

1

2 **Antimicrobial peptide glatiramer acetate targets *Pseudomonas aeruginosa***
3 **lipopolysaccharides to breach membranes without altering**
4 **lipopolysaccharide modification**

5

6

7 Ronan A. Murphy¹, Jade Pizzato², Leah Cuthbertson¹, Akshay Sabnis², Andrew Edwards²,
8 Laura M. Nolan^{1,3}, Thomas Vorup-Jensen⁴, Gerald Larrouy-Maumus², Jane C. Davies^{1,5}

9

10 ¹National Heart and Lung Institute, Imperial College London, London, UK

11 ²Centre for Bacterial Resistance Biology, Imperial College London, London, UK

12 ³Quadram Institute Bioscience, Norwich Research Park, Norwich, UK

13 ⁴Department of Biomedicine, Aarhus University, Aarhus, Denmark

14 ⁵Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, Guy's & St
15 Thomas' Trust, London, UK

16

17

18 **Keywords:** *Pseudomonas aeruginosa*; glatiramer acetate; antimicrobial peptide;
19 lipopolysaccharide; drug repurposing; cystic fibrosis; antibiotic resistance

20

21 Running title: GA and *Pseudomonas aeruginosa* LPS

22

GA and *P. aeruginosa* LPS

23 ABSTRACT

24

25 Antimicrobial peptides (AMPs) are key components of innate immunity across all kingdoms
26 of life. Both natural and synthetic AMPs are receiving renewed attention in the efforts to
27 combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-
28 negative pathogen *Pseudomonas aeruginosa* is one of the most concerning infectious
29 bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections
30 are difficult to eradicate and are associated with increased morbidity and mortality. Cationic
31 AMPs exploit the negative charge of lipopolysaccharides (LPS) on *P. aeruginosa* to bind to and
32 disrupt the bacterial membrane(s) and cause lethal damage. *P. aeruginosa* modifies its LPS,
33 via environmental or genetic factors, to neutralise the charge of the cell and evade AMP
34 killing. Free-LPS is also a component of CF sputum, as is anionic extracellular DNA (eDNA),
35 each of which can bind AMPs by electrostatic interaction. Both free LPS and eDNA also feed
36 into pro-inflammatory cycles. Glatiramer acetate (GA) is a random peptide co-polymer of
37 glycine, lysine, alanine, and tyrosine and used as drug in the treatment of multiple sclerosis
38 (MS); we have previously shown GA to be an AMP which synergises with tobramycin against
39 *P. aeruginosa* from CF, functioning via bacterial membrane disruption. Here, we demonstrate
40 direct binding and sequestration/neutralisation of *P. aeruginosa* LPS in keeping with GA's
41 ability to disrupt the outer membrane. Binding and neutralisation of eDNA was also seen. At
42 CF-relevant concentrations, however, neither strongly inhibited membrane disruption by GA.
43 Furthermore, in both type strains and clinical CF isolates of *P. aeruginosa*, exposure to GA did
44 not result in increased modification of the Lipid A portion of LPS or in increased expression of
45 genetically encoded systems involved in AMP sensing and LPS modification. With this low
46 selective pressure on *P. aeruginosa* for known AMP resistance mechanisms, the potential to
47 neutralise pro-inflammatory CF sputum components, as well as the previously described
48 enhancement of antibiotic function, GA is a promising candidate for drug repurposing.

49

50

51

GA and *P. aeruginosa* LPS

52 INTRODUCTION

53

54 The efficacy of antibiotics in treating bacterial infections is decreasing due to antimicrobial
55 resistance (AMR) and the costs continue to mount globally in morbidity and mortality ^{1–5}. New
56 tools and strategies are required to deal with increasing AMR, particularly in the absence of
57 development and approval of new antibiotics ^{6–9}. *Pseudomonas aeruginosa* is of particular
58 concern in AMR due to its innate, acquired and adaptive resistance mechanisms. It is
59 considered by the World Health Organization (WHO) to be of Critical priority for development
60 of new antimicrobials ¹⁰. *P. aeruginosa* is a ubiquitous environmental gram-negative
61 bacterium which infects opportunistically across a variety of bodily sites particularly when
62 immunity to infection has been compromised ¹¹.

63 *P. aeruginosa* is especially associated with infections in the lungs of people with cystic fibrosis
64 (CF) where it results in both acute and chronic infections and results in worse long-term
65 outcomes ^{12–16}. Antibiotic treatments of infections in CF pose their own, unique set of
66 challenges, on top of those of AMR, including the physical barrier of the characteristic
67 dehydrated CF airway surface liquid (ASL), an acidified environment and the recalcitrant
68 lifestyle of the bacterial biofilm ^{17–19}.

