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Abstract  

Spontaneous activity of the human brain provides a window to explore intrinsic principles of 
functional organization. However, most studies have focused on interregional functional 
connectivity. The principles underlying rich repertoires of instantaneous activity remain largely 
unknown. We apply a novel eigen-microstate analysis to three resting-state functional MRI 
datasets to identify basic modes that represent fundamental activity patterns that coexist over time. 
We identify a few (i.e., five) leading basic modes that dominate activity fluctuations. Each of these 
modes exhibits a distinct functional system-dependent coactivation pattern and corresponds to 
specific cognitive profiles. In particular, the spatial pattern of the first leading basis mode shows 
the separation of activity between the default-mode and primary and attention regions. We further 
reconstruct individual functional connectivity as the weighted contribution of these leading basic 
modes based on theoretical modelling. Moreover, these leading basic modes capture sleep 
deprivation-induced changes in brain activity and interregional connectivity, primarily involving 
the default-mode and task-positive regions. Our findings reveal a dominant set of basic modes of 
spontaneous activity that reflect multiplexed interregional coordination and drive conventional 
functional connectivity, furthering the understanding of the functional significance of spontaneous 
brain activity.  
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Introduction 

Spontaneous activity in the resting human brain exhibits well-organized spatiotemporal patterns, 
providing a window into understanding the intrinsic functional organization1,2. Using resting-state 
functional magnetic resonance imaging (R-fMRI), numerous studies have revealed the large-scale 
functional connectivity network by measuring low-frequency spontaneous fluctuations of blood-
oxygenation-level-dependent (BOLD) signals3-5. The functional network exhibits non-trivial 
properties, such as functionally specific but interacting modules6-8, which facilitate efficient 
functional segregation and integration across the brain9-11. Furthermore, the functional network 
architecture varies across individuals12-15, shapes functional activation patterns during tasks16-19, is 
related to individual cognitive performance18,20,21, and is modulated by the mental states22,23. 

Despite the success of the functional network analyses, the associated insights are limited to 
the connectivity patterns summarized over time. Accumulating evidence suggests that the 
interregional functional interaction is highly dynamic with time-varying patterns24-26. An 
innovative approach is to examine single frames of brain activity to reveal the transient 
coordination at shorter time scales (e.g., seconds)27. The whole-brain activity patterns have been 
classified into a number of recurrent brain states with different coactivation patterns28-30. The 
temporal transition between these brain states follows a hierarchical structure30 and shows 
alterations across tasks31,32, consciousness states33,34, and psychiatric disorders35,36. In addition to 
the group-level analysis, a very recent study has identified individualized brain coactivation states, 
the occurrence rates of which depend on task states, handedness, and gender, and show longitudinal 
changes in the post-stroke recovery37. Although these studies provide valuable insights into the 
time-varying functional organization, they typically assign the instantaneous activity pattern at 
each time point to a single brain state; the commonality shared across time points has been 
underestimated38. A more natural view holds that multiple basic modes may coexist across the 
time-resolved activity patterns, which are selectively combined at each time point to support future 
cognitive responses26,39,40. Identifying these basic modes can unravel building blocks of intrinsic 
activity and provide a new avenue to explore the multiplicity of the interregional relationships at 
rest. However, the spatial patterns of these basic activity modes and their potential functional 
significance remain largely unknown.  

Recent R-fMRI studies have attempted to bridge the gap between instantaneous brain activity 
and functional connectivity (FC) patterns28,41 For example, the point process analysis shows that 
FC profiles for regions of interest can be inferred from interregional coactivation patterns at 
specific time points28,42. Similarly, the edge-centric approach decomposes FC into the framewise 
contributions and reveals dominant contributions of high-amplitude coactivations at critical time 
points41,43. A recent study further reports that interregional FC relies on all time points, even those 
with low amplitudes44. Thus, we hypothesize that the basic modes of time-solved activity may 
make a substantial contribution to the FC pattern. 
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To address these issues, we leveraged a novel statistical physics approach, i.e., an eigen-
microstate analysis45, to identify the basic modes of spontaneous activity of the resting human 
brain. The eigen-microstate analysis is useful for extracting meaningful and fundamental spatial 
components (i.e., basic modes) that underlie the temporal evolution of complex systems45. 
Specifically, we applied this approach to R-fMRI data from healthy young adults from three 
datasets: the S900 release of the Human Connectome Project (HCP)46, the sleep-deprivation 
dataset47, and the Beijing Zang dataset48. First, we identified the leading basic modes that dominate 
the spontaneous fluctuations of BOLD signals and unraveled their cognitive significance. Second, 
we developed a theoretical model to elucidate how these basic modes contribute to the whole-brain 
FC pattern and verified this model by empirically reconstructing the FC pattern. Finally, we 
investigated whether these basic modes are affected by the modulation of mental states, e.g., by 
sleep deprivation. 

Results 

A small number of basic modes dominated spontaneous activity 

We employed two runs (i.e., REST1 and REST2) of R-fMRI data from 700 participants selected 
from the HCP dataset and extracted regional time courses for 1000 cortical nodes based on a prior 
functional parcellation49. Then, we identified the basic modes at the population level for each run 
by applying the eigen-microstate analysis45 to the concatenated time courses across participants 
(Fig. 1). For both runs, the weights of the basic modes decreased rapidly with increasing ranking 
and reached an elbow point at the 6th basic mode (Figs. 1A). The first five basic modes before the 
elbow point accounted for a large proportion of the variance in activity (29% for REST1 and 28% 
for REST2) (pperm < 0.001, 10,000 permutation tests) and hereafter are referred to as the leading 
basic modes. 

