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Abstract 

In the enduring challenge against disease, advancements in medical technology have 

empowered clinicians with novel diagnostic platforms. Whilst in some cases, a single test 

may provide a confident diagnosis, often additional tests are required. However, to strike a 

balance between diagnostic accuracy and cost-effectiveness, one must rigorously 

construct the clinical pathways. Here, we developed a framework to build multi-platform 

precision pathways in an automated, unbiased way, recommending the key steps a 

clinician would take to reach a diagnosis. We achieve this by developing a confidence 

score, used to simulate a clinical scenario, where at each stage, either a confident 

diagnosis is made, or another test is performed. Our framework provides a range of tools 

to interpret, visualize and compare the pathways, improving communication and enabling 

their evaluation on accuracy and cost, specific to different contexts. This framework will 

guide the development of novel diagnostic pathways for different diseases, accelerating 

the implementation of precision medicine into clinical practice. 
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Introduction 

In recent years, the medical field has seen rapid developments in various high-throughput 

biotechnologies, allowing the collection of biological data on a variety of “omics” platforms, 

at an increasingly scalable and affordable level1. For example, the cost of whole exome 

sequencing for a single sample has dramatically declined over the last two decades from 

around $20 million (USD) in 2006 to around $1000 (USD) in 20182. This new access to a 

plethora of information is leading a revolution in precision medicine, by providing an insight 

into the biological mechanisms behind different diseases. Indeed, we already see modern 

omics data being used to help personalize cancer treatments3, among other diseases4. 

However, uptake of these technologies in clinical practice has been slow, due to the range 

of stakeholders involved5. 

 

With so many novel technologies as potential diagnostic platforms6, much of current 

research aims to build a model for a cohort of patients using a single platform in isolation7–

9, or integratively with other data10,11. However, this is different from the reality of a clinical 

application, where a range of diagnostic platforms/tests are available, and a variety of 

other factors need to be considered, such as health economics and time. In particular, with 

highly heterogeneous cohorts, a clinician may not necessarily need or want to perform 

such a test on all their patients, as there may be cheaper or more effective alternatives for 

some patients. Some recent research has aimed to identify clinical features to make cost-

effective diagnosis under time and resource constraints12. Nonetheless for complex 

diseases, the specific order of testing, evaluation and clinical decision making is an 

important consideration, along with approaches for the integration of clinical, imaging and 

omics data13. For instance, genomic testing is rapidly transitioning into a “standard of care” 

to guide treatment plans for rare childhood diseases14,15 and cancer16,17. 

 

Here, we present a framework (MultiP) to construct a multi-platform precision pathway 

given a range of available platforms to diagnose a disease (Figure 1). This workflow 

incorporates three main innovations: (1) An individualized confidence score to guide 

sequential decision-making for individuals, (2) the joint optimization of individual-level 

accuracy and population-level cost, and (3) interpretation tools to ensure a transparent and 

reliable implementation. We demonstrate the utility of our workflow in clinical and omics-

level data for two different complex diseases (coronary artery disease) and stage III 

melanoma), outperforming a complete omics phenotyping, with less than half the number 

of diagnostic tests required. The framework is implemented in the R package ClassifyR, 

available on Bioconductor. 

Results 

The development of an “uncertain” class enables multi-stage classification 

In a diagnostic setting, typical machine learning classifiers aim to classify all patients into 

either the positive or negative class18, which is a limited representation of the reality in the 

clinic. When given the results of a diagnostic test, a clinician may be able to make a 

diagnosis with high confidence, either positive or negative, or if they are “not sure”, they 
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may refer the patient to take further tests to obtain more data. To capture this aspect of 

decision making, we introduce an “uncertain” class to the typical binary classification 

problem (turning it into a ternary classification problem), which allows us to perform a multi-

stage classification, using the multiple modes of data available to us.  

 

To build this multi-stage classification, we develop a confidence score for each patient and 

platform combination, representing the confidence in which we can make a diagnosis for 

that patient using that platform. We achieve this in a similar way to our previous work by 

Patrick and colleagues19, where a patient-specific accuracy rate is calculated by 

aggregating the predictions at a patient-level in repeated cross-validation. This can be 

imagined as having many different clinicians (models from each repeat in the cross-

validation) to diagnose a new patient, and the confidence score is equivalent to the degree 

of agreement among the different clinicians. See Methods (MultiP Algorithm: Confidence 

Score) for full details. 

