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Abstract

Premise: Endophytic plant-microbe interactions range from mutualistic relationships that confer
important ecological and agricultural traits to neutral or quasi-parasitic relationships. In contrast
to root-associated endophytes, the role of environmental and host-related factors for acquiring
leaf endophyte communities remains relatively unexplored. Here we assess leaf endophyte
diversity to test the hypothesis that membership of these microbial communities is driven
primarily by abiotic environment and host phylogeny.

Methods: We used a broad geographic coverage of North America in the genus, Heuchera
(Saxifragaceae). Bacterial and fungal communities were characterized with 16S and ITS
amplicon sequencing, using QIIME?2 to call operational taxonomic units and calculate species
richness, Shannon diversity, and phylogenetic diversity. We assembled environmental predictors
for microbial diversity at collection sites including latitude, elevation, temperature, precipitation,
and soil parameters.

Results: We find differing assembly patterns for bacterial and fungal endophytes; we found that
only host phylogeny is significantly associated with bacteria, while geographic distance alone
was the best predictor of fungal community composition. Species richness and phylogenetic
diversity are very similar across sites and species, with only fungi showing a response to aridity
and precipitation for some metrics. Unlike what has been observed with root-associated
microbial communities, in this system microbes show no relationship with pH or other soil
factors.

Conclusions: Host phylogeny and geographic distance independently influence different

microbial communities, while aridity and precipitation determine fungal diversity within leaves
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of Heuchera. Our results indicate the importance of detailed clade-based investigation of

microbiomes and the complexity of microbiome assembly within specific plant organs.

Keywords: bacteria; community assembly; fungi; Heuchera; leaf endophyte; microbial

diversity; plant microbiome; plant-microbe interactions; Saxifragaceae
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INTRODUCTION

Endophytic plant-microbe interactions are common to all land plants, which are host to a diverse
range of microbial assemblages, including bacteria, archaea, fungi, and protists. Endophytes,
microorganisms that spend all or a portion of their lifetime within plant tissues (Hardoim et al.,
2015), confer such positive functional capacity as abiotic stress response, growth promotion, life
history traits, and pathogen or herbivore defense, as well as the potential for negative interactions
approaching pathogenic relationships (Hardoim et al., 2008; Khare et al., 2018; Dini-Andreote,
2020; Trivedi et al., 2020; O’Brien et al., 2021). A context-dependent switch between positive
and negative interactions in many endophytic systems means plant endophytes form an excellent
system for understanding the formation and maintenance of mutualisms (Eaton et al., 2011). In
addition, multiple variables including, host and endophyte physicochemical characteristics, biotic
and abiotic factors, and the microbial dynamics within the microbiome affect the nature of these
associations (Hardoim et al., 2015).

Endophytic relationships are relatively well-characterized in several economically
important species such as major pasture grasses (Clay, 1990; Leuchtmann, 1992; Schardl and
Tsai, 1992) and crop plants (Fisher and Petrini, 1992; Fisher et al., 1992; Larran et al., 2002;
Comby et al., 2016; Correa-Galeote et al., 2018), mostly investigated under regulated
experimental conditions. In natural environments, endophyte diversity surveys have been
conducted primarily at broad phylogenetic (Yeoh et al., 2017) and geographic scales (Yang et al.,
2019). These natural surveys, primarily focused on root-associated microbiomes, show broadly
that soil properties are the most important drivers of plant-associated microbiome diversity,
much as in free-living soil microbiomes (Thompson et al., 2017; Bahram et al., 2018).

Nevertheless, host plant phylogeny plays an important and incompletely characterized subsidiary
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role for both bacterial and fungal communities, a role possibly rooted in shared evolutionary
history or conserved plant host traits (Yeoh et al., 2017; Yang et al., 2019). An evolutionary host
effect on endophytes may indicate either (1) functional selection of associated microbes by the
plant (or vice versa) or (2) shared coevolutionary history between plants and their endophytes.
Since we know that global diversity patterns show strong mismatches between plants and free-
living microbes (Cameron et al., 2019), there also exists the strong potential for conflict between
drivers of distribution and diversity between endophytes and their hosts when plant-microbe
associations are particularly intimate.

By contrast to root endophytes and rhizosphere associates, the role of potential external
and host-driven factors for assembling leaf endophyte communities remains relatively
unexplored. The leaf ecosystem still lags behind other tissue types in endophyte research despite
supporting a wide variety of microbial communities and having a total surface area that is
roughly twice that of Earth (Vorholt, 2012; Harrison and Griffin, 2020). This leads to the
prediction that leaf endophyte communities should be more insulated from the soil environment
because of the more controlled environment of internal leaf tissues across varying soil substrates,
especially in contrast to rhizosphere communities. Composition of foliar endophyte communities
should then have a limited response to soil ecology but a stronger response to climatic and other
similar abiotic factors. Moreover, aboveground conditions that leaves encounter are unlikely to
affect soil environments (Monteith and Unsworth, 2008). However, a strong case exists for
potential host phylogenetic constraints on leaf endophyte communities due to phylogenetically
conserved differences in leaf tissue traits across taxa (Tellez et al., 2022) as well as the potential

for vertical transmission (particularly well-characterized in grasses; Schardl, 2001; Bright and
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Bulgheresi, 2010) and semi-vertical transmission with hosts through primarily within-population
sources of infection (Frank et al., 2017; Kandel et al., 2017).

A study system that can link across population-level and phylogenetic scales (Graham et
al., 2018) would provide insight into how plant-microbe interactions arise and particularly
insight into the phylogenetic level at which host specificity is relevant. Such a multi-scale view
would also link phylogenetically broad and single-species surveys performed to date. As
advocated by (Jung et al., 2021), multi-scale research is also important for generating genotype x
environment viewpoints on plant microbiomes and giving researchers additional power to dissect
factors that promote different microbiome assemblages and result in gradients in plant-microbe
interactions.

