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Abstract

Spontaneous activity of the human brain provides a window to explore intrinsic principles of
functional organization. However, most studies have focused on interregional functional
connectivity. The principles underlying rich repertoires of instantaneous activity remain largely
unknown. We apply a novel eigen-microstate analysis to three resting-state functional MRI
datasets to identify basic modes that represent fundamental activity patterns that coexist over time.
We identify a few (i.e., five) leading basic modes that dominate activity fluctuations. Each of these
modes exhibits a distinct functional system-dependent coactivation pattern and corresponds to
specific cognitive profiles. In particular, the spatial pattern of the first leading basis mode shows
the separation of activity between the default-mode and primary and attention regions. We further
reconstruct individual functional connectivity as the weighted contribution of these leading basic
modes based on theoretical modelling. Moreover, these leading basic modes capture sleep
deprivation-induced changes in brain activity and interregional connectivity, primarily involving
the default-mode and task-positive regions. Our findings reveal a dominant set of basic modes of
spontaneous activity that reflect multiplexed interregional coordination and drive conventional
functional connectivity, furthering the understanding of the functional significance of spontaneous
brain activity.

Keywords: resting-state fMRI; low-dimensional representation; functional connectivity;
cognitive function; sleep deprivation


https://doi.org/10.1101/2023.05.23.541862
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541862; this version posted May 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Introduction

Spontaneous activity in the resting human brain exhibits well-organized spatiotemporal patterns,
providing a window into understanding the intrinsic functional organization'?. Using resting-state
functional magnetic resonance imaging (R-fMRI), numerous studies have revealed the large-scale
functional connectivity network by measuring low-frequency spontaneous fluctuations of blood-
oxygenation-level-dependent (BOLD) signals®?. The functional network exhibits non-trivial
properties, such as functionally specific but interacting modules®8, which facilitate efficient
functional segregation and integration across the brain®!!. Furthermore, the functional network
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architecture varies across individuals' >, shapes functional activation patterns during tasks
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related to individual cognitive performance , and is modulated by the mental states

Despite the success of the functional network analyses, the associated insights are limited to
the connectivity patterns summarized over time. Accumulating evidence suggests that the
interregional functional interaction is highly dynamic with time-varying patterns’*2°. An
innovative approach is to examine single frames of brain activity to reveal the transient
coordination at shorter time scales (e.g., seconds)?’. The whole-brain activity patterns have been
classified into a number of recurrent brain states with different coactivation patterns®®=°. The
temporal transition between these brain states follows a hierarchical structure®® and shows

alterations across tasks’'~2 33,34

, consciousness states®>*, and psychiatric disorders®>*. In addition to
the group-level analysis, a very recent study has identified individualized brain coactivation states,
the occurrence rates of which depend on task states, handedness, and gender, and show longitudinal
changes in the post-stroke recovery’’. Although these studies provide valuable insights into the
time-varying functional organization, they typically assign the instantaneous activity pattern at
each time point to a single brain state; the commonality shared across time points has been
underestimated*®. A more natural view holds that multiple basic modes may coexist across the
time-resolved activity patterns, which are selectively combined at each time point to support future
cognitive responses?®3%4°_ Identifying these basic modes can unravel building blocks of intrinsic
activity and provide a new avenue to explore the multiplicity of the interregional relationships at
rest. However, the spatial patterns of these basic activity modes and their potential functional

significance remain largely unknown.

Recent R-fMRI studies have attempted to bridge the gap between instantaneous brain activity
and functional connectivity (FC) patterns®®*! For example, the point process analysis shows that
FC profiles for regions of interest can be inferred from interregional coactivation patterns at
specific time points®®*2, Similarly, the edge-centric approach decomposes FC into the framewise
contributions and reveals dominant contributions of high-amplitude coactivations at critical time
points**3. A recent study further reports that interregional FC relies on all time points, even those
with low amplitudes*. Thus, we hypothesize that the basic modes of time-solved activity may
make a substantial contribution to the FC pattern.
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To address these issues, we leveraged a novel statistical physics approach, i.e., an eigen-
microstate analysis*, to identify the basic modes of spontaneous activity of the resting human
brain. The eigen-microstate analysis is useful for extracting meaningful and fundamental spatial
components (i.e., basic modes) that underlie the temporal evolution of complex systems®.
Specifically, we applied this approach to R-fMRI data from healthy young adults from three
datasets: the S900 release of the Human Connectome Project (HCP)*, the sleep-deprivation
dataset*’, and the Beijing Zang dataset*®. First, we identified the leading basic modes that dominate
the spontaneous fluctuations of BOLD signals and unraveled their cognitive significance. Second,
we developed a theoretical model to elucidate how these basic modes contribute to the whole-brain
FC pattern and verified this model by empirically reconstructing the FC pattern. Finally, we
investigated whether these basic modes are affected by the modulation of mental states, e.g., by
sleep deprivation.

Results
A small number of basic modes dominated spontaneous activity

We employed two runs (i.e., REST1 and REST2) of R-fMRI data from 700 participants selected
from the HCP dataset and extracted regional time courses for 1000 cortical nodes based on a prior
functional parcellation®. Then, we identified the basic modes at the population level for each run
by applying the eigen-microstate analysis* to the concatenated time courses across participants
(Fig. 1). For both runs, the weights of the basic modes decreased rapidly with increasing ranking
and reached an elbow point at the 6th basic mode (Figs. 1A). The first five basic modes before the
elbow point accounted for a large proportion of the variance in activity (29% for REST1 and 28%
for REST2) (pperm < 0.001, 10,000 permutation tests) and hereafter are referred to as the leading
basic modes.