69 In response to the demands of the AMR crisis, attention has increasingly turned to
70 antimicrobial peptides (AMPs); short, usually cationic and amphipathic peptides which occur
71 naturally across the kingdoms of life as a central part of innate immunity ^{20,21}. AMPs mostly
72 function as bacterial membrane disruptors, weakening or breaching the bacterial cell
73 envelope (CE) and causing membrane collapse and cell death. The ‘antibiotic-of-last-resort’
74 colistin (CST) is an AMP which has increasingly come to prominence in response to the loss of
75 efficacy of other antibiotic classes ²². Many AMPs (both natural and synthetic) are currently
76 in development or in trials as direct acting agents or as antibiotic adjuvants ^{8,23}. While few
77 AMPs have made it to the clinic to-date, predominantly for issues of host cell cytotoxicity at
78 antibacterial concentrations, they have potential advantages over other antimicrobial classes
79 in terms of resistance generation which has generally been shown to occur less frequently
80 with AMPs ^{24–26}.

GA and *P. aeruginosa* LPS

81 Breaching the membrane of gram-negative bacteria is a major challenge for antibiotic
82 treatments; with two membranes and the added protection of lipopolysaccharide (LPS),
83 accessing the cell cytoplasm is extremely difficult for antimicrobials²⁷. Cationic AMPs attack
84 bacterial cells through electrostatic interactions with the CE; the positively charged AMP
85 attaches to the negatively charged membrane, often via the outermost aspect of the cell, the
86 LPS in the case of *P. aeruginosa*^{21,28,29}. As a defence, *P. aeruginosa* strains can modify their
87 LPS structures by addition of positive charges, neutralising the charge of the cell and reducing
88 AMP binding affinity³⁰. This can take the form of exploiting cations in their environment
89 (preferentially divalent cations Mg²⁺ and Ca²⁺) or by genetically encoded mechanisms^{31,32}.
90 The best studied of these modifications is the addition of 4-amino-4-deoxy-L-arabinose (L-
91 Ara4N) to the Lipid A portion of LPS which is carried out by the Arn operon (ArnBCADTEF) and
92 mediated by a series of two component systems (TCSs) of *P. aeruginosa* (PhoPQ, PmrAB,
93 CprSR, ParSR and ColSR)³³. Mutations in these TCSs lead to AMP resistance with true CST
94 resistance resulting from changes which deactivate TCS sensor gene(s) leading to constitutive
95 Arn operon expression and LPS modification^{32,34-38}. As well as L-Ara4N, other encoded Lipid
96 A modification types include additions of phosphate, C10:3OH species, palmitate and
97 combinations of these with L-Ara4N- and palmitate-modified LPS being associated with
98 increased airway disease severity^{32,39}.

99 Free-LPS (shed by bacteria and from dead bacteria) is a significant component of the sputum
100 of people with CF, as is extracellular DNA (eDNA), with both having been shown to have
101 detrimental effects on the host^{40,41}. LPS is highly pro-inflammatory and its presence in the CF
102 lung contributes to cycles of inflammation seen in that environment and eDNA is a vital
103 component of bacterial biofilms, promoting biofilm development and bacterial recalcitrance.
104 Both LPS and eDNA feed into cycles of infection and inflammation in CF⁴²⁻⁴⁵. Presence of both
105 may also have consequences for AMP activity in the CF lung, as they are negatively charged
106 and capable of binding and sequestering cationic AMPs as well as competing for divalent
107 cations^{46,47}. Conversely, the affinity of AMPs for LPS has been proposed as being beneficial,
108 leading to sequestration and neutralisation of free-LPS thereby limiting its pro-inflammatory
109 capacity^{48,49}.

110 We have previously shown *in vitro* that the multiple sclerosis (MS) drug glatiramer acetate
111 (GA) also functions as an AMP and synergises with the aminoglycoside antibiotic, tobramycin,

GA and *P. aeruginosa* LPS

112 against *P. aeruginosa* from people with CF^{50,51}. That work also showed GA is a bacterial
113 membrane disruptor, in common with many AMPs²¹. Produced by the random
114 polymerisation of the four N-carboxy- α -amino acid anhydrides of L-glutamate, L-lysine, L-
115 alanine, and L-tyrosine, in MS GA functions as an immunomodulator with much of its known
116 activity shown to be anti-inflammatory in that condition⁵²⁻⁵⁵.

117 Having previously demonstrated GA's ability to permeabilise *P. aeruginosa* cells and breach
118 the CE while sensitising them to antibiotic treatment, here, we examine whether GA interacts
119 with *P. aeruginosa* LPS via electrostatic interaction as its point of contact with the bacterial
120 cell in common with other cationic AMPs. With the known interplay at a variety of levels
121 between AMPs, LPS, divalent cations and eDNA and the presence and importance of each in
122 the lungs of people with CF, it is necessary to understand their implications for GA activity in
123 the CF airway. We also tested whether exposure to GA resulted in *P. aeruginosa* mounting a
124 defensive response in the manner seen for other AMPs with modification of LPS and Lipid A.
125 With a proposed benefit of AMPs being the decreased likelihood with which they generate
126 resistance, it is important to know if GA is stimulatory to the TCSs commonly associated with
127 AMP protection and LPS modification and potentially selective for resistance.

