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ABSTRACT 
 Molecular dynamics simulations of lipid membranes have become increasingly impactful in 
biophysics because they offer atomistic resolution of structural fluctuations in relation to their 
functional outputs. Yet quantitative characterization of multiscale processes is a formidable 
challenge due to the distribution of motions that evade analysis of discrete simulation data. Here 
we investigate the efficient calculation of CH bond relaxation rates from membrane simulations. 
Widely used computational approaches offer numerical simplicity but fall short of capturing 
crucial aspects of the orientation dependence of the dynamics. To circumvent this problem, we 
introduced a robust framework based on liquid crystal theory which considers explicitly the CH 
bond motions with respect to the director axis (bilayer normal). Analysis of the orientation 
dependence of the dynamics shows excellent agreement with experiment, illustrating how the 
ordering potential affects the calculated relaxation rates. Furthermore, a fit-based resampling of 
the autocorrelation function of the bond fluctuations validates the new approach for low-temporal 
resolution data. The recovered relaxation rates indicate that at short timescales, both with and 
without cholesterol, the local motions of CH bonds describe the bilayer microviscosity and 
resemble liquid hydrocarbons. Our results establish the critical role of the orientational anisotropy 
in analysis of membrane simulations, explain fundamental aspects of lipid dynamics, and provide 
guidelines for extracting information that can be compared to experimental data. 
 
 
STATEMENT OF SIGNIFICANCE 
 Nuclear magnetic resonance data have been historically used to validate membrane simulations 
through the average order parameters of the lipid chains. However, the bond dynamics that give 
rise to this equilibrium bilayer structure have rarely been compared between in vitro and in silico 
systems despite the availability of substantial experimental data. Here we investigate the 
logarithmic timescales sampled by the lipid chain motions and confirm a recently developed 
computational protocol that creates a dynamics-based bridge between simulations and NMR 
spectroscopy. Our results establish the foundations for validating a relatively unexplored 
dimension of bilayer behavior and thus have far-reaching applications in membrane biophysics. 
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INTRODUCTION 
 Functions of membrane-associated molecules are often inextricably coupled to the structural 
and dynamical properties of the lipid bilayer matrix. Various experimental techniques have been 
transformative for probing the conformational and energetic landscapes of membrane lipids and 
their dependence on composition, temperature, and pressure variables (1-7).  Notably small-angle 
scattering (SAXS and SANS) data characterize bilayer thickness and area packing per lipid (8); 
fluorescence microscopy (9), resonance energy transfer (FRET) (10), and cryogenic electron 
microscopy (cryo-EM) (11,12) reveal phase coexistence in lipid mixtures; flicker spectroscopy 
(13,14) and neutron spin-echo measurements (15-18) report on bilayer elasticity; and fluorescence 
correlation spectroscopy quantifies lipid diffusion in various biomedical contexts (19,20). While 
experimental results have shaped our comprehension of lipid properties over a wide range of 
length- and time scales, the inability to access individual molecules has created room for 
computational and theoretical investigations (21-27). In particular, molecular dynamics (MD) 
simulations have uncovered otherwise inaccessible mechanisms occurring at the nanoscale (21-
23,28,29), including the role of membrane deformation in peptide-mediated lipid flip-flop between 
leaflets (30), the effect of cholesterol on electrostatics-driven protein binding to membranes (31), 
contributions of interleaflet coupling to phase separation (32), and the pathway of spontaneous 
lipid translocation between opposite leaflets (33). Often perceived as a computational microscope, 
these MD studies have enabled the unifying comparison of different experimental techniques. 
Moreover, they have guided the refinement of data-driven models critical for analysis of 
experiments using the next generation of physics-based force fields (8,11,34,35). 
 
 Clearly the versatility and applicability of molecular simulations hinges upon the robust 
validation of the trajectories against increasingly stringent experimental data (2,15,36-38). Studies 
related to membrane structure and dynamics rely heavily on the accurate parameterization of the 
interatomic and intermolecular interactions (28,39-41). Such sets of parameters or lipid force 
fields, developed for both all-atom and coarse-grained molecular models, govern the bilayer 
equilibrium and dynamical properties and have been optimized against bilayer structural 
parameters obtained mostly from scattering (SAXS and SANS) and solid-state NMR 
measurements (42,43). Ongoing refinements of these lipid force-field parameters have proven 
successful in reproducing certain aspects of the experimental data, while missing others, affirming 
the inherent need for more points of comparison (34). In that respect, investigations of membrane 
dynamics, in addition to average structure, give a promising yet relatively less explored fourth 
dimension of lipid biophysics. Recently we showed how the NMR relaxation rates of lipids in 
lamellar samples can be directly compared to the carbon-hydrogen (CH) bond motions in 
simulated bilayers through mapping the spectral densities of the fluctuations (23). Analogous 
calculations have been done in the past using the widely applied status quo approach developed 
for isotropic motion in nonlamellar systems. Here we show that this classical methodology while 
useful misses a crucial feature of CH bond motions—namely, the angular anisotropy relative to an 
external frame. As a result, it provides only approximate results for the bond relaxation rates.  
 
 In the present article, we extend our approach to quantify the angular dependence of lipid 
dynamics from the simulation trajectories, obtaining results in excellent agreement with 
experimental measurements. This dependence of lipid fluctuations on the bilayer orientation is 
explicitly incorporated into our recently developed computational protocol (23). While quantifying 
the CH bond reorientations demands only knowledge of changes in atomic positions over time, 
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calculating the respective spectral densities entails a Fourier transform of the autocorrelation 
function of the fluctuations. This calculation turns out to be particularly challenging due to the 
discrete nature of the multiscale simulation data. We describe the problem and its origins (35,44-
46), and demonstrate the validity of a solution that circumvents the sampling issues for data with 
relatively low temporal resolution (23).  For the current application, the simulated relaxation rates 
are explained by collective lipid motions and membrane elasticity, while the bilayer core resembles 
liquid hydrocarbons in agreement with experiments. 
 
THEORETICAL METHODS 
 Simulation protocol. We investigated the properties of fully atomistic lipid bilayers: 1,2-
dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing 0, 33, and 50 mol% cholesterol. 
Each bilayer contained 100 lipids per leaflet (200 lipids total) and 45 water molecules per lipid 
with no added salt ions. The bilayers were simulated in the NPT ensemble at a constant temperature 
of 317 K (44°C). The original 2-𝜇s-long trajectories, performed with OpenMM (47) and the 
CHARMM36 force field for lipids (28), were taken from (23). These simulations employed a 
timestep of 2 fs and atomic coordinates were saved every 40 ps. To analyze the dynamics at shorter 
length scales, we resampled the DMPC trajectories with 0 and 33 mol% cholesterol by restarting 
the simulation at different time points and running short simulations with more frequent data 
output. In particular, starting at 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 𝜇s of the original trajectories we 
ran 400-ps-long simulations by using stored restart files of both atom positions and velocities, and 
outputting atomic coordinates every 10 fs. Except for the output frequency, these resampling 
simulations were performed with the same simulation parameters as the original long trajectories 
as described in detail in (23) including a timestep of 2 fs with constraints set to HBonds, a 10-12 
Å potential for van der Waals interactions, and Langevin dynamics maintaining a temperature of 
317 K with a friction parameter of 1.0 per picosecond. In addition, starting from the ends of all 
three 2-𝜇s-long trajectories, we ran additional 800-ns-long simulations, again with the same 
simulation parameters but with an output interval of 4 ps. The data were used to evaluate the 
accuracy of the mathematical resampling performed on data with lower temporal resolution as a 
way to recover the unbiased relaxation rates.  
 
 Representation of carbon-hydrogen bond orientations in Cartesian coordinates. The 
fluctuations of the carbon-hydrogen (CH) bonds of the lipid acyl chains were quantified as in (23). 
Briefly, the instantaneous orientation of a CH bond is described by the Euler angles Ω =
(𝛼, 𝛽, 𝛾) = (𝛼!", 𝛽PD, 𝛾PD) in the director frame (Fig. 1A) where	𝛼 = 0 due to axial symmetry 
about the CH bond axis, 𝛽 defines the angle that the CH bond (Principal axis) makes with the 
bilayer normal (Director axis, NB) along the z-dimension of the simulation box, and 𝛾 quantifies 
the CH bond rotation around the director. The orientation of a CH bond at time	𝑡 is then described 
in 3-dimensional space by functions of 𝛽 and 𝛾, the so-called Wigner rotation matrix elements 
(48), given by:   
 

𝐷&&	
())(Ω; 𝑡) =

1
2
(3 cos) 𝛽(𝑡) − 1)	, (1) 

𝐷&±,	
()) (Ω; 𝑡) = ±8

3
2 sin 𝛽

(𝑡) cos 𝛽(𝑡) 𝑒∓./(0), (2) 
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𝐷&±)	
()) (Ω; 𝑡) = 83

8 sin
) 𝛽(𝑡) 𝑒∓)./(0)	. (3) 

 

where 𝐷&1
())(Ω; 	𝑡) 	= 	 (1)1𝐷&21

())∗ (Ω; 	𝑡) with 𝑚 being 0, ±1, or ±2, and the right-hand side 
indicating the complex conjugate. The above functions are evaluated for every CH bond in the 
bilayer and averaged over the respective carbon atoms across all lipids. 
 