 

We allow the user to customize the confidence threshold, as different contexts may require 

different stringencies. Based on this threshold, individuals can either be classified (if the 

model can make a high-confidence decision) or progressed (if the model cannot make a 

high-confidence decision). In the latter case, the individual proceeds to the next stage, 

where data from another platform will be collected. This process repeats until the final 

platform (all possible tests have been performed), where a decision must be made. See 

Methods (MultiP Algorithm: Construction) for full details. 

 

Our MultiP framework is implemented as a part of the ClassifyR package20, available on 

Bioconductor. ClassifyR formalizes a framework for performing and evaluating 

classification in R using repeated cross-validation and includes many in-built feature 

selection and classification approaches. Many components of the ClassifyR framework can 

be customized with a single line of code, including the feature selection, classifier model 

and cross validation parameters making it ideal for implementing MultiP. This flexibility 

provides the versatility needed to cater to the varied contexts of different diseases and 

populations. The full list of parameters that can be adjusted in the MultiP framework are 

summarized in Table 1. See Methods (Implementation) for full details. 

 

Clinical precision pathways made transparent by MultiP 

When applying a machine learning model that can impact treatment decisions and 

people’s lives as well as the value and cost to the health system, it is imperative that the 

model is not treated as a black box, to ensure a robust and equitable implementation21,22. 

In MultiP, we ensure that the constructed pathways are interpretable, by providing a range 

of tools and visualizations to dissect the biomarkers driving the models. We demonstrate 

the utility and interpretability of MultiP on its ability to detect Coronary Artery Disease 

(CAD) in the BioHEART-CT cohort, using four platforms: clinical, metabolomics, lipidomics 

and proteomics. For full details about the cohort and data, see Methods (Datasets). 
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For a single pathway, the flow chart provides an overall visualization of the progression of 

individuals at the population-level (Figure 2A). In our example, it can be seen that 78% of 

individuals can be confidently classified with just clinical information including standard 

modifiable risk factors, meaning that these individuals would not need any of the more 

expensive data to be collected. The major clinical unmet need is evident, where individuals 

without standard risk factors are in the subclinical phase of atherosclerotic development 

and at risk of heart attack, not detectable by traditional approaches. And equally, some 

individuals may appear to be at high risk based on clinical data alone (such as high 

cholesterol or smoking), but have distinct resilience, without the development of CAD. 

Knowledge of the latter may allow for avoidance of life-long pharmacotherapy.  

 

A more detailed look at the population can be seen in our strata plot that displays this data 

at the individual sample level (Figure 2B). At each stage of the pathway, the individuals are 

split by their true class, and the accuracy of the classifier is plotted for each individual. This 

can allow the user to assess the performance of each stage of the pathway and identify 

potential cohort heterogeneity. For instance, we see that the Lipidomics model of our 

MultiP has a high accuracy for non-CAD individuals, but low accuracy for CAD individuals. 

This suggests that this platform may have a bias for categorizing individuals as non-CAD, 

which could be investigated further. 

 

To dissect the models created for each stage and identify the biomarkers that are driving 

the decision-making process, we produce a feature importance plot as shown in Figure 

S1A-C and Figure S2. Reassuringly, we see that in each of the models, the key features all 

have well-established links to CAD. Namely, the Lipidomics model (Figure S1A) is driven 

by Cer23, Hydroxylated acylcarnitine24, Sulfatide25; the Metabolomics model (Figure S1B) is 

driven by Riboflavin26, 2-arachidonoylglycerol27 and DMGV28; and the Proteomics model 

(Figure S1C) is driven by PON129, IGFALS30 and SERPINC131.  

 

To examine the characteristics between classified and progressed individuals, we also 

provide a cohort summary of the classified and retained group of individuals at each stage 

of the pathway, to explore the differences in individual cohorts that are classified or 

progressed at each stage, potentially revealing cohort heterogeneity (Figure S3A-C). For 

instance, we see that the lipidomics model (Figure S3B) confidently classifies considerably 

more females than males, indicating a potential sex-bias in the data and/or model. This 

suggests that the different subpopulations (eg. sex) may be more appropriately classified 

with separate models, as has been well-studied in the context of CAD32. 

 

Criterion-guided optimization of precision pathways outperforms baseline models. 