Each leading basic mode showed a heterogeneous spatial pattern, representing a typical 
fluctuation mode underlying rich repertoires of spontaneous activity (Fig. 1B); in the figure, 
opposite signs in the amplitude indicate opposite phases in the temporal fluctuation. The spatial 
patterns of these modes were highly similar between two runs (i.e., REST1 and REST2) (Fig. S1). 
Based on prior seven functional systems50, we found that the spatial patterns of the leading basic 
modes were system-dependent (Figs. 1B and 1C). For basic mode 1, positive amplitudes were 
mainly located in regions of the default-mode and frontoparietal networks, whereas negative 
amplitudes were mainly located in regions of the somatomotor and visual networks, as well as 
those of the ventral and dorsal attention networks. This pattern is similar to the previously reported 
principal gradient of functional connectivity51, suggesting a hierarchical separation of brain 
activity between transmodal regions and primary and attentional regions. For basic mode 2, 
positive amplitudes were mainly located in regions of the default-mode, somatomotor, and visual 
networks, while negative amplitudes were mainly located in the regions of the frontoparietal and 
ventral/dorsal attention networks. For basic mode 3, positive amplitudes were primarily located in 
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regions of the somatomotor, ventral attention, frontoparietal, and lateral default-mode networks, 
while negative amplitudes were primarily located in the visual and dorsal attention networks. For 
basic mode 4, positive amplitudes were mainly located in regions of the frontoparietal and dorsal 
attention networks, whereas negative amplitudes were mainly located in the ventral attention and 
medial visual networks. Basic mode 5 showed a finer spatial structure, in which heterogeneous 
amplitudes were observed within each functional system, and positive and negative amplitudes 
were mainly located in lateral and medial default-mode regions, respectively. These results suggest 
that a small set of basic modes govern the spontaneous fluctuations of brain activity, each of which 
shows a distinct coactivation pattern between functional systems. 

We further identified the basic activity modes for each run at the individual level. We 
observed a small number of leading basic modes for most of the participants (number of leading 

basic modes, range: 3-10; mean  std = 5.4  1.39 for REST1 and mean  std = 5.5  1.39 for 
REST2) (Fig. S2). 

Relationship between leading basic modes and cognitive functions 

We examined whether spatial patterns of five leading basic modes were related to specific 
cognitive functions. First, we observed that these leading basic modes corresponded to different 
profiles of cognitive terms (Fig. 2A) based on the NeuroSynth meta-analytic database52. Basic 
mode 1 was positively associated with the default-mode related functions and negatively 
associated with sensorimotor and visual functions. Basic mode 2 was positively associated with 
the internally-oriented and social inference processes and negatively associated with working 
memory and task-oriented processes. Basic mode 3 was positively associated with sensorimotor, 
auditory, and language terms and negatively associated with vision-related functions. Basic mode 
4 was positively associated with cognitively-demanding tasks (i.e., tasks, calculation, and objects) 
and negatively associated with pain-related terms. Basic mode 5 showed positive associations with 
the semantic-related functions and negative associations with the default-mode related functions. 

We also examined the spatial similarity between the five leading basic modes and 12 
cognitive components that represent the fundamental activation components during task 
performance53 (Fig. 2B). Statistical significance of these spatial similarities was corrected for the 
spatial autocorrelation (all ps <0.05)54. Basic mode 1 was associated with internal mentation, 
emotion, interoception, and hand and face-related sensorimotor functions. Basic mode 2 was 
associated with several higher-order cognitive functions, including internal mentation, working 
memory, inhibition, interoception, and dorsal attention. Basic mode 3 was associated with both 
externally- and internally-oriented perceptions. Basic mode 4 was involved in working memory, 
dorsal attention, inhibition, reward, and interoception. Basic mode 5 was associated with visual, 
auditory and language functions. Overall, the first three leading basic modes are relevant to the 
internally-oriented, executive-control, and primary cognitive functions, whereas the latter two 
leading modes are related to more sophisticated and abstract functions. 
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Leading basic modes captured individual-specific functional connectivity patterns 

Given that the leading basic modes served as the fundamental spatial components for whole-brain 
activity, we hypothesized that they would make dominant contribution to the whole-brain FC 
pattern and capture the individual-specific functional organization. To test this hypothesis, we 
developed a theoretical model based on the eigen-microstate analysis (Fig. 3A), which 
decomposed the whole-brain FC matrix into the weighted summation of the coactivation patterns 
in the basic modes. This model indicates that each basic mode corresponds to a specific FC pattern 
(Fig. S3). We reconstructed the whole-brain FC matrix based on this model by considering 
different numbers of basic modes and compared it with the original FC matrix obtained as 
Pearson’s correlations between nodal time courses. At the population level, the spatial similarity 
between the reconstructed and original FC matrices slowly increased with the number of basic 
modes considered and then reached a plateau (Fig. 3A and Fig. S4). Specifically, we observed a 
high spatial similarity between two FC matrices when including the five leading basic modes (rs 
= 0.95 for both REST1 and REST2, ps < 0.001) (Fig. 3B and Fig. S4). Similar results were 
observed at the individual level. The spatial similarity between the reconstructed and original FC 
matrices was high for all participants when considering the five leading basic modes (Fig. 3C, 

mean  std = 0.94  0.02 for REST1 and 0.93  0.02 for REST2). 