128

129 **MATERIALS AND METHODS**

130

131 **Strains and growth conditions**

132 *P. aeruginosa* type strains PAO1, PA14 and PAK and 11 clinical *P. aeruginosa* isolates were
133 used in this study. The panel of clinical strains, which was assembled for a previous study,
134 constitutes isolates from the CF Bacterial Repository at the National Heart and Lung Institute,
135 Imperial College London from airway samples of people with CF at the Royal Brompton
136 Hospital, London (**Supplementary Table 1**)⁵¹. Bacteria were stored in Microbank vials (Pro-
137 Lab Diagnostics) at -80°C. Isolates were grown overnight at 37°C on LB agar (Merck). Single
138 colonies were inoculated into Mueller-Hinton broth (MHB) (Merck) and incubated overnight
139 at 37°C with agitation at 200 r.p.m.

140 **LPS quantification**

GA and *P. aeruginosa* LPS

141 LPS was quantified as Endotoxin Units (EU) using a limulus amoebocyte lyase (LAL) Endotoxin
142 Quant Kit (ThermoFisher), per manufacturer's instructions. *P. aeruginosa* LPS (Merck) at
143 physiologically relevant CF concentrations of 0.01 and 0.02 mg/mL and the supraphysiological
144 concentration of 0.1 mg/mL was incubated at 37°C for 30 mins, with and without 50 mg/L GA
145 (Biocon), as was GA without LPS^{39,56,57}. Samples were diluted 1:1000 in phosphate buffered
146 saline (PBS), to bring them within the sensitivity range of the kit, before addition to the
147 remaining kit components along with blanks and standards. Each condition was tested in
148 triplicate. The optical density was measured at 405 nm (OD₄₀₅) in FLUOstar Omega
149 platereader (BMG Labtech). Blanked Standards were fitted using simple linear regression to
150 create a standard curve (GraphPad Prism). Concentrations of samples in EU were interpolated
151 from the standard curve via their blanked OD₄₀₅ results. Neutralisation of LPS by GA was
152 calculated as the EU of LPS in the presence of GA as a percentage of the EU of LPS in the
153 absence of GA, at each LPS concentration tested, and compared to No Neutralisation (i.e. 0
154 %).

155 **DNA extraction and eDNA quantification**

156 Bacterial DNA was extracted from strains PAO1, PA14 and PAK from $\sim 1 \times 10^8$ CFU using
157 NucleoSpin Microbial DNA Mini kit (Macherey-Nagel), as per manufacturer's instructions.
158 Purified DNA was stored at -20°C. DNA concentrations were measured on a NanoDrop
159 (ThermoFisher) and adjusted to 100 mg/mL. DNA from the individual strains were pooled
160 together for use as eDNA and diluted to required final concentrations.

161 Concentrations of eDNA were chosen as a CF physiologically relevant concentration (1
162 mg/mL) and a supraphysiological concentration (10 mg/mL)⁵⁸. Each eDNA concentration was
163 combined with GA at concentrations of 0, 6.25, 12.5, 25, 50 and 100 mg/L and incubated at
164 37°C for 30 mins, as were eDNA-free GA solutions. Propidium iodide (PI) was added to the
165 suspensions to a concentration of 1 μ g/mL and fluorescence measured in a platereader at
166 excitation 544 nm, emission 610 nm, in the wells of a black microtitre plate (ThermoFisher)
167 (5 wells of each). Neutralisation of eDNA by GA was calculated as the fluorescence intensity
168 of eDNA in the presence of GA as a percentage of the fluorescence intensity of eDNA in the
169 absence of GA, at each eDNA concentration tested. Each was compared to No Neutralisation
170 at the same eDNA concentration (i.e. 0 %).

GA and *P. aeruginosa* LPS

171 **Conditions for membrane disruption assays**

172 The effects of *P. aeruginosa* LPS on the previously reported rapid activity of GA against *P.*
173 *aeruginosa* membranes were tested in two different modes. Firstly, a 'Pre-incubation' was
174 performed to test the ability of LPS to sequester GA where LPS and GA were incubated
175 together at 37°C for 30 mins before administration to cell suspensions. Secondly, in the
176 'Background' of the assays, to test the effect of LPS presence on administered GA activity, LPS
177 was added to each assay buffer. LPS-only and GA-only solutions were also incubated under
178 the same conditions. In both cases final concentrations of *P. aeruginosa* LPS of 0.01, 0.02 and
179 0.1 mg/mL and 50 mg/L GA were used (as above). To further test for GA-LPS interactions, the
180 protective effect of Mg²⁺ cations were added to assay buffers as MgSO₄ (Merck) at CF
181 physiologically relevant levels (0.5 and 1 mM)^{59,60}. Finally, to test for GA sequestration by
182 eDNA, 50 mg/L GA and 1 mg/mL eDNA were incubated together at 37°C for 30 mins before
183 administration to cell suspensions. eDNA-only and GA-only solutions were also incubated
184 under the same conditions. Assay specific buffers (see below) were used in each case.