Here, we take a novel approach that uses broad geographic coverage of North America
within the restricted phylogenetic scope of a recent radiation. Using the host system Heuchera, a
cliff-dwelling genus of flowering plants in the family Saxifragaceae with well-characterized
phylogenetic relationships and habitat specialization patterns across the genus (Folk et al., 2017;
Folk, Visger, et al., 2018), we leverage strong phylogenetic and population sampling to explicitly
assess diversity trends at multiple evolutionary levels, from phylogenetic to within-population
diversity. We assembled a series of predictors via global environmental layers, including
elevation, temperature, precipitation, soil parameters, and latitude. We use multiple assessments
of leaf endophyte diversity to (1) test the hypothesis that these communities, in contrast to root-
associated microbiome, are defined primarily by non-edaphic abiotic environmental variables,
and (2) by host phylogeny. Finally (3), we assess both bacterial and fungal endophyte

components to ask whether these communities are shaped by distinct environmental factors.


https://doi.org/10.1101/2023.05.23.541975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541975; this version posted May 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

108 MATERIALS AND METHODS

109 Host organism—Heuchera is a genus of approximately 45 species of flowering plants in
110  Saxifragaceae that is endemic to rock outcrops and montane areas in North America. It occurs
111 from sea level to ~4000 m of elevation across broad temperate environmental gradients including
112 temperate deciduous and evergreen woodland, plains, high alpine scree, and chaparral. Edaphic
113 wvariation is also high and ranges from strong calciphile taxa (e.g., H. longiflora) to some of the
114 most acidic substrates in North America (H. parviflora var. saurensis), with many narrow

115  endemics particular to specific rock substrates. Hence, this genus forms a robust system for

116  evaluating plant-microbe interactions across the strong, continent-level environmental gradients.
117 Aside from small numbers of taxa included in broad surveys (e.g., Jumpponen and Trappe, 1998;
118  Zhang and Yao, 2015) and characterizations of arbuscular mycorrhizae (Anneberg and Segraves,
119 2019), endophytic microbial associates are currently unknown for the family Saxifragaceae.

120

121 Sampling—We began with broad species-level sampling across the study group,

122 including 40 out of 64 currently recognized specific and subspecific taxa (65%). Taxa covered
123 are geographically representative of the range of the genus north of Mexico (Fig. 1) and include
124 all recognized sections (Folk, 2015). In addition to this broad phylogenetic-aware sampling of
125  the host plant genus, we leveraged population-level sampling from two previous studies on host
126  plant phylogeography in the Heuchera parviflora species complex (Folk and Freudenstein, 2015)
127  and the H. longiflora complex (Folk et al., 2018), as well as new sampling performed for this
128  study in the H. americana x H. richardsonii hybrid zone (see Wells, 1984). The newly sampled
129  taxa were: H. americana group: H. americana var. americana, H. americana var. hirsuticaulis,

130  H. richardsonii; H. longiflora group: H. longiflora var. aceroides, H. longiflora var. longiflora;
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131 H. parviflora group: H. missouriensis, H. parviflora var. parviflora, H. parviflora var. saurensis,
132 H. puberula. Sampling is summarized in Fig. 1 and Appendix S1 (See Supplemental Data with
133 this article).

134

135 DNA extraction—Plant materials were either rapidly frozen at -80°C and subsequently
136  dehydrated or primarily dried in silica-gel prior to extraction. For DNA extraction, we chose 20-
137 30 mg of tissue without visible lesions or other obvious disease symptoms. The tissue was

138  incubated for 1 min each in 70% molecular-grade ethanol and 5% bleach to disrupt and eliminate
139  DNA of potential epiphytic microbes, respectively. Tissues were then washed twice in

140  molecular-grade water to remove residual bleach and homogenized with metal beads in a

141  Fisherbrand Bead Mill 24 homogenizer (Fisher Scientific, Waltham, Massachusetts, USA). We
142 extracted DNA with a standard CTAB protocol (Doyle and Doyle, 1987) with the addition of 90
143 mg ascorbic acid and 100 mg polyvinylpyrrolidone-40 (PVP-40) per extraction to eliminate plant
144  secondary compounds, per previous optimizations on this plant material (Folk and Freudenstein,
145  2014). Finally, all extractions were cleaned using a silica column (GeneJET PCR purification kit,
146  ThermoScientific, Waltham, Massachusetts, USA) per manufacturer instructions and extractions
147  were quantified with a Qubit 4 fluorometer using Qubit Broad Range assay reagents.

148

149 Amplification methods—We used two different amplicon sequencing approaches to

150  characterize both bacterial and fungal communities. Bacterial sequencing was validated in-house
151  using primers 515f and 806r from the Earth Microbiome Project (Thompson et al., 2017)

152  targeting the V4 region of 16S ribosomal DNA and the following thermocycler protocol: initial

153 denaturation at 95°C for 3 mins, then 35 cycles of: (95°C for 45 s, annealing at 52°C for 1 min,
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154  and 72°C for 1.5 mins), then a final elongation step of 72°C for 10 mins. Successful amplicons
155  were concentration-normalized and sent to the Michigan State RSTF core for sequencing 250 bp
156  paired-end reads on an Illumina MiSeq using a one-step amplification protocol (Kozich et al.,
157  2013). All amplification steps used DreamTAQ Mastermix (Thermo Fisher, Waltham,

158  Massachusetts, USA), primer concentrations of 0.5 uM except as noted below, and were

159  performed with filter pipette tips under a dedicated PCR hood that was bleach- and UV-sterilized
160  before each use to minimize contamination.

161 Fungal characterization used the ITS1 region and the primers ITS1FI2 and ITS2 from
162 (Schmidt et al., 2013). To verify the presence of amplifiable DNA, we first validated the

163  presence of the desired product using the primers directly and the following thermocycler

164  protocol: initial denaturation at 95°C for 3 mins, then 35 cycles of: (95°C for 45 s, annealing at
165  50°C for 1 min, and 72°C for 1 min), then a final elongation step of 72°C for 10 mins. We then
166  re-amplified successful samples from total DNA using ITS1FI2 and ITS2 primers that were

167  tagged with 5’ end overhangs specified by the sequencing center using the following

168  thermocycler protocol: initial denaturation at 95°C for 5 mins, then 30 cycles of: (95°C for 30 s,
169  annealing at 52°C for 30 s, and 72°C for 30 s), then a final elongation step of 72°C for 5 mins;
170  primers for this reaction were at 0.1 uM. Successful amplicons were submitted to the Michigan
171  State RSTF core for a second barcoding amplification and sequencing. Sequencing

172 instrumentation and wet lab precautions followed those for 16S (above).

173

174 Sequence processing—We performed sequence analyses within the QIIME 2 package
175  (Caporaso et al., 2010; Bolyen et al., 2019). Reads were first denoised via Dada2 (Callahan et al.,

176  2016) in order to error-correct and merge paired-end reads and remove sequence chimeras. As
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part of this step, primers were trimmed from the 5’ end and, based on Phred quality plots in
FastQC (Andrews, 2015), 50 bp were trimmed from the 3’ end of the R2 reads.

