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Abstract

T cell heterogeneity presents a challenge for accurate cell identification, under-
standing their inherent plasticity, and characterizing their critical role in adaptive
immunity. Immunologists have traditionally employed techniques such as flow
cytometry to identify T cell subtypes based on a well-established set of surface
protein markers. With the advent of single-cell RNA sequencing (scRNA-seq),
researchers can now investigate the gene expression profiles of these surface pro-
teins at the single-cell level. The insights gleaned from these profiles offer valuable
clues and a deeper understanding of cell identity. However, CD45RA, the isoform
of CD45 which distinguish between naïve/central memory T cells and effector
memory/effector memory cells re-expressing CD45RA T cells, cannot be well
profiled by scRNA-seq due to the difficulty in mapping short reads to genes. In
order to facilitate cell type annotation in T cell scRNA-seq analysis, we employed
machine learning and trained a CD45RA+/- classifier on single-cell mRNA count
data annotated with known CD45RA antibody levels provided by cellular indexing
of transcriptomes and epitopes sequencing (CITE-seq) data. Among all algorithms
we tested, the trained support vector machine (SVM) with a radial basis function
(RBF) kernel with optimized hyperparameters achieved a 99.96% accuracy on
an unseen dataset. The multilayer Perceptron (MLP) classifier, the second most
predictive method overall, also achieved a decent accuracy of 99.74%. Our simple
yet robust machine learning approach provides a valid inference on the CD45RA
level, assisting the cell identity annotation and further exploring the heterogeneity
within human T cells.

1 Introduction

T cells play a pivotal role in adaptive immunity, serving as the cornerstone of the body’s defense mech-
anism against pathogens[1]. Each T cell clone has unique, sophisticatedly rearranged T cell receptors
(TCRs) expressed on their surface, allowing them to bind to a specific group of antigens sourced from
abnormal cells or foreign organisms and initiate an immune response[2]. Also, T cells are a remark-
ably heterogeneous population that can be further divided into subsets, such as CD4/CD8 T cells if by
their surface glycoproteins, αβ/γδ T cell by their TCR chains, or naive/stem/memory/effector by their
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functions[3, 4, 5, 6]. Those subsets play different roles in maintaining immune system homeostasis
and orchestrating immune response. Such heterogeneity underscores their versatility but also poses
significant challenges to accurate cell characterization, which is important for developing strategies
for ameliorating or reversing diseases.

Historically, immunologists have relied on protein-targeted techniques such as immunofluorescence,
western blot, and flow cytometry to distinguish T cell subtypes in blood/peripheral tissue samples[1].
Those tools enable the characterization of cells based on a well-established set of surface protein
markers, including but not limited to CD4, CD8, CD25, CD45, CD127, CCR7, CD62L, CD45RO,
and CD45RA [3][7]. By analyzing the expression patterns of these markers, scientists have been
able to classify T cells into helper T cells, cytotoxic T cells, regulatory T cells, memory T cells,
etc.[8][9], and each is proved to have distinct functions and roles within the immune system. The
development of techniques like single-cell RNA sequencing (scRNA-seq) has enabled the discovery
of novel T-cell populations at an even higher resolution and provided a deeper understanding of their
distinct functions in the immune system[10]. Specifically, scRNA-seq reports the counts of genes as
the indicator of the transcription activities of that gene in every single cell in the sample[11]. With
such a whole view of the cell features, under the assumption that the same type of cells has a similar
pattern of gene expression, unsupervised clustering on the feature matrix should be able to generate
clusters that are the union of cells of presumably the same cell type, which provides insights into cell
subtypes identification[12].

Despite these advances, certain limitations persist in the application of the scRNA-seq for T-cell
studies. One such challenge is the accurate profiling of CD45RA, an isoform of the CD45 protein.
CD45RA is the result of alternative splicing of CD45 and serves as a canonical marker to distinguish
between naïve T/central memory T (TCM) cells (naive T is CD45RA+ while TCM is CD45RA-) and
effector memory T (TEM)/effector memory re-expressing CD45RA T (TEMRA) cells[13]. However,
the expression of CD45RA mRNA can be challenging to report using scRNA-seq techniques because
most of them rely on next-generation sequencing (NGS) platforms that fragment the cDNA of
mRNA and obtain gene information by mapping the short reads to the human genome in the
downstream analysis[14][15]. Therefore, it is not uncommon for CD45RA information to be missing
or less reliable in the output count matrix from scRNA-seq, which adds difficulties to the optimal
annotation of T cell subsets identities. To overcome this limitation, researchers have turned to
alternative approaches, including the use of multi-omic techniques that combine scRNA-seq with
other technologies, such as cellular indexing of transcriptomes and epitopes by sequencing (CITE-
seq)[16]. CITE-seq enables simultaneous measurement of surface protein expression and gene
expression at the single-cell level, offering a more comprehensive view of cellular identity. Instead
of reporting the level of CD45RA mRNA, CITE-seq can measure the product, alias the CD45RA
protein, along with the RNA profiles.