185 **Outer membrane disruption**

186 Disruption of the bacterial outer membrane (OM) of *P. aeruginosa* was measured using the
187 fluorescent probe 1-N-Phenylnaphthylamine (NPN) (Merck) at a final concentration 10 μM⁶¹.
188 Late-exponential phase cultures of *P. aeruginosa* were washed twice with 5 mM HEPES and
189 adjusted to OD₆₀₀ 0.5 in appropriate buffer depending on whether a Background or Pre-
190 incubation experiment was required. Conditions were tested as outlined above. Controls
191 included dye free wells, GA-only treated bacteria, wells without GA treatments but containing
192 LPS/eDNA/Mg²⁺. Triplicate technical repeats were carried out and averaged for each
193 biological replicate performed. Assays were performed in black microtitre plates
194 (ThermoFisher) in 200 μL volumes and fluorescence was measured in a platereader at
195 excitation 355 nm, emission 460 nm every 30 secs for 15 mins. Mean NPN Uptake Factor over
196 15 mins was calculated as ([Fluorescence of Sample with NPN – Fluorescence of Sample
197 without NPN] / [Fluorescence of buffer with NPN – Fluorescence of buffer without NPN]). At
198 least three biological replicates were performed on each *P. aeruginosa* type strain.
199 Comparisons to GA activity were performed separately for each element tested (LPS or
200 divalent cations or eDNA).

GA and *P. aeruginosa* LPS

201 **Cytoplasmic membrane depolarisation**

202 Depolarisation of the cytoplasmic membrane (CM) of *P. aeruginosa* isolates was measured
203 using the fluorescent probe 3,3'-Dipropylthiadicarbocyanine Iodide (DiSC₃(5)) (Thermo
204 Scientific) ⁶². Late-exponential phase cultures of *P. aeruginosa* were washed twice and
205 adjusted to an OD₆₀₀ of 0.05 in 5 mM HEPES-20 mM glucose. DiSC₃(5) was added to the
206 bacterial cultures to a concentration of 1 µM and aliquoted to the wells of a black microtitre
207 plate in 200 µL volumes with triplicate technical repeats. The fluorescent signal of the dye
208 was allowed to quench for 30 mins in the dark before addition of test solutions. Conditions
209 were tested as outlined above. Controls included dye free wells, GA-only treated bacteria,
210 wells without GA treatments but containing LPS/eDNA/Mg²⁺. Fluorescence was measured in
211 a platereader at excitation 544 nm, emission 620 nm every 30 secs for 15 mins. Fluorescent
212 signals of samples were normalised to a cell free background with identical components and
213 averaged. At least three biological replicates were performed on each *P. aeruginosa* type
214 strain. Comparisons to GA activity were performed separately for each element tested (LPS
215 or divalent cations or eDNA).

216 **Cell envelope permeability**

217 Permeabilisation of the *P. aeruginosa* CE was measured using the fluorescent dye PI as per
218 manufacturer's instructions (Merck, UK). Late-exponential phase cultures of *P. aeruginosa*
219 were washed twice and adjusted to an OD₆₀₀ of 0.5 in PBS. PI was added to the bacterial
220 cultures to a concentration of 1 µg/mL. Conditions were tested as outlined above.
221 Fluorescence was measured in a platereader at excitation 544 nm, emission 610 nm every 30
222 secs for 1 hr in the wells of a black microtitre plate in 200 µL volumes. Technical triplicates
223 were performed, blanked and signal averaged in each biological experiment. Area under the
224 curve (AUC) of the PI fluorescence intensity was computed using the trapezoid rule over 1 hr
225 (GraphPad Prism). At least three biological replicates were performed on each *P. aeruginosa*
226 type strain. Comparisons to GA activity were performed separately for each element tested
227 (LPS or divalent cations or eDNA).

228 **AMP exposure**

229 Overnight cultures of *P. aeruginosa* grown in MHB were centrifuged (3500 g, 15 mins),
230 supernatant discarded, bacterial pellets resuspended in fresh media and cultures adjusted to

GA and *P. aeruginosa* LPS

231 OD₆₀₀ 0.05 (5×10^6 CFU/mL) in MHB. AMPs were added to *P. aeruginosa* type strain cultures
232 at the following final concentrations; 50 mg/L GA, 0.5 mg/L CST or 16 mg/L LL-37, along with
233 untreated cultures. Clinical strains were incubated with No Treatment or 50 mg/L GA. After
234 AMP addition, cultures were incubated at 37°C with agitation at 200 r.p.m. and bacteria
235 allowed to grow to mid-log phase (~4 hrs). Triplicate biological replicates of each strain at
236 each condition were performed with the exception of LL-37 exposure, which was performed
237 in duplicate due to resource limitation.