For taxonomic classification, we used the Greengenes database (McDonald et al., 2012)
for bacterial 16S reads, and the UNITE database (Nilsson et al., 2019) for fungal ITS reads,
following recommendations in the QIIME documentation for preparing the taxonomic classifier
via a naive Bayesian approach (QIIME module fit-classifier-naive-bayes). We clustered the
Greengenes database at 97% and UNITE at 99% identity. We then performed taxonomic
classifications of the merged reads against these databases using QIIME module sklearn
(Pedregosa et al., 2011). For endophyte tissues, 16S and ITS amplicon sequencing approaches
were expected to generate host plant DNA sequences due to off-target amplification of
organellar 16S rDNA and nuclear ITS, respectively. Based on extensive optimizations, we
implemented separate strategies for efficiently removing host DNA from each of these genetic
loci. For 16S, we removed host DNA using annotated chloroplast and mitochondrial OTU
classifications from the Greengenes taxonomy (level 3 [class] and level 5 [family], respectively).
For ITS, we customized the UNITE database by adding host plant ITS sequences we have
previously generated (Folk and Freudenstein, 2014), and removed host sequences based on level

6 (genus) OTU classifications.

Environmental predictor assembly—We used global interpolated datasets to infer
environmental factors at each collection locality. The variables used and sources were: Mean
Annual Temperature (measured in °C) and Annual Precipitation (mm; BIOCLIM, (Hijmans et
al., 2005)), aridity (see below), elevation (m; GTOPO30,

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-

10
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200  second-elevation-gtopo30), soil pH, sand percent, and carbon content (the last measured in

201  permilles; SoilGrids, Hengl et al., 2017). An aridity index was calculated as precipitation /
202  potential evapotranspiration (see Middleton et al., 1992) using data from WorldClim2 and
203  Envirem (Fick and Hijmans, 2017; Title and Bemmels, 2018). Note that this aridity index
204  decreases with increasing aridity; arid conditions are generally those with index values < 0.5.
205  Environmental values were associated with geolocated sampling localities using scripts

206  published previously

207  (https://github.com/ryanafolk/Saxifragales_spatial scripts/tree/master/Extract point_values).

208  Finally, given that varying latitudinal gradients in diversity have been documented for soil

209  (Bahram et al., 2018) and marine microbes (Ibarbalz et al., 2019), we also directly used the

210 latitude of our collecting localities as a predictor.

211

212 Community diversity—We used QIIME to generate two primary descriptors of

213 community diversity. First, we characterized measures of overall diversity using Shannon

214  Entropy, a diversity measure that includes both taxon presence-absence information and

215  abundance. We then calculated Faith’s PD, which represents the sum of phylogenetic branch
216  lengths connecting a microbial community. We applied these diversity metrics to only the three
217  species groups with strong population sampling to enable comparisons among host taxa with
218  replicate sampling. Given the presence of high levels of host DNA despite a high sequencing
219  effort in some samples (Results) and relatively low endophyte diversity per sample (Results and
220  also see Bulgarelli et al., 2013), sequence rarefaction was set to 11 to include as many samples as

221  possible.

11
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We used both a generalized linear model (GLM) and a linear mixed-modeling (LMM)
framework (R package Imer) to understand how these diversity statistics relate separately to
environmental drivers and host identity. All environmental predictors, as well as latitude, were
included as fixed model terms in both model classes. Host plant species taxonomy was also
included as a random term in the LMM to separately partition variation attributable to host taxon.
We used the step function (R package ImerTest) to perform model selection via AIC and
calculate predictor significance using an automated backwards approach. The AIC model
selection favored GLM as the optimal fit model given our observed data. Analyses were

performed using R Statistical Software (v4.1.2; R Core Team 2021).

Community composition—In order to characterize differences among communities in
terms of taxon composition, we used the UniFrac distance metric, which accounts both for
shared taxon presence/absence and for phylogenetic branch length, here including all samples.
We used a Mantel testing approach to ask whether matrices of UniFrac distance were associated
with each of either geographic distance, environment, or host phylogenetic distance.
Environment distances were Euclidean distances on the environmental predictors, where two
matrices were prepared segregating the environmental predictors into soil and non-soil factors.
Since geographic and environmental distances were strongly correlated, we additionally used a
partial Mantel approach to control environmental factors for geography. Host phylogenetic
distances were patristic distances calculated from the host plant phylogeny of Folk et al. ( 2017);
this was a phylogenetic estimate based on phylogenomic data with complete species-level
sampling of the host plants used here. Since that previous phylogeny did not include population-

level sampling, population samples were imputed by placing them within the phylogeny based

12
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on taxonomic identifications and assuming zero within-taxon branch lengths. Analyses were

performed using R Statistical Software (v4.1.2; R Core Team 2021).

RESULTS

Sequencing—For 16S sequencing, we recovered a mean of 236,938 reads per sample
across 139 successful samples, with 1,737 total bacterial OTUs across all samples and a mean of
97% host DNA prevalence. The 5 most dominant bacterial phyla by decreasing order of
prevalence were Proteobacteria (6 to 100% per sample), Bacteroidetes (0 to 83%),
Actinobacteria (0 to 38%), Verrucomicrobia (0 to 13%), and Cyanobacteria (0 to 48%) (Fig. 2A).
Finer level classifications of OTUs recovered largely corresponded to typical endophytes
documented elsewhere, such as, in decreasing order of overall prevalence for 16S:
Sphingomonas (which reached highest prevalence at up to 100%), Comamonadaceae,
Chitinophagaceae, Methylobacterium, Blastomonas, Hymenobacter, Pseudomonas, and
Opitutaceae. Similar to other surveys in natural populations (Yeoh et al., 2017), potential
diazotrophs (genera Rhizobium, Bradyrhizobium, Mesorhizobium, Frankia) were observed at low
frequencies (up to 8% of total 16S reads) in almost all samples (Appendix S2).

For ITS sequencing, we recovered a mean of 185,997 reads per sample across 133
successful samples, with a total of 1,082 fungal OTUs and a mean of 99% host DNA prevalence;
lower fungal diversity compared to bacterial diversity has been previously documented in leaf
endophytes (Bulgarelli et al., 2013). By far the most dominant phylum was Ascomycota (only
missing in a single sample; otherwise, 5 to 100%), with Basidiomycota (0—44%, absent in a

slight majority of samples), Olpidiomycota (0 to 77%, absent in most samples), and

13
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Mucoromycota (<1%) as minor community members. (Fig. 2B) As with bacteria, fungal fine-
level OTU designations generally contain previously documented endophytes; in order of
decreasing abundance the most prevalent were Penicillium, Pleosporaceae, Septoria, and
Alternaria (all four up to 100% abundance), Mycosphaerella, Tetracladium, Ramularia, and

Colletotrichum (Appendix S3).