Still, a method to better infer the CD45RA level in conventional scRNA-seq experiments is needed for
studying human immunology. Retrospectively, there is likely important information about CD45RA
identified in studies performed prior to the invention of CITE-seq, where such information would
re-contextualize and enhance the interpretation of previously collected data. Prospectively, even as
CITE-seq gains popularity, there will likely be biological use cases where the technique could be more
feasible and cost prohibitive. Such methods for inferring CD45RA status are potentially important
for immunology in the future and may need to be expanded to other markers besides CD45RA.
Given the production of protein is the result of a series of highly-orchestrated gene expressions, an
intuitive hypothesis is that CD45RA+ cells should have a different pattern in mRNA counts compared
to CD45RA- cells. Therefore, we employed machine learning approaches and trained multiple
CD45RA+/- classifiers on the NGS single-cell mRNA count matrix with known CD45RA antibody
levels reported by CITE-seq to facilitate cell type annotation in T cell NGS scRNA-seq analysis.

2 Method

2.1 Data Acquisition

Raw CITE-seq counts of 5559 healthy adult peripheral blood mononuclear cells labeled with CD45RA
antibody level were obtained from NCBI Gene Expression Omnibus (GEO) series GSE144434 as the
training/testing dataset[17]. To test the performance and robustness of models on NGS scRNA-seq
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data generated by different experiments, the Cytometry by Time of Flight (CyTOF)-sorted scRNA-seq
raw counts of CD45RA- T cells in healthy human blood from study GSE150132[18].

2.2 Single Cell RNA-seq Data Processing

The downstream analysis was done with scanpy (v1.9.1)[19] on Python and Seurat (v4.2.0) on
R[20]. Cells with CD19 or without CD3D/E/G/Z expression were discarded only to keep the profiles
of T cells. Low-quality cells were already dropped by the data provider based on their extremely low
UMI counts, high mitochondrial gene counts, and low number of uniquely expressed genes. In this
study, cells with less than 5% of the ribosomal gene count were also dropped. Genes expressed in
less than 2 cells in each dataset were excluded. Multiplets were removed by Scrublet (v0.2.3)[21].
After basic quality control, the 11,245 genes’ transcriptional profile in 4,000 cells was obtained. The
cell cycle score was calculated based on the expression of cell cycle-related genes as previously
described[22]. The dataset was normalized by SCTransform (v0.3.5) on R[23]. Cell mitochondrial
fraction, and the difference between the S phase score and the G2M phase score, as proposed as the
representation of the cell cycle score, was regressed during the normalization. 3000 highly variable
features were re-calculated for the combined dataset and used to perform the principal component
analysis (PCA, 50 pcs). Leiden clustering (resolution = 0.5) was performed based on the computed
neighborhood graph of observations (UMAP, 50 pcs, size of neighborhood equals 15 cells) to reveal
the general subtypes of the T cells[13][24]. Partition-based graph abstraction (PAGA) based on the
Leiden clusters, with a threshold of 0.2, was used to initialize the uniform manifold approximation
(UMAP, 50 pcs, min_dist = 0.01, spread = 2, n_components=2, alpha=1.0, gamma=1.0) to facilitate
the convergence of manifold[25].

2.3 Determine CD45RA Positive/Negative Label

The CD45RA level reported by CITE-seq is derived from the counts of unique DNA-barcoded
sequences associated with CD45RA antibodies[16]. It has been preprocessed by the data provider.
The Otsu method, also known as Otsu’s thresholding, in the skimage library[26] is used to calculate
the optimum threshold t∗ of CD45RA level to separate positive and negative cells. Specifically, the
Otsu method aims to find a threshold t∗ that maximizes the between-class variance while implicitly
minimizing the within-class variance. Since the overlapping observations (i.e., cells that had a
CD45RA level close to t∗) were hard to be assigned a positive/negative label, to reduce the false
positivity/negativity in CD45RA+/- labeling, CD45RA+ cells were defined as cells having a CD45RA
level >= t∗ + 0.5, and CD45RA- cells were defined as cells having a CD45RA level <= t∗ − 0.5. In
other words, overlapping observations were not used in the model training.