We further evaluated whether the leading basic modes captured individual-specific functional 
organization. First, we found that the reconstructed FC matrix showed significantly higher values 
in the intra-subject similarity than inter-subject similarity, regardless of the number of basic modes 
used (Fig. 3D, all ps <0.05). Then, we performed the individual identification analysis13 by 
comparing individual FC matrices between two runs. We observed an identification accuracy of 
97% based on the original FC matrix. For reconstructed individual FC matrices, the identification 
accuracy increased rapidly with increasing number of basic modes and reached 92% when the five 
leading basic modes were included (Fig. 3E). These results suggest that these leading basic modes 
make the dominant contribution to the individualized functional organization. 

Influence of sleep deprivation on the leading basic modes 

To assess whether the leading basic modes are affected by the mental states, we applied the eigen-
microstate analysis to the sleep-deprivation dataset47. In this dataset, 19 participants underwent R-
fMRI scanning during rested wakefulness and after sleep deprivation. Similar to the HCP dataset, 
the weights of the basic modes at rested wakefulness decreased rapidly with increasing ranking 
and reached the elbow point at the 7th basic mode (Fig. 4A), indicating the presence of a small set 
(i.e., six) of leading basic modes (Fig. S5). These six leading basic modes showed a spatial 
correspondence with the first six basic modes of the HCP dataset, except for an inversion between 
basic mode 2 and basic mode 3 (Fig. 4A, all rs > 0.78).  

Next, we evaluated the influences of sleep deprivation by comparing the leading basic modes 
between two mental states (i.e., at rested wakefulness and post-sleep deprivation). After the post- 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.23.541862doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541862
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

sleep deprivation, we identified seven leading basic modes (Fig. 4B and Fig. S6). The spatial 
patterns of these seven basic modes showed a spatial correspondence between two states, except 
for an inversion between basic mode 4 and basic mode 5 (Fig. 4B). Notably, all these modes 
showed relatively low similarity values between two states, except for the first three modes and 
the 6th mode. 

We further examined the difference in spatial patterns for the four basic modes (i.e., 1st, 2nd, 
3rd, and 6th) that maintained spatial correspondences between two states. Significant changes in 
amplitude were observed in basic mode 1 (Fig. 4 C, pperm < 0.05, false discovery rate (FDR) 
corrected). Significant increases were primarily located in regions of the frontoparietal, ventral and 
dorsal attention, and lateral visual networks, while significant decreases were mainly located in 
regions of the default-mode network. Interestingly, for most (86%) of these regions, the directions 
of the amplitude changes were opposite to the signs of the original amplitudes (Fig. S7), suggesting 
that the spatial inhomogeneity of brain activity was reduced after sleep deprivation. At the 
connectivity level, we also observed significant changes in the coactivation pattern of basic mode 
1. The significant increase was mainly located between the default-mode network and the primary 
and attention networks, while the significant decrease was mainly located between the attention 
and the primary networks as well as within the default-mode network (Fig. 4D, pperm < 0.05, FDR 
corrected), further supporting the reduction of cross-system inhomogeneity. Different from basic 
mode 1, no significant changes were observed for basic modes 2, 3 and 6 after sleep deprivation 
(all pperms > 0.05). 

Validation results 

We further assessed the reliability of the presence and spatial patterns of the leading basic modes 
(Figs. S8-S12). Four additional analysis strategies were considered, including (i) using stricter 
head motion exclusion criteria; (ii) performing nuisance regression without global signal 
regression; (iii) defining brain nodes based on two functional parcellations with different spatial 
resolutions; and (iv) using another independent dataset of 197 participants, i.e., the Beijing Zang 
dataset48. The presence of five leading basic modes was replicated with high spatial similarity in 
most of the cases (all rs > 0.85, Figs. S8, S10, and S11), except for the case of without global 
signal regression (Fig. S9). Notably, the total weight explained by the leading basic modes 
increased with the decreasing spatial resolution (Fig. S12), with weights of 37% and 44% for the 
400-node and 200-node parcellations, respectively. For the strategy without global signal 
regression, the number of leading basic modes was reduced to four. The reduced number might be 
biased by the presence of an additional basic mode, which ranked ahead of the five typical basic 
modes. This additional basic mode showed all positive amplitudes across the brain and accounted 
for a large portion of activity variance (i.e., 23%) (Fig. S9). All these results suggest that the five 
leading basic modes were robust and reproducible. 
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Discussion  

Using a novel eigen-microstate analysis from statistical physics theory, this study reveals the 
presence of a few leading basic modes that dominate the temporal fluctuations of spontaneous 
activity. The leading basic modes exhibited distinct and cognitive function-specific spatial patterns, 
suggesting the coexistence of multiplexed coactivation relationships between regions. Furthermore, 
these leading basic modes dominantly contributed to individual whole-brain FC patterns and were 
modulated by the sleep deprivation. Taken together, our findings highlight a small set of leading 
basic modes that dominate spontaneous activity and demonstrate their functional significance, 
opening a new avenue to explore the multiplexed interregional relationships in the healthy and 
diseased brain. 