Leaf endophyte diversity patterns—Using a mixed-model framework, we tested for a role
of climate, soil environment, latitude, elevation, and species identity on leaf endophyte diversity
as measured by Shannon entropy and Faith’s phylogenetic diversity. For bacteria, we found the
null model was favored for both diversity metrics, meaning leaf endophyte diversity metrics
were insensitive to the predictors we measured. However, for fungi, aridity and precipitation
were significant drivers of Shannon diversity for fungal endophytes (P = 0.001676, 0.003246
respectively), while the null model was favored for Faith’s PD (although aridity index was
marginally significant; P = 0.0508; Table 1). Based on examination of boxplots (Fig. 3), the only
species group that had a clear trend in Shannon diversity or Faith’s PD was the H. parviflora
group, although this difference was not significant (16S: ANOVA, F3s=1.604, 1.797, P =
0.212, 0.173 respectively; ITS: F>,19 = 1.528, 1.071, P = 0.242, 0.362 respectively; Fig. 3); taxa

in the other two species groups had near-identical means.

Leaf endophyte community composition—Using UniFrac distances as a characterization
of leaf endophyte community composition, we asked whether communities were associated with
any of three potential drivers: geography (that is, isolation-by-distance), soil or non-soil

environment, or host phylogeny. For bacteria, we found that only host phylogeny was significant
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291  (Mantel test, P =0.00229977; Table 2). For fungi, we found that both geography (Mantel test,
292  P<0.001) and both soil and non-soil environment (Mantel test, P = 0.00209979, 0.00849915)
293  were significantly associated with UniFrac distance. Given that we found spatial autocorrelation
294  among both sets of environmental predictors (Mantel test, both P <0.001), we controlled for
295  geography using a partial Mantel approach. We found after this correction that soil was

296  marginally significant (P = 0.047695) while non-soil environment was no longer significant (P =
297  0.26197) for fungi, indicating that geography was the best predictor of fungal diversity and the
298  effect of environment independent of geography was weak.

299

300

301  DISCUSSION

302 Our investigation of the leaf endophyte microbiome in Heuchera provides a first report
303  on the phylogenetic and environmental determinants associated with leaf microbiome diversity
304  and community assembly at a broad phylogenetic and geographic scale using culture-

305 independent approaches. The foliar microbial endophytes we recovered from Heuchera generally
306 matched those found in other leaf endophyte studies. Proteobacteria, Bacteroidetes, and

307  Actinobacteria have consistently been reported as dominant and prevalent members of

308 endophytic bacterial assemblages within plant tissues (Hardoim et al., 2015; Zarraonaindia et al.,
309  2015; Coleman-Derr et al., 2016; de Souza et al., 2016; Ding and Melcher, 2016; Aydogan et al.,
310  2018; Wembheuer et al., 2019; Mina et al., 2020; Yang et al., 2023). At the genus level,

311 Pseudomonas, Sphingomonas, Methylobacterium, and Hymenobacter were also found to be

312 relatively abundant in leaves of both cultivated (Hallmann et al., 1997; Rosenblueth and

313  Martinez-Romero, 2006; Miliute et al., 2015; Afzal et al., 2019; Christian et al., 2021) and non-

15
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cultivated plants (Ding and Melcher, 2016; Afzal et al., 2019). On the other hand, the majority of
leaf endophytic fungi in Heuchera belonged to Ascomycota and Basidiomycota, similarly
reported as two of the most dominant fungal endophyte classes in its close relative, Saxifraga
(Zhang and Yao, 2015) and across a variety of host plants (Zimmerman and Vitousek, 2012; Jin
et al., 2013; Fan et al., 2020; Pang et al., 2022). In addition, Penicillium, Pleosporaceae,
Alternaria, and Colletotrichum have also been documented as predominant fungal endophytes
associated with leaves of multiple host plant species (Fisher et al., 1992; Araujo et al., 2001;
Gamboa and Bayman, 2001; Romero et al., 2001; Douanla-Meli et al., 2013; Jin et al., 2013;

Matsumura and Fukuda, 2013; Fang et al., 2019).

Environment and endophyte diversity—Assessing microbial diversity patterns, we found
that bacterial endophyte species (Shannon’s index) and phylogenetic (Faith’s PD) diversity were
remarkably consistent across host species and all environmental variables measured. Fungal
endophyte diversity, however, was significantly greater in less arid and high precipitation regions
(although insignificant in multivariate analyses), which is in accordance with observations of
increased richness of foliar endophytic fungi of an annual grass at wetter locations in the
Mediterranean by Penner and Sapir (2021), as well as of a tree species in a Hawaiian terrain by
Zimmerman and Vitousek (2012). Our results showing non-significance of latitude contrast with
previous investigations demonstrating a commonly observed latitudinal diversity gradient, in
which diversity declines from equatorial to polar regions. For example, Arnold and Lutzoni
(2007) showed that diversity of foliar fungal endophytes follows the classical pattern of
increasing diversity towards tropical areas (Canada to Panama). On the other hand, there is

almost no knowledge regarding bacterial endophyte diversity patterns across latitudinal
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337  gradients. Our study therefore represents a primary demonstration of a non-significant pattern of
338  foliar bacterial endophyte species and phylogenetic diversity across a relatively broad latitudinal
339  range. Moreover, climate, elevation, and soil environment were weak predictors of the diversity
340  of foliar bacterial endophytes in Heuchera. This pattern is consistent with previous works across
341  host plants in which abiotic factors have little to no influence on leaf bacterial richness and

342 composition. For example, several studies have shown that precipitation generally does not exert
343  asignificant effect on bacterial diversity (Hirano et al., 1996; Copeland et al., 2015; Stone and
344 Jackson, 2019, 2021; Wembheuer et al., 2020). Wemheuer and colleagues (2020) also reported no
345  significant correlation of bacterial endophyte diversity with temperature and elevation in

346  Theobroma cacao leaves (also true with fungi, except temperature).

347 Thus, microbial leaf endophyte diversity in Heuchera is generally robust to differences in
348 the abiotic environment. There may be several non-exclusive reasons for this. First, the internal
349  leaf tissue may provide a more stable environment, insulating the effects of constant changes
350  occurring in the surrounding environment. Second, differences of our observations from the

351  results of previous works may be attributed to the broader phylogenetic and geographic scale of
352 our research, extensive host species and population sampling in natural environments. Lastly,
353  taxa we studied may also influence results, as different host taxa may have differing microbial
354  interactions across varying environmental conditions.