2.4 Differentailly Expressed Genes Identification

Differential expression (DE) analysis in Monocle 3[27] involves fitting a generalized linear model
(GLM) to the SCTransform-corrected counts. The quasi-Poisson distribution is used as the noise
model to account for both the mean and variance in the data.

For a given gene, let yij represent the observed expression level for cell i in condition j, where
i = 1, 2, . . . , n, and j = 1, 2 (two conditions, CD45RA+/-). The quasi-Poisson GLM can be written
as:

yij ∼ QuasiPoisson(µij , ϕ) (1)

log(µij) = Xijβj , (2)

where µij is the expected expression level for cell i in condition j, ϕ is the dispersion parameter, Xij

is the design matrix representing covariates (e.g., experimental conditions, batch effects), and βj is
the vector of regression coefficients for condition j.

The link function is the natural logarithm, which maps the expected expression level (µij) to the
linear predictor (Xijβj), helping ensure that the expected expression level is always non-negative.
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The dispersion parameter (ϕ) accounts for the overdispersion in the data, which occurs when the
variance is greater than the mean. In the quasi-Poisson model, the variance is modeled as:

Var(yij) = µij + ϕµ2
ij . (3)

For each gene, the GLM is fit to the data using maximum likelihood estimation, which involves
finding the βj and ϕ values that maximize the likelihood of the observed data.

A likelihood ratio test is performed to test for differential expression between the two conditions. This
compares the likelihood of the data under the full model (with separate βj values for each condition)
to the likelihood under the null model (with the same βj value for both conditions). The test statistic
is calculated as follows:

D = 2× (log(Lfull)− log(Lnull)), (4)

where D follows a chi-square distribution with degrees of freedom equal to the difference in the
number of parameters between the full and null models. A q-value is calculated from the test statistic,
and genes with q-values below 0.05 are considered DE genes.

2.5 Feature Selection

After splitting data into training and testing sets, features were selected from two sources. The first
source was the DE genes between CD45RA+/- groups. The fold change of a DE gene’s level in one
group with respect to the other could be quantified to describe the extent of differential expression.
DE genes with a fold change above an arbitrary threshold, tDE, were selected as input features for the
classifier. By adjusting tDE, it became possible to fine-tune the input features’ degree of distinction
across CD45RA+/-.

Mathematically, given the SCTransform-corrected gene expression values in CD45RA+ (C1) and
CD45RA- (C2), the fold change (FC) for a specific gene can be calculated as follows:

FC =
Average expression level in C2

Average expression level in C1
(5)

The log2-transformed fold change is defined as:

log2 FC = log2
Average expression level in C2

Average expression level in C1
(6)

In the context of the quasi-Poisson GLM, the log2 fold change can be estimated by calculating the
difference in the estimated coefficients, βj , between the two conditions:

log2 FC = βC2
− βC1

(7)

The second source for feature selection comes from previous biological knowledge. Heterogeneous
nuclear ribonucleoprotein L-like (hnRNPLL) is an RNA-binding protein that plays a crucial role in
alternative splicing, a process where pre-messenger RNA (pre-mRNA) is rearranged to produce dif-
ferent mRNA molecules and, consequently, various protein isoforms. hnRNPLL has been implicated
in the regulation of CD45 alternative splicing, specifically in the generation of the CD45RA isoform.
hnRNPLL binds to specific RNA sequences in the CD45 pre-mRNA, promoting the inclusion or
exclusion of specific exons. The binding of hnRNPLL to CD45 pre-mRNA has been shown to
enhance the exclusion of variable exons, leading to the generation of the CD45RA isoform[28]. In
this manner, hnRNPLL helps regulate the expression of CD45 isoforms and contributes to the proper
functioning of the immune system.