 
 Mean director-frame relaxation rates from Wigner D-functions. As described in (23), the 
relaxation rate 𝑅1Z of the CH bond fluctuations is obtained by first calculating the correlation 
function of the fluctuations, then performing a Fourier transform to obtain the spectral density, and 
evaluating it at 𝜔& and 2𝜔& where 𝜔& is the Larmor frequency of the NMR measurement. Since 
the fluctuations are described by separate Wigner rotation matrix elements (Eqs. 1-3) and each of 
them has its own correlation function, 𝑅1Z is a linear combination of the corresponding spectral 

Figure 1. Schematic illustration of angles and frames of reference used to analyze lipid dynamics. (A) 
Representation of a carbon-hydrogen bond on a lipid chain and the Euler angles 𝛽 and 𝛾 in different frames of 
reference. These angles can describe orientations in the laboratory (lab) frame (𝛽PL, 𝛾PL), i.e., between the principal 
(CH bond) axis and the fixed magnetic field or laboratory (B0) axis; or in the director frame (𝛽PD, 𝛾PD) between the 
principal (CH bond) axis and the director (bilayer normal, NB) axis. The 𝛽 angle is the angle that the CH bond makes 
with the main-frame axis, and the angle 𝛾 defines the rotation of the CH bond around that axis which is calculated 
as described in (23). (B) The CH bond orientation with respect to any axis N can be defined in an analogous way in 
spherical polar coordinates with the polar angle 𝜃 and azimuthal angle 𝜙.  (C) Using the spherical harmonic addition 
theorem, the time-dependent reorientation of the CH bond is described with its positions at time 0, given by µ(0), 
and time 𝑡, given by µ(𝑡). The angle between these two vectors is 𝛽,(𝑡) which is different from the angles 𝛽%& and 
𝛽%' in (A) [or 𝜃 in (B)] as it does not depend on the direction of the N axis.  [1-column figure] 
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densities at the frequencies of interest. In simulations, the measured fluctuations (and relaxation) 
are with respect to the bilayer normal 𝐍6, that is, the director frame, while in NMR experiments, 
they are always with respect to the fixed magnetic field axis 𝐁&, i.e., in the laboratory frame (Fig. 
1A). This means that if 𝐍6 is parallel to 𝐁&, the results from the two techniques would have perfect 
correspondence. However, experiments are often done on liposome samples in which 𝐍6 adopts 
all possible orientations relative to 𝐁& due to the spherical geometry of the vesicles. Therefore, 
connecting the results from the simulations to the actual experimental data requires transforming 
or averaging of the latter. Below we outline the steps of this transformation, which is described in 
more detail in the supplemental material (SM) of (23). 
 
 We will refer to the coordinate system (X, Y, Z) as the laboratory (lab) and start by expressing 
the CH bond fluctuations directly with respect to the lab frame. In that case, the correlation function 
𝐺17ab(𝑡), spectral density 𝐽1lab(𝜔), and relaxation rate 𝑅1Z can be all written as: 

𝐺1789(𝑡) = 	 〈F𝐷&1
())(Ω!:; 𝑡) − 〈𝐷&1

())(Ω!:)〉H
∗
F𝐷&1

())(Ω!:; 0) − 〈𝐷&1
())(Ω!:)〉H〉, (4) 

𝐽1lab(𝜔) = 	ReK 𝐺1lab(𝑡)𝑒2.>0
?

2?
𝑑𝑡, (5) 

𝑅1Z =	
3
4𝜋

)𝜒Q)	P𝐽,lab(𝜔&) + 	4𝐽)lab(2𝜔&)R	. (6) 

	
In Eqs. 4-6, Ω!: = (𝛼!:, 𝛽PL, 𝛾PL) denotes the Euler angles between the CH bond (Principal axis) 
and the magnetic field 𝐁& (Laboratory axis), see Fig. 1A. The subscript 𝑚 is 0, ±1, or ±2, 𝑡 is 
time, and 𝜔 is frequency with 𝜔& being the Larmor frequency of the measurement. In Eq. 4 the 
𝐷&1
())	 matrix elements are as defined in Eqs. 1-3 and the angular brackets 〈∙∙∙〉 denotes a time or 

ensemble average. In Eq. 6, the static quadrupolar coupling constant, 𝜒Q ≡ 𝑒)𝑞𝑄/ℎ = 170 kHz, 
and the value of the numerical pre-factor is (3/4)𝜋)(1.70 × 10A)) = 2.1392 × 10,,	𝑠2). The 
reader should recall that for isotropic liquids there is no projection index, so that 𝐽1(𝜔) →
	〈𝐽1(𝜔)〉 ≡ 𝐽(𝜔) = (1/5)𝑗(𝜔) where 𝑗(𝜔) is the reduced spectral density (see Eq. S20 in the SM 
of (23)).    
 
 In a simulation, the coordinate system is defined by the bilayer director 𝐍6, i.e., (x, y, z) and 
we will refer to it as the director frame. Here, the correlation function 𝐺BCDE(𝑡) and spectral density 
𝐽Bdir(𝜔) can be analogously written as: 

𝐺Bdir(𝑡) = 	 〈F𝐷&B
())(Ω!"; 𝑡) − 〈𝐷&B

())(Ω!")〉H
∗
	F𝐷&B

())(Ω!"; 0) − 〈𝐷&B
())(Ω!")〉H〉, (7) 

𝐽Bdir(𝜔) = 	ReK 𝐺Bdir(𝑡)𝑒2.>0
?

2?
𝑑𝑡, (8) 

	
where	Ω!" = (𝛼!", 𝛽PD, 𝛾PD)	denotes	the	Euler	angles	with	respect	to	the	director	frame	(Fig. 
1A). Note that here again the subscript 𝑝 is a projection index that can be equal to 0, ±1, or ±2.  
It follows that Eqs. 7 and 8 can be calculated from simulations and to connect with experiment, all 
we need is to write 𝑅1Z from Eq. 6 as a function of 𝐽Bdir(𝜔) using Eq. 8. This can be achieved by 
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following the principle of closure, where if Ω": = (𝛼":, 𝛽DL, 𝛾DL)	 denotes the Euler angles 
between the director axis NB and the laboratory frame axis 𝐁& (Fig. 1A), then:	
 

𝐷&1
())(ΩPL; 𝑡) =n𝐷&B

())(ΩPD; 𝑡)	𝐷B1
())(ΩDL)	.

B

 (9) 

 
Substituting Eq. 9 into Eq. 4 leads to 
 

𝐺1lab(𝑡) =n𝐺Bdir(𝑡)o𝐷B1	
()) (ΩDL)o

)

J

, (10) 

 
and likewise, inserting Eq. 10 into Eq. 5 yields: 
 

𝐽1lab(𝜔) =n𝐽Bdir(𝜔)o𝐷B1	
()) (ΩDL)o

)
.

B

 (11) 

 
Note that in Eqs. 10 and 11 it is assumed the motions of the lipids are cylindrically (rotationally) 
symmetric about the director axis. 
	
	 Since	in	a	typical	liposome	sample	𝐍6 adopts all possible orientations relative to 𝐁& on the 
timescale of the NMR measurement, the mean-square Wigner rotation matrix elements for the 
transformation from the director frame to the lab frame are averaged to their isotropic values, 
leading to ⟨|𝐷B1

())(Ω":)|)⟩ = 1/5. The factor of 1/5 comes from considering the spherical 
("powder") averaging as part of a 2-step process: first, the CH bond rotation with respect to the 
director axis, and then rotation about the director axis versus the magnetic field axis. This makes 
the right-hand side of Eq. 11 independent of 𝑚, corresponding to the mean director-frame spectral 
density. Because the summation is over all 𝑝 ∈ [0, ±1,±2] and 𝐽Bdir(𝜔) = 𝐽2Bdir(𝜔), we can 
explicitly write that:  

𝐽1789(𝜔) = 〈𝐽1789(𝜔)〉 ≡ 	𝐽(𝜔) = 	
1
5 P𝐽&

dir(𝜔) + 2𝐽,dir(𝜔) + 2𝐽)dir(𝜔)R. (12) 

	
Lastly,	substituting	Eq.	12	into	Eq.	6	gives	us	an	expression	for	the	orientationally	averaged	
experimental	 𝑅1Z	 rate	 as	 a	 function	 of	 the	 computationally	 accessible	 𝐽Bdir(𝜔)	 spectral	
densities:	

 
𝑅1Z =

3
20𝜋

)𝜒Q)	�𝐽&dir(𝜔&) + 4𝐽&dir(2𝜔&) 

         +2P𝐽,dir(𝜔&) + 4𝐽,dir(2𝜔&)R  

         +2P𝐽)dir(𝜔&) + 4𝐽)dir(2𝜔&)R�	, 

      (13) 

	
where	the	pre-factor is equal to (3𝜋) 20⁄ )(1.70 × 10A	s2,)) = 4.2785 × 10,&	s2).	
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	 Orientation-independent relaxation rates from spherical harmonics. In addition to 
expressing 𝑅1Z as a function of the director-frame spectral densities 𝐽Bdir(𝜔) as in Eq. 13, the 
experimentally measured value from Eq. 6 can be approximated by an orientation-independent 
relaxation rate. As mentioned above, due to the distribution of the bilayer normal in a liposome 
sample, the spectral density 𝐽1lab(𝜔) in the laboratory frame can be orientationally averaged to its 
isotropic limit 𝐽(𝜔), which does not depend on the projection index 𝑚 (Eq. 12).  Analogously, the 
correlation function 𝐺1lab(𝑡) from Eq. 10 can be written as: 
 

𝐺1lab(𝑡) = 〈𝐺1lab(𝑡)〉 ≡ 	𝐺(𝑡) = 	
1
5n𝐺Bdir(𝑡)

B

, (14) 

	
where	the	angular	brackets	denote	a	time	or	ensemble	average.		In Eq. 14 G(t) represents the 
mean director-frame correlation function, which corresponds to an anisotropic liquid-crystal 
model. The factor of 1/5 comes from the orientational average of the director (bilayer normal) as 
mentioned above. 
 