355

356 Effect of host phylogeny—Our investigation on the factors associated with leaf

357  endophyte recruitment revealed that host phylogeny alone significantly influences bacterial

358  community structure, while fungal composition was best predicted by geographical location.

359  Several more focused studies have reported similar patterns, demonstrating that leaf endophytic
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bacterial communities are chiefly controlled by host identity (Ding et al., 2013; Mina et al.,
2020), as well as showing that host biogeography and other abiotic factors play a minor role in
bacterial community assembly (Coleman-Derr et al., 2016). Fungal endophyte communities, on
the other hand, have been suggested to show similar patterns as our observations. For example,
foliar fungal endophyte community structure was found to be strongly correlated with
geographic distance in several oak species, showing similarities of fungal communities between
species from adjacent sites, regardless of host habitat and phylogeny, as well as changes in
climatic and environmental conditions (Collado et al., 1999; Lau et al., 2013; Koide et al., 2017).
Biogeography was also a primary influence on foliar fungal endophyte community recruitment
across several plant hosts including species of Agave (Coleman-Derr et al., 2016), and conifers

(Langenfeld et al., 2013).

Geographic distance—Our observation that isolation-by-distance was significant for
fungi and not bacteria is a remarkable parallel to recent global-scale work on soil microbiomes
(Bahram et al., 2018), where both environmental parameters and geographic distance
significantly determined fungal diversity. This contrasting pattern has also been previously
revealed by multiple comparative investigations, reporting distinct drivers of microbiome
community composition between bacteria and fungi, specifically with fungal community
assembly being influenced by geographic distance more than bacterial communities (Shakya et
al., 2013; Coleman-Derr et al., 2016; Wei et al., 2022). This similarity in findings across
disparate plant organs and taxa may reflect distinct dispersal ecologies of fungi and bacteria.
Foliar fungal endophytes are usually horizontally transmitted as spores or small pieces of hyphae

via air (Rodriguez et al., 2009), which suggests that geographic location plays a significant role
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in endophytic community recruitment. Dispersal limitation may be one of the possible
explanations for this phenomenon. For instance, Zhang and colleagues (2021) found strong
evidence supporting the ‘size-dispersal’ hypothesis demonstrating that larger fungi are more
dispersal constrained than smaller bacterial microorganisms. This can lead to geographic
heterogeneity of fungal endophyte communities and as a result, community similarity declines
with growing geographic distance. Our results for bacteria, on the other hand, suggest a level of
host control over bacterial community colonization of internal plant tissues. This may be
attributed to varying internal physical, physiological, and biochemical environment across
species of Heuchera, as well as specific host plant genotype traits that act as habitat filters to

select for distinct microbial community species.

Edaphic ecology—We also demonstrate here that the Heuchera leaf endophyte
microbiome shows no relationship with the soil environment, a contrast to what has been
observed in rhizosphere and root endophyte communities (Fierer and Jackson, 2006; Baker et al.,
2009; Afzal et al., 2011; Bokati et al., 2016). Van Bael and colleagues (2017) similarly suggest
that soil environment gradients do not significantly influence foliar endophyte diversity and
community assembly. This may be due to the buffering of edaphic conditions in the more
insulated internal leaf environment of the host where microbial communities inhabit. Indeed, in a
recent work by Zhou et al. (2023), soil salinity determined endophytic bacterial communities in
roots but not in leaves, where host leaf metabolism has more control over community assembly.

It is, however, important to note that observed patterns in this study may not hold true
across the plant kingdom or to even broader geographic ranges. Multiple studies have shown

contrasting patterns (e.g., Gomes et al., 2018; Wembheuer et al., 2019; Shen et al., 2020; Brigham
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et al., 2023), suggesting that leaf bacterial and fungal endophyte community structure are
probably driven by multiple different factors including geographic location, host characteristic,
soil environment, climatic and other abiotic and biotic variables. In addition, the influence of
these factors may be especially dependent on the taxa being investigated, the geographic and

sampling scale of the study, and the locality.

DNA sourcing—Our work also derives substantially from silica-dried collections, an
approach used previously to characterize legume nodule microbiomes (Johnson, 2019). That we
recover as major community components numerous bacteria and fungi genera previously known
to be typical plant endophytes indicates that useful insights can be derived from diverse
preservation strategies. Easy-to-use preservation approaches are especially suitable for widely
spread and inaccessible field sites for broad geographic surveys. Herbarium materials prepared
under less controlled conditions than those used here have been the subject of several studies;
(Daru et al., 2018; Bieker et al., 2020) were able to obtain useful endophyte microbiome data
from herbarium specimens, although with higher quantities of exogenous DNA due to
inconsistent mounting and storage procedures. However, materials from herbaria may prove
useful in future studies to track how endophytic communities might change through time. In
addition to herbaria, large, preserved tissue resources exist in several museums and other
institutions as well as individual labs that would, together with a similar approach to ecological
predictor assembly via georeferences, enable broad-scale surveys of endophyte diversity

potentially beyond the scale of purpose-collected microbial materials.
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CONCLUSION

The significance of environmental and host-related factors in driving the assembly of leaf
endophyte communities has received comparatively less attention in comparison to more
extensive research on root and rhizosphere endophytes. Here, we applied a broad geographic and
phylogenetic sampling to assess leaf endophyte diversity, testing the hypothesis that these
communities are primarily driven by host phylogeny and abiotic environment. Our results
revealed differing community assembly patterns for bacterial and fungal endophytes. We found
that only host phylogeny significantly influences bacterial endophyte composition, while
geographic distance was the most important determinant of endophytic fungal communities.
Moreover, endophyte diversity patterns were found to be consistent across sites and host species,
with only fungal diversity being significantly greater in less arid and high precipitation regions
for some metrics. The present study also introduces silica-dried collection as an effective and
efficient preservation approach for broad-scale leaf microbiome studies. Our findings highlight
the value of in-depth clade-based microbiome research and the intricacy of microbiome assembly

within certain plant organs.
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Table 1. Correlation between predictors and leaf endophyte diversity metrics; significant values

(P <0.05) are underlined; *marginally significant.