Therefore, we hypothesized that hnRNPLL and genes correlated with it may be indicative of the
CD45RA status. Spearman correlation coefficients of every gene’s expression with hnRNPLL’s
expression were calculated. Genes that had an absolute correlation coefficient with hnRNPLL in
the Phn percentile with a p-value < 0.05 were selected as input features. Similar to the DE genes
selection, the extent of the input features correlate with hnRNPLL can also be optimized later by
adjusting Phn.
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2.6 Classifier Training

2.6.1 Support Vector Machine (SVM)

SVM is a supervised learning method often used for classification and regression problems[29]. It
aims to find the optimal hyperplane to classify the data points while maximizing the margin, the
closest distance from data points from each class to the hyperplane. SVM can efficiently process
sparse data in high-dimensional spaces by relying on the inner product between feature vectors. Such
a technique known as the "kernel trick" allows SVM to implicitly map data into higher-dimensional
feature spaces for more effective linear decision boundaries. Furthermore, maximal margin separation
enables SVM to find the optimal hyperplane in high-dimensional spaces, which helps generalize well
to unseen data. Lastly, SVM incorporates regularization to prevent overfitting.

Training data was fitted to an SVM with a Radial Basis Function (RBF) kernel and another SVM
with a linear kernel using scikit-learn (v1.1.2) in Python[30]. For the SVM with RBF kernel, tDE and
Phn that threshold the input features, along with the cost CSVM and the RBF kernel coefficient γ were
optimized by a Bayesian Optimizer using Bayesian Optimization in Python[31], aiming to achieve the
optimal 5-folds cross-validation averaged training accuracy in 30 iterations. tDE ∈ (1, 4) or (−4,−1),
Phn ∈ (1e− 6, 0.1), CSVM ∈ (1e− 6, 100), γ ∈ (1e− 6, 2). For the linear kernel SVM, no kernel
coefficient was needed.

Eventually, the final SVM was trained on the feature-optimized training set and took the optimized
hyperparameters. It was then used to predict the CD45RA label of testing data, unseen CD45RA-

data. The accuracy of the prediction on datasets with known CD45RA labels was reported, and the
performance on classifying single-cell data of two SVMs were compared.

2.6.2 Logistic Regression (LR)

Logistic regression is a classic and relatively simple binary classifier[32]. It can handle high-
dimensional data since it relies on finding the optimal decision boundary, which is not affected
by the "curse of dimensionality" in the same way as distance-based measures[33]. Also, LR is
adept at handling the sparse scRNA-seq counts due to its ability to incorporate regularization, which
encourages sparse solutions and helps in feature selection.

The training data was fitted to an LR classifier with a threshold for the predicted probabilities of 0.5
using scikit-learn (v1.1.2) in Python[30]. tDE and Phn that threshold the input features, along with the
regularization strength C were optimized by a Bayesian Optimizer using Bayesian Optimization in
Python[31], aiming to achieve the optimal 5-folds cross-validation averaged training accuracy in 30
iterations. tDE ∈ (1, 4) or (−4,−1), Phn ∈ (1e− 6, 0.1), CLR ∈ (1e− 6, 2).

Eventually, the final LR classifier was trained on the feature-optimized training set and took the
optimized hyperparameters. It was then used to predict the CD45RA label of testing data, unseen
CD45RA- data. The accuracy of the prediction on datasets with known CD45RA labels was reported.

2.6.3 Support Vector Machine Stacked Logistic Regression

Stacking an LR model and an SVM together can potentially create a more powerful classifier by
leveraging the strengths of both models[34]. LR is a linear model that works well when the decision
boundary between classes is relatively linear. At the same time, SVM, particularly with non-linear
kernels like RBF, can capture more complex decision boundaries.

We trained a meta LR using the predictions of the LR and SVM classifiers as input features and the
true CD45RA+/- labels as the target variable using scikit-learn (v1.1.2) in Python[30]. tDE and Phn
that threshold the input features, along with the regularization strength CLR from LR, the cost CSVM
and the RBF kernel coefficient γ from SVM were optimized by a Bayesian Optimizer using Bayesian
Optimization in Python[31], aiming to achieve the optimal 5-folds cross-validation averaged training
accuracy in 30 iterations. tDE ∈ (1, 4) or (−4,−1), Phn ∈ (1e − 6, 0.1), CSVM ∈ (1e − 6, 100),
γ ∈ (1e − 6, 2), CLR ∈ (1e − 6, 2). Since the meta LR only had two features, which were the
predictions by SVM and LR, its hyperparameter was not optimized.