Leading basic modes reflects multiplexed coordination relationships between regions 

Several approaches have been used to explore the typical coordination modes of spontaneous 
activity, such as classifying instantaneous activity patterns into brain states with different 
coactivation patterns28,41,43 or revealing wave propagation patterns across regions55,56. In this study, 
we identified a small set of fundamental spatial components (i.e., leading basic modes) that 
dominate rich repertoires of spontaneous activity, regardless of datasets or mental states. These 
results suggest a reliable low-dimensional representation of seemingly complicated spontaneous 
activity. A low-dimensional representation of spontaneous activity has also been reported for rat 
cortical activity57 and human brain activity across multiple task states58. We also found that each 
leading basic mode was associated with different cognitive functions. The first three leading basic 
modes were associated with fundamental functions that are necessary for daily life, such as 
sensorimotor, visual, internally-oriented, and executive-control functions. The next two leading 
basic modes were associated with more sophisticated and abstract cognitive functions, such as 
calculation, reward, and language-related items. These findings are consistent with previous 
hypotheses aimed at interpreting the biological significance of time-resolved activity patterns24,40. 
These hypotheses argue that spontaneous brain activity may transit between a number of general 
priors, which are low-dimensional representations of typical behavioral states in past experience40 
and are selected at different moments for an efficient and flexible cognitive response24,40. In this 
sense, the leading basic modes observed here might serve as the general priors, and their weights 
may reflect the frequencies of the corresponding behaviors in past experience. 

Within the framework of the eigen-microstate analysis, distinct spatial patterns of these 
leading basic modes indicate the coexistence of distinct coactivation (i.e., coordination) patterns 
between regions. Interestingly, the first and second leading basic modes showed distinct 
relationships between the default-mode network, two cognitive control networks (i.e., 
frontoparietal and attention networks), and the primary networks. The first leading basic mode 
shows an anti-correlation primarily between the default-mode network and the primary and 
attention networks, which is highly similar to the previously reported spatial pattern of the 
principal gradient of the whole-brain FC pattern51. This finding suggests that the separation of 
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brain activity follows the hierarchical organization of information processing59. The second 
leading basic mode shows a separation of activity between the default-mode and cognitive control 
networks, which would explain the commonly observed alternative activities or anti-correlations 
between the default-mode and task-positive regions over time55,60. Compared to the previous 
assumption of one state per time point30,61, the coexistence of multiple leading basic modes here 
suggests a parallel information processing between regions at each time point, providing novel 
insights into time-varying connectivity patterns26. 

The presence of the leading basic modes in intrinsic activity might be shaped by the 
anatomical substrates of the brain, given that the tight structure-function coupling of the brain62,63. 
For example, the first three leading basic modes here show a similar pattern to the myelination 
map of the brain64, indicating a potential link between macroscale brain activity and the local 
microstructure. However, how these leading basic modes emerge from the anatomical properties, 
such as myelination, cortical thickness, and white-matter connectivity, requires further 
investigation.  

Leading basic modes drive the functional connectivity pattern 

Recent studies have reported that resting-state FC is driven by instantaneous brain activity at 
several critical time points28,41, implicitly ignoring interregional coordination at other time points. 
Here, we used the leading basic modes, which were identified from full repertoires of spontaneous 
activity, to bridge the gap between instantaneous activity and the FC pattern. A theoretical model 
was developed to recover the FC pattern as a weighted superposition of the coactivation patterns 
of these leading basic modes. This model suggests that each basic mode corresponds to a specific 
FC pattern and that multiplexed relationships (i.e., parallel communication) exist simultaneously 
between regions. Our idea is consistent with a recent study showing that the individual FC pattern 
can be attributed to the contribution of multiple factors (e.g., group, individual, and task)65, but it 
further clarifies the origins of FC patterns by providing detailed patterns of the candidate 
components. Interestingly, the five leading basic modes, which account for 29% of the total weight, 
can be used to reconstruct the original FC pattern with a high spatial similarity (r = 0.95). This 
seemingly contradictory finding suggests that these leading basic modes may capture the intrinsic 
coordination behavior of spontaneous activity, while the remaining basic modes may be vulnerable 
to unconstrained cognitive activity, head motion, or other perturbations, and thus make small 
contributions to interregional coordination. Furthermore, the spatial patterns of the first three 
leading basic modes are consistent with the patterns of the first three gradients of the cortical FC 
pattern51, further solidifying the important role of these leading basic modes in shaping the FC 
pattern.  

Moreover, we found that the reconstructed FC patterns based on the five leading basic modes 
captured individual uniqueness in functional organization, providing novel clues for understanding 
individual differences in functional organization. Notably, the FC pattern reconstructed by only 
the first leading basic mode was highly similar to the original pattern but showed a moderate 
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performance in individual identification. These results suggest that the first leading basic mode 
may serve as a backbone or a group factor of brain activity shared across individuals, as suggested 
by Ref65. Identification accuracy increased rapidly when subsequent basic modes were included, 
indicating that more individual-specific information is captured by subtly modulating the backbone 
of the FC pattern. 

Leading basic modes are modulated by mental states 

Sleep deprivation was used as a modulating factor to assess the influence of the mental state on 
the leading basic modes. A small number of leading basic modes were also identified after sleep 
deprivation, indicating the reliability of low-dimensional representations of spontaneous brain 
activity regardless of mental states. The spatial patterns of the first three and the sixth leading basic 
modes remained similar after sleep deprivation, whereas the other leading basic modes changed 
significantly. This finding is consistent with a recent study showing that the first three functional 
connectivity gradients remain largely unchanged after sleep deprivation66. Our results suggest that 
the activity representations relevant to fundamental cognitive functions might be reliable across 
mental states, while those related to more sophisticated and abstract functions may be more 
vulnerable. The different sensitivities of the leading basic modes to mental state may be valuable 
for future studies investigating functional organization across states.  