Fungal Endophytes Bacterial Endophytes
Faith’s PD Shannon Faith’s PD Shannon
Predictors Diversity Diversity
DF rho P rho P rho P rho P
Temperature 86 0.01  0.90 0.08 0.44 0.05 0.63 0.01 0.88
Precipitation 86 0.15 0.17 0.31 0.003 0.11 0.28 0.12 0.24
Aridity 86 021 0.05* 0.33 0.002 0.11 0.27 0.14 0.17
Index
Soil pH 86 0.07  0.51 0.19 0.07 0.03 0.75 0.01 0.92
Soil Sand% 86 0.07 0.54 0.18 0.10 0.17 0.95 0.05 0.62
Soil Carbon 86 0.03 0.80 0.02 0.83 0.08 0.44 0.12 0.24
Latitude 86 0.05 0.66 0.18 0.10 0.05 0.61 0.05 0.61
Elevation 86 0.12  0.30 0.17 0.12 0.03 0.73 0.08 0.40
Host Species 80 023 071 0.35 0.14 0.29 0.40 0.30 0.37

Table 2. Microbial endophyte partial Mantel tests P-values; significant values (P<0.05) are

underlined; *marginally significant.

Fungal Endophytes Bacterial Endophytes
Geographic distance 0.0005 0.56
Host phylogeny 0.62 0.002
Soil environment 0.05%* 0.12
Climate 0.26 0.72

Appendix S1. Sampling location and host taxonomy; sample marked “X” according to type of

sequencing performed.

Sample  Host Species Host Latitude Longitude 16S ITS
ID Subsection

Al-2 Heuchera americana var. americana ~ Heuchera 33.725 -85.600833 X X
Al-3 Heuchera americana var. americana ~ Heuchera 33.725 -85.600833 X
A10-1 Heuchera americana var. americana ~ Heuchera 38.2152778 -85.906944 X
A10-2 Heuchera americana var. americana ~ Heuchera 38.2152778 -85.906944 X X
Al1-2 Heuchera americana var. americana ~ Heuchera 38.2591667 -86.461389 X X
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Al12-1 Heuchera villosa var. macrorhiza Villosae 38.1575 -86.340278 X X

A13-6 Heuchera americana var. Heuchera 37.60485 -88.384667 X X
hirsuticaulis

Al4 Heuchera americana var. Heuchera 38.9730556 -90.464444 X X
hirsuticaulis

Al15-1 Heuchera richardsonii Heuchera 38.1491167 -92.825311 X X

Al15-8 Heuchera richardsonii Heuchera 38.1491167 -92.825311 X

A16-5 Heuchera richardsonii Heuchera 43.4175 -89.726944 X X

Al17-8 Heuchera richardsonii Heuchera 45.3975 -92.648056 X X

A2-2 Heuchera americana var. americana ~ Heuchera 33.3705556 -85.713056 X X

A21-6 Heuchera richardsonii Heuchera 47.7205556 -91.777778 X X

A21-9 Heuchera richardsonii Heuchera 47.7205556 -91.777778 X

A23-4 Heuchera glomerulata Parvifoliae 32.632 -109.8145 X X

A26-3 Heuchera sanguinea Sanguineae  32.6359861 -109.82353 X

A28-1 Heuchera americana var. americana ~ Heuchera 34.58071 -88.192537

A29-6 Heuchera americana var. americana ~ Heuchera 34.9294925 -88.191126 X

A3-1 Heuchera americana var. americana ~ Heuchera 32.9541667 -86.447222 X X

A30-10 Heuchera villosa var. macrorhiza Villosae 34.930459 -88.189257 X X

A31 Heuchera americana var. Heuchera 34.407867 -89.837582 X X
hirsuticaulis

A33-6 Heuchera americana var. americana ~ Heuchera 36.036791 -87.415363 X

A34-4 Heuchera americana var. americana ~ Heuchera 36.173646 -87.32851 X X

A35-2 Heuchera americana var. americana ~ Heuchera 36.311857 -87.307932 X

A36 Heuchera americana var. americana ~ Heuchera 37.204169 -86.736069 X X

A37-7 Heuchera missouriensis Villosae 36.888571 -86.832991 X X

A38-1 Heuchera americana var. Heuchera 36.888571 -86.832991 X X
hirsuticaulis

A39-2 Heuchera americana var. Heuchera 36.847205 -88.072118 X X
hirsuticaulis

A4-5 Heuchera americana var. americana ~ Heuchera 34.7288889 -84.082778 X X

A40-2 Heuchera americana var. Heuchera 37.573554 -89.439868 X X
hirsuticaulis

A41-2 Heuchera americana var. Heuchera 36.966255 -90.234138 X X
hirsuticaulis

A42-3 Heuchera richardsonii Heuchera 38.454585 -90.623699 X X

A43-3 Heuchera richardsonii Heuchera 38.630682 -90.265731 X X

Ad4-5 Heuchera richardsonii Heuchera 38.83037 -92.283973 X X

Ad45-1 Heuchera americana var. Heuchera 36.065466 -94.13855 X X
hirsuticaulis

A46-6 Heuchera americana var. Heuchera 35.994786 -94.132507 X X
hirsuticaulis

A47-3 Heuchera americana var. Heuchera 35.996722 -94.129067 X X
hirsuticaulis

A49-8 Heuchera americana var. Heuchera 35.074282 -92.538006 X
hirsuticaulis

A48 Heuchera americana var. Heuchera 35.304632 -93.165575 X
hirsuticaulis
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A49-8 Heuchera americana var. Heuchera 35.074282 -92.538006 X
hirsuticaulis
A5-1 Heuchera villosa var. villosa Villosae 34.6772222 -84 X
AS5-3 Heuchera villosa var. villosa Villosae 34.6772222 -84 X
A6-1 Heuchera americana var. americana ~ Heuchera 34.6194444 -83.792222 X
A7-1 Heuchera americana var. americana ~ Heuchera 34.0972222 -82.351389 X
A8 Heuchera americana var. americana ~ Heuchera 33.2555556 -83.6825 X
A9-1 Heuchera americana var. Heuchera 40.3380556 -87.316389 X
hirsuticaulis
FL-1 Heuchera longiflora var. longiflora Heuchera 36.5326389  -83.479353 X
FL-10 Heuchera longiflora var. aceroides Heuchera 36.2907472  -83.003425
FL-11 Heuchera longiflora var. aceroides Heuchera 36.3596917  -82.867069 X