 As described in the supporting material (SM) of (23), the correlation functions 𝐺Bdir(𝑡), which 
in Eq. 7 are functions of the Euler angles in Cartesian coordinates, can be expressed in terms of 
spherical harmonics, 𝐺�Bdir(𝑡), as follows: 

𝐺Bdir(𝑡) = 	
4𝜋
5 𝐺�Bdir(𝑡). (15) 

In Eq. 15 and throughout, the tilde refers to functions of the spherical harmonics that are 
distinguished from those using Wigner D-functions. From here, the mean director-frame 
correlation function 𝐺(𝑡) from Eq. 14 becomes: 
 

𝐺(𝑡) = 	
1
5n𝐺Bdir(𝑡)

B

=
1
5 �
4𝜋
5 �n𝐺�Bdir(𝑡)

B

=
1
5 �
4𝜋
5 n〈𝑌)B∗ (Ω; 𝑡)𝑌)B(Ω; 0)〉

B

� (16) 

 
where the 𝑌)B(Ω) functions are the spherical harmonic equivalents to the 𝐷&B

())(Ω) functions: 
 
  

𝐷&B
())(Ω; 𝑡) = 84𝜋

5 𝑌)B(Ω; 𝑡) = 84𝜋
5 𝑌)B(𝜃, 𝜙; 𝑡). (17) 

 
Note that in Eq. 17 the orientation of the CH bond can be represented using either the Euler (Ω; 
Fig. 1A) or spherical polar (𝜃, 𝜙; Fig. 1B) angles as the basis, with the correspondence shown in 
Fig. S1 of (23).  
 
 Next, if we now assume spherical symmetry with no dependence on the specific orientation of 
the CH bond with respect to 𝐍6 (or 𝐁&), then we can apply the spherical harmonic addition theorem 
to simplify the expression in the square brackets in Eq. 16, yielding: 
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𝐺(𝑡) =
1
5
〈𝑃)�𝛍(0) ∙ 𝛍(𝑡)�〉 =

1
5
〈𝑃)Pcos 𝛽�(𝑡)R〉. (18) 

The reader should take note that in Eq. 18, the second-order Legendre polynomial 𝑃) has the same 
functional expression as 𝐷&&	

())(Ω; t) in Eq. 1, where 𝛽�(𝑡) is the angle between the CH bond at time 
0 and time 𝑡. In other words, if the unit vector 𝛍(𝑡) describes the direction of the CH bond at time 
𝑡 as shown in Fig. 1C, then the reorientation of the bond in Eq. 18 is defined by the scalar product 
of 𝛍(0) and 𝛍(𝑡), i.e., the cosine of the angle 𝛽�(𝑡) between the two vectors.  Because the scalar 
product is invariant, the spherical harmonic addition theorem eliminates the dependence of the 
correlation function on the direction of the bilayer normal 𝐍6 (or laboratory axis 𝐁&) by 
considering the change in 𝛽 described by 𝛽� (Fig. 1C), and not 𝛽 itself (Fig. 1A).  Whether this is 
actually the case for lipid membranes is further discussed below. 
 
 Notably in Eq. 18, the mean 𝑃) function of cos 𝛽�(𝑡) is typically denoted as 𝐶(𝑡) (49), where 
the corresponding spectral density 𝐽K(𝜔) is written as: 

 𝐽K(𝜔) = ReK 𝐶(𝑡)𝑒2.>0
?

2?
𝑑𝑡 = ReK 〈𝑃)Pcos 𝛽�(𝑡)R〉𝑒2.>0

?

2?
𝑑𝑡. (19) 

The above formula corresponds to a 1-step motional process, i.e., the CH bond motion is 
considered with respect to an arbitrary axis. From Eq. 19 we then obtain the orientation-
independent relaxation rate in terms of the computationally	 accessible spherical harmonics, 
which reads: 
 

 〈𝑅1Z〉 =
3
20𝜋

)𝜒Q)[𝐽K(𝜔&) + 	4𝐽K(2𝜔&)]	, (20) 

 
where 𝐽K(𝜔) is the two-sided Fourier transform of the 𝐶(𝑡) correlation function. The above 
expression, Eq. (20), is the same as in the textbook case for solution NMR spectroscopy (50) with 
the substitution 𝐽(𝜔) → (1/5)𝐽K(𝜔) (compare Eqs. 6 and 20 above). Because the director axis is 
not included, the orientational ("powder") average is attributed entirely to the CH bond motion, 
e.g., as in (but not restricted to) the Debye model for rotational relaxation of an isotropic liquid.  
Inclusion of an alignment frame (e.g., director) leads to the generalized model-free (GMF) 
approach as originally described (44). 
 
 Calculation of experimental relaxation rates from molecular simulations . Next, we can 
calculate 𝐺Bdir(𝑡) and 𝐽Bdir(𝜔) from Eqs. 7 and 8, using the simulation trajectories as described in 
(23). Briefly, for each of the time series, the element 𝐷&B

())(Ω!"; 𝑡)	can be written as 𝐷&L	
())(𝛼, 𝛽, 𝛾; t) 

where 𝑝 ∈ [0,1,2], the angle 𝛼 = 0, and we drop the subscript PD for convenience, since all Euler 
angles in flat bilayer simulations are with respect to the director frame whose z-axis is the 
membrane normal (Fig. 1A). For every carbon CM,O

(P) where 1 ≤ 𝑙 ≤ 𝑁: is an individual DMPC lipid 
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(𝑁: being the total number of DMPC lipids in the bilayer), and 2 ≤ 𝑛 ≤ 14 is the carbon number 
on the sn-1 (𝑠 = 1) or sn-2 (𝑠 = 2) chain, the autocorrelation function can thus be obtained from: 
 

𝐺B,O
(P)(𝑘) =

1
2𝑁:

nn𝐺B,M,O
(P,.)(𝑘)

.M

   (21) 

with  

𝐺B,M,O
(P,.)(𝑘) =

1
𝑁Q − 𝑘

n 𝐷&B
())∗(𝛽, 𝛾; 𝑡)𝐷&L	

())(𝛽, 𝛾; 𝑡 + 𝑘)
R(2S2,

0T&

− o〈𝐷&B
())(𝛽, 𝛾)〉o

)
. 

 

  (22) 

In Eq. 21 the inner summation is over the two hydrogen atoms 𝑖 = (1,2) at carbon CM,O
(P) and in Eq. 

22 the second term is the squared mean of the fluctuations; 𝑘 is the lag time, 𝑁Q is the total number 
of trajectory frames (or time points), and 𝐷&B

())∗(𝛽, 𝛾; 𝑡) denotes the complex conjugate of the 
𝐷&B
())(𝛽, 𝛾; 𝑡) rotation matrix element.  At zero lag time, i.e., 𝑘 = 0, the autocorrelation function in 

Eq. 22 yields the variance of 𝐷&B
())(𝛽, 𝛾), which reads: 

 
𝐺B,M,O
(P,.)(0) = 〈|𝐷&B

())(𝛽, 𝛾)|)〉 − |〈𝐷&B
())(𝛽, 𝛾)〉|) = var[𝐷&B

())(𝛽, 𝛾)].   (23) 

  
 From Eq. 22 the spectral density function of the fluctuations is the two-sided Fourier transform 
(FT) of the autocorrelation function.  Numerically however we can calculate only the single-sided 
FT, so that we can estimate the double-sided FT as follows:  

 𝐽B,O
(P)(𝜔) ≈ 2 � n 𝐺B,O

(P)(𝑘) cos𝜔𝑡S ∆𝑡
R(/)2,

ST,

� + 𝐺B,O
(P)(0)∆𝑡.   (24) 

Note that in Eq. 24, the frequency 𝜔 is related to the Larmor frequency 𝜈0 of the NMR instrument 
by 𝜔& = 2𝜋𝜈&, ∆𝑡 is the sampling time interval, and 𝑡S = 𝑘∆𝑡 is the time at lag 𝑘. The discrete 
spectral density is fit to either a power-law function (if a fit of the correlation function is used, see 
Results) or to a simple smoothing spline function to access values at specific frequencies. 
Following Eq. 13, the relaxation rate is then calculated as: 
 

 

𝑅,V,O
(P) =

3
20𝜋

)𝜒Q)	�𝐽&,O
(P)(𝜔&) + 4𝐽&,O

(P)(2𝜔&) 

         +2F𝐽,,O
(P)(𝜔&) + 4𝐽,,O

(P)(2𝜔&)H 

         +2[𝐽),O
(P)(𝜔&) + 4𝐽),O

(P)(2𝜔&)]� 

(25) 

 
with the pre-factor equal to (3𝜋) 20⁄ )(1.70 × 10A	s2,)) = 4.2785 × 10,&	s2).  The relaxation 
rate in Eq. (25) represents an average over all director orientations as discussed above, and we 
refer to it as the mean director-frame relaxation rate. 
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 To calculate the orientation-independent relaxation rate with Eq. 20, we first need to compute 
the two-sided Fourier transform of the 𝐶(𝑡) correlation function. Traditionally, this is done by 
using the single-sided FT, 𝑗K(𝜔) and multiplying the result by 2 which gives: 
 

 𝐽K(𝜔) ≈ 2𝑗K(𝜔) = 2 � n 𝐶(𝑘) cos(𝜔𝑡S ∆𝑡
R(/)2,

ST&

)�.  (26) 

 
The corresponding orientation-independent relaxation rate is then written as: 

 〈𝑅1Z〉 =
3
10𝜋

)𝜒Q)	[𝑗K(𝜔&) + 	4𝑗K(2𝜔&)], (27) 

in which the pre-factor is equal to 8.557 × 10,&	s2) and is the same as the pre-factor in Eq. 2.5 in 
(51).  
 
 Analogously to Eq. 24, the spectral density 𝐽K(𝜔) can be approximated from the single-sided 
FT by ensuring that the zeroth element of the correlation function, 𝐶(0) = 1, is not counted twice. 
We will refer to the resulting relaxation rate as the mean corrected orientation-independent 
relaxation rate 〈𝑅1Z〉corr: 
 

 𝐽K(𝜔) ≈ 2 � n 𝐶(𝑘) cos(𝜔𝑡S ∆𝑡
R(/)2,

ST,

)� + ∆𝑡  (28) 

in which 

 〈𝑅1Z〉corr =
3
20𝜋

)𝜒Q)	[𝐽K(𝜔&) + 	4𝐽K(2𝜔&)]. (29) 

Here the pre-factor in Eq. 29 is equal to 4.2785 × 10,&	s2). In both cases (Eqs. 26 and 28), the 
spectral density is fit to a smoothing spline function to estimate the values at 𝜔& and 2𝜔&. 
 