Each leading basic mode showed a heterogeneous spatial pattern, representing a typical
fluctuation mode underlying rich repertoires of spontaneous activity (Fig. 1B); in the figure,
opposite signs in the amplitude indicate opposite phases in the temporal fluctuation. The spatial
patterns of these modes were highly similar between two runs (i.e., REST1 and REST2) (Fig. S1).
Based on prior seven functional systems’, we found that the spatial patterns of the leading basic
modes were system-dependent (Figs. 1B and 1C). For basic mode 1, positive amplitudes were
mainly located in regions of the default-mode and frontoparietal networks, whereas negative
amplitudes were mainly located in regions of the somatomotor and visual networks, as well as
those of the ventral and dorsal attention networks. This pattern is similar to the previously reported
principal gradient of functional connectivity’!, suggesting a hierarchical separation of brain
activity between transmodal regions and primary and attentional regions. For basic mode 2,
positive amplitudes were mainly located in regions of the default-mode, somatomotor, and visual
networks, while negative amplitudes were mainly located in the regions of the frontoparietal and
ventral/dorsal attention networks. For basic mode 3, positive amplitudes were primarily located in
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regions of the somatomotor, ventral attention, frontoparietal, and lateral default-mode networks,
while negative amplitudes were primarily located in the visual and dorsal attention networks. For
basic mode 4, positive amplitudes were mainly located in regions of the frontoparietal and dorsal
attention networks, whereas negative amplitudes were mainly located in the ventral attention and
medial visual networks. Basic mode 5 showed a finer spatial structure, in which heterogeneous
amplitudes were observed within each functional system, and positive and negative amplitudes
were mainly located in lateral and medial default-mode regions, respectively. These results suggest
that a small set of basic modes govern the spontaneous fluctuations of brain activity, each of which
shows a distinct coactivation pattern between functional systems.

We further identified the basic activity modes for each run at the individual level. We
observed a small number of leading basic modes for most of the participants (number of leading
basic modes, range: 3-10; mean + std = 5.4 £ 1.39 for REST1 and mean + std = 5.5 + 1.39 for
REST2) (Fig. S2).

Relationship between leading basic modes and cognitive functions

We examined whether spatial patterns of five leading basic modes were related to specific
cognitive functions. First, we observed that these leading basic modes corresponded to different
profiles of cognitive terms (Fig. 2A) based on the NeuroSynth meta-analytic database®. Basic
mode 1 was positively associated with the default-mode related functions and negatively
associated with sensorimotor and visual functions. Basic mode 2 was positively associated with
the internally-oriented and social inference processes and negatively associated with working
memory and task-oriented processes. Basic mode 3 was positively associated with sensorimotor,
auditory, and language terms and negatively associated with vision-related functions. Basic mode
4 was positively associated with cognitively-demanding tasks (i.e., tasks, calculation, and objects)
and negatively associated with pain-related terms. Basic mode 5 showed positive associations with
the semantic-related functions and negative associations with the default-mode related functions.

We also examined the spatial similarity between the five leading basic modes and 12
cognitive components that represent the fundamental activation components during task
performance® (Fig. 2B). Statistical significance of these spatial similarities was corrected for the
spatial autocorrelation (all ps <0.05)>*. Basic mode 1 was associated with internal mentation,
emotion, interoception, and hand and face-related sensorimotor functions. Basic mode 2 was
associated with several higher-order cognitive functions, including internal mentation, working
memory, inhibition, interoception, and dorsal attention. Basic mode 3 was associated with both
externally- and internally-oriented perceptions. Basic mode 4 was involved in working memory,
dorsal attention, inhibition, reward, and interoception. Basic mode 5 was associated with visual,
auditory and language functions. Overall, the first three leading basic modes are relevant to the
internally-oriented, executive-control, and primary cognitive functions, whereas the latter two
leading modes are related to more sophisticated and abstract functions.
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Leading basic modes captured individual-specific functional connectivity patterns

Given that the leading basic modes served as the fundamental spatial components for whole-brain
activity, we hypothesized that they would make dominant contribution to the whole-brain FC
pattern and capture the individual-specific functional organization. To test this hypothesis, we
developed a theoretical model based on the eigen-microstate analysis (Fig. 3A), which
decomposed the whole-brain FC matrix into the weighted summation of the coactivation patterns
in the basic modes. This model indicates that each basic mode corresponds to a specific FC pattern
(Fig. S3). We reconstructed the whole-brain FC matrix based on this model by considering
different numbers of basic modes and compared it with the original FC matrix obtained as
Pearson’s correlations between nodal time courses. At the population level, the spatial similarity
between the reconstructed and original FC matrices slowly increased with the number of basic
modes considered and then reached a plateau (Fig. 3A and Fig. S4). Specifically, we observed a
high spatial similarity between two FC matrices when including the five leading basic modes (rs
= 0.95 for both REST1 and REST2, ps < 0.001) (Fig. 3B and Fig. S4). Similar results were
observed at the individual level. The spatial similarity between the reconstructed and original FC
matrices was high for all participants when considering the five leading basic modes (Fig. 3C,
mean * std = 0.94 £ 0.02 for REST1 and 0.93 + 0.02 for REST2).

We further evaluated whether the leading basic modes captured individual-specific functional
organization. First, we found that the reconstructed FC matrix showed significantly higher values
in the intra-subject similarity than inter-subject similarity, regardless of the number of basic modes
used (Fig. 3D, all ps <0.05). Then, we performed the individual identification analysis'® by
comparing individual FC matrices between two runs. We observed an identification accuracy of
97% based on the original FC matrix. For reconstructed individual FC matrices, the identification
accuracy increased rapidly with increasing number of basic modes and reached 92% when the five
leading basic modes were included (Fig. 3E). These results suggest that these leading basic modes
make the dominant contribution to the individualized functional organization.