FL-12 Heuchera longiflora var. aceroides Heuchera 36.3505444  -82.927314
FL-13 Heuchera longiflora var. aceroides Heuchera 36.389285  -82.733798
FL-14 Heuchera longiflora var. longiflora Heuchera 36.4632556  -82.766714
FL-15 Heuchera longiflora var. longiflora Heuchera 36.5187889  -83.496497
FL-16 Heuchera longiflora var. longiflora Heuchera 36.2998861 -82.996839
FL-17 Heuchera longiflora var. longiflora Heuchera 36.5892917  -83.384286
FL-18 Heuchera longiflora var. aceroides Heuchera 359701667  -82.961383
FL-19 Heuchera longiflora var. aceroides Heuchera 35942689  -82.895113
FL-2 Heuchera longiflora var. aceroides Heuchera 36.4553528  -82.780539
FL-20 Heuchera longiflora var. aceroides Heuchera 37.6304667  -83.770767
FL-21 Heuchera longiflora var. aceroides Heuchera 35.9632083  -82.899089
FL-22 Heuchera longiflora var. longiflora Heuchera 36.5578028  -83.565797
FL-23 Heuchera longiflora var. aceroides Heuchera 36.3684472  -82.865333
FL-24 Heuchera longiflora var. longiflora Heuchera 36.519133  -83.475392
FL-25 Heuchera longiflora var. longiflora Heuchera 36.6679833  -83.230925
FL-26 Heuchera longiflora var. aceroides Heuchera 33.1415972  -86.258378
FL-27 Heuchera longiflora var. longiflora Heuchera 33.167145  -86.221316
FL-3 Heuchera longiflora var. aceroides Heuchera 36.3771889  -82.854369
FL-4 Heuchera longiflora var. aceroides Heuchera 36.3006806  -82.965453
FL-5 Heuchera longiflora var. aceroides Heuchera 36.4431806  -82.802606
FL-6 Heuchera longiflora var. aceroides Heuchera 36.4619917  -82.689403
FL-7 Heuchera longiflora var. aceroides Heuchera 36.484351 -82.702853
FL-8 Heuchera longiflora var. longiflora Heuchera 36.5873139  -83.418478
FL-9 Heuchera longiflora var. longiflora Heuchera 36.535025  -83.465767

T T B i T o T o T T T T B B B B S
T B R B T T T B e B R R T I B I T T T B B I S T T

H102-3  Heuchera americana var. americana ~ Heuchera 37.8975 -78.946389
H105-1  Heuchera richardsonii Heuchera 43.8438361 -102.43763
H107-1  Heuchera parvifolia Parvifoliae  44.3305556  -105.18611
H107-2  Heuchera parvifolia Parvifoliae  44.3305556  -105.18611
H108_1  Heuchera cylindrica var. saxicola Cylindricae 454369444  -111.23361 X
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H110-1  Heuchera cylindrica var. saxicola Cylindricae  45.1133333  -112.77111 X
H113-1  Heuchera cylindrica var. glabella Cylindricae 46.5875  -111.95056 X
H114-2  Heuchera cylindrica var. glabella Cylindricae  46.9313889  -111.87833 X
H115-2  Heuchera cylindrica var. glabella Cylindricae 47.61 -111.26139 X
H118-1  Heuchera cylindrica var. glabella Cylindricae 48.49193  -113.34183 X
H121-1  Heuchera cylindrica var. glabella Cylindricae  47.3161111  -113.19361 X
H124-1  Heuchera cylindrica var. glabella Cylindricae  47.2955556 -1193 X X
H124-2  Heuchera cylindrica var. glabella Cylindricae  47.2955556 -119.3 X
H127 Tiarella trifoliata Outgroup 47427679  -121.41334 X
H128 Mitella pentandra Outgroup 47.427673 -121.4132 X
H129-1  Heuchera micrantha var. diversifolia ~ Micranthae  48.8166667 -121.795 X
H129-2  Heuchera micrantha var. diversifolia ~ Micranthae  48.8166667 -121.795 X X
H130-2  Tellima grandiflora Outgroup 48.8630556  -120.09694 X
H134-2  Heuchera micrantha var. diversifolia  Micranthae  48.9093917  -121.79867 X
H136-2  Heuchera micrantha var. micrantha Micranthae  45.5930556  -121.94194 X X
H141-2  Heuchera micrantha var. micrantha Micranthae  45.6958333  -121.66861 X
H143-2  Heuchera micrantha var. pacifica Micranthae  43.0255556  -123.91861 X
H146-2  Heuchera micrantha var. Micranthae  42.6052778  -123.85667 X
macropetala
H149-2  Heuchera micrantha var. erubescens ~ Micranthae  42.6108333  -122.19472 X
H154_ 2 Heuchera grossulariifolia var. Grossularii ~ 43.6305556  -116.70806 X
grossulariifolia folia_group
H161-1 Ozomelis stauropetala Outgroup 42.09417  -111.52807 X
H162-2  Heuchera rubescens Rubescente  42.0958333  -110.48194 X X
H164-2  Heuchera bracteata ]s3racteatae 41.1538889  -104.62333 X
H173-4  Heuchera missouriensis Villosae 37.5316833  -88.978983 X X
H174-4  Heuchera missouriensis Villosae 37.5422 -88.98095 X X
H175-4  Heuchera missouriensis Villosae 37.62245 -89.19665 X
H176-4  Heuchera missouriensis Villosae 37.625  -89.203433 X X
H177-2  Heuchera americana var. Heuchera 37.5415333  -89.426917 X
hirsuticaulis
H181-2  Heuchera puberula Villosae 36.9507167  -90.992283 X X
H182-4  Heuchera puberula Villosae 37.15075  -91.440317 X X
H183-4  Heuchera puberula Villosae 37.2808 914137 X X
H184-4  Heuchera puberula Villosae 36.77975  -91.345883 X X
H185-4  Heuchera puberula Villosae 36.7660167  -91.267217 X
H186-4  Heuchera puberula Villosae 36.9236167  -92.096333 X
H187-4  Heuchera puberula Villosae 36.90765 -92.07955 X
H188-4  Heuchera puberula Villosae 37.3628833 -91.9693 X X
H189-4  Heuchera puberula Villosae 35.9692167  -92.173517 X
H190-4  Heuchera puberula Villosae 35.9588333  -92.175433 X
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H191-4  Heuchera puberula Villosae 35.9860833 -92.47925 X
H192-4  Heuchera villosa var. arkansana Villosae 36.1051167  -94.390267 X