 Calculation of effective correlation times. In our approach, the correlation times of the CH 
bond fluctuations are described by the functions in Eqs. 1-3 and can be obtained from the 
corresponding autocorrelation functions 𝐺B,O

(P)(𝑘) with Eq. 21. However, in general a broad 
distribution of correlation times is to be expected for either collective or noncollective lipid bilayer 
motions (44).  For a more recent discussion please see Refs. (35,52).  In the case of lipid motions, 
we follow the procedure of Giovanni Lipari and Attila Szabo (49) based on Padé approximants 
(53), where the effective correlation time, 𝜏eff, is related to the integral of 𝐺B,O

(P)(𝑘) as follows: 

 𝜏eff =
1

𝐺B,O
(P)(0)

K 𝐺B,O
(P)(𝑘)

?

&
𝑑𝑘 =

1
var[𝐷&B

())(𝛽, 𝛾)]
n 𝐺B,O

(P)(𝑘)
R(/)2,

ST&

∆𝑡.   (30) 
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 Analysis of isomerization rates.  For all consecutive 4-carbon segments along the lipid chains, 
the isomerization rates were analyzed following the approach outlined in (54). First, the dihedral 
angles of all segments were calculated and used to determine the cutoff angle that classifies the 
segment conformation as trans versus gauche (±120 degrees). Then for each segment a time series 
𝑁Y(𝑡) was constructed such that in every frame (i.e., at every time point 𝑡) a value of 1 or 0 was 
assigned to 𝑁Y(𝑡) depending on whether the segment had a trans (0) or gauche (1) isomerization. 
The resulting number correlation function 𝐶Z(𝑡) was calculated from 𝛿𝑁A(𝑡) = 𝑁A(𝑡) − 〈𝑁A	〉 
following Eq. 7a from (54) with the MATLAB xcorr function specifying the "normalized" option 
which ensures that 𝐶Z(0) = 1. The correlation functions for all lipids and in all frames were 
averaged, and Eq. 30 was used to calculate the effective correlation time for the segment. Note 
that due to the noise the averaged correlation functions decayed to a value slightly different from 
0, so that the mean of the last quarter of the correlation function was subtracted from 𝐶Z(𝑡) prior 
to calculation of the 𝜏eff correlation time. This quantification of the carbon segment dynamics 
makes them directly comparable to the effective correlation times of lipid CH bond fluctuations.   
 
RESULTS 

Molecular simulations capture the angular dependence of bond relaxations and yield 
orientationally averaged relaxation rates. Knowing what exactly gives rise to the relaxation 
rates measured in a solid-state NMR (ssNMR) experiment is essential for properly translating data 
to MD simulations. In the context of CH bond fluctuations, there are two main frames of reference 
in the experiment: the laboratory (or lab) frame defined by the fixed magnetic field axis 𝐁&, and 
the director frame specified by the normal to the bilayer surface, 𝐍6 (Fig. 1A). Any quantity 
measured with ssNMR is in the lab frame, that is the dynamics are always with respect to 𝐁&. The 
CH bonds of lipids, for example, have restricted fluctuations in the director frame, and the ordering 
potential induced by the 𝐍6 director gives rise to the well-known order parameters of the 
fluctuations (1,55). The order parameter is an average property measured from the NMR lineshape 
that comes from the reorientation of all lipid CH bonds relative to the lab frame 𝐁&, e.g., as 
described by a mean-torque model (56). 

 
For a typical liposome sample, the bilayer directors adopt all orientations with respect to the 

fixed axis of the magnetic field. This orientation of the directors does not affect the average order 
parameters; however, it is relevant for interpretation of the 𝑅1Z relaxation rates of the CH bonds. 
That is due to the fact that the experimentally measured 𝑅1Z value depends on the angle that the 
bilayer director makes with the magnetic field axis. This was shown in work with oriented bilayer 
samples in the 1990s by various research groups (57-60).  There the bilayers were gradually rotated 
with respect to 𝐁& yielding distinct changes in the measured relaxation rates. This angular 
dependence is not apparent in relaxation measurements of multilamellar lipid dispersions but is 
clearly visible in data from microcrystalline powders (61). Specifically, Brown and Davis (62) 
were able to show experimentally that the relaxation anisotropy present in multilamellar vesicles 
(MLVs) is orientationally averaged by lipid translational diffusion, which happens on timescales 
shorter than those of the actual spectral measurements. 

 
The orientational distribution of the directors in liposome samples can be modeled as uniform 

on the surface of a unit sphere due to the geometry of the vesicles. Here we consider a solid angle 
Ω defined by spherical polar coordinate (𝜃, 𝜙) with the differential solid angle	𝑑Ω = sin𝜃𝑑𝜃𝑑𝜙, 
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where 𝜃 is the polar angle (colatitude or zenith) and 𝜙 is the azimuthal angle (longitude) in the x-
y plane from the x-axis. Conservation of probability then leads to 𝑃(Ω)𝑑Ω = 𝑃(𝜃, 𝜙)𝑑𝜃𝑑𝜙 for the 
infinitesimal probability, in which the probability density function is given by 𝑃(𝜃, 𝜙) 	=
	sin	𝜃/4𝜋. For a fluid lipid bilayer with axial symmetry about the bilayer normal (director), the 
azimuthal probability density entails integrating 𝑃(𝜃, 𝜙) over the polar angle 𝜃 in the interval	𝜃 ∈
[0, 𝜋] yielding 𝑃(𝜙) = 1/2𝜋.  Alternatively, we can integrate 𝑃(𝜃, 𝜙) over the azimuthal angle 𝜙 
in the interval	𝜙 ∈ [0,2𝜋) to get the probability density for the polar angle. The normalized 
probability density function is thus mathematically described by 

𝑃(𝜃) =
sin 𝜃
2    (31) 

in which 𝜃 ∈ [0, 𝜋] is the polar angle, with 𝑑Ω = sin𝜃𝑑𝜃𝑑𝜙 for the differential solid angle. As 
illustrated by Eq. 31, the uniform distribution on a unit sphere does not imply equal probability 
but instead, orientations with 𝜃~90° are most likely. The measured relaxation rate is then an 
orientational average of contributions from the various directors, that is, the sum of relaxation rates 
for the distinct orientations, each scaled by the probability	𝑃(𝜃, 𝜙) of that orientation. Take note 
that 𝑃(𝜃, 𝜙) is invariant with respect to the 𝜙 angle due to the spherical symmetry.  
 
 One way to directly relate the experimental results to numerical simulations is to first estimate 
the relaxation rate from the MD trajectories in the laboratory frame.  Simulated bilayers are usually 
flat membrane patches with a single bilayer director parallel to the z-dimension of the simulation 
box. In that respect, they resemble oriented bilayers that can be rotated to examine the angular 
dependence of the relaxation. Accordingly, we analyzed two fluid bilayer trajectories from (23), 
DMPC with and without 50% cholesterol, simulated at 44oC. We assumed that 𝐁& is initially 
parallel to the bilayer normal 𝐍6, i.e., the angle 𝜃 between 𝐁& and the z-dimension of the simulation 
box was 0 degrees. The 𝐁& axis was then gradually rotated by increasing 𝜃 as shown in Fig. 2A, 
and the relaxation rates calculated directly with respect to 𝐁&, i.e., in the lab frame using Eq. 6. 
Rotating 𝐁& relative to 𝐍6 is analogous to keeping the orientation of 𝐁& fixed and rotating the 
bilayer patch, as done in the actual NMR experiment. Indeed, using this approach we were able to 
recover almost perfectly the angular dependence observed experimentally with solid-state NMR 
spectroscopy (Fig. 2B-C, red and black symbols). This dependence spanned a broader range of 
relaxation rates for more highly ordered bilayers like DMPC/Chol (Fig. 2B), and a narrower range 
for more fluid bilayers like DMPC (Fig. 2C), as seen in the experimental data (60,63).  
 
 Following the above protocol, the relaxation rates can thus be calculated relative to the fixed 
𝐁& laboratory frame for different angles 𝜃 without any averaging (Fig. 2).  From the results, we 
estimated the orientationally averaged relaxation rate 〈𝑅1Z〉\,] by fitting the calculated angular 
dependence between 0 and 90 degrees, as well as its mirror image from 90 to 180 degrees to a 
smoothing spline function. Using the fit, we multiplied the results by 𝑃(𝜃, 𝜙) from Eq. 31 and 
their sum yielded the mean value 〈𝑅1Z〉\,], which is plotted in Figs. 2B-C as a gray line. The 
〈𝑅1Z〉\,] rate calculated for the DMPC/Chol bilayer (16.1 𝑠2,) is clearly different from the average 
relaxation rate assuming constant probability at all 𝜃 (18.5 𝑠2,), consistent with the dependence 
of 𝜃 on sin 𝜃 (Eq. 31). Together with the good agreement with experimental data, these 
observations thus further confirm the angular dependence of the CH bond fluctuations and 
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demonstrate that simulations can provide a model-free estimate of the relaxation rate calculated 
directly in the lab frame. 
 