Influence of sleep deprivation on the leading basic modes

To assess whether the leading basic modes are affected by the mental states, we applied the eigen-
microstate analysis to the sleep-deprivation dataset*’. In this dataset, 19 participants underwent R-
fMRI scanning during rested wakefulness and after sleep deprivation. Similar to the HCP dataset,
the weights of the basic modes at rested wakefulness decreased rapidly with increasing ranking
and reached the elbow point at the 7™ basic mode (Fig. 4A), indicating the presence of a small set
(i.e., six) of leading basic modes (Fig. S5). These six leading basic modes showed a spatial
correspondence with the first six basic modes of the HCP dataset, except for an inversion between
basic mode 2 and basic mode 3 (Fig. 4A, all rs > 0.78).

Next, we evaluated the influences of sleep deprivation by comparing the leading basic modes
between two mental states (i.e., at rested wakefulness and post-sleep deprivation). After the post-
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sleep deprivation, we identified seven leading basic modes (Fig. 4B and Fig. S6). The spatial
patterns of these seven basic modes showed a spatial correspondence between two states, except
for an inversion between basic mode 4 and basic mode 5 (Fig. 4B). Notably, all these modes
showed relatively low similarity values between two states, except for the first three modes and
the 6 mode.

We further examined the difference in spatial patterns for the four basic modes (i.e., 1%, 2",
3" and 6') that maintained spatial correspondences between two states. Significant changes in
amplitude were observed in basic mode 1 (Fig. 4 C, pperm < 0.05, false discovery rate (FDR)
corrected). Significant increases were primarily located in regions of the frontoparietal, ventral and
dorsal attention, and lateral visual networks, while significant decreases were mainly located in
regions of the default-mode network. Interestingly, for most (86%) of these regions, the directions
of the amplitude changes were opposite to the signs of the original amplitudes (Fig. S7), suggesting
that the spatial inhomogeneity of brain activity was reduced after sleep deprivation. At the
connectivity level, we also observed significant changes in the coactivation pattern of basic mode
1. The significant increase was mainly located between the default-mode network and the primary
and attention networks, while the significant decrease was mainly located between the attention
and the primary networks as well as within the default-mode network (Fig. 4D, pperm < 0.05, FDR
corrected), further supporting the reduction of cross-system inhomogeneity. Different from basic
mode 1, no significant changes were observed for basic modes 2, 3 and 6 after sleep deprivation
(all pperms > 0.05).

Validation results

We further assessed the reliability of the presence and spatial patterns of the leading basic modes
(Figs. S8-S12). Four additional analysis strategies were considered, including (i) using stricter
head motion exclusion criteria; (ii) performing nuisance regression without global signal
regression; (7ii) defining brain nodes based on two functional parcellations with different spatial
resolutions; and (iv) using another independent dataset of 197 participants, i.c., the Beijing Zang
dataset*®. The presence of five leading basic modes was replicated with high spatial similarity in
most of the cases (all s > 0.85, Figs. S8, S10, and S11), except for the case of without global
signal regression (Fig. S9). Notably, the total weight explained by the leading basic modes
increased with the decreasing spatial resolution (Fig. S12), with weights of 37% and 44% for the
400-node and 200-node parcellations, respectively. For the strategy without global signal
regression, the number of leading basic modes was reduced to four. The reduced number might be
biased by the presence of an additional basic mode, which ranked ahead of the five typical basic
modes. This additional basic mode showed all positive amplitudes across the brain and accounted
for a large portion of activity variance (i.e., 23%) (Fig. S9). All these results suggest that the five
leading basic modes were robust and reproducible.
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Discussion

Using a novel eigen-microstate analysis from statistical physics theory, this study reveals the
presence of a few leading basic modes that dominate the temporal fluctuations of spontaneous
activity. The leading basic modes exhibited distinct and cognitive function-specific spatial patterns,
suggesting the coexistence of multiplexed coactivation relationships between regions. Furthermore,
these leading basic modes dominantly contributed to individual whole-brain FC patterns and were
modulated by the sleep deprivation. Taken together, our findings highlight a small set of leading
basic modes that dominate spontaneous activity and demonstrate their functional significance,
opening a new avenue to explore the multiplexed interregional relationships in the healthy and
diseased brain.

Leading basic modes reflects multiplexed coordination relationships between regions

Several approaches have been used to explore the typical coordination modes of spontaneous
activity, such as classifying instantaneous activity patterns into brain states with different

284143 or revealing wave propagation patterns across regions>>->°, In this study,

coactivation patterns
we identified a small set of fundamental spatial components (i.e., leading basic modes) that
dominate rich repertoires of spontaneous activity, regardless of datasets or mental states. These
results suggest a reliable low-dimensional representation of seemingly complicated spontaneous
activity. A low-dimensional representation of spontaneous activity has also been reported for rat
cortical activity’’ and human brain activity across multiple task states®. We also found that each
leading basic mode was associated with different cognitive functions. The first three leading basic
modes were associated with fundamental functions that are necessary for daily life, such as
sensorimotor, visual, internally-oriented, and executive-control functions. The next two leading
basic modes were associated with more sophisticated and abstract cognitive functions, such as
calculation, reward, and language-related items. These findings are consistent with previous
hypotheses aimed at interpreting the biological significance of time-resolved activity patterns>**,
These hypotheses argue that spontaneous brain activity may transit between a number of general
priors, which are low-dimensional representations of typical behavioral states in past experience*’
and are selected at different moments for an efficient and flexible cognitive response?**. In this
sense, the leading basic modes observed here might serve as the general priors, and their weights

may reflect the frequencies of the corresponding behaviors in past experience.