To implement a multi-platform framework, an important consideration would be the “order 

of the platforms”, to represent the order that clinicians would perform diagnostic tests for 

individuals. In our MultiP framework, we train a precision pathway by first constructing a 

series of possible precision pathways for all possible orders of the platforms. Here the 

users can specify if any platforms must be used first, such as clinical data. Secondly, the 
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final precision pathway is selected by comparing and assessing them based on accuracy 

at the population level. 

 

To assess the performance of our constructed precision pathways, we compare their 

balanced accuracy to a range of baseline models. Here we consider two types of baseline 

models, the first group are models built on a single omics platform with clinical data, and 

the second group considers a model built on all platforms combined (Figure 3), see 

Methods (Baseline comparison) for full details about the construction of baseline models. 

We see that the precision pathways perform considerably better than single platform 

classifications, confirming the common belief that these different platforms contain 

complementary information, and demonstrating the value of integrating different platforms 

to make clinical diagnoses.  

 

The precision pathways not only maintain a high accuracy compared to the combined data 

set (as they are closer to the top of the plot), but only use a fraction of the data and thus a 

fraction of the cost (as they are closer to the left of the plot). This suggests that the 

combined data set, with all platforms for all patients, contains a large proportion of 

redundant information, i.e. there are many patients that can be confidently classified with 

little data. This highlights the value of a precision pathway to use only the important tests to 

reach confident diagnoses, while minimizing the cost of healthcare with limited sacrifice in 

accuracy. 

 

MultiP pathways can be optimized on multiple criteria. 

Classical machine learning approaches typically optimize their models based on accuracy 

alone18. However for a clinical implementation, there are a range of practical factors that 

need to be considered as well, such as cost or time. The MultiP framework allows users to 

incorporate additional criteria, and choose a weighting for the importance of each criterion 

when determining an optimal precision pathway. See Methods (MultiP Algorithm: 

Evaluation) for full details. A variety of tools and visualizations are provided to assist the 

user to compare the candidate models under these criteria. 

 

Users can view a summary table of the constructed precision pathways, with their 

accuracy and cost at each level (Figure 4A). They are also given an overall score, based 

on their rankings for each of the criteria, aggregated by the user-chosen weightings. This 

allows for an unbiased selection of an optimal precision pathway. A bubble plot is also 

produced which allows users to compare the candidate precision pathways based on 

accuracy and cost (Figure 4B). Here, the ideal precision pathway would have a high 

accuracy and low cost and we see that there are three well-performing and economical 

pathways: C-L-P-M, C-L-M-P and C-M-L-P (where C = Clinical, L = Lipidomics, M = 

Metabolomics, P = Proteomics). However, the final choice of optimal pathway is a tradeoff 

between accuracy and cost. 
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MultiP pathways are transferable across different cohorts 

A major barrier to the implementation of new protocols for diagnostic purposes, such as 

omics technologies, is that molecular signatures are often cohort-specific and do not 

transfer well between different populations33. We further demonstrate the applicability and 

transferability of our framework for another complex disease, the prognosis of stage III 

melanoma. We achieve this by using MultiP to construct a pathway to classify patients into 

a “good prognosis” (survival > 4 years) or “poor prognosis” (survival < 1 year), trained on 

data from The Cancer Genome Atlas (TCGA)34. We then assess the performance of this 

model on a different dataset generated by the Melanoma Institute of Australia (MIA)35–37. 

See Methods (Datasets) for details about the cohorts.  

 

Between these two cohorts, the data corresponding to the same molecular modality is 

sometimes generated from different technology platforms. In this situation, the microRNA 

data is generated using a count-based RNA-seq in the TCGA dataset and using a 

fluorescence-based microarray in the MIA dataset. To ensure transferability between the 

models, we use the log ratios between pairs of features as the input into the MultiP 

framework, as this has been demonstrated to be more appropriate for transferability37. See 

Methods (Transferability analysis) for full details.  

 

We find that the models at each level are driven by well-known markers, suggesting that 

the constructed precision pathway is reasonable. In particular, we see that in the mRNA-

level data (Figure S4B), the prediction for a poor prognosis is driven by higher levels of 

CCL21 and HAMP, both previously linked to the metastasis of melanomas38,39. The 

prediction for a good prognosis is driven by higher levels of DNAH2, a known modulator of 

cell homologous recombination repair which may have a protective effect40. In the 

microRNA model (Figure S4C), we observe that predictions for poor prognosis are driven 

by hsa-miR-205 and hsa-miR-518b, both known to be dysregulated in melanomas41,42. And 

a good prognosis is driven by hsa-miR-944 and hsa-miR-487a, known suppressors of 

cancer promoting genes43,44.  

