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Abstract 31 

Anopheles stephensi is a major vector of malaria in Asia and the Arabian Peninsula, 32 

and its recent invasion into Africa poses a significant threat to malaria control and 33 

elimination efforts on the continent. The mosquito is well-adapted to urban 34 

environments, and its presence in Africa could potentially lead to an increase in malaria 35 

transmission in cities. Most of the knowledge about An. stephensi ecology in Africa has 36 

been generated from studies conducted during the rainy season, when vectors are most 37 

abundant. Here, we provide evidence from the peak of the dry season in the city of 38 

Jigjiga, Ethiopia, and report the finding of An. stephensi immature stages infesting 39 

predominantly water reservoirs made to support construction operations (in construction 40 

sites or associated with brick manufacturing businesses). Political and economic 41 

changes in Ethiopia (and particularly the Somali Region) have fueled an unprecedented 42 

construction boom since 2018 that, in our opinion, has been instrumental in the 43 

establishment, persistence and propagation of An. stephensi via the year-round 44 

availability of perennial larval habitats associated with construction. We argue that larval 45 

source management during the dry season may provide a unique opportunity for 46 

focused control of An. stephensi in Jigjiga and similar areas.    47 

 48 
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Introduction 50 

Remarkable success in reducing malaria burden has been achieved in most African 51 

countries since the year 2000, thanks to the scaling-up of vector control tools 52 

(insecticide-treated nets and indoor residual spraying) and effective preventive and 53 

treatment drugs1. Increasing evidence suggests that rapid urbanization of Africa’s 54 

human population (driven primarily by rural-urban immigration) is also contributing to a 55 

reduction in malaria burden 2-5. Lower habitat suitability for Anopheles spp. breeding 56 

and improvements in housing within African cities reduce human-mosquito contacts and 57 

can lead to lower Plasmodium spp. inoculation rates compared to rural settings 2-5. 58 

Environmental management in the form of housing improvement has gained research 59 

interest due to its sustained effect on Anopheles spp. mosquitoes and its positive impact 60 

on livelihoods 6,7. The WHO calls this approach “building the vector out”, and involves 61 

the adoption of practices that range from improved housing structures to retrofitting 62 

eave tubes and other approaches to limit mosquito entry indoors 8. This approach is 63 

also seen as a novel aspect of malaria control in urban settings, given most human 64 

population growth over the next century will be accounted for by the growing number of 65 

city dwellers 9.  66 

As most sub-Saharan countries continue their push towards malaria elimination, a new 67 

threat has the potential to negatively impact decades of public health gains: the invasion 68 

and establishment of Anopheles stephensi, a malaria vector native to Asia, commonly  69 

found in cities throughout India, Iran, Pakistan, and the Arabian Peninsula 10,11. Since it 70 

was first detected in Africa in Djibouti in 201212, An. stephensi has spread to Ethiopia13, 71 

Somalia14, Sudan15, Kenya, Nigeria and Ghana16. Niche modeling predicts suitable 72 

environmental conditions for An. stephensi establishment throughout tropical African 73 

cities, putting an additional 126 million people potentially at risk of malaria 17. Given the 74 

mosquito’s urban dependency and container larval breeding habits 18,19, rainfall alone 75 

was found to be a poor predictor of An. stephensi-driven malaria transmission 20. In 76 

Djibouti, a 2000x exponential increase in the number of malaria cases has been 77 

observed since the detection of An. stephensi 11,16. The contribution of An. stephensi to 78 

increases in malaria transmission outside of Djibouti has begun to be investigated, 79 

especially in light of the recent malaria outbreak. From 2018 to 2020 in Ethiopia, 80 

Plasmodium vivax was detected in wild-caught An. stephensi from the cities of Dire 81 