In addition, a regional comparison revealed that the spatial heterogeneity of the first leading 
basic mode was reduced after sleep deprivation, manifested as a weakened separation of activity 
between the default-mode and task-positive areas (e.g., attention and somatomotor networks). This 
observation is confirmed by comparing the coactivation patterns corresponding to the first leading 
basic mode between two states. These results are consistent with previous findings suggesting that 
sleep deprivation is associated with the failure of the default-mode network to remain functionally 
distinct from its anti-correlated networks, i.e., task-positive networks67-69. This impairment in the 
decoupling between the default-mode network and task-positive networks may be further related 
to participants’ cognitive vulnerability to sleep deprivation68, but more evidence is needed to 
support this idea. Notably, the 4th and 5th leading basic modes showed remarkable reconfiguration 
after sleep deprivation. Given that these two modes are associated with sophisticated and abstract 
cognitive functions, the reconfiguration of these modes indicates the sensitivity of these functions 
to the sleep deprivation. 

Further considerations 

Several issues should be further considered. First, we identified an additional basic mode with all 
positive amplitudes when identifying the leading basic modes without global signal regression in 
the data preprocessing. This suggests that preserving the global signal may enhance coactivations 
between regions, providing a novel explanation for the usually observed rightward shift in the 
distribution of FC strength compared to the case with global signal regression70. Second, we 
explored the potential cognitive significance of leading basic modes through the association 
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analysis. In future studies, it is suggested to investigate the changes in the leading basic modes 
across task states to provide more direct clues. Third, additional leading basic modes were 
identified in the sleep-deprivation dataset, which may be influenced by several factors, such as the 
small sample size or mental states. A larger dataset is needed to further confirm the potential effects 
of sleep deprivation. Fourth, the biological origins of the leading basic modes remain unclear. 
Recent computational models of large-scale brain circuits have found that both interregional white 
matter connections and local circuit properties can shape resting-state functional connectivity and 
its itinerant dynamics71,72. In the future, the computational modelling approach can be used to 
explore the relationship between the leading basic modes and the underlying structural network 
and local morphological properties of the human brain. Finally, the eigen-microstate analysis used 
here is essentially a linear decomposition, which implicitly assumes that the rich repertoire of brain 
activity can be embedded in a low-dimensional linear subspace spanned by the leading basic 
modes. However, the biological plausibility of the low-dimensional nonlinear representation of 
spontaneous brain activity deserves further investigation. 

Materials and methods 

Participants and study design 

We employed three datasets of R-fMRI data from healthy young adults. The first dataset consisted 
of multiband R-fMRI data from 970 participants from the publicly available S900 data release of 
the Human Connectome Project (HCP)46. These subjects underwent repeated R-fMRI runs in two 
sessions. The second dataset, named the sleep-deprivation dataset, included repeated R-fMRI data 
from 20 participants scanned separately during rested wakefulness and after sleep deprivation47. 
The third dataset, named the Beijing Zang dataset, included R-fMRI data from 198 participants 
selected from the 1000 Functional Connectomes Project48. Written informed consent was obtained 
from each participant. The first two datasets were used for the main analysis and the third dataset 
was used for the replication analysis. 

Data acquisition 

In the HCP dataset, all participants underwent multimodal MRI scanning with a customized 32-
channel SIEMENS 3T Connectome Skyra scanner at Washington University, USA. Four 
multiband R-fMRI runs were acquired in two sessions for each participant. Briefly, each session 
consisted of two runs that were separately phases encoded in the left-to-right and right-to-left 
directions. The R-fMRI scans were obtained using a multiband gradient-echo-planar imaging 
sequence (repetition time [TR] = 720 ms and 1200 volumes per run, i.e., 14.4 min), with 
participants’ eyes fixated on a bright projected crosshair. Here, we used only the left-to-right-
encoded scans to reduce the potential influence of the phase-encoding directions15,73. In the 
original S900 data release, 837 participants completed the left-to-right-encoded R-fMRI scans in 
both sessions, denoted as REST1 and REST2 separately. Of these, 137 participants were excluded 
due to missing time points (N = 10), excessive head motion (N = 105) (see "Data Preprocessing"), 
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and arachnoid cysts (N = 22). Data from the remaining 700 participants (aged 21-35 years, M/F: 
304/396) were used for the main analyses. 

In the sleep-deprivation dataset, 20 participants underwent repeated R-fMRI scans separately 
during rested wakefulness and after sleep deprivation (for design details, see Zhou et al.47). All the 
participants were right-handed and had no history of neuropsychiatric disorders. The MRI data 
were acquired using a 64-channel 3T Siemens Prisma scanner at the Beijing MRI Center for Brain 
Research of the Chinese Academy of Sciences. R-fMRI data were acquired using a T2*-weighted 
gradient-echo-planar imaging sequence (TR = 1000 ms and 480 volumes per run), with 
participants’ eyes fixated on a crosshair. Structural images were acquired using a 3D T1-weighted, 
magnetization-prepared rapid acquisition gradient-echo sequence. One participant was excluded 
due to excessive head motion (see "Data Preprocessing"). Data from the remaining 19 participants 
(aged 18-26 years, M/F: 7/12) were used for the main analysis. 

For the Beijing Zang dataset, 198 participants underwent MRI scanning using a 12-channel 
Siemens Trio Tim 3.0T scanner in the Imaging Center for Brain Research, Beijing Normal 
University. R-fMRI data were acquired with participants’ eyes closed (TR = 2000 ms and 230 
volumes). One participant was excluded due to differences in scanning orientation, leaving 197 
participants (aged 18-26 years, M/F: 75/122) used for the cross-validation analysis. 