238 After incubation, OD₆₀₀ was measured and $\sim 1 \times 10^8$ CFU were harvested and placed in a 1.5
239 mL eppendorf and centrifuged at 15000 g for 10 mins. The supernatant was removed and the
240 pellet was used for RNA extraction and gene expression (details below). The remainder of
241 each culture was centrifuged (3500 g, 15 mins), supernatant discarded and pellet
242 resuspended in 1 mL sterile PBS used for MALDI-TOF mass spec analysis of Lipid A (details
243 below).

244 **Gene expression**

245 Bacterial RNA was extracted from $\sim 1 \times 10^8$ CFU after AMP exposure (above) using Direct-zol
246 RNA Miniprep kit (Zymo) as per manufacturer's instructions. Expression levels of TCS response
247 regulator genes *phoP*, *pmrA*, *cprR*, *parR*, Arn operon gene *arnB* and housekeeping gene *rpsL*
248 were measured using primers from Lee *et al.* (2014) (ThermoFisher)³⁴. Quantitative Real-
249 Time PCR was performed using KAPA SYBR FAST One-Step kit (KAPA) on a QuantStudio 7 Flex
250 (ThermoFisher) with the following cycling conditions; 5 mins at 42°C for Reverse
251 Transcription, 3 mins at 95°C for Enzyme Activation followed by 40 cycles of 10 secs at 95°C
252 (Denaturation) and 30 secs at 60°C (Annealing/Extension). Triplicate wells of each PCR were
253 performed as technical replicates. Cycle thresholds (Ct) for each well were calculated by the
254 QuantStudio analysis software (ThermoFisher) and averaged. Expression of each gene was
255 normalised to the expression of *rpsL* (ΔCt) and relative expression of each gene under AMP
256 stimulation was normalised to its expression under No Treatment ($\Delta\Delta Ct$).

257 **MALDI-TOF**

258 Analysis of Lipid A conformations were carried out as previously described⁶³. Briefly, bacteria
259 were centrifuged at 17000 $\times g$ for 2 mins, supernatant discarded and the pellet was washed
260 three times with 300 μ L of ultrapure water and resuspended to a density of McFarland 20 as

GA and *P. aeruginosa* LPS

261 measured using a McFarland Tube Densitometer followed by acetic acid hydrolysis 1% at final
262 concentration at 98°C for 1 hour. After 2 washes with ultrapure water, the hydrolysate was
263 suspended in 50 µL and a volume of 0.4 µL of this suspension was loaded onto the MALDI
264 target plate overlaid with 1.2 µL of Norharmane matrix (Sigma-Aldrich) solubilised in
265 chloroform/methanol (90:10 v/v) to a final concentration of 10 mg/mL.

266 The samples were loaded onto a disposable MSP 96 target polished steel BC (Bruker Part-No.
267 8280800). The bacterial suspension and matrix were mixed directly on the target by pipetting.
268 The spectra were recorded in the linear negative-ion mode (laser intensity 95 %, ion source 1
269 = 10.00 kV, ion source 2 = 8.98 kV, lens = 3.00 kV, detector voltage = 2652 V, pulsed ion
270 extraction = 150 ns). Each spectrum corresponded to ion accumulation of 5,000 laser shots
271 randomly distributed on the spot. The spectra obtained were processed with default
272 parameters using FlexAnalysis v.3.4 software (Bruker Daltonik).

273 For each biological replicate performed, the abundance of native and modified Lipid A were
274 enumerated via the AUCs of their spectra at each mass to charge ratio (*m/z*) where each
275 appears (**Supplementary Table 2**). Using the total values across all *m/z* where each
276 modification is seen, the ratio Native:Modified was calculated for each modification type
277 (phosphate, C10:3OH, palmitate and L-Ara4N). One biological replicate of strain GA899 was
278 lost during processing and subsequent data for this strain is therefore for biological
279 duplicates.

280 **Genomics**

281 DNA extractions for genomic sequencing were performed using Maxwell™ RSC Cell DNA
282 Purification Kit and automated extraction on the Maxwell RSC 48 Instrument (Promega). The
283 DNA concentration was evaluated using a Qubit dsDNA BR assay kit and Qubit Fluorometer
284 (ThermoFisher). Sequencing was on a standard Illumina HiSeq platform.