 
 

 
 Angular anisotropy explains difference of orientation-independent and mean director-
frame correlation functions.  Notably, the orientationally averaged relaxation rates can also be 
approximated from numerical simulation data without explicitly considering the angular 
dependence of the relaxation. This is achieved by expressing the relaxation rate defined in the lab 
frame in Eq. 6, with the correlation functions and spectral densities in the director frame (Eq. 13), 
which are readily obtainable from MD simulations. We recently developed a framework that 
implements this approach by: (1) quantifying the CH bond orientations with respect to the bilayer 
normal (director) in Cartesian coordinates (Eqs. 1-3), (2) calculating their correlation functions 
(Eq. 22) and corresponding spectral densities in the director frame (Eq. 24), and (3) obtaining the 
𝑅1Z rates from the latter functions evaluated at the Larmor frequency 𝜔& and 2𝜔& corresponding 
to the NMR measurement (Eq. 25). This approach assumes spherical averaging of the spectral 
densities in the lab frame 〈𝐽1789(𝜔)〉 ≡ 	𝐽(𝜔) due to the uniform distribution of the bilayer directors 
(Eq. 12), but explicitly considers the three director-frame spectral densities 𝐽BCDE(𝜔) with respect 
to 𝐍6 that come from the ordering of the CH bonds relative to 𝐍6 (Eq. 8).  We refer to the resulting 
MD-simulated values as the mean director-frame relaxation rates 〈𝑅1Z〉CDE, since they are 
quantified from the CH bond fluctuations relative to the director axis (bilayer normal). These 
calculated 〈𝑅1Z〉CDE values, which are orientationally averaged by virtue of the averaged lab-frame 
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Figure 2. Angular dependence of CH bond dynamics in lipid simulations allows the calculation of orientationally 
averaged relaxation rates. (A) Schematic illustration of a bilayer in a simulation box. The magnetic field axis B0 
is initially parallel to the bilayer director axis NB (i.e., the z-dimension of the simulation box) so that the angle 
between them, 𝜃, is 0 degrees. The B0 axis is then gradually rotated away from NB by increasing the angle 𝜃, and 
the CH bond relaxation rate is calculated with Eq. 6 in the laboratory frame, i.e., with respect to the B0 frame. 
(B) Calculated relaxation rate as a function of 𝜃 (red symbols) for carbon C9 on the sn-1 chain of DMPC in a bilayer 
with 50% cholesterol at 44oC. The orientationally averaged relaxation rate (grey) was calculated from the 
simulated angular dependence weighted by the uniform distribution of the directors on the surface of a sphere 
from Eq. 31. Shown for comparison are: experimental NMR data for carbons C7-C8 in oriented bilayers of 
DMPC/Chol 1:1 measured at 40oC from (60) (black symbols); the mean (green) and mean corrected (blue) 
orientation-independent relaxation rates; and the mean director-frame relaxation rate from Eq. 25 (red). (C) 
Calculated relaxation rate as a function of 𝜃 for carbon C12 on the sn-1 chain of DMPC in a single-component 
DMPC bilayer. Experimental NMR data are for carbon C13 in oriented DMPC bilayers measured at 40 oC from (63) 
and all colors and symbols are the same as in (B). [2-column figure] 
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spectral density 𝐽(𝜔) (Eq. 12), are plotted in Figs. 2B-C as horizontal red lines. For both bilayers 
with and without cholesterol, they are very similar to the corresponding orientationally averaged 
〈𝑅1Z〉\,] relaxation rates. 
 
 For larger undulating membranes the calculation of the bilayer director 𝐍6 can be rather 
cumbersome, and an alternative approach circumvents the need for its explicit consideration. 
According to the well-established and widely used analysis of small molecules freely tumbling in 
solution, the model assumes that the measured relaxation rate does not have an angular 
dependence. This assumption simplifies the calculation significantly by allowing the application 
of the spherical harmonic addition theorem, which relates the orientationally averaged lab frame 
spectral density 𝐽(𝜔) from Eq. 12 to fluctuations of the angle 𝛽� in Fig. 1C (Eq. 19). This angle 
quantifies the change in direction of the CH bond over time, rather than its orientation relative to 
a specific axis such as the 𝐍6 or 𝐁& axes. The correlation function of the fluctuations, 𝐶(𝑡), is 
expressed with the second-order Legendre polynomial of cos 𝛽�	and is mathematically invariant to 
the rotation of the fixed axis  as illustrated in Fig. 3 (64). We thus refer to the resulting relaxation 
rate 〈𝑅1Z〉 as the orientation-independent relaxation rate (Eq. 20). 
 

  
 Analysis of orientation-independent relaxation rates does not fully capture lipid 
dynamics.  The spectral densities of CH bond fluctuations are two-sided Fourier transforms (FTs) 
whereas from simulations we can calculate FTs only as one-sided.  The latter functions can be 
theoretically multiplied by a factor of two to yield the two-sided FTs (Eq. 26), from which the 
relaxation rate is then obtained (Eq. 27). Numerically however, this approach results in 
overcounting of the zeroth element of the correlation function which can artificially increase the 
result (see below). One approach to alleviate this problem is to completely disregard the zeroth (k 
= 0) element, i.e., to perform a Fourier transform of the correlation function 𝐶(𝑡) for 𝑡 ≥ ∆𝑡, which 
will introduce a frequency-dependent phase shift of the spectral density. An alternative approach 
is to include the zeroth element, but to ensure it is not overcounted (Eq. 28) to yield what we will 
call the mean corrected	〈𝑅1Z〉corr orientation-independent relaxation rate. 

 

Figure 3. Illustration of why the spherical harmonic 
addition theorem is inapplicable to lipid membranes. 
The theorem considers the time-dependent angle 𝛽, of 
the CH bond vector (solid blue lines) with itself and gives 
rise to the orientation-independent correlation 
function 𝐶(𝑡). (A) Since there is no dependence on a 
specific fixed axis, 𝛽, stays the same when the director 
NB rotates, while the angles {solid blue, dashed red 
lines) it makes with the CH bond and the magnetic field 
axis B0 change. (B) In contrast, the director-frame 
correlation function 𝐺(𝑡) is specific for the director axis 
and hence, rotation of NB and the CH bonds {solid blue, 
dashed red lines) are not independent. Thus, as opposed 
to 𝐶(𝑡), the 𝐺(𝑡) function captures both the ordering 
potential characterized by NB and the angular 
dependence of motion due to the director orientation 
NB relative to the B0 frame.  [1-column figure] 
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The orientation-independent relaxation rates 〈𝑅1Z〉 calculated for 𝑡 ≥ 0 and for 𝑡 ≥ ∆𝑡 are 
plotted in Figs. 2B-C as horizontal green lines. They are quite different from each other, and even 
though one of them overlaps almost perfectly with 〈𝑅1Z〉\,] in the DMPC bilayer (Fig. 2C), neither 
falls inside the range defined by the angular dependence of 𝑅1Z for both the DMPC/Chol and 
DMPC bilayers (Figs. 2B–C). This is not surprising considering the previously observed 
sensitivity of the results to the incorporation of the zeroth (k = 0) element of the 𝐶(𝑡) orientation-
independent correlation function (23). In comparison, the corrected mean orientation-independent 
relaxation rate 〈𝑅1Z〉corr (horizontal blue lines) has an intermediate value, and is closer to the 
orientationally averaged 〈𝑅1Z〉\,] rate and the mean director-frame relaxation rate 〈𝑅1Z〉CDE in 
DMPC/Chol (Fig. 2B) but still outside of the angular range for the DMPC bilayer (Fig. 2C).  Here 
the main difference between the orientation-independent relaxation rates 〈𝑅1Z〉 and 〈𝑅1Z〉^_EE and 
the orientationally averaged 〈𝑅1Z〉],\ relaxation rate is the assumption of the spherical harmonic 
addition theorem with no angular dependence.  Thus,  the inability of 〈𝑅1Z〉 or 〈𝑅1Z〉^_EE to 
accurately quantify the dynamics of the CH bonds with and without cholesterol can be explained 
by the different mobility and order of the bilayers. When the lipid chains are more disordered as 
in DMPC, the CH bonds sample a wider range of angles with respect to the bilayer director in 
contrast to DMPC/Chol, where they are more ordered and exhibit restrained motions within a 
confined orientation. These motional regimes affect the diffusion of the lipids in the bilayer and 
the angular dependence of the relaxation, which is either more enhanced or suppressed. 
Consequently, the approximation of the CH bond dynamics by monitoring only changes in 𝛽� fails 
to capture this full spectrum of molecular dynamics.  
 
 Output frequency of atomic coordinates affects accuracy of calculated relaxation rates. 
In simulations the relaxation rates are obtained from the spectral densities of the CH bond 
fluctuations (Eqs. 6, 13, 20) near the resonance (Larmor) frequency 𝜔& and twice this value. 
Regardless of how the fluctuations are quantified, e.g., in Cartesian coordinates with Wigner D-
functions as in Eqs. 1-3 or with the angle 𝛽� and spherical harmonics as in Eq. 19, the spectral 
density is calculated from the Fourier transform of the respective autocorrelation function. In 
theory, that should be a two-sided continuous Fourier transform (or CFT) [see Eq. 11 in (23)]. 
However, simulations are run with a discrete time step ∆𝑡sim and atomic coordinates are output at 
some fixed sampling time interval ∆𝑡 ≥ ∆𝑡sim, making the simulation data points spaced ∆𝑡 time 
units apart. Consequently, the calculated spectral density is inherently a one-sided and discrete 
Fourier transform (or DFT). A related aspect is that for a correlation function with a sampling time 
interval of ∆𝑡 there is an upper limit to the frequency that can be detected.  Beyond this limit, positive 
difference frequencies cannot be distinguished from negative difference frequencies. Thus, in the 
Fourier transform all frequencies greater than 1/2∆𝑡 are backfolded onto the spectral density, i.e., 
frequencies of 1/2∆𝑡 + 𝜐 cannot be distinguished from frequencies of 1/2∆𝑡 − 𝜐, contributing to 
the offset (Eq. 24). The highest frequency in the DFT that can be sampled is given by 1/2∆𝑡 
according to the Nyquist-Shannon sampling theorem. 
  