 

We then apply the precision pathway trained on the TCGA cohort to classify the individuals 

in the external MIA cohort (Figure 5). We find that the overall precision pathway maintains 

a good performance in balanced accuracy and F1 score (Table 2). However, we note that 

between the two cohorts, there was a considerable tradeoff between sensitivity and 

specificity. This is likely due to the small sample size available (65 in TCGA and 30 in MIA) 

resulting in overfitting to some subpopulations in the data. 

Discussion 

The increasing number of diagnostic platforms carry tremendous potential for clinical 

applications, but this brings the challenge of how to optimally use such data. Here, we 

present MultiP, a versatile framework to automatically construct precision pathways for a 

variety of contexts, using a range of available platforms. We provide a range of tools and 

visualizations to allow users to interpret the constructed pathways, and compare candidate 
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pathways on different criteria. We have demonstrated the applicability of the framework in 

two distinct contexts: the diagnosis of CAD, and the prognosis of stage III melanoma on 

different cohorts. 

 

We observed that these precision pathways have a similar performance to models 

constructed on a complete set of data, where data on all platforms are used for all patients. 

This implies that there are many patients for which a confident and accurate diagnosis can 

be made with minimal information, suggesting that it is not necessary to perform all tests 

for these patients. By following a precision pathway, we ensure that only the informative 

tests are performed, alleviating the huge economic burden of the healthcare system with 

minimal loss of accuracy. 

 

The MultiP framework is implemented in the ClassifyR package, granting it access to a 

vast library of classification models and parameters in a single line of code. This flexibility 

allows the MultiP to cater to a wide range of contexts, as different diseases, populations 

and platforms would require tailored models. As further functionalities are incorporated into 

the ClassifyR package, such as new classifiers and multiview methods, MultiP will also 

expand in its applicability. 

 

Despite the vast functionality and potential for MultiP to build diagnostic pathways, there 

remains a few limitations and scope for future work to improve its performance in a clinical 

application. Notably, cohort heterogeneity is a challenging issue, where there may be 

subpopulations in the cohort that would benefit from different classification models. The 

current MultiP uses the entire training cohort to build an ensemble model for all pathways, 

which may not accurately diagnose underrepresented subpopulations in the data. A 

workaround to this is to train a separate model at each stage of the pathway, so that the 

classifier used is more closely tailored to the subpopulation that is progressed, however 

these models will suffer from smaller sample size to train on. Another issue arising from 

cohort heterogeneity is that there may be different subpopulations that are better classified 

using a different order of platforms, whereas the current implementation forces the same 

order of platforms for all patient pathways. A solution could be that at each level, to identify 

potential subpopulations that are progressed and test different orders of platforms. 

However, this opens up exponentially more models that need to be constructed and tuned, 

quickly increasing the computational burden to construct the pathway. 

 

In summary, our MultiP framework is the first to our knowledge that builds clinical 

pathways using multiple platforms and incorporating health economics. We hope that this 

will promote the uptake of modern technologies for clinical diagnoses, accelerating the 

progress towards precision medicine. 
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Methods 

MultiP algorithm 

Confidence score. The MultiP framework trains individual models for each platform using 

repeated cross-validation (with default parameters of 2 folds and 50 repeats). For an 

individual patient on a single platform, this will create many models (equal to the number of 

repeats) where the patient is in the test set, each with a predicted class. The final predicted 

class is then chosen based on the majority prediction across the many models. If the 

predictions are perfectly split across the two classes, the final predicted class is randomly 

chosen. 

 

The confidence score is defined as the agreement of the predicted class of these models. 

More precisely, if the predicted classes are split in the ratio 𝑝: 1 − 𝑝, then the confidence 

score is defined as 2|𝑝 − 0.5|.  That is, if all models predict the same class (𝑝 = 0 or 𝑝 =

1), then the confidence score is 1, but if there is a perfect 50-50 split among the predictions 

(𝑝 = 0.5), then the confidence score is 0. For each patient in each platform, we have now 

calculated a final predicted class and a confidence score. 

 

In our framework, we used default parameter values as stated in Table 1, and performed 

model building using the runTests function in ClassifyR20. 

 

Construction. For a specific sequence of platforms and a user-defined confidence 

threshold, the pathway is constructed as follows: 

1. All patients start at the first platform. 

2. At the current platform, classify the patients, whose confidence score for that 

platform exceeds the threshold, with their final predicted class. 