Within the framework of the eigen-microstate analysis, distinct spatial patterns of these
leading basic modes indicate the coexistence of distinct coactivation (i.e., coordination) patterns
between regions. Interestingly, the first and second leading basic modes showed distinct
relationships between the default-mode network, two cognitive control networks (i.e.,
frontoparietal and attention networks), and the primary networks. The first leading basic mode
shows an anti-correlation primarily between the default-mode network and the primary and
attention networks, which is highly similar to the previously reported spatial pattern of the
principal gradient of the whole-brain FC pattern’!. This finding suggests that the separation of
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brain activity follows the hierarchical organization of information processing®®. The second
leading basic mode shows a separation of activity between the default-mode and cognitive control
networks, which would explain the commonly observed alternative activities or anti-correlations
between the default-mode and task-positive regions over time>>*°. Compared to the previous
assumption of one state per time point*®®!, the coexistence of multiple leading basic modes here
suggests a parallel information processing between regions at each time point, providing novel
insights into time-varying connectivity patterns®.

The presence of the leading basic modes in intrinsic activity might be shaped by the
anatomical substrates of the brain, given that the tight structure-function coupling of the brain®*%3,
For example, the first three leading basic modes here show a similar pattern to the myelination
map of the brain®, indicating a potential link between macroscale brain activity and the local
microstructure. However, how these leading basic modes emerge from the anatomical properties,
such as myelination, cortical thickness, and white-matter connectivity, requires further
investigation.

Leading basic modes drive the functional connectivity pattern

Recent studies have reported that resting-state FC is driven by instantaneous brain activity at

2841 implicitly ignoring interregional coordination at other time points.

several critical time points
Here, we used the leading basic modes, which were identified from full repertoires of spontaneous
activity, to bridge the gap between instantaneous activity and the FC pattern. A theoretical model
was developed to recover the FC pattern as a weighted superposition of the coactivation patterns
of these leading basic modes. This model suggests that each basic mode corresponds to a specific
FC pattern and that multiplexed relationships (i.e., parallel communication) exist simultaneously
between regions. Our idea is consistent with a recent study showing that the individual FC pattern
can be attributed to the contribution of multiple factors (e.g., group, individual, and task)®, but it
further clarifies the origins of FC patterns by providing detailed patterns of the candidate
components. Interestingly, the five leading basic modes, which account for 29% of the total weight,
can be used to reconstruct the original FC pattern with a high spatial similarity (» = 0.95). This
seemingly contradictory finding suggests that these leading basic modes may capture the intrinsic
coordination behavior of spontaneous activity, while the remaining basic modes may be vulnerable
to unconstrained cognitive activity, head motion, or other perturbations, and thus make small
contributions to interregional coordination. Furthermore, the spatial patterns of the first three
leading basic modes are consistent with the patterns of the first three gradients of the cortical FC
pattern’!, further solidifying the important role of these leading basic modes in shaping the FC
pattern.

Moreover, we found that the reconstructed FC patterns based on the five leading basic modes
captured individual uniqueness in functional organization, providing novel clues for understanding
individual differences in functional organization. Notably, the FC pattern reconstructed by only
the first leading basic mode was highly similar to the original pattern but showed a moderate
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performance in individual identification. These results suggest that the first leading basic mode
may serve as a backbone or a group factor of brain activity shared across individuals, as suggested
by Ref®. Identification accuracy increased rapidly when subsequent basic modes were included,
indicating that more individual-specific information is captured by subtly modulating the backbone
of the FC pattern.

Leading basic modes are modulated by mental states

Sleep deprivation was used as a modulating factor to assess the influence of the mental state on
the leading basic modes. A small number of leading basic modes were also identified after sleep
deprivation, indicating the reliability of low-dimensional representations of spontaneous brain
activity regardless of mental states. The spatial patterns of the first three and the sixth leading basic
modes remained similar after sleep deprivation, whereas the other leading basic modes changed
significantly. This finding is consistent with a recent study showing that the first three functional
connectivity gradients remain largely unchanged after sleep deprivation®. Our results suggest that
the activity representations relevant to fundamental cognitive functions might be reliable across
mental states, while those related to more sophisticated and abstract functions may be more
vulnerable. The different sensitivities of the leading basic modes to mental state may be valuable
for future studies investigating functional organization across states.

In addition, a regional comparison revealed that the spatial heterogeneity of the first leading
basic mode was reduced after sleep deprivation, manifested as a weakened separation of activity
between the default-mode and task-positive areas (e.g., attention and somatomotor networks). This
observation is confirmed by comparing the coactivation patterns corresponding to the first leading
basic mode between two states. These results are consistent with previous findings suggesting that
sleep deprivation is associated with the failure of the default-mode network to remain functionally
distinct from its anti-correlated networks, i.e., task-positive networks®’. This impairment in the
decoupling between the default-mode network and task-positive networks may be further related
to participants’ cognitive vulnerability to sleep deprivation®®, but more evidence is needed to
support this idea. Notably, the 4™ and 5™ leading basic modes showed remarkable reconfiguration
after sleep deprivation. Given that these two modes are associated with sophisticated and abstract
cognitive functions, the reconfiguration of these modes indicates the sensitivity of these functions
to the sleep deprivation.