Dawa and Kebridehar (with infection rates of 0·5% and 0·3%, respectively)19 and P. 82 

vivax and P. falciparum infection recently reported in An. stephensi from Awash (2·8% 83 

and 1·4%)21. Furthermore, experimental membrane feeding experiments showed that 84 

field-caught An. stephensi from Ethiopia became significantly more infectious with local 85 

P. vivax and P. falciparum than Anopheles arabiensis (the primary malaria vector in 86 

Ethiopia), indicating that it is a highly competent vector for African Plasmodium21.  87 

Given the entomological and epidemiological evidence gathered so far, the World 88 

Health Organization (WHO) launched a new initiative to stop the further spread of An. 89 

stephensi in the region that is based on a 5-pronged approach: 1. increasing 90 
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collaboration; 2. strengthening surveillance; 3. improving information exchange; 4. 91 

developing guidance; and 5. prioritizing research16. To execute an effective plan for An. 92 

stephensi elimination, key sources of information about its biology and bionomics in its 93 

new habitats are needed, and vector control tools that are better suited for urban 94 

settings will need to be investigated.  95 

Several studies (most of them from Ethiopia, cross-sectional and conducted during the 96 

rainy season) have characterized An. stephensi habitats and bionomics, with many 97 

knowledge gaps still remaining (e.g., 18,19,21,22). The evidence gathered so far shows that 98 

in the rainy season, An. stephensi larvae are found in a wide array of small and large 99 

artificial containers, ranging from large water cisterns to car tires and buckets 18,19,21. In 100 

addition to Plasmodium infection, such studies have characterized up to 48% human 101 

biting (14/29 mosquitoes) in Awash21 but low human biting (<1% human biting) in Dire 102 

Dawa and Kebridehar (where also a high frequency of domestic animal feeding was 103 

observed)19. Such discrepancies may have originated, in part, due to the opportunistic 104 

collection of adult mosquitoes in or near animal shelters. Indeed, the finding of P. vivax 105 

and P. falciparum infected mosquitoes can only be explained by human biting. 106 

Furthermore, given its egg-laying behavior (eggs that resist desiccation 23 and are laid in 107 

small containers), the fact that it bites humans not only at night when they are sleeping, 108 

and that it is found in urban and peri-urban areas, An. stephensi has more similarities 109 

with Aedes aegypti mosquitoes (which vector viruses such as dengue, chikungunya and 110 

Zika) than with other Anophelines 24. One of the many factors that remains to be studied 111 

is how is it that An. stephensi persists in Ethiopia and other African countries that have 112 

a prolonged dry season, as this period may offer unique opportunities for surveillance 113 

and control.  114 

Here, we report novel findings on the habitat use of An. stephensi during the dry season 115 

in eastern Ethiopia. While increased focus on characterizing larval habitats in rainy 116 

periods can provide information of niche breadth for the species, our goal of focusing on 117 

the dry season was to explore possible windows for control in periods where the 118 

population size may be smallest.  119 

Dry season An. stephensi collections in Jigjiga, Ethiopia. From March 6-14, 2023, 120 

mosquito surveys were conducted in Jigjiga city (capital of Somali Region, Ethiopia, 121 

population ~800,000) during the dry season. Anopheles stephensi was first detected in 122 

Jigjiga in 201818, and has persisted in the city since then despite a harsh dry season 123 

(the rainless period of the year lasts for ~3 months). Molecular analysis of cytochrome 124 

oxidase subunit I (COI) and cytochrome B gene (CytB) shows Jigjiga as one of the 125 

locations with highest diversity, suggesting it was likely an early introduction point of An. 126 

stephensi into Ethiopia25. Jigjiga is of relevance because of its large population size, 127 

rapid urbanization, and connection to other malaria-endemic regions and the port of 128 

Berbera in Somaliland.   129 

We employed methods developed for standard larval and pupal sampling of container 130 

breeding mosquitoes8, that included collecting all the larvae and pupae in small water 131 
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holding containers and using dippers and large fish nets to sample large water-holding 132 

habitats. All the larvae and pupae were reared to Adult at Jigjiga University Entomology 133 