285 Genomes were assembled with Shovill and annotated using Prokka with quality control by
286 Quast on the Galaxy platform^{64–72}. The sequences of the genes of two component systems
287 PhoPQ, PmrAB, CprSR, ParSR and ColSR of PAO1 were taken from <https://pseudomonas.com/>
288 and used to extract their corresponding sequences from the genomic data of the 11 clinical
289 *P. aeruginosa* using the MyDbFinder tool (<https://cge.food.dtu.dk/services/MyDbFinder/>)⁷³.
290 Gene sequences from clinical strains were aligned with those from PAO1 using MEGA X and

GA and *P. aeruginosa* LPS

291 non-synonymous SNPs identified ⁷⁴. Gene accession numbers can be found in Supplementary
292 Table 3.

293 **Statistics**

294 Unpaired, non-parametric data was analysed using analysis of variation (ANOVA) Kruskal-
295 Wallis method with Dunn's multiple correction for non-parametric (adjusted p values
296 reported). Membrane assay data biological replicates were log transformed and compared
297 with Welch's ANOVA with Dunnett's T3 for multiple comparison and with Welch's t test for
298 two datasets. Paired comparisons of multiple non-parametric datasets used Friedman ANOVA
299 test method, with Dunn's multiple correction (adjusted p values reported). Paired
300 comparisons of two non-parametric datasets used Wilcoxon tests. A significant difference
301 was reported with p < 0.05. Biological replicates comprise means of technical replicates. All
302 analyses and data presentation were performed in GraphPad Prism version 9.0 or later.