Further considerations

Several issues should be further considered. First, we identified an additional basic mode with all
positive amplitudes when identifying the leading basic modes without global signal regression in
the data preprocessing. This suggests that preserving the global signal may enhance coactivations
between regions, providing a novel explanation for the usually observed rightward shift in the
distribution of FC strength compared to the case with global signal regression’’. Second, we
explored the potential cognitive significance of leading basic modes through the association
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analysis. In future studies, it is suggested to investigate the changes in the leading basic modes
across task states to provide more direct clues. Third, additional leading basic modes were
identified in the sleep-deprivation dataset, which may be influenced by several factors, such as the
small sample size or mental states. A larger dataset is needed to further confirm the potential effects
of sleep deprivation. Fourth, the biological origins of the leading basic modes remain unclear.
Recent computational models of large-scale brain circuits have found that both interregional white
matter connections and local circuit properties can shape resting-state functional connectivity and
its itinerant dynamics’"’2. In the future, the computational modelling approach can be used to
explore the relationship between the leading basic modes and the underlying structural network
and local morphological properties of the human brain. Finally, the eigen-microstate analysis used
here is essentially a linear decomposition, which implicitly assumes that the rich repertoire of brain
activity can be embedded in a low-dimensional linear subspace spanned by the leading basic
modes. However, the biological plausibility of the low-dimensional nonlinear representation of
spontaneous brain activity deserves further investigation.

Materials and methods
Participants and study design

We employed three datasets of R-fMRI data from healthy young adults. The first dataset consisted
of multiband R-fMRI data from 970 participants from the publicly available S900 data release of
the Human Connectome Project (HCP)*. These subjects underwent repeated R-fMRI runs in two
sessions. The second dataset, named the sleep-deprivation dataset, included repeated R-fMRI data
from 20 participants scanned separately during rested wakefulness and after sleep deprivation®’.
The third dataset, named the Beijing Zang dataset, included R-fMRI data from 198 participants

t*®, Written informed consent was obtained

selected from the 1000 Functional Connectomes Projec
from each participant. The first two datasets were used for the main analysis and the third dataset

was used for the replication analysis.
Data acquisition

In the HCP dataset, all participants underwent multimodal MRI scanning with a customized 32-
channel SIEMENS 3T Connectome Skyra scanner at Washington University, USA. Four
multiband R-fMRI runs were acquired in two sessions for each participant. Briefly, each session
consisted of two runs that were separately phases encoded in the left-to-right and right-to-left
directions. The R-fMRI scans were obtained using a multiband gradient-echo-planar imaging
sequence (repetition time [TR] = 720 ms and 1200 volumes per run, i.e., 14.4 min), with
participants’ eyes fixated on a bright projected crosshair. Here, we used only the left-to-right-
encoded scans to reduce the potential influence of the phase-encoding directions'>"?. In the
original S900 data release, 837 participants completed the left-to-right-encoded R-fMRI scans in
both sessions, denoted as REST1 and REST2 separately. Of these, 137 participants were excluded
due to missing time points (N = 10), excessive head motion (N = 105) (see "Data Preprocessing"),
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and arachnoid cysts (N = 22). Data from the remaining 700 participants (aged 21-35 years, M/F:
304/396) were used for the main analyses.

In the sleep-deprivation dataset, 20 participants underwent repeated R-fMRI scans separately
during rested wakefulness and after sleep deprivation (for design details, see Zhou et al.*’). All the
participants were right-handed and had no history of neuropsychiatric disorders. The MRI data
were acquired using a 64-channel 3T Siemens Prisma scanner at the Beijing MRI Center for Brain
Research of the Chinese Academy of Sciences. R-fMRI data were acquired using a T2 -weighted
gradient-echo-planar imaging sequence (TR = 1000 ms and 480 volumes per run), with
participants’ eyes fixated on a crosshair. Structural images were acquired using a 3D T1-weighted,
magnetization-prepared rapid acquisition gradient-echo sequence. One participant was excluded
due to excessive head motion (see "Data Preprocessing"). Data from the remaining 19 participants
(aged 18-26 years, M/F: 7/12) were used for the main analysis.

For the Beijing Zang dataset, 198 participants underwent MRI scanning using a 12-channel
Siemens Trio Tim 3.0T scanner in the Imaging Center for Brain Research, Beijing Normal
University. R-fMRI data were acquired with participants’ eyes closed (TR = 2000 ms and 230
volumes). One participant was excluded due to differences in scanning orientation, leaving 197
participants (aged 18-26 years, M/F: 75/122) used for the cross-validation analysis.

Data preprocessing

For the HCP dataset, we employed the minimally preprocessed R-fMRI data’, followed by ICA-
Fix denoising’’. Four additional steps were performed using the GRETNA package’®, including
the removal of the first 10-second volumes (i.e., 15 volumes), linear detrending, nuisance
regression, and temporal filtering (0.01-0.08 Hz). During the nuisance regression, white matter,
cerebrospinal fluid, and global signals were included as regressors to further remove the influence
of head motion and physiological noise”’.

The sleep-deprivation dataset and the Beijing Zang dataset were preprocessed with the same
pipeline using the GRETNA package’®. Specifically, the preprocessing included the removal of
the first 10-second volumes, realignment, spatial normalization to the Montreal Neurological
Institute (MNI) space with the T1-unified segmentation algorithm’®, linear detrending, nuisance
regression, and temporal filtering (0.01-0.08 Hz). During the nuisance regression, we included
Friston’s 24 head-motion parameters’®, white matter, cerebrospinal fluid, and global signals as
regressors to reduce the influence of head motion and physiological noise’’.