Laboratory. The emerged Anopheles spp. adults were identified to species level using 134 

standard keys as well as molecular means. From a total of 60 potential larval sites with 135 

water that were sampled across the city, we identified a major habitat consistently 136 

positive for An. stephensi larvae and pupae during the dry season: man-made pits 137 

related with construction operations (Fig 1A). We term such habitats ‘construction pits’, 138 

as they were primarily built for the storage of water in construction sites or in small-scale 139 

brick manufacturing businesses (Fig 1B). Anopheles stephensi positivity in construction 140 

pits was 62·5%, compared to 5·9% in water cisterns made of cement and 0% in 200L 141 

plastic drums (Fig 1B). All abandoned tires sampled did not contain any water. 142 

Interestingly, from all the sites that we found positive for An. stephensi larvae and 143 

pupae, 63.6% of them also had Culiseta spp. and Aedes spp. larvae in them, whereas 144 

only 18·2% and 9·1% sites positive for An. stephensi were co-habited by Culiseta spp. 145 

or Aedes spp. only, respectively (Fig 1C).  146 

 147 

Figure 1. (A) Positivity of Anopheles stephensi immature stages in the only containers 148 

found with water during the dry season survey of 2023 in Jigjiga, Ethiopia, and stratified 149 

by species or genus of mosquito found. (B) Examples of sampled habitats, construction 150 
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pits associated with house construction (left), a construction pit associated with brick 151 

manufacturing (center left), a cement cistern (center right) and a 200L plastic drum 152 

(right). (C) Species cohabiting with An. stephensi in positive containers (Culiseta 153 

represents C. longiareolata, whereas Aedes represents Ae. hirsutus).  154 

A subset of 20 adult emerging from the pupae collected in construction pits and visually 155 

identified with standard keys was molecularly confirmed to be An. stephensi using an 156 

allele specific PCR and the sequencing of ITS2 and COI loci13. While ITS2 haplotypes 157 

were all identical for the An. stephensi samples, three COI haplotypes were detected: 158 

Hap 1 (7/14), Hap 2 (6/14), and Hap 3 (1/14) (using Carter et al 202125 haplotypes 159 

designations), mostly consistent with previous studies. Notably, the presence the COI 160 

Hap 1 (common to South Asia and detected in northern Ethiopia and Djibouti) supports 161 

the notion of Jigjiga’s connectivity with regions outside of the continent with long-162 

established An. stephensi populations and as a likely entry point for An. stephensi into 163 

the southern part of the country.  164 

After the molecular confirmation of An. stephensi, we used the GPS coordinates from 165 

the construction pits in Google Earth to identify them remotely, given their unique 166 

spectral signature (size, color contrast and presence of water). Interestingly, using a 167 

high-resolution satellite image taken in November 2022 (4 months prior to sampling) we 168 

not only were able to identify the positive construction pits (Fig 2A-B) but also extended 169 

our work to identify a total of 101 pits within a rural to urban swath of Jigjiga centered on 170 

the road connecting the city with Somaliland (Fig 2C). The density of pits per hectare 171 

within the swath did not follow a rural-urban gradient but concentrated in the center of 172 

the swath, an area of Jigjiga currently experiencing rapid construction and development 173 

(Fig 2D). Given the high positivity rate of construction pits we quantified (Fig 1), the 174 

density map in Fig 4 may be a good proxy for the distribution of An. stephensi 175 

distribution within the rural-urban swath.  176 

 177 
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 178 

Figure 2. (A) Construction pits identified as positive for Anopheles stephensi larvae 179 

during March 2023 in Jigjiga, Ethiopia (visible as two orange squares with darker color 180 

in their center representing water). (B) Use of Google Earth Pro to digitize all visible 181 

construction pits (in this panel, a total of 5 pits are identified with a pin). (C) Distribution 182 

of the 101 construction pits visually identified in November 2022, 4 months prior to our 183 

sampling, within a rural-urban swath measuring 4.3 km2 and centered on the highway 184 

connecting Jigjiga with Somaliland (one of the busiest corridors in the region). (D) 185 