Data preprocessing 

For the HCP dataset, we employed the minimally preprocessed R-fMRI data74, followed by ICA-
Fix denoising75. Four additional steps were performed using the GRETNA package76, including 
the removal of the first 10-second volumes (i.e., 15 volumes), linear detrending, nuisance 
regression, and temporal filtering (0.01-0.08 Hz). During the nuisance regression, white matter, 
cerebrospinal fluid, and global signals were included as regressors to further remove the influence 
of head motion and physiological noise77. 

The sleep-deprivation dataset and the Beijing Zang dataset were preprocessed with the same 
pipeline using the GRETNA package76. Specifically, the preprocessing included the removal of 
the first 10-second volumes, realignment, spatial normalization to the Montreal Neurological 
Institute (MNI) space with the T1-unified segmentation algorithm78, linear detrending, nuisance 
regression, and temporal filtering (0.01-0.08 Hz). During the nuisance regression, we included 
Friston’s 24 head-motion parameters79, white matter, cerebrospinal fluid, and global signals as 
regressors to reduce the influence of head motion and physiological noise77. 

For these three datasets, we excluded participants with excessive head motion in any scan, 

including a translation/rotation greater than 3 mm or 3 and a mean framewise displacement (FD) 
over time80 greater than 0.5 mm. After applying these criteria, 105 participants were excluded from 
the HCP dataset and 1 participant was excluded from the sleep-deprivation data.  
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Eigen-microstate analysis of spontaneous brain activity 

We applied a novel eigen-microstate analysis45 from the statistical physics theory to the HCP 
dataset to identify basic modes underlying rich repertoires of brain activity patterns. This approach 
has been applied to the temporal evolution of several complex systems (e.g., the Earth system and 
stock markets) and reveals well-defined spatial patterns that dominate their temporal 
fluctuations45. A similar approach has also been used to study the spatiotemporal patterns of brain 
oscillations in the visual cortex of rats57. In this study, the eigen-microstate analysis was applied 
separately to each R-fMRI run (i.e., REST1 and REST2). Nodal-level analyses were performed to 
reduce computational burden.  

First, we defined 1000 cortical nodes (i.e., regions of interest) based on a prior functional 
parcellation49 that would ensure functional homogeneity within each nodal region. We then 
extracted time courses of these nodes for each participant. The nodal time course for each node 
was further normalized by subtracting its mean value over time and then dividing by the 
corresponding standard deviation. Finally, the normalized nodal time courses were concatenated 

across participants, resulting in an NM time course matrix A, where N denotes the number of 
nodes (i.e., 1000 here) and M denotes the number of time points in the concatenated time courses 

(i.e., 1185700). Matrix A was considered as an ensemble matrix representing rich repertoires of 
brain activity patterns, and each column represents a microstate of brain activity from a statistical 
physics perspective.  

The eigen-microstate analysis was performed by using singular value decomposition (SVD) 

as suggested in45. The ensemble matrix ANM was factorized as the product of three matrices:   

 T
N M N N N M M MA U V     ,   (1) 

where UNN and VMM contain the columnar orthogonal bases in space (ui) and time (vi), 

respectively, and NM is a diagonal matrix of singular values (i). In this way, the time-varying 
brain activity pattern, A, can be viewed as the weighted combination of basic spatial modes (i.e., 
basic modes) ui, accompanied by time-dependent coefficients vi. The weight of each basic mode 

is characterized by i
2, since the matrix A is normalized before SVD to ensure i

2 = 1. The 
normalization was performed by dividing the matrix A by the root sum square of all its elements 
(i.e., a dataset-dependent constant C).  

To determine whether the brain is dominated by a small number of basic modes (i.e., low-
dimensional representations), we identified leading basic modes, whose weights should be81: i) 
substantially greater than the weight of the subsequent basic mode, known as Cattell’s scree test82; 
ii) greater than the average weight across all N possible basic modes, i.e., 1/N; iii) statistically 
significant according to a permutation test. In each permutation instance, the labels of the nodal 
regions at each time point were randomly shuffled to disrupt the spatial organization. The statistical 
significance level of each leading basic mode was determined by comparing its original weight 
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(i.e., i
2) to the null distribution of the corresponding weights obtained from the 10,000 

permutation instances. In our analysis, the Cattell’s scree test was performed by identifying the 
elbow point on the weight curve according to the Kneedle algorithm83. 

We further investigated the spatial patterns of the leading basic modes based on a prior 
functional system definition50. Seven systems were considered, including the default-mode 
network, frontoparietal network, limbic network, ventral attention network, dorsal attention 
network, somatomotor network, and visual network. For each leading basic mode, we estimated 
the mean fluctuation amplitude for each system by averaging the nodal values within this system.  

We also performed the eigen-microstate analysis for each participant to investigate the 
presence of the leading basic modes at the individual level. In this condition, matrix A in Eq. (1) 
was replaced as the normalized time course within each participant for each R-fMRI run. 

Cognitive function associations of the leading basic modes 

We investigated the potential functional roles of the leading basic modes from two perspectives. 
First, we examined the association between these leading basic modes and cognitive functions 
based on the NeuroSynth meta-analytic database (www.neurosynth.org)52. For each leading basic 
mode, we calculated its spatial similarity with all available meta-analytic activation maps using 
Pearson’s correlation across voxels. The associated cognitive terms are illustrated using word-
cloud plots.  