For these three datasets, we excluded participants with excessive head motion in any scan,
including a translation/rotation greater than 3 mm or 3° and a mean framewise displacement (FD)
over time® greater than 0.5 mm. After applying these criteria, 105 participants were excluded from
the HCP dataset and 1 participant was excluded from the sleep-deprivation data.
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Eigen-microstate analysis of spontaneous brain activity

We applied a novel eigen-microstate analysis*® from the statistical physics theory to the HCP
dataset to identify basic modes underlying rich repertoires of brain activity patterns. This approach
has been applied to the temporal evolution of several complex systems (e.g., the Earth system and
stock markets) and reveals well-defined spatial patterns that dominate their temporal
fluctuations®. A similar approach has also been used to study the spatiotemporal patterns of brain
oscillations in the visual cortex of rats>’. In this study, the eigen-microstate analysis was applied
separately to each R-fMRI run (i.e., REST1 and REST2). Nodal-level analyses were performed to
reduce computational burden.

First, we defined 1000 cortical nodes (i.e., regions of interest) based on a prior functional
parcellation®® that would ensure functional homogeneity within each nodal region. We then
extracted time courses of these nodes for each participant. The nodal time course for each node
was further normalized by subtracting its mean value over time and then dividing by the
corresponding standard deviation. Finally, the normalized nodal time courses were concatenated
across participants, resulting in an NxM time course matrix 4, where N denotes the number of
nodes (i.e., 1000 here) and M denotes the number of time points in the concatenated time courses
(i.e., 1185x700). Matrix A was considered as an ensemble matrix representing rich repertoires of
brain activity patterns, and each column represents a microstate of brain activity from a statistical
physics perspective.

The eigen-microstate analysis was performed by using singular value decomposition (SVD)
as suggested in**. The ensemble matrix Anxy was factorized as the product of three matrices:

Ay = UNxNszMVAgxM > (1)

where Un.v and Vw contain the columnar orthogonal bases in space (u:;) and time (vi),
respectively, and Xn. is a diagonal matrix of singular values (c:). In this way, the time-varying
brain activity pattern, 4, can be viewed as the weighted combination of basic spatial modes (i.e.,
basic modes) ui, accompanied by time-dependent coefficients vi. The weight of each basic mode
is characterized by o/, since the matrix 4 is normalized before SVD to ensure o> = 1. The
normalization was performed by dividing the matrix 4 by the root sum square of all its elements
(i.e., a dataset-dependent constant C).

To determine whether the brain is dominated by a small number of basic modes (i.e., low-
dimensional representations), we identified leading basic modes, whose weights should be®!: i)
substantially greater than the weight of the subsequent basic mode, known as Cattell’s scree test®?;
ii) greater than the average weight across all N possible basic modes, i.e., 1/N; iii) statistically
significant according to a permutation test. In each permutation instance, the labels of the nodal
regions at each time point were randomly shuffled to disrupt the spatial organization. The statistical

significance level of each leading basic mode was determined by comparing its original weight
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(i.e., 6%) to the null distribution of the corresponding weights obtained from the 10,000
permutation instances. In our analysis, the Cattell’s scree test was performed by identifying the
elbow point on the weight curve according to the Kneedle algorithm®3.

We further investigated the spatial patterns of the leading basic modes based on a prior
functional system definition®®. Seven systems were considered, including the default-mode
network, frontoparietal network, limbic network, ventral attention network, dorsal attention
network, somatomotor network, and visual network. For each leading basic mode, we estimated
the mean fluctuation amplitude for each system by averaging the nodal values within this system.

We also performed the eigen-microstate analysis for each participant to investigate the
presence of the leading basic modes at the individual level. In this condition, matrix 4 in Eq. (1)
was replaced as the normalized time course within each participant for each R-fMRI run.

Cognitive function associations of the leading basic modes

We investigated the potential functional roles of the leading basic modes from two perspectives.
First, we examined the association between these leading basic modes and cognitive functions
based on the NeuroSynth meta-analytic database (www.neurosynth.org)>?. For each leading basic
mode, we calculated its spatial similarity with all available meta-analytic activation maps using
Pearson’s correlation across voxels. The associated cognitive terms are illustrated using word-
cloud plots.

Second, we compared each of the leading basic modes with 12 cognitive components from>3.
Each cognitive component represents a basic activation probability map which is involved in
various cognitive tasks®. For each cognitive component, we estimated the corresponding node-
level version by averaging the activation probabilities of all voxels within each node. We then
calculated the spatial similarity between each of the leading basic modes and the 12 cognitive
components by using Pearson’s correlation across nodes. To correct for the potential influence of
spatial autocorrelation, the statistical significance of each spatial similarity was tested using the
permutation test (n=10,000). The significance level was determined by comparing the original
similarity to the null distribution of the corresponding similarity obtained from the 10,000
permutation instances. For each permutation instance, we generated a surrogate basic mode map
that preserved the spatial autocorrelation of the original basic mode>.

Relationship between leading basic modes and functional connectivity

Since the leading basic modes dominated the spontaneous fluctuations of brain activity, we further
investigated how they contribute to the functional connectivity between regions.

The original FC between two nodal regions is defined as the Pearson’s correlation between
their time courses*. As each regional time course (4i, t =1, ... M) was normalized over time (i.e.,
mean = 0 and SD = 1), the FC between nodes i and j can be estimated as'*:
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1 M
FC, ZEZI‘LtA;t , (2)

where M denotes the number of time points in the time course.

By substituting Eq. (1) into Eq. (2) and considering the time-independence between basic
modes, we found FCj; between nodes i and j can be rewritten as:

e Zm;% Uyilhy; (3)

where N is the number of all possible basic modes, and ux is the ith element of the kth basic mode.
Thus, the functional connectivity between two nodes can be attributed to the joint contribution of
their coactivation patterns in each basic mode. Notably, the FCj; estimated from Eq. (3) should be
further multiplied by a constant C? to correct for the normalization effect prior to the SVD analysis.