Kernel density estimate of the density of construction pits per hectare (color surface) 186 

and location of all identified pits (dots) using a bandwidth of 500m and a pixel size of 187 

10m. Stars in C and D indicate the location of Jigjiga’s downtown.  188 

 189 

Political and economic development and An. stephensi invasion in Jigjiga. We consider 190 

that an unprecedented urban development boom in Jigjiga has been critical in favoring 191 
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An. stephensi establishment and rapid spread. Jigjiga increased its built-up area from 192 

4·2% in 1985 to 5·2% in 2005 to 24·0% in 2015, primarily driven by a change in status 193 

from zonal capital to regional capital, which opened political and economic 194 

opportunities, leading to high rural-urban immigration26. Since 2018, when the most 195 

transformative political reform of Ethiopia was enacted by the Ethiopian government, 196 

Jigjiga has seen an even larger population and urban footprint increase. The recent 197 

declaration by the national government of Ethiopia that 19·0% of commodity imports for 198 

the country ought to enter via port Berbera in Somaliland and transported through 199 

Jigjiga to the rest of the country27 led to an increased interest in investment and even 200 

higher immigration into the city27. Jigjiga’s population grew from 125,876 inhabitants in 201 

2007 to more than 700,000 in 2020.  202 

Since the 2018 political reform in Ethiopia, different groups began to accept Jigjiga’s 203 

new regional status as a safe regional hub, opening the window of opportunity to 204 

increased investment and business development27. Diaspora Somalis started to make 205 

investments, purchase land, and construct homes leading to a construction boom and 206 

increases in the price of land 27. New hotels, restaurants, as well as businesses are 207 

being built in preparation for the increased trade (and truck traffic) with port Barbera 27. 208 

As the city continues its unprecedented expansion, it is also increasingly facing critical 209 

water shortages (particularly during the dry season); the mean water accessibility of 210 

Jigjiga in 2016 was only 19·0% 28. In response to these water shortages, communities 211 

build cement cisterns to store water for domestic uses 28.  Similarly, for building 212 

construction or brick manufacturing purposes, people in the town are accustomed to 213 

construct temporary construction pits lined with plastic sheet (Fig 1). During the dry 214 

season, water for construction pits is generally purchased and delivered in truck 215 

cisterns, which source the water from underground wells located outside the city. We 216 

can see evidence of the unprecedented construction boom in Jigjiga using historical 217 

satellite imagery (Fig 3). From the images one can see the dramatic expansion of 218 

construction pits in 2018 as well as the construction further along the periphery of the 219 

city. The sector went from 62-84 pits between 2016-2018 to 232 in 2020 and 192 in 220 

2021, showcasing the rapid urban expansion of Jigjiga during that time (Fig 3). 221 

Construction pits are not only common practice in Jigjiga. In India, it is widely 222 

recognized that many Anopheles stephensi breeding sites are built into the finished 223 

structures of offices, homes and factories in urban areas 29. Less widely recognized, but 224 

also important as An. stephensi breeding sites, are the transient structures created 225 

during and as part of the construction process 30. Interestingly, this association between 226 

urban development and An. stephensi resembles the finding of cutaneous leishmaniasis 227 

outbreaks in association with urban growth and, specifically, construction sites in Israel 228 

settlements 31,32.  229 

    230 

 231 
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 232 

Figure 3. Historical sequence of the distribution of construction pits (white dots) in an 233 

urban-rural swath of Jigjiga, Somali region, Ethiopia. The dots represent digitized 234 

construction pits, observed through high-resolution satellite imagery historically archive 235 

in Google Earth. For each year we used October-November, as they were the months 236 

that had most complete information. The total number of pits per year on the area is 237 

listed on each panel.  238 

Opportunities for An. stephensi containment: larval source management of construction 239 

pits?. The finding of discrete and easily identifiable An. stephensi larval habitats in 240 