 A one-sided DFT can then be used to approximate the two-sided CFT by multiplying the 
former by a factor of two. Yet, special care must be taken not to overcount the element at the lag 
time 𝑘 = 0, which is the largest element of the autocorrelation function. That is why the director-
frame spectral densities in Eq. 24 and 𝐽K(𝜔) in Eq. 28 are written as the sum of the Fourier 
transform of the correlation function at 𝑘 = 0 and twice the Fourier transform of the correlation 
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function for 𝑘 ≥ 1. For a generalized spectral density 𝐽gen(𝜔) and correlation function 𝐺gen(𝑘), 
this summation reads follows:  

 𝐽gen(𝜔) ≈ 2 � n 𝐺gen(𝑘) cos𝜔𝑡S ∆𝑡
R*/)2,

ST,

� + 𝐺gen(0)∆𝑡.   (32) 

 
Since 𝐺gen(0) is equal to the variance of the fluctuations for 𝐺(𝑡) (Eq. 23), or 1 for 𝐶(𝑡), the 
second term in Eq. 32 is independent of the frequency 𝜔 and represents a constant term 
proportional to the sampling time interval ∆𝑡. This constant is added to the spectral density at every 
𝜔 giving a frequency-independent offset. In theory, when ∆𝑡 → 0 this term becomes 
infinitesimally small. Yet, in simulations the choice of ∆𝑡 is bounded below by the simulation time 
step ∆𝑡sim (usually 2 fs for fully atomistic simulations) but is often orders of magnitude larger, 
∆𝑡 ≫ ∆𝑡sim, e.g., pico- or nanoseconds, and is somewhat arbitrary. This can introduce an artificial 
shift in the spectral density across all frequencies and directly affect the accuracy of the calculated 
relaxation rates.  
 

  
 Figure 4 shows this problem for the mean director-frame relaxation rate 〈𝑅1Z〉CDE (left), as well 
as for the corrected orientation-independent relaxation rate 〈𝑅1Z〉^_EE (right). In both cases there is 
an apparent increase in the calculated relaxation rate as ∆𝑡 increases. However, while for 〈𝑅1Z〉^_EE 
the change is a constant offset as expected from Eq. 28, the differences in the 〈𝑅1Z〉CDE values vary 
along the chain and are consistent with the respective dynamics of the chain segments. For 
instance, the CH bonds closer to the bilayer midplane which are more disordered and have shorter 
correlation times (see below) show greater sensitivity as ∆𝑡 is increased from 4 ps to 40 ps and 80 
ps, while the CH bonds closer to the headgroup whose correlation times are on the order of 30 ps 
(see below), begin to increase only when ∆𝑡 goes up to 80 ps. 
 
 Carbon-hydrogen bonds exhibit both slow and fast dynamics in lipid bilayers. According 
to the Nyquist-Shannon sampling theorem, the discrete Fourier transform in Eq. 32 can accurately 

Figure 4. Calculated relaxation rates depend on the 
output frequency of atomic coordinates.  (A) Mean 
director-frame relaxation rates  and (B) corrected 
orientation-independent relaxation rates calculated 
from the same 800-ns trajectory of a DMPC bilayer 
with 50 mol% cholesterol but with different output 
frequencies of atomic coordinates. The simulation 
was run with a 2-fs timestep and data for analysis 
were taken every ∆𝑡 ps. An apparent increase in the 
relaxation is observed as the temporal resolution is 
lowered due to the discrete calculation of the Fourier 
transform of the fluctuations’ autocorrelation 
function. All simulations were performed at 44°C.  [1-
column figure] 
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represent the underlying continuous Fourier 
transform if ∆𝑡 is smaller than half the period of the 
fastest CH bond motion in the bilayer. To determine 
the range of CH bond motions in a bilayer, we first 
analyzed the autocorrelation function of the 
fluctuations in 2-𝜇s-long simulation trajectories of 
DMPC without and with 33 mol% cholesterol from 
Ref. (23). Following the approach of Lipari and 
Szabo (49), we calculated the effective correlation 
time, 𝜏eff, of the CH bond reorientations at all 
carbons on the sn-2 chain of DMPC using Padé 
approximants (see Eq. 30 in Methods). Figure 5A 
shows the results for the bilayer without cholesterol, 
where 𝜏eff was between 0.5 and 1 ns, while in the 
bilayer with cholesterol 𝜏eff reached 4 ns, consistent 
with the slower dynamics and higher ordering of the 
CH bonds due to the sterol. For these simulations, 
output coordinates were saved every ∆𝑡 = 40 ps, 
which according to Fig. 5A is smaller than one-half 
of 𝜏eff, that is ∆𝑡 < (1/2)𝜏eff, across all carbons. 
 

 To examine the potential contributions of faster dynamics of the CH bonds, we resampled the 
long simulations by running multiple short simulations. Here we chose a value of ∆𝑡rs = 10 fs 
instead, starting at different time points of the original trajectories as described in Methods. 
Calculation of 𝜏eff from these resampling simulations at higher temporal resolution showed a much 
faster reorientation of the CH bonds, 𝜏fast, occurring on a sub-40-ps timescale (Fig. 5B). These fast 
correlation times ranged between 5 and 35 ps and were independent of cholesterol concentration. 
This observation is consistent with results from 13C relaxation time experiments which are 
sensitive to fast motions (high frequencies) and reveal no significant effect of cholesterol on the 
local fast lipid dynamics (46). Importantly, their existence makes the above analysis inconsistent 
with the Nyquist-Shannon sampling theorem with standard choices of ∆𝑡 ≫ ∆𝑡rs, including the 40-
ps output interval employed in the original long trajectories from Ref. (23). 

Figure 5. Carbon–hydrogen (CH) bond dynamics of lipid 
membranes have both slow and fast relaxations. (A) Effective 
correlation time of CH bond fluctuations calculated from 2-𝜇s-
long trajectories of fluid DMPC bilayers with 0 and 33 mol% 
cholesterol. Atomic coordinates were output every 40 ps. (B) 
Effective correlation time of CH bond fluctuations calculated 
from short 400-ps-resampling simulations with output time 
interval of 10 fs. (C) Isomerization times of carbon segments 
along the sn-2 chain of DMPC calculated from the short 
resampling simulations from (B). Shown are the correlation 
times of trans-to-gauche and gauche-to-trans isomerizations 
of four consecutive carbon segments quantified from changes 
in their dihedral angles. All simulations were performed at 
44°C.  [1-column figure] 
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 Next, we further investigated the origins of the fast CH bond correlation times by analyzing 
the isomerization rates of the carbons along the acyl chains (Fig. 5C). Every four consecutive 
carbons along a lipid chain can exist in either trans or gauche isomers as defined by their dihedral 
angle. The rate with which each segment changes its isomerization has been shown to be very fast 
in alkanes, having correlation times of ~20 ps (65,66). While these calculations have caveats, e.g., 
they are model-based and do not consider the concerted transitions between conformers (67), they 
provide an estimate of the timescale of the dynamics. We therefore followed the approach 
introduced by Richard Pastor et al. for analysis of isomerization rates of peptide chains (Eqs. 5-7 
in (54)) to estimate the isomerization rates of the lipid chain segments in our simulated bilayers. 
We classified the instantaneous conformation of a segment as trans or gauche based on its dihedral 
angle and used the resulting time series to calculate a number correlation function 𝐶Z(𝑡), as 
described in Methods. The corresponding effective correlation times 𝜏dihed, calculated from 𝐶Z(𝑡) 
with Eq. 30, are plotted in Fig. 5C. For both bilayers, with and without cholesterol, the 
isomerization rates were very similar to the respective 𝜏fast values in Fig. 5B, indicating that the 
cholesterol-independent fast correlation times of the CH bond motions likely arise from the rapid 
isomerizations of the chain segments. Taken as a whole, our results confirm that the CH bond 
dynamics span multiple timescales that are orders of magnitude apart. This characteristic feature 
of the fluctuations has consequences for any type of multiscale analysis that relies on proper 
sampling of the fastest motions. 
 
 Multiscale simulations can overcome the Nyquist limit by resampling carbon-hydrogen 
bond fluctuations.  The existence of fast CH bond dynamics presents both a challenge and an 
opportunity for the accurate calculation of a continuous Fourier transform from multiscale discrete 
simulation data (Eq. 32). This is due to the relatively large time interval employed for practical 
outputting of the atomic coordinates, especially in long trajectories, which prevents adequate 

A

B

original ∆" = 40 ps
resampled ∆"!"#	 = 1.9 ps

Figure 6. Mathematical resampling of CH bond 
autocorrelation function bypasses sampling limit in 
discrete Fourier transformation for lipid 
membranes. (A) The autocorrelation function of the 
CH bonds at carbon C9 on the sn-2 chain of DMPC in 
the bilayer with 33 mol% cholesterol, 𝐺+,-

(/)(𝑘), 
calculated every 40 ps from the original long 
trajectories (gray) and resampled every 1.9 ps from 
the best power-law fit to 𝐺+,-

(/)(𝑘) (red). (B) The 
smallest resampling time interval ∆𝑡fit obtained from 
best fits to autocorrelation functions 𝐺+,-

(4)(𝑘) for 
carbons 2 ≤ 𝑖 ≤ 14 in the two simulations (open 
symbols). Shown for comparison are fast correlation 
times 𝜏fast for the corresponding CH bonds calculated 
from short resampling simulations with output time 
interval of 10 fs and replotted from Fig. 2B. All 
simulations were performed at 44°C. [1-column 
figure]  
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sampling of the dynamics of the system according to the Nyquist-Shannon theorem. In other 
words, the data points of the autocorrelation function of the fluctuations from Eq. 22 are spaced 
too far apart, making the last constant term on the right in Eq. 32 (also Eqs. 24 and 28) too large 
and introducing an artificial shift in the spectral density (Fig. 4). One way to alleviate this problem 
is to reduce ∆𝑡 as we did in the 400-ps resampling simulations utilizing ∆𝑡rs of 10 fs.  However, 
the poor sampling in each individual trajectory limits the accessible frequencies and makes the 
accurate calculation of relaxation rates challenging. 
 