H193-2  Heuchera longiflora var. longiflora Heuchera 37.820167  -83.666982 X X
H194-2  Heuchera villosa var. macrorhiza Villosae 37.4933508 -84.22659 X X
H200-4  Heuchera parviflora var. parviflora Villosae 37.4933508 -84.22659 X X
H202-2  Heuchera longiflora var. longiflora Heuchera 38.3549889  -83.113867 X
H203-4  Heuchera parviflora var. parviflora Villosae 36.8372639  -84.343222 X

H204-4  Heuchera parviflora var. parviflora Villosae 36.7379806 -83.74075 X X
H205_4  Heuchera parviflora var. parviflora Villosae 36.5810922  -84.833408 X

H207-4  Heuchera parviflora var. parviflora Villosae 36.4414822  -84.961229 X
H210-4  Heuchera missouriensis Villosae 35.1016522  -85.429128 X
H211-4  Heuchera missouriensis Villosae 35.1825294  -85.673918 X
H212-4  Heuchera parviflora var. parviflora Villosae 35.2517336  -85.747382 X
H213-4  Heuchera missouriensis Villosae 35.1537725  -85.921924 X
H214-2  Heuchera americana var. americana ~ Heuchera 35.1537725 -85.921924 X X
H215-4  Heuchera parviflora var. parviflora Villosae 35.8622667  -82.846424 X

H216-2  Heuchera caroliniana Heuchera 34.5482083  -80.840684 X X
H217-4  Heuchera missouriensis Villosae 34.041468 -86.02128 X

H218-2  Heuchera missouriensis Villosae 34.395067  -85.626911 X X
H220-4  Heuchera missouriensis Villosae 34.2855342  -87.398618 X X
H221-4  Heuchera missouriensis Villosae 34.3408219 -87.47452 X

H222-4  Heuchera puberula Villosae 36.0060614  -92.046855 X X
H223-4  Heuchera puberula Villosae 35.9963178  -92.213088 X X
H224-4  Heuchera puberula Villosae 36.1389981 -92.31618 X
H225-4  Heuchera missouriensis Villosae 37.1462231 -87.752115 X
H226-4  Heuchera missouriensis Villosae 37.5246667 -86.17638 X X
H227-4  Heuchera missouriensis Villosae 37.2788247  -86.251023 X X
H228-4  Heuchera missouriensis Villosae 37.1446842 -86.38404 X

H229-5  Heuchera parviflora var. saurensis Villosae 36.4146914  -80.264972 X

H230-6  Heuchera parviflora var. parviflora Villosae 35.1594042  -82.973663 X X
H32 1 Heuchera inconstans Parvifoliae  35.0352778  -110.14056 X

H32-2 Heuchera inconstans Parvifoliae  35.0352778  -110.14056 X X
H36 Heuchera eastwoodiae Parvifoliae  34.4158333  -111.56444 X X
H37-1 Heuchera brevistaminea Elegantes 32.896917  -116.42857 X X
H42-1 Heuchera parishii Elegantes 342113167 -116.79042 X X
H44-2 Heuchera elegans Elegantes 43.3156667  -117.84228 X X
H45-1 Heuchera abramsii Elegantes 342903833  -117.64563 X X
H49 Heuchera micrantha var. erubescens ~ Micranthae 37.576111 -119.68361 X X
H50-1 Heuchera parvifolia Parvifoliae  37.5776667  -118.23147 X X
H51-1 Heuchera bracteata Bracteatae  39.6588889  -104.39778 X X
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H55-1 Heuchera parvifolia Parvifoliae  39.3497222  -105.69028 X X
H97-6 Heuchera parviflora var. saurensis Villosae 36.340181  -80.474366 X
L1-1 Heuchera longiflora var. aceroides Heuchera 35.7467139  -82.872478 X X
L11-4 Heuchera longiflora var. longiflora Heuchera 38.0242556  -83.713053 X
L12-3 Heuchera longiflora var. longiflora Heuchera 38.1094472  -83.465361 X X
L13-1 Heuchera longiflora var. longiflora Heuchera 38.1203222  -83.237625 X X
L14-1 Heuchera longiflora var. longiflora Heuchera 37.6698389  -82.913272 X X
L15-1 Heuchera longiflora var. longiflora Heuchera 38.1202972  -82.689297 X X
L16-3 Heuchera longiflora var. longiflora Heuchera 37.9456444  -82.868289 X X
L17-2 Heuchera longiflora var. longiflora Heuchera 37.5719167  -82.552183 X X
L18-2 Heuchera longiflora var. longiflora Heuchera 374021167  -82.469044 X X
L19-2 Heuchera longiflora var. longiflora Heuchera 37.1404389  -86.384603 X
L20-3 Heuchera longiflora var. longiflora Heuchera 37.6304667  -83.770767 X X
L21-2 Heuchera longiflora var. longiflora Heuchera 36.9511944  -82.881661 X
L22-4 Heuchera longiflora var. longiflora Heuchera 37.102275  -82.968672 X X
L23-1 Heuchera longiflora var. longiflora Heuchera 37.3003111 -82.321778 X
L23-2 Heuchera longiflora var. longiflora Heuchera 37.3003111 -82.321778 X
L23-3 Heuchera longiflora var. longiflora Heuchera 37.3003111 -82.321778 X X

785

786

787

44


https://doi.org/10.1101/2023.05.23.541975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541975; this version posted May 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

788  Appendix S2. Bacterial class-level diversity and relative abundance per sample.
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815  Fig. 1. Map of Heuchera samples used in the study (pink circles). Map generated using the QGIS

816 Software (v3.24; QGIS Development Team 2021).
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Fig. 2. (A) Bacterial and (B) fungal endophyte phylum-level diversity and relative abundance per

A Bacterial Level 2 Taxonomy

[ Bacteroidetes
. Unassigned
[ verrucomicrobia

| Chiorobi
™

|17 Fusobacteria

- Cyanobacteria
| Firmicutes

. Unassigned
. Planctomycetes
[ Acidobacteria
. WPS-2

[ chloroflexi
[ e

K
[ Thermi
[ saracs

|| Gemmatimonadetes
Crenarchaeota

. Chlamydiae

e

[ oe3

. Nitrospirae

B Fungal Level 2 Taxonomy

. Ascomycota
. Unassigned
. Basidiomycota
Unassigned
. Olpidiomycota
Unassigned
. Mucoromycota

48


https://doi.org/10.1101/2023.05.23.541975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541975; this version posted May 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

828  Fig. 3. Boxplot of microbial endophyte Faith’s Phylogenetic and Shannon Diversity with relative

829  abundance across strongly sampled host taxa.
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