Second, we compared each of the leading basic modes with 12 cognitive components from53. 
Each cognitive component represents a basic activation probability map which is involved in 
various cognitive tasks53. For each cognitive component, we estimated the corresponding node-
level version by averaging the activation probabilities of all voxels within each node. We then 
calculated the spatial similarity between each of the leading basic modes and the 12 cognitive 
components by using Pearson’s correlation across nodes. To correct for the potential influence of 
spatial autocorrelation, the statistical significance of each spatial similarity was tested using the 
permutation test (n=10,000). The significance level was determined by comparing the original 
similarity to the null distribution of the corresponding similarity obtained from the 10,000 
permutation instances. For each permutation instance, we generated a surrogate basic mode map 
that preserved the spatial autocorrelation of the original basic mode54.  

Relationship between leading basic modes and functional connectivity  

Since the leading basic modes dominated the spontaneous fluctuations of brain activity, we further 
investigated how they contribute to the functional connectivity between regions. 

The original FC between two nodal regions is defined as the Pearson’s correlation between 
their time courses4. As each regional time course (Ait, t = 1, … M) was normalized over time (i.e., 
mean = 0 and SD = 1), the FC between nodes i and j can be estimated as13: 
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  ,  (2) 

where M denotes the number of time points in the time course.  

By substituting Eq. (1) into Eq. (2) and considering the time-independence between basic 
modes, we found FCij between nodes i and j can be rewritten as: 

 
2

1

1

1

N

ij k ki kj
k

FC u u
M





  , (3) 

where N is the number of all possible basic modes, and uki is the ith element of the kth basic mode. 
Thus, the functional connectivity between two nodes can be attributed to the joint contribution of 
their coactivation patterns in each basic mode. Notably, the FCij estimated from Eq. (3) should be 
further multiplied by a constant C2 to correct for the normalization effect prior to the SVD analysis. 

To validate the effectiveness of the above theoretical model (i.e., Eq. (3)), we reconstructed 
the FC matrix according to Eq. (3) by gradually increasing the number of basic modes of interest. 
We then compared the spatial similarity between the reconstructed and original FC matrices. The 
spatial similarity was quantified with Pearson’s correlation across the lower triangular elements in 
the matrices. Specifically, we reconstructed the FC matrix at both the population and individual 
levels. At the population level, the leading basic modes were obtained from the concatenated 
normalized time course across all participants. At the individual level, the leading basic modes 
were identified from the time courses of each participant. We then calculated the similarity 
between the reconstructed and the original FC matrices for each individual. 

We further explored whether the basic modes, especially these leading basic modes, could 
capture the individual functional organization. First, we estimated the reliability of the 
reconstructed FC matrix between two runs at the individual level. Given a participant of interest, 
we evaluated the intra-subject similarity of the reconstructed FC matrices between two runs. We 
also estimated the inter-subject similarity of this subject as the averaged spatial similarity of this 
participant in the first run (i.e., REST1) with all the other participants in the second run (i.e., 
REST2). Next, we examined the individual uniqueness in the reconstructed FC matrices by 
performing an FC-based individual identification analysis between two runs (i.e., REST1 and 
REST2)13. For each participant, we compared the reconstructed FC matrix of this participant in 
REST1 with those of all the participants in REST2. If the participant with the highest similarity in 
REST2 was the same participant given in REST1, the identification was correct; otherwise, it was 
incorrect. Identification accuracy was defined as the proportion of participants that were correctly 
identified. The higher the individual identification accuracy was, the more individual-specific 
information was captured in the analysis. For comparison, individual identification analysis was 
also performed based on the original FC matrix. 
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Influence of sleep deprivation on the leading basic modes 

To assess whether the leading basic modes are affected by mental states, we applied the eigen-
microstate analysis to a sleep deprivation dataset47. We identified the leading basic modes (see 
“Eigen-microstate analysis”) separately from the R-fMRI data obtained in the two states 
represented in the dataset (i.e., rested wakefulness vs. post-sleep deprivation). First, we examined 
the spatial correspondence of the leading basic modes determined at rested wakefulness with those 
obtained from REST1 of the HCP dataset to investigate the reproducibility of the leading basic 
modes. Next, we compared the basic modes obtained at the different states (i.e., rested wakefulness 
vs. post-sleep deprivation) to examine the potential influence of the sleep deprivation.  

For each leading basic mode that maintained spatial correspondence between two states, we 
tested differences in regional fluctuation amplitudes between the two states by using the 
permutation test (n = 10,000). In each permutation instance, the state labels of the R-fMRI data 
were shuffled for each participant. Multiple comparisons across nodal regions were corrected using 
the false discovery rate (FDR) approach (corrected p < 0.05)84. Given that the basic mode showed 
significant changes, we further investigated how interregional coactivation patterns differed 
between the two states. Briefly, we obtained the system-level coactivation pattern for the rested 
wakefulness and post-sleep deprivation separately. The within-system and between-system 
coactivation values were obtained by averaging the interregional coactivation values within the 
same system and between different systems, respectively. Significance levels of differences in the 
coactivation pattern were also estimated using the permutation test (n = 10,000) and corrected for 
multiple comparisons (FDR corrected p < 0.05).  

