simulation data points, i.e., the output interval of the trajectory frames
used for the analysis. We hypothesized that the issue was due to the presence of very fast dynamics
of the CH bonds, which prevented the accurate calculation of a continuous Fourier transform with
the employed output interval of 40 ps. Accordingly, we directly tested this hypothesis by
resampling the simulation trajectories at different time points with short 400-ps-long simulations
and an output frequency of 10 fs. The new high-resolution data confirmed the presence of CH
bond fluctuations with correlation times between 5 and 35 ps, as observed previously by Pastor
and coworkers for a DPPC bilayer (66). Further analysis indicated that the hierarchical dynamics
are mediated by the changes in isomerization rates of the carbons along the lipid chains. A
resampling approach presents a solution to the data problem by using a fit to the correlation
function to satisfy the conditions of the Nyquist-Shannon sampling theorem (23). In the present
study we directly evaluated the accuracy of this mathematical resampling, showing that it
successfully recovers the relaxation rates obtained from high-resolution data (Fig. 7). Our results
reveal the presence and source of the very fast CH bond dynamics and further establish the validity
of resampling their correlation functions, thus increasing the effective time resolution.

Explicit consideration of bilayer director is essential for calculating relaxation rates.
Differences in the CH bond relaxation rates obtained with the classical status quo approach and
with our recently developed computational framework naturally raise questions about the validity
of the underlying assumptions. In particular, the theory behind the commonly applied methodology
comes from solution NMR (50,82) and can be traced back to application of the spherical harmonic
addition theorem (Eq. 18) as in the rotational relaxation of isotropic liquids. This theorem assumes
that there is no fixed alignment axis relative to which the CH bond fluctuations are calculated (Fig.
3) and thus produces orientation-independent relaxation rates as in textbooks. As such, the results
are unable to account for the effects of the anisotropic relaxation observed both experimentally
and computationally, or to accurately describe lipid motions in both more fluid and more ordered
environments (Fig. 2). It is unavoidable that relating simulations and experiments requires
averaging of the simulation results to achieve correspondence with the rates measured from
liposome samples with solid-state NMR spectroscopy. Such averaging can be carried out either
at the level of the correlation function (Eq. 14) or spectral density (Eq. 12) and produce equivalent
results. One possible misconception is that because the orientation-independent correlation
function C (t) and the mean director-frame correlation function G (t) are both spherically averaged
they are identical apart from a multiplicative factor (Eq. 18). Formally the mean director-frame
correlation function G(t) is related to the orientation-independent C(t) correlation function by
G(t) = (1/5)C(t), but that equivalence holds only under the assumption of the spherical harmonic
addition theorem that there is no fixed director axis. Still, the existence of the CH bond order
parameters clearly illustrates that there is a potential of mean force (PMF) or ordering induced on
the lipids due to an alignment frame characterized by the director (Fig. 3) (56). By contrast, the
use of C(t) bypasses the dependence on a director and instead considers the self-correlation of the
CH bond fluctuations. This treatment means that isotropic motion is implicitly assumed as in the
case of the Debye model for rotational relaxation in liquids (83). Comparison of the results with
solid-state NMR data (Fig. 2) shows that explicit consideration of a fixed director axis, which is
the main difference between the two approaches, is essential for the accurate estimation of the
experimentally measured relaxation rates.
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Multiscale simulations of biomembranes are limited by output frequency of atomic
coordinates. In recent years computational resources have become more easily accessible by
researchers and educators, as in the case of graphics processing units (GPUs) used in computer
game applications. This has been facilitated by the establishment of large supercomputing
infrastructures made available to the public via open proposal calls and freely available training
programs on their use (84). As a result, microsecond-long simulations have become standard even
for relatively large fully atomistic systems (85,86). The decision of how often to output atomic
coordinates during a simulation determines both the amount of space needed to store the trajectory
files and the maximum time resolution of any subsequent analyses. For instance, an all-atom
bilayer with 200 lipids and 45 water molecules per lipid amounts to about 50,000 atoms.
Simulating this system for 10 us would require roughly 200 GB of storage if coordinates are output
every 40 ps and 200 TB of disk space if the data output At is 40 fs. Therefore, the time resolution
needs to be balanced with practical considerations, where simultaneous access to sub-picosecond
and microsecond dynamics is often challenging for multiscale membrane dynamics (22,76,85,87-
89). Even so, relatively small windows at faster dynamics can be created by resampling long
trajectories via short simulations with smaller sampling intervals At.s < At (90). While this
approach provides access to faster molecular motions, the statistics are limited, and the results are
strongly dependent on the state of the bilayer at the chosen starting points for resampling. Lipids
can take ~100 ns to exchange places with their nearest neighbor and tens of hundreds of
nanoseconds to equilibrate their lateral distribution, even in a simple binary mixture (91). Thus,
on the timescale of 400 ps for example, corresponding to the short resampling simulations we
performed here, the overall lipid organization in the bilayer remains the same. Reducing At by an
order of magnitude as a way to increase the resolution of the CH bond autocorrelation function
and facilitate the accurate calculation of its Fourier transform is often not feasible. Here, we show
that relatively long simulations (of 800 ns) with an output interval of 4 ps can provide a reasonable
solution.