The final model was trained on the feature-optimized training set and took the optimized hyperpa-
rameters. It was then used to predict the CD45RA label of testing data, unseen CD45RA- data. The
accuracy of the prediction on datasets with known CD45RA labels was reported.
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2.6.4 Multilayer Perceptron

The multilayer perceptron (MLP) is an artificial neural network characterized by its multiple layers of
interconnected neurons[35]. This machine learning model has proven its mettle in various applications,
including binary classification tasks[36, 37, 38]. In comparison to LR, the MLP excels in its ability
to model non-linear relationships. While LR is effective in linear contexts, its simplicity restricts
its capabilities in handling more complex data. The MLP, on the other hand, can learn non-linear
patterns with ease, providing excellent performance in cases where linearity cannot be assumed.
When it comes to SVM, while SVM can handle non-linear data through the use of kernels, it lacks
the flexibility and scalability inherent to the MLP’s architecture. The MLP can be fine-tuned to a
wide range of classification problems by adjusting the number of hidden layers and neurons. This
adaptability makes the MLP more robust for tackling diverse and challenging datasets.

For simplicity, we used the optimized features in linear and RBF kernel SVM as the input features
for two MLPs, respectively. The training data was fitted to an MLP threshold for the predicted
probabilities of 0.5 using tensorflow (v2.12.0) in Python[39]. ReLu was used as the activation
function for all layers except the output layer, which used sigmoid as its activation function. The
epoch number was 15, and the batch size was 32 when building the MLP. The number of layers, the
number of neurons, the learning rate, and the dropout rate were optimized by a Bayesian Optimizer
with the aim of achieving minimal average binary cross-entropy of the 5-fold cross-validation in 30
iterations. Nlayers ∈ (1, 3), Nnodes ∈ (16, 128), η ∈ (1e − 4, 0.01), ρ ∈ (0.1, 0.5). The final MLP
was trained on the feature-optimized training set and took the optimized hyperparameters. It was
then used to predict the CD45RA label of testing data, unseen CD45RA- data. The accuracy of the
prediction on datasets with known CD45RA labels was reported.

3 Results

3.1 Feature Interpretation

We found NPDC1, AQP3, CCR6, IL7R, DPP4, HES6, CD28, and another 116 genes were qualified
as differentially expressed in CD45RA+ cells compared to CD45RA- cells under the standard that is
often used in general scRNA-seq studies (| log2FC | >= 2, q-value <= 0.05) (Figure 1A, Table S1).
Among these DE genes, we found well-studied naïve/memory signatures like CD28 and IL7R[40].
Specifically, CD28 is a costimulatory receptor expressed on naive T cells, essential for T cell
activation[41]. Interleukin 7 Receptor (IL7R, alias CD127) is a receptor that binds to interleukin-7
(IL-7) and plays a crucial role in the development and homeostasis of naive T cells[42]. Although
previous literature described both naïve and (stem) central memory T cells express CD28 and IL7R,
the difference in their GLM coefficients indicates levels of these genes in CD45RA+/- cells differ.

Genes reported to be highly associated with T-cell differentiation, such as CD40LG, CTLA4, TBX21,
and IL2RB, were also found in the DE genes. CD40LG encodes CD40 Ligand, a protein activating and
regulating the immune system, including T cells[43]. CTLA4 translates into Cytotoxic T-Lymphocyte
Associated Protein 4, a protein that functions as an immune checkpoint and negatively regulates
T-cell activation[44]. TBX21, alias the gene of T-box 21, is a transcription factor involved in the
differentiation of T cells[45]. It was expected to see DE analysis report these genes, given they
are considered highly indicative of the activation of T cells and partially in coordination with the
expression of CD45RA.