3. For the patients whose confidence score does not exceed the threshold, they are 

considered “uncertain” and then passed onto the next platform. 

4. Repeat steps 2 and 3 until the final platform. 

5. At the final platform, classify all patients based on the final predicted class for that 

platform. 

 

We use a default confidence threshold of 0.8, however the optimal threshold may vary 

greatly across contexts, as different diseases, populations and platforms would have 

different accuracies and confidence. 

 

Evaluation. When a pathway is constructed, each patient is assigned a predicted class. 

By comparing these predictions to their true class, we can calculate any classification 

metric, such as accuracy, balanced accuracy, F1 score, and so on.  

To evaluate a list of candidate pathways, we assign a ranking to each one in each criteria, 

such as accuracy and cost. A weighted average of these rankings, based on user-defined 

weights, is taken to be the final score used to determine the optimal pathway. We choose 

default weights of 0.5 for accuracy and 0.5 for cost. 
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Datasets 

BioHEART-CT - This study has been described in detail previously45 and we analyze the 

Discovery 1000 patients, which is the first 1000 patients of the BioHEART-CT study who 

have completed deep imaging and molecular phenotyping. The study was approved by the 

Northern Sydney Local Health District Human Research Ethics Committee 

(HREC/17/HAWKE/343) and all participants provided informed written consent. All methods 

were performed in accordance with relevant guidelines and regulations. The deep imaging 

(CTCA images) were acquired on a 256-slice scanner using standard clinical protocols, 

overseen and dual-reported by accredited cardiologists and radiologists. CTCAs were 

analyzed using the validated 17-segment Gensini score46 to identify those with CAD (Gensini 

> 0) and without CAD (Gensini = 0). Data from molecular phenotyping include proteomics, 

lipidomics and metabolomics47. For demonstration purposes, the cost of each platform was 

chosen to be: Clinical = $30, Lipidomics = $50, Metabolomics = $15, Proteomics = $75. 

Patients on statin medications were excluded from analysis, as this would have an undesired 

confounding effect onto the molecular signatures. 

 

The Cancer Genome Atlas (TCGA) - The SKCM (Skin Cutaneous Melanoma) data set 

was downloaded from TCGA using the R package curatedTCGAData48. The 

RNASeq2GeneNorm and miRNASeqGene assays were taken to represent the mRNA and 

microRNA platforms respectively. The cohort was filtered down to those with stage III 

cancers to match with the MIA dataset. A “Good” prognosis was defined to be survival 

greater than 4 years from the date of tumor banking, and a “Poor” prognosis was defined 

to be death less than 1 year from the date of tumor banking. Patients who do not match a 

“Good” or “Poor” prognosis are excluded from analysis. The T-stages of the patients were 

reclassified into T0, T1, T2, T3 and T4, where patients with missing or undetermined T-

stage were excluded. 

 

Melanoma Institute of Australia (MIA) - This data collection includes data presented in 

Mann et al.35 and Jayawardana et al.36 and accessible at Melanoma Explorer49. In brief, 

mRNA was assayed using Sentrix Human-6 v3 Expression BeadChips (Illumina, San Diego, 

CA) and microRNA expression profiling was performed using Agilent Technologies' 

microRNA platform (version 16, Agilent Technologies, Santa Clara, CA). Similarly to the 

TCGA dataset, a “Good” prognosis was defined to be survival greater than 4 years from the 

date of tumor banking, and a “Poor” prognosis was defined to be death less than 1 year from 

the date of tumor banking. Patients who do not match a “Good” or “Poor” prognosis are 

excluded from analysis. 

 

Baseline comparison 

To evaluate the performance of pathways generated by MultiP, we compare against two 

categories of models. Single platform models are built on each individual platform with 

clinical data and the combined model was built on all platforms integratively. The 

integration of different platforms for classification was implemented with the 
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crossValidate function in ClassifyR with the parameter multiViewMethod = 

"merge". The same cross-validation parameters as the MultiP pathways were used to 

ensure a fair comparison. 

 

Transferability analysis 

To build a transferable model between the TCGA and MIA datasets, we first perform library 

size normalization and then filter the features in each platform to those that are common in 

both datasets. In the TCGA data (the training data), we filter the microRNA features to 

those with standard deviation greater than 5, to keep the number of features reasonable 

for the next step while retaining important features. 