To validate the effectiveness of the above theoretical model (i.e., Eq. (3)), we reconstructed
the FC matrix according to Eq. (3) by gradually increasing the number of basic modes of interest.
We then compared the spatial similarity between the reconstructed and original FC matrices. The
spatial similarity was quantified with Pearson’s correlation across the lower triangular elements in
the matrices. Specifically, we reconstructed the FC matrix at both the population and individual
levels. At the population level, the leading basic modes were obtained from the concatenated
normalized time course across all participants. At the individual level, the leading basic modes
were identified from the time courses of each participant. We then calculated the similarity
between the reconstructed and the original FC matrices for each individual.

We further explored whether the basic modes, especially these leading basic modes, could
capture the individual functional organization. First, we estimated the reliability of the
reconstructed FC matrix between two runs at the individual level. Given a participant of interest,
we evaluated the intra-subject similarity of the reconstructed FC matrices between two runs. We
also estimated the inter-subject similarity of this subject as the averaged spatial similarity of this
participant in the first run (i.e., REST1) with all the other participants in the second run (i.e.,
REST?2). Next, we examined the individual uniqueness in the reconstructed FC matrices by
performing an FC-based individual identification analysis between two runs (i.e., REST1 and
REST2)'3. For each participant, we compared the reconstructed FC matrix of this participant in
REST1 with those of all the participants in REST2. If the participant with the highest similarity in
REST2 was the same participant given in REST1, the identification was correct; otherwise, it was
incorrect. Identification accuracy was defined as the proportion of participants that were correctly
identified. The higher the individual identification accuracy was, the more individual-specific
information was captured in the analysis. For comparison, individual identification analysis was
also performed based on the original FC matrix.
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Influence of sleep deprivation on the leading basic modes

To assess whether the leading basic modes are affected by mental states, we applied the eigen-
microstate analysis to a sleep deprivation dataset*’. We identified the leading basic modes (see
“Eigen-microstate analysis”) separately from the R-fMRI data obtained in the two states
represented in the dataset (i.e., rested wakefulness vs. post-sleep deprivation). First, we examined
the spatial correspondence of the leading basic modes determined at rested wakefulness with those
obtained from REST1 of the HCP dataset to investigate the reproducibility of the leading basic
modes. Next, we compared the basic modes obtained at the different states (i.e., rested wakefulness
vs. post-sleep deprivation) to examine the potential influence of the sleep deprivation.

For each leading basic mode that maintained spatial correspondence between two states, we
tested differences in regional fluctuation amplitudes between the two states by using the
permutation test (n = 10,000). In each permutation instance, the state labels of the R-fMRI data
were shuffled for each participant. Multiple comparisons across nodal regions were corrected using
the false discovery rate (FDR) approach (corrected p < 0.05)%. Given that the basic mode showed
significant changes, we further investigated how interregional coactivation patterns differed
between the two states. Briefly, we obtained the system-level coactivation pattern for the rested
wakefulness and post-sleep deprivation separately. The within-system and between-system
coactivation values were obtained by averaging the interregional coactivation values within the
same system and between different systems, respectively. Significance levels of differences in the
coactivation pattern were also estimated using the permutation test (n = 10,000) and corrected for
multiple comparisons (FDR corrected p < 0.05).

Validation analysis

The reliability of the leading basic modes was validated by considering four analysis strategies
that may affect the identification of the leading basic modes. In each case, the leading basic modes
were re-estimated and compared with those obtained in the main analyses (i.e., REST1 in HCP).
(i) Head motion. Head motion during R-fMRI scanning can affect the fluctuation amplitudes of
BOLD signals®>. Different from the main analysis, we used stricter head motion exclusion criteria
for R-fMRI data in the HCP dataset (i.e., > 2 mm or 2° in any direction or mean FD > 0.2 mm) to
further reduce the influence of head motion. (i7) Global signal regression. In the main analysis, the
global signal was regressed to better reduce the influence of head motion and non-neural
signals’”%. To assess the potential influence of the global signal, we re-preprocessed the R-fMRI
data in the HCP dataset without global signal regression. (ii/) Brain parcellation. To assess the
influence of spatial resolution, we extracted regional time courses from the HCP dataset by using
the same type of functional parcellations with different spatial resolutions (i.e., comprising 200
and 400 cortical regions)*. The leading basic modes obtained from different spatial resolutions
were compared at the functional system level®® and the voxel-wise level. In the latter case, the
voxels within the same nodal regions were assigned the same amplitude values for each basic mode,
regardless of the spatial resolution. In cases (i), (i7), and (iii), the validation analysis was performed
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based on REST1 of the HCP dataset. (iv) Reproducibility across datasets. We identified the leading
basic modes from another independent dataset, i.e., the Beijing Zang dataset*®, and compared them
with those in the HCP dataset.

Data availability

The HCP dataset is publicly available at https://www.humanconnectome.org/study/hcp-young-
adult/data-releases. The Beijing Zang dataset used for the replication analysis is publicly available
at https://www.nitrc.org/projects/fcon_1000. Maps of leading basic modes and some other data
supporting our  results are available at https://github.com/chenxi000/Low-
dimensional representation rsfMRI.