We also found Neural Proliferation Differentiation and Control 1 (NPDC1) and aquaporin 3 (AQP3)
had the highest two log2 FC in CD45RA- group compared to CD45RA+ group. NPDC1 is a protein-
coding gene implicated in regulating cell proliferation, differentiation, and apoptosis in various
cell types. Recently, it was reported to be a prognostic immune gene in a model that predicts the
outcome of acute myeloid leukemia (AML)[46]. However, its specific role in T cell activation is not
well-defined. AQP3 is a water channel protein that facilitates the transport of water and small solutes,
such as glycerol, across cell membranes. AQP3 is expressed in various tissues, including the skin,
kidneys, and gastrointestinal tract, and is involved in diverse physiological processes, such as water
balance and skin hydration[47]. Its role in immune cells, specifically T cells, is not well-established,
yet we did find its expression was highly overlapped with CD45RA-, suggesting CD45RA- have a
different metabolism compared to CD45RA+ cells.
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When determining the second source for feature selection, hnRNPLL’s expression was found to
correlate with the transcription of HNRNPA2B1, a member of the hnRNP family, which plays a
role in pre-mRNA processing, along with other 1600 genes that had a p-value <= 0.05 (Table S2).
Although HNRNPA2B1 has been reported to participate in alternative splicing[48], no direct evidence
exists that it is associated with CD45 splicing specifically. Given its correlation with hnRNPLL, we
suggest that it is possible that HNRNPA2B1 is also engaged in the CD45 splicing, inviting further
investigation.

3.2 Performance of Classifiers on the Testing Set and Unseen Data

The thresholds used for feature selection and the resultant features of all 6 classifiers (Table 1, S3) are
recorded. The final values of the optimized hyperparameters (Table 2) are also reported. The accuracy
(Table 3), precision (Table 4), and recall (Table 5) in training, testing, and the unseen datasets were
used as metrics to evaluate the performance of classifiers. We found that all those simple classifiers
achieved a reasonably good accuracy (>85%) in training, testing, and unseen, and the SVM with
an RBF kernel outperformed the other 4 classifiers in terms of all three types of accuracy with a
relatively parsimonious selection of features.

Table 1: Feature Selection Parameters
Classifier tDE-Upper tDE-Lower Phn NFeatures

LR 1.131 -1.050 0.1 1349
SVM(linear) 1.793 -1.991 0.010 214
SVM(RBF) 1.689 -1.584 0.014 287
Stack 1.009 -2.534 0.073 1056

Table 2: The Final Values of Hyperparameters
Classifier Hyperparameters

LR CLR = 0.595
SVM(linear) CSVM = 48.829
SVM(RBF) CSVM = 54.343, γ = 0.069
Stack CSVM = 1e-6, CLR = 0.054
MLP (linear SVM features) Nlayers = 1e-4, Nnodes = 0.1, η = 3, ρ = 105
MLP (RBF SVM features) Nlayers = 2.262e-4, Nnodes = 0.1, η = 1, ρ = 87

Specifically, during the hyperparameter optimization, the LR classifier’s 5-fold cross-validation
accuracy ranged from 62.77% to 90.42%, with an average of 86.79%. The linear kernel SVM’s 5-fold
cross-validation accuracy ranged from 64.01% to 88.20%, with an average of 84.98%. The RBF
kernel SVM’s 5-fold cross-validation accuracy ranged from 62.40% to 91.48%, with an average of
76.21%. The stacked classifier’s 5-fold cross-validation accuracy ranged from 84.95% to 91.00%,
with an average of 88.60%. Lastly, the MLP using linear SVM features had a loss in the 5-fold
cross-validation ranging from 0.2433 to 0.5151, with an average of 0.3355. The MLP using RBF
SVM features had a loss in the 5-fold cross-validation ranging from 0.2221 to 0.6051, with an average
of 0.3627. During the training, all classifiers showed a balance between precision and recall, and the
LR classifier and the SVM with an RBF kernel had the optimal averaged precision (Figure. 1D).

The visualization of the classifier’s prediction and misclassification in training and testing sets showed
that the misclassified cells mainly existed in two subsets of the CITE-seq data, Leiden clusters 1 and
3 (C1, C3), where CD45RA+ and CD45RA− cells were mixed by general clustering (Figure. 1B-C,
2A-B). The expression profile showed that the CCR7+SELL+IL7R+TCF7+ cluster 1 was likely to
be naive T cells or TCMs, and the CCR7−SELL−IL7RlowKLRG1+NKG7+ cluster 3 had an obvious
TEM/TEMRA similarity (Figure. 2C-D)[13]. As discussed previously, these 2 pairs of cell types
are difficult to classify in scRNA-seq analysis because of the overlap in the expression patterns and
the absence of CD45RA, so it is reasonable that we observed misclassifications mainly came from
these two clusters. Nevertheless, all 6 classifiers were still able to correctly label the majority of the
hard-to-classify cells (Table 6).