 

As the data was collected from different platforms, with values on different scales, we 

calculate the log-ratios between each pair of features, using the method described by 

Wang and colleagues37. We then standardize these log ratios at the patient-level, shifting 

the mean to 0 and scaling the variance to 1. Pairs with very low standard deviation (< 0.1) 

are removed from analysis to ensure model stability. 

 

Implementation 

The MultiP framework is implemented in the ClassifyR package available on Github at 

https://github.com/SydneyBioX/ClassifyR. It will also be available on Bioconductor in the 

next release.  

 

 
Data and code availability. The TCGA data that support the findings of this study are 

publicly available at the Genomic Data Commons Data Portal (Project ID: TCGA-SKCM). 

For the BioHEART-CT data, data requests can be made through the BioHEART data 

committee via email (michael.gray@sydney.edu.au). The code for running the above 

methods and evaluation are available at https://github.com/SydneyBioX/ClassifyR. 
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Class Parameter Input Default 

MultiP 
parameters 

Confidence 
Threshold 

A value between 0 and 1 0.8 

Fixed Tiers An integer from 0 to the number 
of platforms 

1 (corresponding to 
clinical data) 

Platform Costs Numerical (one for each platform) NA 

Criteria Weights Numerical (one for each criteria) (0.5, 0.5) 

Additional 
Criteria Cost 
(optional) 

Numerical (one for each platform) NA 

Feature 
Selection 

Method A character for a feature 
selection method 

t-test 

Number A single number, or a vector of 
numbers (in which case, the 
optimal number from the vector 
will be selected) 

(10, 20, 30, 40, 50, 
60, 70, 80, 90, 100) 

Classifier Method A character for a classifier DLDA 

Cross 
Validation 

Cross-validation 
folds 

Any positive integer 2 

Repeats Any positive integer 50 

Workers Any positive integer 1 

Seed Any positive integer 1 

 

Table 1: Summary of parameters for MultiP 
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Metric TCGA Dataset MIA Dataset 

Accuracy 0.597 0.667 

Balanced Accuracy 0.660 0.670 

F1 Score 0.684 0.667 

Specificity 0.769 0.714 

Sensitivity/Recall 0.551 0.625 

Precision 0.900 0.714 

Table 2: Summary of performance metrics for model trained on TCGA dataset evaluated 

on TCGA dataset (with repeated cross-validation) and MIA dataset. 
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Figure 1: Schematic of the MultiP pipeline. A. The input into the model is data from 

multiple platforms for the same cohort of patients. B. For a particular sequence of 

platforms, the MultiP algorithm uses machine learning to classify patients into a positive, 

negative, or uncertain class. Patients in the uncertain class and passed onto the next 

platform and the process repeats until the final platform. C. Candidate pathways 

corresponding to different orders of platforms can be compared and optimized on different 

criteria. D. A suite of tools for visualizations and summaries of the constructed pathways 

are provided.  
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Figure 2: Visualization tools to interpret constructed pathways. A. Flow chart displays the 

proportion and number of patients assigned to each class at each stage of the pathway. B. 

Strata plot displays the accuracy of the patients classified in each stage of the pathway. 

The x-axis corresponds to each patient, sorted by the platform they were classified in (y-

axis), then by their true class (top row), then by accuracy (color).  
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Figure 3: Comparison of precision pathways to baseline models. The x-axis corresponds 

to the total number of diagnostic assays that would need to be collected to diagnose the 

entire cohort and the y-axis corresponds to the repeated cross-validation balanced 

accuracy. The red point represents the model constructed on the full set of data; the green 

points represent the pathways built with MultiP; the blue points represent the models 

constructed on a single platform with clinical data. 
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Figure 4: Visualization tools to compare candidate pathways. A. Summary table 

summarizes the accuracy and cost of each pathway. The pathways are ranked by score, 

calculated based on the pathways’ rankings in balanced accuracy and cost, aggregated by 

user-defined weights. B. Bubble plot enables a visual comparison of the accuracy and cost 

of the candidate pathways. The shading of each point corresponds to the proportion of 

patients classified in each tier. Sequence names: C, clinical; L, lipidomics; M, 

metabolomics; P, proteomics. 
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Figure 5: Demonstration of the transferability of MultiP. A. Flow chart for pathway on TCGA data. 

B. Strata plot for pathway on TCGA data. C. Flow chart for pathway on MIA data. D Strata plot for 

pathway on MIA data. 
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