 Alternatively, we have shown that the autocorrelation function 𝐺B,O

(P)(𝑘) of the lipid CH bond 
fluctuations, quantified by the Euler angles 𝛽 and 𝛾 and the Wigner rotation matrix elements from 
Eqs. 1-3, follows a simple mathematical expression (23). In particular, it can be fit to a power-law 
of the form 𝑎𝑥c + 𝑐 as shown in Fig. 2A in (23). This is important because it allows us to use the 
best fit 𝐺B,O,fit

(P)  to resample the correlation function at a much smaller ∆𝑡dDe ≪ ∆𝑡. Since 𝐺B,O
(P)(0) =

var[𝐷&B
())(𝛽, 𝛾)] is the largest element of the autocorrelation function (ACF), we can perform the 

fit on 𝐺B,O
(P)(𝑘) for 𝑘 ≥ 1 and find the smallest ∆𝑡dDe that allows the ACF to smoothly approach the 

variance of the data as 𝑘 → 0 as shown in Fig. 6A. For that, we start from ∆𝑡dDe of 100 fs and 
increment it by 100 fs until at lag 𝑘 = 1 (or equivalently, 𝑡 = ∆𝑡dDe), the value of 𝐺B,O,fit

(P) (1) ≤
𝐺B,O
(P)(0). This approach yields ∆𝑡dDe values between 0 and 30 ps, which are one-half or less than 

one-half of the corresponding fast correlation times 𝜏fast for most carbons (Fig. 6B). The recovered 
spectral density then reads: 

 𝐽B,O
(P)(𝜔) = 2 n 𝐺B,O,fit

(P) �𝑘̈� cos𝜔𝑡Sf ∆𝑡dDe

R*,fit

SfT,

+ 𝐺B,O
(P)(0)∆𝑡dDe. (33) 

According to the Nyquist-Shannon theorem, it accurately describes the two-sided continuous 
Fourier transform (CFT) of the correlation function, thus alleviating the sampling problem 
introduced by the large output interval of atomic coordinates. Calculating the spectral density with 
Eq. 33 produced relaxation rates in excellent agreement with experiment using 2-𝜇s simulations 
with output frequency ∆𝑡 of 40 ps for DMPC bilayers with increasing amounts of cholesterol (23). 
 
 To examine in more detail the accuracy of our estimate obtained using Eq. 33, we extended 
the original 2-𝜇s trajectories of DMPC and DMPC/Chol by an additional 800 ns, during which the 
atomic coordinates were output every 4 ps. According to the results in Fig. 5B, a ∆𝑡 of 4 ps should 
meet the criteria of the Nyquist-Shannon theorem, and allow for direct calculation of the relaxation 
rates without having to first fit the correlation function, i.e., the spectral density can be obtained 
from Eq. 24 instead of Eq. 33. Figure 7 shows a comparison between the mean director-frame 
relaxation rates calculated with Eq. 25 by using either ∆𝑡 of 4 or 40 ps without fitting the 
correlation function, or ∆𝑡 = ∆𝑡dDe from Fig. 6B obtained by fitting the correlation function from 
the raw data output every 40 ps. As seen in both bilayers, fitting the correlation function 
successfully removes the artificial increase in the relaxation rates introduced by the larger output 
frequency of 40 ps, and recovers almost perfectly the results obtained when ∆𝑡 is 4 ps. Thus, this 
approach represents an effective solution that can be used to calculate reliable estimates of the 
mean director-frame relaxation rates of CH bonds from data with lower temporal resolution. Since 
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the orientation-independent 𝐶(𝑡) function does not follow a power-law, such mathematical 
resampling cannot be applied to alleviate the ∆𝑡-dependence of the mean 〈𝑅1Z〉 and mean corrected 
〈𝑅1Z〉^_EE orientation-independent relaxation rates (Fig. 4B). 
 

 
DISCUSSION 
 Biomolecular simulations are uniquely informative in detecting the functional motions of lipids 
in membranes together with complementary theoretical and experimental biophysical methods 
(1,22,29,68-78).  Theoretical simulations in particular have attracted recent notice with the advent 
of artificial intelligence (AI) approaches in addition to physics-based force fields (79). Such 
techniques are expected to contribute strongly to future data-driven methods in structural and 
cellular biology. As an ideal benchmarking technique, solid-state NMR delivers experimental 
order parameters for the carbon-hydrogen (CH) bond fluctuations along the lipid chains, while the 
relaxation rates access the corresponding dynamics. However, while actual CH bond reorientations 
occur on pico- and nanosecond timescales, their NMR relaxation rates at the Larmor frequencies 
of conventional instruments are in the millisecond regime (44,45,63,80,81). Relatively short 
multiscale simulations allow the study of femto-, pico-, and nanosecond dynamics, which can be 
used to quantify longer millisecond-time relaxation rates by Fourier transformation of the 
autocorrelation function of the CH bond fluctuations. To accomplish this goal, the liposome 
geometry in an actual NMR sample (62) requires evaluation of the orientational averaging of the 
simulated dynamics obtained from flat bilayer patches over the longer experimental time scale. 
Here we show that such averaging can efficiently be performed while accounting for the angular 
dependence of the relaxation, which is critical for validating results for membranes with different 
mobility. Present computational approaches yield an efficient framework for numerical 
calculations but are unable to capture these crucial aspects of the orientational dependence of the 
bond dynamics in lipid membranes. 
 
 We previously developed a robust framework that enables this calculation to be efficiently 
carried out and allows for the simulation results to be directly compared to experimental NMR 
values (23). In the process, we discovered a strong dependency of the calculated relaxation rates 

Figure 7. Fitting the correlation function of bond 
fluctuations produces reliable estimates of their 
relaxation rates. (A) The CH bond relaxation rates 
calculated with Eq. 25 from simulation data with 40-ps 
(blue) or 4-ps (black) resolution without fitting the 
correlation function show differences due to the 
dependence on ∆𝑡 (cf. Fig. 4A). Fitting the correlation 
function of the bond fluctuations from the low-
resolution data and resampling it at a much smaller ∆𝑡fit 
(red) alleviates this problem and recovers the results 
from the higher resolution data. (B) The plotted mean 
director-frame relaxation rates are for the carbons on 
the sn-2 chain of DMPC in the bilayer without 
cholesterol (left) or with 33 mol% cholesterol (right). All 
simulations were performed at 44°C. [1-column figure] 
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on the time resolution of the simulation data points, i.e., the output interval of the trajectory frames 
used for the analysis. We hypothesized that the issue was due to the presence of very fast dynamics 
of the CH bonds, which prevented the accurate calculation of a continuous Fourier transform with 
the employed output interval of 40 ps. Accordingly, we directly tested this hypothesis by 
resampling the simulation trajectories at different time points with short 400-ps-long simulations 
and an output frequency of 10 fs. The new high-resolution data confirmed the presence of CH 
bond fluctuations with correlation times between 5 and 35 ps, as observed previously by Pastor 
and coworkers for a DPPC bilayer (66). Further analysis indicated that the hierarchical dynamics 
are mediated by the changes in isomerization rates of the carbons along the lipid chains. A 
resampling approach presents a solution to the data problem by using a fit to the correlation 
function to satisfy the conditions of the Nyquist-Shannon sampling theorem (23). In the present 
study we directly evaluated the accuracy of this mathematical resampling, showing that it 
successfully recovers the relaxation rates obtained from high-resolution data (Fig. 7). Our results 
reveal the presence and source of the very fast CH bond dynamics and further establish the validity 
of resampling their correlation functions, thus increasing the effective time resolution. 
 
 Explicit consideration of bilayer director is essential for calculating relaxation rates.  
Differences in the CH bond relaxation rates obtained with the classical status quo approach and 
with our recently developed computational framework naturally raise questions about the validity 
of the underlying assumptions. In particular, the theory behind the commonly applied methodology 
comes from solution NMR (50,82) and can be traced back to application of the spherical harmonic 
addition theorem (Eq. 18) as in the rotational relaxation of isotropic liquids. This theorem assumes 
that there is no fixed alignment axis relative to which the CH bond fluctuations are calculated (Fig. 
3) and thus produces orientation-independent relaxation rates as in textbooks. As such, the results 
are unable to account for the effects of the anisotropic relaxation observed both experimentally 
and computationally, or to accurately describe lipid motions in both more fluid and more ordered 
environments (Fig. 2). It is unavoidable that relating simulations and experiments requires 
averaging of the simulation results to achieve correspondence with the rates measured from 
liposome samples with solid-state NMR spectroscopy.  Such averaging can be carried out either 
at the level of the correlation function (Eq. 14) or spectral density (Eq. 12) and produce equivalent 
results. One possible misconception is that because the orientation-independent correlation 
function 𝐶(𝑡) and the mean director-frame correlation function 𝐺(𝑡) are both spherically averaged 
they are identical apart from a multiplicative factor (Eq. 18). Formally the mean director-frame 
correlation function 𝐺(𝑡) is related to the orientation-independent 𝐶(𝑡) correlation function by 
𝐺(𝑡) = (1/5)𝐶(𝑡), but that equivalence holds only under the assumption of the spherical harmonic 
addition theorem that there is no fixed director axis. Still, the existence of the CH bond order 
parameters clearly illustrates that there is a potential of mean force (PMF) or ordering induced on 
the lipids due to an alignment frame characterized by the director (Fig. 3) (56). By contrast, the 
use of 𝐶(𝑡) bypasses the dependence on a director and instead considers the self-correlation of the 
CH bond fluctuations. This treatment means that isotropic motion is implicitly assumed as in the 
case of the Debye model for rotational relaxation in liquids (83). Comparison of the results with 
solid-state NMR data (Fig. 2) shows that explicit consideration of a fixed director axis, which is 
the main difference between the two approaches, is essential for the accurate estimation of the 
experimentally measured relaxation rates. 
 