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541821doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541821
http://creativecommons.org/licenses/by/4.0/


Table 3: Accuracy of Predictions in 3 Datasets
Classifier Training (%) Testing(%) Unseen(%)

LR 99.31 88.78 88.62
SVM(linear) 92.89 86.59 99.60
SVM(RBF) 99.45* 89.94* 99.96*
Stack 96.17 88.78 94.04
MLP (linear SVM features) 93.22 87.32 99.74
MLP (RBF SVM features) 95.48 89.21 97.63

Table 4: Precision of Predictions in Training and Testing Datasets
Classifier Training (%) Testing(%)

LR 99.39 88.33
SVM(linear) 92.38 88.56
SVM(RBF) 99.60* 90.20
Stack 97.04 90.87
MLP (linear SVM features) 94.70 92.31*
MLP (RBF SVM features) 92.91 88.76

Applying the classifiers to a CD4+CD45RA− unseen dataset allowed the evaluation of their per-
formance when the input data is generated from a different experiment. Two SVMs and the MLP
using linear SVM features achieved a high accuracy (>99%), and for the less accurate classifiers, LR
and stacked models, the misclassifications were mainly from Leiden clusters 5, 10, and 11 (C5, C10,
C11) (Figure. 3A, Table 3). Gene expression profiles of these 3 clusters showed they were likely to
be resting (C5, C10; PRF1−GZMB−NKG7−) and activated (C11; PRF1+GZMB+NKG7+) CD4+

TEMs given their CCR7−SELL−IL7R+TNF+IFNG+ pattern (Figure. 3B-C). Indeed, CD4+ TEMs
are also found to be able to re-express CD45RA[49], which makes these 3 clusters hard-to-classify if
their CD45RA level is unknown. With that being said, the SVM with an RBF kernel perfectly labeled
cells from these clusters based on their gene expression level (Table 7), and the other SVM with a
linear kernel and the MLP using linear SVM features also performed well.

4 Discussion

This study explored several simple yet robust machine-learning classifiers to predict the CD45RA
level of cells from its NGS scRNA-seq count matrix. We reported genes that were differentially
expressed between CD45RA+/-, and we suggested that the transcription of genes like NPDC1 and
AQP3 could be potentially indicative of the CD45RA protein level in human T cells. We trained
and optimized several classifiers and compared their performance in making an accurate prediction.
Although all of them had acceptable accuracy, two non-linear classifiers, SVM with RBF kernel and
MLP with ReLu and Sigmoid activation functions (using linear SVM features), performed the best
and almost perfectly predicted the CD45RA labels of unseen cells.

The key advantage of this classifier is its ability to overcome the technical limitations associated
with short-read sequencing, which has historically struggled with detecting CD45RA and isoform
identification. Consequently, our classifier addresses an unmet need in single-cell transcriptomics
and provides a simple yet valuable tool for immunologists. Recent advances in long-read sequencing
technologies, such as Oxford Nanopore, have shown promise in addressing some of the limitations of
short-read sequencing, especially in resolving complex isoforms and alternative splicing events[50].
There is ongoing research and development to explore the use of long-read sequencing technologies,
like Oxford Nanopore, for single-cell RNA-seq[51]. However, despite these advances, long-read
sequencing remains relatively expensive and less accessible for many researchers. Isoform prediction
from raw sequencing reads has been an area of active research, with methods such as StringTie[52]
and Cufflinks[53] developed to address this challenge. While these methods have demonstrated
success in predicting isoforms, they can be computationally intensive and may require specialized
expertise.
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Table 5: Recall of Predictions in Training and Testing Datasets
Classifier Training (%) Testing(%)

LR 98.69 82.85
SVM(linear) 87.65 76.28
SVM(RBF) 98.90* 83.94*
Stack 92.27 79.93
MLP (linear SVM features) 86.14 74.45
MLP (RBF SVM features) 94.78 83.58

Table 6: Percentage of Misclassification in Hard-to-Classify Clusters (Training&Testing)
Training(%) Testing(%)

Classifiers Naive/TCM (C1) TEM/TEMRA (C3) Naive/TCM (C1) TEM/TEMRA (C3)

LR 1.21* 12.05 30.19* 19.32*
SVM(linear) 22.33 12.05 39.62 22.73
SVM(RBF) 2.19 0.65* 31.13 21.59
Stack 9.71 7.82 33.02 21.59
MLP (linear SVM features) 21.36 11.07 38.68 23.86
MLP (RBF SVM features) 14.56 6.84 32.08 22.73