Validation analysis 

The reliability of the leading basic modes was validated by considering four analysis strategies 
that may affect the identification of the leading basic modes. In each case, the leading basic modes 
were re-estimated and compared with those obtained in the main analyses (i.e., REST1 in HCP). 
(i) Head motion. Head motion during R-fMRI scanning can affect the fluctuation amplitudes of 
BOLD signals85. Different from the main analysis, we used stricter head motion exclusion criteria 

for R-fMRI data in the HCP dataset (i.e., > 2 mm or 2 in any direction or mean FD > 0.2 mm) to 
further reduce the influence of head motion. (ii) Global signal regression. In the main analysis, the 
global signal was regressed to better reduce the influence of head motion and non-neural 
signals77,85. To assess the potential influence of the global signal, we re-preprocessed the R-fMRI 
data in the HCP dataset without global signal regression. (iii) Brain parcellation. To assess the 
influence of spatial resolution, we extracted regional time courses from the HCP dataset by using 
the same type of functional parcellations with different spatial resolutions (i.e., comprising 200 
and 400 cortical regions)49. The leading basic modes obtained from different spatial resolutions 
were compared at the functional system level50 and the voxel-wise level. In the latter case, the 
voxels within the same nodal regions were assigned the same amplitude values for each basic mode, 
regardless of the spatial resolution. In cases (i), (ii), and (iii), the validation analysis was performed 
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based on REST1 of the HCP dataset. (iv) Reproducibility across datasets. We identified the leading 
basic modes from another independent dataset, i.e., the Beijing Zang dataset48, and compared them 
with those in the HCP dataset. 

Data availability 

The HCP dataset is publicly available at https://www.humanconnectome.org/study/hcp-young-
adult/data-releases. The Beijing Zang dataset used for the replication analysis is publicly available 
at https://www.nitrc.org/projects/fcon_1000. Maps of leading basic modes and some other data 
supporting our results are available at https://github.com/chenxi000/Low-
dimensional_representation_rsfMRI. 

Code availability 

Codes used for data analysis are available at https://github.com/chenxi000/Low-
dimensional_representation_rsfMRI. 
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Figures 

 

Figure 1. Leading basic modes of spontaneous brain activity. (A) Weights of basic modes for 
two runs (i.e., REST1 and REST2). The weights of the first thirty basic modes are displayed. 
Similar decreasing trends were observed for both runs. The first five basic modes were defined 
as the leading basic modes according to the criteria modified from81. (B) Spatial patterns of the 
first five basic modes (i.e., leading basic modes) for REST1. Black curves denote the boundaries 
of seven prior functional systems50. (C) System-level fluctuation amplitudes for the leading basic 
modes. Seven prior functional systems50 were considered. DMN, default-mode network; FPN, 
frontoparietal network; LN, limbic network; VAN, ventral attention network; DAN, dorsal 
attention network; SMN, somatomotor network; VN, visual network.  
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Figure 2. Association with cognitive functions. (A) Cognitive terms associated with each leading 
basic mode. These terms were obtained based on the NeuroSynth meta-analytic database52. Font 
sizes of cognitive terms denote correlation values between the corresponding cognitive term maps 
and the leading basic modes. (B) Associations with 12 cognitive components for each leading basic 
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mode. The 12 cognitive components were derived from Yeo et al.53. In (A) and (B), red and blue 
colors denote positive and negative correlations, respectively.  
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Figure 3. Reconstructing functional connectivity based on the basic modes. (A) Spatial similarity 
between the reconstructed and original FC matrices at the population level (REST1). The original 
FC matrix was estimated based on the concatenated time courses of all participants. The 
reconstructed FC matrix was generated separately by using different numbers of basic modes based 
on the theoretical model. (B) Reconstructing the FC matrix with the first five basic modes 
(REST1). Left, spatial patterns of the reconstructed and original FC matrices; right, spatial 
similarity between these two matrices. (C) Spatial similarity between the reconstructed and 
original FC matrices at the individual level for both runs. The reconstructed FC matrix was 
generated by using different numbers of basic modes. Mean spatial similarity across participants 
and the corresponding standard deviation are displayed. The distributions of individual spatial 
similarity obtained from the five leading basic modes are shown in the subplot in the form of the 
violin plots and the box plots. (D) Intra- and inter-subject similarity of the reconstructed FC 
matrices between two runs. *, denotes significant differences (paired t-tests, ps < 0.05). (E) 
Individual identification accuracy based on the reconstructed FC matrix. Individual FC matrices 
were reconstructed with different numbers of basic modes. FC, functional connectivity; DMN, 
default-mode network; FPN, frontoparietal network; LN, limbic network; VAN, ventral attention 
network; DAN, dorsal attention network; SMN, somatomotor network; VN, visual network. 
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Figure 4. Influence of sleep deprivation on the basic modes in the sleep-deprivation dataset. (A) 
Weights of basic modes for R-fMRI data at rested wakefulness and spatial similarity of basic 
modes with REST1 in the HCP dataset. (B) Weights of basic modes for R-fMRI data after sleep 
deprivation and spatial similarity of basic modes with R-fMRI data at rested wakefulness. In (A) 
and (B), the spatial similarity was estimated for every pair of basic modes between two conditions 
to examine the spatial correspondence. (C) Spatial patterns of basic mode 1 at rested wakefulness 
and after sleep deprivation and their differences. Regions showing significant changes were 
detected with the permutation test (p < 0.05, FDR corrected). (D) System-level coactivation pattern 
of basic mode 1 at rested wakefulness and after sleep-deprivation and between-state differences. 
Significant changes were detected at the system level with the permutation test (p < 0.05, FDR 
corrected). RW, rested wakefulness; SD, after sleep-deprivation; HCP, Human Connectome 
Project. 
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