  -23- 

 Multiscale simulations of biomembranes are limited by output frequency of atomic 
coordinates. In recent years computational resources have become more easily accessible by 
researchers and educators, as in the case of graphics processing units (GPUs) used in computer 
game applications. This has been facilitated by the establishment of large supercomputing 
infrastructures made available to the public via open proposal calls and freely available training 
programs on their use (84). As a result, microsecond-long simulations have become standard even 
for relatively large fully atomistic systems (85,86). The decision of how often to output atomic 
coordinates during a simulation determines both the amount of space needed to store the trajectory 
files and the maximum time resolution of any subsequent analyses. For instance, an all-atom 
bilayer with 200 lipids and 45 water molecules per lipid amounts to about 50,000 atoms. 
Simulating this system for 10 𝜇s would require roughly 200 GB of storage if coordinates are output 
every 40 ps and 200 TB of disk space if the data output ∆𝑡 is 40 fs. Therefore, the time resolution 
needs to be balanced with practical considerations, where simultaneous access to sub-picosecond 
and microsecond dynamics is often challenging for multiscale membrane dynamics (22,76,85,87-
89).  Even so, relatively small windows at faster dynamics can be created by resampling long 
trajectories via short simulations with smaller sampling intervals ∆𝑡Eg < ∆𝑡 (90). While this 
approach provides access to faster molecular motions, the statistics are limited, and the results are 
strongly dependent on the state of the bilayer at the chosen starting points for resampling. Lipids 
can take ~100 ns to exchange places with their nearest neighbor and tens of hundreds of 
nanoseconds to equilibrate their lateral distribution, even in a simple binary mixture (91). Thus, 
on the timescale of 400 ps for example, corresponding to the short resampling simulations we 
performed here, the overall lipid organization in the bilayer remains the same. Reducing ∆𝑡 by an 
order of magnitude as a way to increase the resolution of the CH bond autocorrelation function 
and facilitate the accurate calculation of its Fourier transform is often not feasible. Here, we show 
that relatively long simulations (of 800 ns) with an output interval of 4 ps can provide a reasonable 
solution.  
 
 Mathematical resampling based on power-law decay gives solution to the data problem. 
To increase the effective sampling of the simulation data, we take advantage of the shape of the 
CH bond autocorrelation function calculated in the director frame with Eq. 21 (Fig. 1). When the 
orientation of the CH bonds is defined with the Wigner rotation matrix elements from Eqs. 1-3, 
the autocorrelation function (ACF) of their fluctuations (Eq. 7) follows a power-law function 
(23,45,51). Fitting the ACF to a power-law then allows us to sample it at a much smaller ∆𝑡dDe ≪
∆𝑡, bypassing the dependence of its Fourier transform on the arbitrary choice of ∆𝑡 to avoid 
aliasing. While the identified ∆𝑡dDe values are bounded below by the smooth transition of the ACF 
fit to the element at lag time t = 0, i.e., the variance of the fluctuations (Eq. 23), they are still small 
enough to satisfy the Nyquist-Shannon sampling theorem. This eliminates the artificial ∆𝑡-
dependent shift in the spectral density (Eq. 32), producing relaxation rates in excellent agreement 
with those calculated from simulation data with higher resolution (Fig. 6), as well as those directly 
obtained from NMR experiments (Fig. 6 in (23)). Searching for the smallest  ∆𝑡dDe to accurately 
calculate relaxation rates from discrete simulation data appears to be the counterpart of 
extrapolating experimental spin-lattice 𝑅1Z relaxation rates to infinite frequency to evaluate the 
local CH bond fluctuations (Fig. 6, see below) (52,66,92).  In the present approach, we quantified 
the CH bond orientation with respect to the bilayer normal (director axis) with the Euler angles 𝛽 
and 𝛾 in Cartesian space, but this can also be done with the spherical angles 𝜃 and 𝜙 in a similar 
way (Fig. 1C). Either representation necessitates orientational averaging to facilitate comparison 
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with NMR data from liposome dispersions of lipids. In the status quo approach this averaging is 
done on the correlation function, as discussed above. However, the resulting averaged correlation 
function 𝐶(𝑡) is equal to 1 at lag time 0 and does not follow a simple functional form. Notably, 
this prevents application of the mathematical resampling approach, which relies on a fit to the 
correlation function. Consequently, the resulting orientation-independent relaxation rates have a 
strong dependency on the output interval in the trajectories as shown in Fig. 4, and fail to capture 
the full spectrum of the CH bond dynamics regardless of the precise implementation of the discrete 
Fourier transformation of the 𝐶(𝑡) correlation function (Fig. 2). 
 
 Data-driven simulations reveal collective lipid motions due to acyl chain isomerizations. 
Further consideration indicates that the source of the sampling problem in the Fourier 
transformation of the CH bond correlation function is the presence of very fast reorientations of 
the bonds relative to the time resolution of the simulation data points. Evidently they have 
correlation times of less than 40 ps (Fig. 5B) and become faster towards the ends of the chains at 
the bilayer midplane, in agreement with observations made 30 years ago by Richard Pastor et al. 
from simulations shorter than our resampling trajectories (66), consistent with NMR findings (92). 
Additionally, we find these fast motions are independent of cholesterol concentration in the 
membrane, implying they are not influenced by bulk or mesoscale bilayer properties. In contrast, 
the CH bonds also exhibit slower dynamics with correlation times that are orders of magnitude 
larger than 𝜏efffast and thus are more easily discoverable with current standard choices for the time 
step of outputting atomic coordinates (51). These slower dynamics have a more complicated 
dependence on chain carbon depth within the bilayer and are strongly influenced by the ordering 
effects of cholesterol (15). 
 
 Building on earlier research (66), the ability to access logarithmic time-scales in our 
simulations via the resampling approach allows us to analyze the origins of the fast CH bond 
dynamics. Our analysis indicates that these fast dynamics are likely related to the rapid changes in 
isomerization of the carbon segments along the lipid chains (Fig. 5C). This proposal can explain 
why the resulting correlation times are the same within error for bilayers with and without 
cholesterol, i.e., they are not affected by the structural and dynamical effects induced on the lipids 
by the sterol. To further confirm the universality of the fast CH bond dynamics, we can analyze 
the respective changes in relaxation rates as a function of inverse frequency (Fig. 8). Being a 
characteristic signature of the spectral density, the relaxation rate at a given frequency (𝜔) 
describes the extent of correlation of the bond fluctuations on that timescale (𝑡 ≈ 1/𝜔). At all 
carbons on the lipid chains, both in the presence and absence of cholesterol, the CH bond relaxation 
rates differ at relatively small frequencies (or larger 𝜔2,/) power law as 𝑡 → ∞).  Yet they 
converge at infinite frequency as 𝑡 → 0 indicating that the underlying fast motions of the bonds 
are similarly correlated across all datasets at very short timescales (Fig. 8). In fact, NMR analysis 
(44,92-94) shows that this common relaxation rate at infinite frequency is the same as that of 
simple liquid hydrocarbons in solution (not in a bilayer), suggesting that the fast dynamics are a 
manifestation of the local bilayer microviscosity, coming from the hydrocarbon environment 
(44,66). The same conclusion was made from direct comparison of the fast CH bond dynamics in 
a 1,2-dipalmitoyl-sn-glycero3-phosphocholine (DPPC) bilayer to those of neat hexadecanes, i.e., 
hydrocarbons of the same length as the lipid chains but in solution instead of a bilayer (93). 
Towards the ends of the lipid chains, the CH bonds in the DPPC bilayer have the same correlation 
times as those of the equivalent carbon positions in hexadecane. However, the CH bonds at the top 
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of the DPPC chains move much slower, suggesting that the dynamics in that region are strongly 
influenced by the interfacial tension at the bilayer surface. These observations indicate that the CH 
bonds of lipids in a bilayer do indeed experience the same microviscosity as liquid hydrocarbons, 
but only when sufficiently far from the bilayer/water interface. 
 

 Simulated lipid dynamics are validated with solid-state NMR spectroscopy. As mentioned 
above, our new and improved framework for the calculation of NMR relaxation rates from 
simulations addresses various issues that have come up in physics-based MD simulations of lipid 
membranes. While the absolute relaxation rates of carbons in the simulations and experiments are 
directly comparable, further validation can be achieved against the relationship between CH bond 
relaxation rates and their respective squared order parameters (44,92,93). We found that the two 
quantities exhibit the so-called square-law, which is clearly discernible both in the experimental 
(95,96) and simulation data (23). This dependence describes the nature of lipid segmental 
dynamics resembling those of nematic liquid crystals. We also found that it holds specifically for 
the CH bonds situated far from the lipid/water interface where the two leaflets intercalate [see Fig. 
5 in (23)]. The unique resemblance of the microviscosity of this bilayer region to that of neat 
hydrocarbons whose relaxation rates are independent of frequency (Fig. 7) implies that the square-
law relationship is an intrinsic property of the bilayer core. Furthermore, the slope of the square-
law uniquely corresponds to the local bilayer bending rigidity, thus revealing packing trends in the 
elastic behavior of lipid bilayers that are sometimes concealed when measured at long length- and 
time-scales (15,97,98). Therefore, validating lipid dynamics with NMR spectroscopy through the 
square-law dependence provides an unprecedented opportunity to corroborate multiple aspects of 
membrane biophysical properties captured by the underlying lipid force fields.  
 
CONCLUSION 
 Molecular dynamics simulations offer a fascinating and detailed look into the structural and 
dynamical properties of biological systems. However, the generality and reliability of the results 
depends on how well the simulations capture the essential aspects of the processes they model. 
Being sensitive to the fluctuations of individual carbon-hydrogen bonds in a bilayer, NMR 
relaxation provides different points for comparison and validation of the membrane dynamics. 
Extracting comparable relaxation rates from the simulation trajectories is not trivial, as it relies on 

Figure 8. Fast carbon-hydrogen fluctuations are 
universal descriptors of bilayer microviscosity. 
Calculated mean director-frame relaxation rates 
of CH bonds at carbons 4, 6, 8, 10, and 12 on the 
sn-2 chain of DMPC in bilayers with 0 and 33 mol% 
cholesterol are plotted against inverse square root 
of the Larmor frequency 𝜔. Irrespective of lipid 
composition, the relaxation rates at all carbons 
converge at infinite frequency (or infinitesimally 
small lag time). Hence the fast correlation times of 
the CH bonds are universal descriptors of the 
bilayer hydrocarbon environment corresponding 
to the local microviscosity.   [1-column figure] 

100 25400 ← " / MHz44



  -26- 

underlying theoretical concepts and continuous Fourier transformation of discrete simulation data. 
Our new framework successfully tackles these challenges by allowing for replication of 
experimentally obtained values and trends. It thus helps to link the dynamical phenomena observed 
in vitro to the detailed atomistic motions, thereby assisting the interpretation of NMR results and 
offering greater insight into the biophysics of lipid membranes.  
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