Code availability

Codes wused for data analysis are available at https://github.com/chenxi000/Low-
dimensional representation rstMRI.
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Figure 1. Leading basic modes of spontaneous brain activity. (A) Weights of basic modes for
two runs (i.e., REST1 and REST2). The weights of the first thirty basic modes are displayed.
Similar decreasing trends were observed for both runs. The first five basic modes were defined
as the leading basic modes according to the criteria modified from®!. (B) Spatial patterns of the
first five basic modes (i.e., leading basic modes) for REST1. Black curves denote the boundaries
of seven prior functional systems*. (C) System-level fluctuation amplitudes for the leading basic
modes. Seven prior functional systems® were considered. DMN, default-mode network; FPN,
frontoparietal network; LN, limbic network; VAN, ventral attention network; DAN, dorsal
attention network; SMN, somatomotor network; VN, visual network.
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Figure 2. Association with cognitive functions. (A) Cognitive terms associated with each leading
basic mode. These terms were obtained based on the NeuroSynth meta-analytic database®*. Font
sizes of cognitive terms denote correlation values between the corresponding cognitive term maps
and the leading basic modes. (B) Associations with 12 cognitive components for each leading basic
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mode. The 12 cognitive components were derived from Yeo et al.*. In (A) and (B), red and blue
colors denote positive and negative correlations, respectively.

25


https://doi.org/10.1101/2023.05.23.541862
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541862; this version posted May 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Reconstructed FC using basic modes (population level)

Reconstructed FC vs. Original FC

Correlation «

0.8f r=0.95

Original FC

c 0.4
k) N .
k] 1 2 ? 0.4 0 04 08
g FC:j = mzak ukiukj Reconstructed FC
Qo L=
(&)
0.3
C D E
Spatial similarity between reconstructed and Similarity of reconstructed FC Identification accuracy
original FC matrices (individual level) across two sessions based on reconstructed FC
" 100%
== |ntra-subject
0.8 |\ 08 == inter-subject 80%
- 11 = s x % x o o
ELL :09?? 06| s 8 60%
= - = =3
Eo04 ! Eo04 8 40%
@ REsT1 |, 08 M e <
- I
021 | —Rest2 | 0.2 20%
0 ' 0 0
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
Basic mode # Basic mode # Basic mode #

Figure 3. Reconstructing functional connectivity based on the basic modes. (A) Spatial similarity
between the reconstructed and original FC matrices at the population level (REST1). The original
FC matrix was estimated based on the concatenated time courses of all participants. The
reconstructed FC matrix was generated separately by using different numbers of basic modes based
on the theoretical model. (B) Reconstructing the FC matrix with the first five basic modes
(REST1). Left, spatial patterns of the reconstructed and original FC matrices; right, spatial
similarity between these two matrices. (C) Spatial similarity between the reconstructed and
original FC matrices at the individual level for both runs. The reconstructed FC matrix was
generated by using different numbers of basic modes. Mean spatial similarity across participants
and the corresponding standard deviation are displayed. The distributions of individual spatial
similarity obtained from the five leading basic modes are shown in the subplot in the form of the
violin plots and the box plots. (D) Intra- and inter-subject similarity of the reconstructed FC
matrices between two runs. *, denotes significant differences (paired z-tests, ps < 0.05). (E)
Individual identification accuracy based on the reconstructed FC matrix. Individual FC matrices
were reconstructed with different numbers of basic modes. FC, functional connectivity; DMN,
default-mode network; FPN, frontoparietal network; LN, limbic network; VAN, ventral attention
network; DAN, dorsal attention network; SMN, somatomotor network; VN, visual network.

26


https://doi.org/10.1101/2023.05.23.541862
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541862; this version posted May 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Weights of basic modes Spatial similarity in basic modes Weights of basic modes Spatial similarity in basic modes
0.1 06 0.1 ; £,
5 04 5 s
So0s Elbow point 3 ' Qo005 Elbow point -
v S 0.2 s g
@ @ 9
0 g° 0 8
0 3 ro o 1 =20 3 =%
Basic mode # Ba51c mode # (HCP Basic mode # Basm mode # SD
c Basic mode 1 (RW) Basic mode 1 (SD) Mental state effects (SD vs. RW)
3 ) g
2 N b @D
) ) 2
. 2 El 24 éi 0.01
S0 3|0 g-
\ \ £ £ . EP-0.01
< I < S
-0.06 -0.06 -0.08
D Coactivation pattern of Coactivation pattern of
basic mode 1 (RW) basic mode 1 (SD) Mental state effects (SD vs. RW)
VN 0.08 VN 0.08 VN 0.1
SMN c SMN| Il [ SMN s
DAN 2 DAN 2 DAN =
VAN 2l 1o VAN 2l 1o VAN % 0
LN @ LN @ LN g
FPN S FPN| | IS FPN Q
o Saee o eeeeeﬁe 008 vt
®<<<2 \r\\v Ko~ RN N \Q\r P N

Figure 4. Influence of sleep deprivation on the basic modes in the sleep-deprivation dataset. (A)
Weights of basic modes for R-fMRI data at rested wakefulness and spatial similarity of basic
modes with REST1 in the HCP dataset. (B) Weights of basic modes for R-fMRI data after sleep
deprivation and spatial similarity of basic modes with R-fMRI data at rested wakefulness. In (A)
and (B), the spatial similarity was estimated for every pair of basic modes between two conditions
to examine the spatial correspondence. (C) Spatial patterns of basic mode 1 at rested wakefulness
and after sleep deprivation and their differences. Regions showing significant changes were
detected with the permutation test (» <0.05, FDR corrected). (D) System-level coactivation pattern
of basic mode 1 at rested wakefulness and after sleep-deprivation and between-state differences.
Significant changes were detected at the system level with the permutation test (p < 0.05, FDR

corrected). RW, rested wakefulness; SD, after sleep-deprivation; HCP, Human Connectome
Project.
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