Mathematical resampling based on power-law decay gives solution to the data problem.
To increase the effective sampling of the simulation data, we take advantage of the shape of the
CH bond autocorrelation function calculated in the director frame with Eq. 21 (Fig. 1). When the
orientation of the CH bonds is defined with the Wigner rotation matrix elements from Eqgs. 1-3,
the autocorrelation function (ACF) of their fluctuations (Eq. 7) follows a power-law function
(23,45,51). Fitting the ACF to a power-law then allows us to sample it at a much smaller Aty <
At, bypassing the dependence of its Fourier transform on the arbitrary choice of At to avoid
aliasing. While the identified Atg, values are bounded below by the smooth transition of the ACF
fit to the element at lag time 7 = 0, i.e., the variance of the fluctuations (Eq. 23), they are still small
enough to satisfy the Nyquist-Shannon sampling theorem. This eliminates the artificial At-
dependent shift in the spectral density (Eq. 32), producing relaxation rates in excellent agreement
with those calculated from simulation data with higher resolution (Fig. 6), as well as those directly
obtained from NMR experiments (Fig. 6 in (23)). Searching for the smallest Atg; to accurately
calculate relaxation rates from discrete simulation data appears to be the counterpart of
extrapolating experimental spin-lattice Ry; relaxation rates to infinite frequency to evaluate the
local CH bond fluctuations (Fig. 6, see below) (52,66,92). In the present approach, we quantified
the CH bond orientation with respect to the bilayer normal (director axis) with the Euler angles
and y in Cartesian space, but this can also be done with the spherical angles 6 and ¢ in a similar
way (Fig. 1C). Either representation necessitates orientational averaging to facilitate comparison
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with NMR data from liposome dispersions of lipids. In the status quo approach this averaging is
done on the correlation function, as discussed above. However, the resulting averaged correlation
function C(t) is equal to 1 at lag time 0 and does not follow a simple functional form. Notably,
this prevents application of the mathematical resampling approach, which relies on a fit to the
correlation function. Consequently, the resulting orientation-independent relaxation rates have a
strong dependency on the output interval in the trajectories as shown in Fig. 4, and fail to capture
the full spectrum of the CH bond dynamics regardless of the precise implementation of the discrete
Fourier transformation of the C(t) correlation function (Fig. 2).

Data-driven simulations reveal collective lipid motions due to acyl chain isomerizations.
Further consideration indicates that the source of the sampling problem in the Fourier
transformation of the CH bond correlation function is the presence of very fast reorientations of
the bonds relative to the time resolution of the simulation data points. Evidently they have
correlation times of less than 40 ps (Fig. 5B) and become faster towards the ends of the chains at
the bilayer midplane, in agreement with observations made 30 years ago by Richard Pastor et al.
from simulations shorter than our resampling trajectories (66), consistent with NMR findings (92).
Additionally, we find these fast motions are independent of cholesterol concentration in the
membrane, implying they are not influenced by bulk or mesoscale bilayer properties. In contrast,
the CH bonds also exhibit slower dynamics with correlation times that are orders of magnitude
larger than /%' and thus are more easily discoverable with current standard choices for the time
step of outputting atomic coordinates (51). These slower dynamics have a more complicated
dependence on chain carbon depth within the bilayer and are strongly influenced by the ordering
effects of cholesterol (15).