303

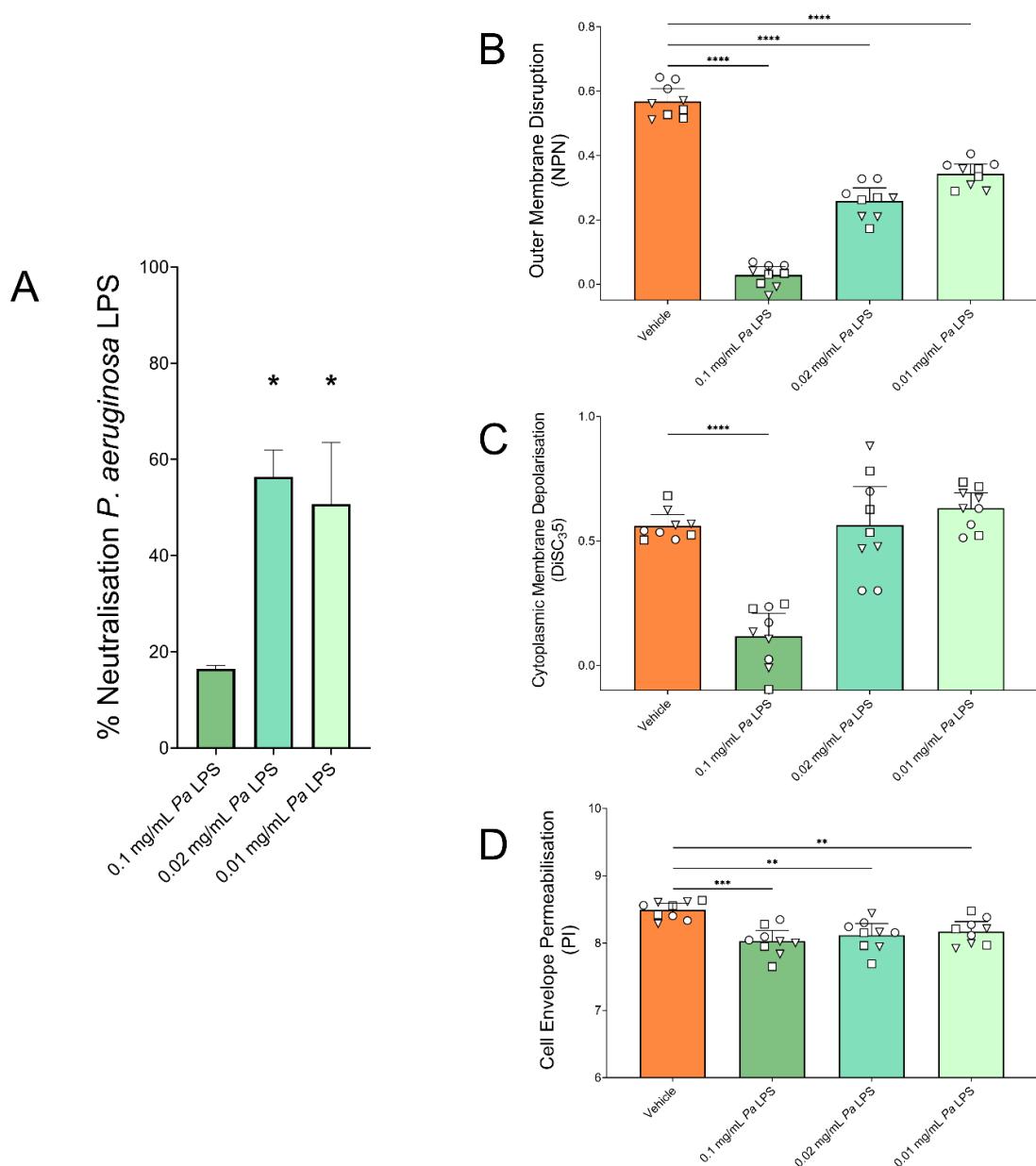
304 **RESULTS**

305

306 **Bilateral sequestration of GA and *P. aeruginosa* LPS**

307 We first tested whether GA interacted directly with *P. aeruginosa* LPS as a potential
308 mechanism of action of the drug. A known active concentration of GA (50 mg/L) was
309 incubated with concentrations of LPS at supraphysiological level (0.1 mg/mL) and two
310 concentrations relevant to the CF lung environment (0.02 and 0.01 mg/mL) at 37°C for 30
311 mins ^{39,50,51,56,57}. We determined the availability of free LPS with an Endotoxin detection kit
312 reasoning that if GA targets LPS via electrostatic interactions the resulting GA-LPS complex
313 would reduce the availability of LPS for quantification, as has been shown for other AMPs
314 ^{48,75-77}. GA significantly neutralised LPS at concentrations of 0.02 (56.9 ± 4.7 %) and 0.01
315 mg/mL (50.7 ± 12.8 %) (p < 0.05) indicating direct binding of GA to LPS (**Figure 1A**).

316 The converse, sequestration of GA by LPS, was tested for using GA's known membrane
317 disruption properties as a proxy, due to the difficulties in accurately assaying for a highly
318 heterogeneous peptide such as GA which can take on > 10³⁰ different peptide chains ⁵¹. We


GA and *P. aeruginosa* LPS

319 assessed the impact on the outer membrane (OM), cytoplasmic membrane (CM) and on the
320 overall cell envelope (CE) permeability using *P. aeruginosa* LPS at the same concentrations:
321 supraphysiological (0.1 mg/mL) and CF-lung-relevant (0.02 and 0.01 mg/mL). Disruption of
322 the OM and permeabilisation of the CE of *P. aeruginosa* type strains by GA was significantly
323 reduced after GA had been pre-incubated (37°C for 30 mins) with LPS ($p < 0.01$) (**Figure 1A**,
324 **C**). The highest concentration of LPS tested also significantly reduced the ability of GA to
325 depolarise the bacterial CMs ($p < 0.0001$) (**Figure 1B**). These results indicate that available
326 concentrations of both LPS and GA are reduced by presence of other and that sequestration
327 is bilateral.