Jigjiga may provide a unique opportunity for immediate larval source management 241 

(LSM) and targeted control during the dry season, particularly with larviciding or 242 

biological control. A similar concept of ‘dry season LSM’ has been proposed for An. 243 

gambiae in semi-arid Kenya as an approach to maximize the effectiveness of larval 244 

control 33. An extensive list of larvicides prequalified by WHO for vector control exists 34. 245 

While temephos and Bacillus thuringiensis have shown important larviciding effect on 246 
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An. stephensi from Ethiopia 35, they require frequent reapplication, which may be 247 

challenging given the number of construction pits that need to be treated. Long-lasting 248 

larvicide formulations, that could be potential candidates for control in large water 249 

volumes are Spinosad 7·48% DT (Clarke Mosquito Control Products, Inc.) and  250 

SumiLarv 2 MR (Sumitomo Chemical Co. Ltd., Japan). Spinosad DT is a tablet for direct 251 

application used at the dosage of 0·5 mg/L AI (1 tablet/200 L) for control of container-252 

breeding mosquitoes with a minimal expected duration of optimum efficacy of 4-6 weeks 253 

under field conditions 36. SumiLarv 2 MR is a 2 g plastic disc containing 2% (20 g AI/kg 254 

± 25% w/w) pyriproxyfen used at the dosage of one disk in a water container with a 255 

volume of 40 L37. Long-lasting methoprene briquettes are commonly used for Culex 256 

pipiens control in catch basins in the US and, if prequalified, would provide an additional 257 

long-lasting tool since there is a 6-month extended release formulation (Altosid® 150-258 

Day Briquets, Zoecon)38.  259 

Given the water source and use, long duration of construction pits, and constant 260 

availability of water, a biological control option that can be considered is the use of 261 

larvivorous fish 39. Fish that feed on mosquito larvae have been widely used around the 262 

world in attempts to control malaria, other mosquito-borne diseases and mosquito 263 

nuisance biting 39 and could be used in this case as a “textbook” example 40. Locally 264 

native larvivorous fish exist near Jigjiga39. Furthermore, LSM in Jigjiga could include 265 

both larviciding and larvivorous fish if larvicides with low toxicity (Spinosad, metoprene 266 

or pyriproxyfen) are chosen. More importantly, our finding of high co-habitation between 267 

An. stephensi with Culiseta spp. and Aedes spp. mosquitoes provides a unique 268 

opportunity for integrated LSM across vectors, which can lead to important co-benefits 269 

and a higher justification for the implementation of such programs within Jigjiga and 270 

othe cities. Although for malaria typically the emphasis is on the protection of people 271 

inside their home (through deployment of ITNs and IRS). In the case of An. stephensi in 272 

Jigjiga, vectors could be controlled outside the house by conducting LSM during the dry 273 

season (the period when mosquito populations are lower and primary larval sites are 274 

easier to identify) to reduce the risk of vector establishment and further transmission 275 

malaria.  276 

 277 

  278 
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Concluding remarks  279 

 280 

The spread of An. stephensi in Africa may be facilitated in some Ethiopian cities by high 281 

urban immigration and an unprecedented construction boom, which is generating novel 282 

larval habitats that the vector exploits during the dry season to survive harsh 283 

environmental conditions. Our viewpoint emphasizes that the spread and persistence of 284 

An. stephensi in Jigjiga and other cities in Ethiopia is a planetary health problem that 285 

requires a holistic consideration of the environmental, social, and political changes that 286 

may be favoring the establishment and onward spread of this major threat to the 287 

elimination of malaria from sub-Saharan Africa.  288 
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