Building on earlier research (66), the ability to access logarithmic time-scales in our
simulations via the resampling approach allows us to analyze the origins of the fast CH bond
dynamics. Our analysis indicates that these fast dynamics are likely related to the rapid changes in
isomerization of the carbon segments along the lipid chains (Fig. 5C). This proposal can explain
why the resulting correlation times are the same within error for bilayers with and without
cholesterol, i.e., they are not affected by the structural and dynamical effects induced on the lipids
by the sterol. To further confirm the universality of the fast CH bond dynamics, we can analyze
the respective changes in relaxation rates as a function of inverse frequency (Fig. 8). Being a
characteristic signature of the spectral density, the relaxation rate at a given frequency (w)
describes the extent of correlation of the bond fluctuations on that timescale (t = 1/w). At all
carbons on the lipid chains, both in the presence and absence of cholesterol, the CH bond relaxation
rates differ at relatively small frequencies (or larger w~%/2 power law as t = ). Yet they
converge at infinite frequency as t — 0 indicating that the underlying fast motions of the bonds
are similarly correlated across all datasets at very short timescales (Fig. 8). In fact, NMR analysis
(44,92-94) shows that this common relaxation rate at infinite frequency is the same as that of
simple liquid hydrocarbons in solution (not in a bilayer), suggesting that the fast dynamics are a
manifestation of the local bilayer microviscosity, coming from the hydrocarbon environment
(44,66). The same conclusion was made from direct comparison of the fast CH bond dynamics in
a 1,2-dipalmitoyl-sn-glycero3-phosphocholine (DPPC) bilayer to those of neat hexadecanes, i.e.,
hydrocarbons of the same length as the lipid chains but in solution instead of a bilayer (93).
Towards the ends of the lipid chains, the CH bonds in the DPPC bilayer have the same correlation
times as those of the equivalent carbon positions in hexadecane. However, the CH bonds at the top
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of the DPPC chains move much slower, suggesting that the dynamics in that region are strongly
influenced by the interfacial tension at the bilayer surface. These observations indicate that the CH
bonds of lipids in a bilayer do indeed experience the same microviscosity as liquid hydrocarbons,
but only when sufficiently far from the bilayer/water interface.

100 490 190 44 ?5 ‘(_ w/ MHZ Figure 8. Fast carbon—hydrogen fluctuations are
——C4, 0% Chol universal descriptors of bilayer microviscosity.
gG, O‘V/o ghol Pd Calculated mean director-frame relaxation rates
| |—C8, 0% Chol L
80 10, 0% Chol . of CH bqnds at carb.ons. 4,6,8, '10, and 12 on the
C12, 0% Chol e sn-2 chain of DMPC in bilayers with 0 and 33 mol%
- = C4,33% Chol . cholesterol are plotted against inverse square root
w  60f C8, 33% Chol ’ . o
» . of the Larmor frequency w. Irrespective of lipid
2 - - C8, 33% Chol -2 '
N - - €10, 33% Chol ~ - composition, the relaxation rates at all carbons
o 40} €12, 33% Chol - converge at infinite frequency (or infinitesimally
small lag time). Hence the fast correlation times of
the CH bonds are universal descriptors of the
20 . . .
bilayer hydrocarbon environment corresponding
to the local microviscosity. [1-column figure]
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Simulated lipid dynamics are validated with solid-state NMR spectroscopy. As mentioned
above, our new and improved framework for the calculation of NMR relaxation rates from
simulations addresses various issues that have come up in physics-based MD simulations of lipid
membranes. While the absolute relaxation rates of carbons in the simulations and experiments are
directly comparable, further validation can be achieved against the relationship between CH bond
relaxation rates and their respective squared order parameters (44,92,93). We found that the two
quantities exhibit the so-called square-law, which is clearly discernible both in the experimental
(95,96) and simulation data (23). This dependence describes the nature of lipid segmental
dynamics resembling those of nematic liquid crystals. We also found that it holds specifically for
the CH bonds situated far from the lipid/water interface where the two leaflets intercalate [see Fig.
5 in (23)]. The unique resemblance of the microviscosity of this bilayer region to that of neat
hydrocarbons whose relaxation rates are independent of frequency (Fig. 7) implies that the square-
law relationship is an intrinsic property of the bilayer core. Furthermore, the slope of the square-
law uniquely corresponds to the local bilayer bending rigidity, thus revealing packing trends in the
elastic behavior of lipid bilayers that are sometimes concealed when measured at long length- and
time-scales (15,97,98). Therefore, validating lipid dynamics with NMR spectroscopy through the
square-law dependence provides an unprecedented opportunity to corroborate multiple aspects of
membrane biophysical properties captured by the underlying lipid force fields.

CONCLUSION

Molecular dynamics simulations offer a fascinating and detailed look into the structural and
dynamical properties of biological systems. However, the generality and reliability of the results
depends on how well the simulations capture the essential aspects of the processes they model.
Being sensitive to the fluctuations of individual carbon—hydrogen bonds in a bilayer, NMR
relaxation provides different points for comparison and validation of the membrane dynamics.
Extracting comparable relaxation rates from the simulation trajectories is not trivial, as it relies on

-25-



underlying theoretical concepts and continuous Fourier transformation of discrete simulation data.
Our new framework successfully tackles these challenges by allowing for replication of
experimentally obtained values and trends. It thus helps to link the dynamical phenomena observed
in vitro to the detailed atomistic motions, thereby assisting the interpretation of NMR results and
offering greater insight into the biophysics of lipid membranes.
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