The foundation of this study is the CITE-seq data, which simultaneously profiled the transcriptome
and surface proteins at single-cell resolution [16]. As the technology matures and becomes more
accessible, it is likely that the increased adoption of CITE-seq in the future will address the issue of
CD45RA reporting as well as the identification of other difficult-to-report markers. However, since it
is a relatively new technique that uses DNA-barcoded antibodies for protein detection, which increases
the cost and complexity of the experiment, it has not yet become as popular as the conventional
scRNA-seq. Therefore, it is anticipated that more conventional T-cell scRNA-seq experiments will
still be conducted. In this way, our model can provide insights into analyzing existing and incoming
conventional scRNA-seq datasets easily and cost-effectively.

In conclusion, our study presents a novel CD45RA+/- binary classifier that addresses the challenges
associated with short-read sequencing and provides an efficient solution for immunologists working
with scRNA-seq data. Future work could focus on refining the classifier’s performance and extending
its applicability to other cell markers or transcriptomic technologies. Moreover, integration with
existing bioinformatics pipelines and tools could enhance its utility and enable researchers to uncover
novel insights into the complex world of immune cell biology.

5 Data Availability

The resultant package ScCD45RA can be found at https://github.com/WeldonSchool-
BrubakerLab/ScCD45RA and can be installed from the Python Package Index (PyPI) using the
command "pip install sccd45ra".
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Table 7: Percentage of Misclassification in Hard-to-Classify Clusters (Unseen)
Unseen(%)

Classifiers TEM Act (C5) TEM Rest 1 (C10) TEM Rest 1 (C11)

LR 47.57 27.13 79.81
SVM(linear) 3.80 0.39 2.12
SVM(RBF) 0* 0* 0*
Stack 36.52 13.44 70.58
MLP (linear SVM features) 0.82 0.39 2.50
MLP (RBF SVM features) 13.93 2.97 47.5
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mlp (linear svm features)

E)

F)

Figure 1. Overview of the features, the data, and the prediction made by classifiers. A) Volcano plot of the differentially ex-
pressed genes. x-axis: gene expression level log2 fold change in CD45RA- cells with respect to CD45RA+ cells. y-axis: -log10 q-val-
ue (false discovery rate) of gene’s fold change in CD45RA- with respect to CD45RA+. The threshold of the magnitude of the DE 
genes’ log2 FC across CD45RA+/- to be considered distinguished enough to be reported was set at 2. B) Uniform manifold approx-
imation and projection (UMAP) of cell subsets in the CITE-seq data. Colors represent different Leiden clusters. C) Visualization of 
the CD45RA true label in the CITE-seq data. D) Precision/Recall curve during the training of all 6 classifiers. AP, Average Precision. 
E), F) Visualization of classifiers’ predictions in the E) training data and F) testing data embedded on the UMAP coordinates. The first 
subplot in each plot, as its title “True CD45RA Label” indicates, shows the true CD45RA label of the training/testing data.
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A)

Figure 2. Misclassification and hard-to-classify clusters in the training/testing CITE-seq dataset. A), B) Visualization of classi-
fiers’ wrong predictions (misclassification) in the A) training data, and B) testing data embedded on the UMAP coordinates. The first 
subplot in each plot shows the Leiden clustering as a reference. C) Expression (log-transformed corrected counts) of well-studied T 
marker genes in clusters 1 and 3 of the CITE-seq data. D) Visualization of T subsets marker expression in CITE-seq data on UMAP.

B)

C)

Incorrect
Correct

mlp (linear svm features) error

mlp (linear svm features) error

D)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541821doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541821
http://creativecommons.org/licenses/by/4.0/


A)

Figure 3. Misclassification and hard-to-classify clusters in the unseen dataset. A) Visualization of classifiers’ predictions in the 
unseen data embedded in the UMAP coordinates. Given the unseen data was reported as all CD45RA-, which should not have any 
CD45RA+ cells, this plot also visualizes classifiers’ wrong predictions (misclassification) in the unseen data. The first subplot in each 
plot shows the Leiden clustering as a reference. B) Expression (log-transformed corrected counts) of well-studied T marker genes in 
clusters 1 and 3 of the CITE-seq data. C) Visualization of T subsets marker expression in the unseen data on UMAP.
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