328

329

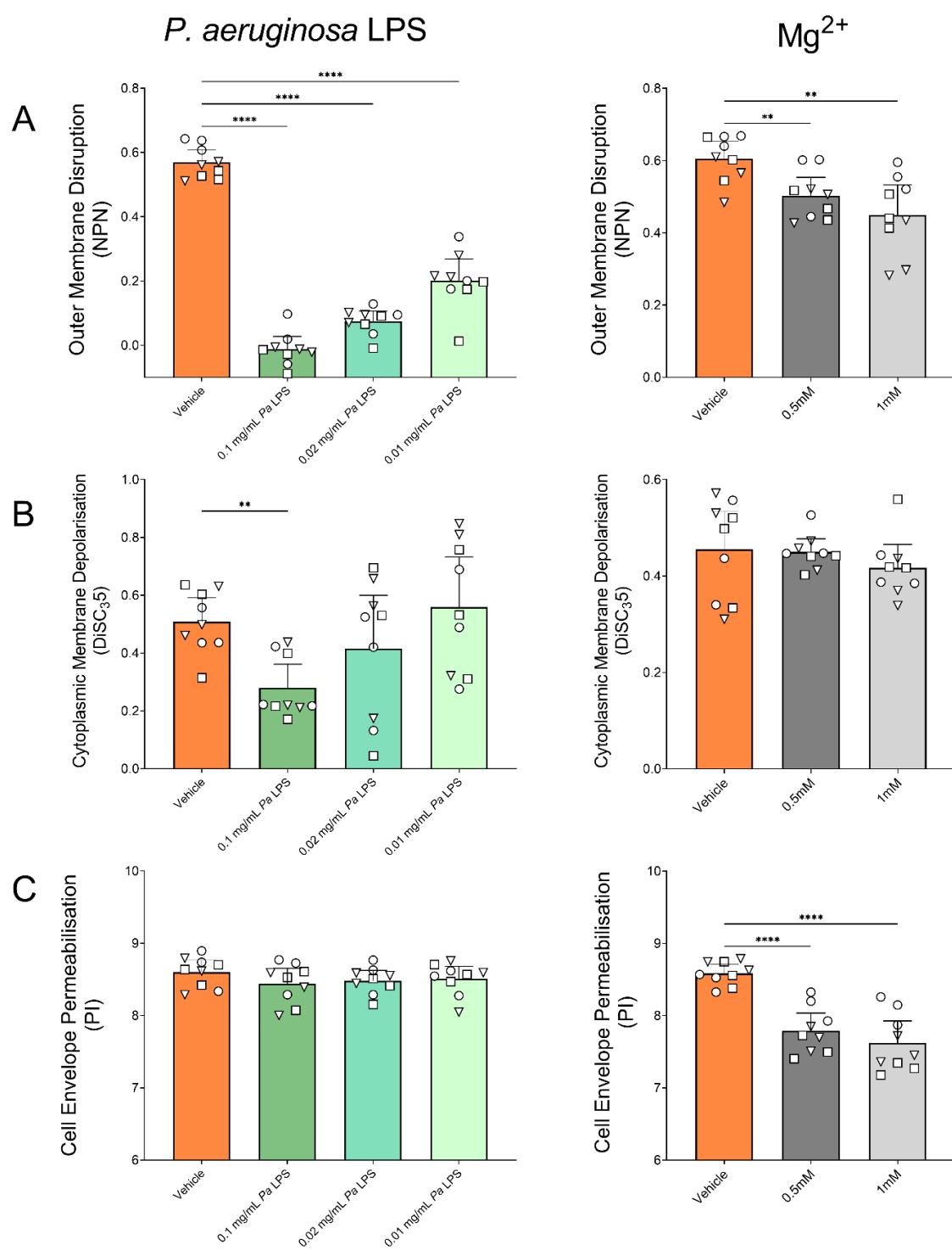
GA and *P. aeruginosa* LPS

330

331 *Figure 1. Bilateral sequestration of GA and P. aeruginosa LPS. A. Neutralisation of P. aeruginosa LPS*
332 *was calculated as the percentage reduction of the quantifiable LPS in the presence of GA at each LPS*
333 *concentration. Incubation of 0.02 (p = 0.0186) and 0.01 mg/mL (p = 0.0499) LPS with GA significantly*
334 *increased neutralisation of LPS, compared to no GA (Kruskal-Wallis test with Dunn's multiple*
335 *comparison). (Median with 95%CI. n = 3). B. The ability of 50 mg/L GA to disrupt the Outer Membrane*
336 *of P. aeruginosa type strains was significantly reduced by 30 mins pre-incubation with all P. aeruginosa*
337 *LPS concentrations tested (each p < 0.0001). C. The ability of 50 mg/L GA to depolarise the Cytoplasmic*
338 *Membrane of P. aeruginosa type strains was significantly reduced by incubation with P. aeruginosa*
339 *LPS concentration of 0.1 mg/mL (p < 0.0001) but not 0.02 mg/mL or 0.01mg/mL. D. The ability of 50*
340 *mg/L GA to permeabilise the Cell Envelope of P. aeruginosa type strains was significantly reduced by*
341 *incubation with all P. aeruginosa LPS concentrations tested – 0.1 (p = 0.0002), 0.02 (p = 0.0024) and*
342 *0.01 mg/mL (p = 0.0031). B-D Log transformed data tested using Welch ANOVA with Dunnett's T3*
343 *multiple comparison. Medians with 95% CIs of biological replicates (n = 9) of P. aeruginosa PAO1 (O),*
344 *PA14 (□) or PAK (△).*

GA and *P. aeruginosa* LPS

345


346 **Membrane perturbing activity of glatiramer acetate in the presence of CF-physiological *P.***
347 ***aeruginosa* LPS and divalent cations concentrations**

348 With the evidence of direct interactions between GA and LPS, and the impact that pre-
349 incubation had on GA's action on bacterial cell membranes, we next tested the ability of GA
350 to function if *P. aeruginosa* LPS was present in the background, as it will be in the CF lung
351 environment. To do this, the previously reported membrane perturbation properties of GA
352 were examined with LPS in the assay buffer, to test the effect of LPS presence on the known
353 rapid action of GA on bacterial membranes. *P. aeruginosa* LPS significantly reduced the OM
354 disruption of strains PAO1, PA14 and PAK at each concentration tested and the highest
355 concentration also reduced CM depolarisation ($p \leq 0.05$) (**Figure 2A, B**). No effect was seen
356 on the ability of GA to permeabilise the CEs at the LPS concentrations tested (**Figure 2C**).

357 The protective properties of Mg^{2+} against GA activity were also tested at physiological
358 concentrations at mid - (0.5 mM) and upper-levels (1 mM)^{59,60}. Both concentrations of Mg^{2+}
359 were protective against GA OM disruption and CE permeabilisation, with significant decreases
360 in GA activity seen ($p < 0.05$) (**Figure 2A, C**), but this was not the case for depolarisation of the
361 CM where no change was seen (**Figure 2B**). These results further support the evidence for
362 cellular LPS as a target for GA binding by indicating competitive displacement between the
363 two cations.

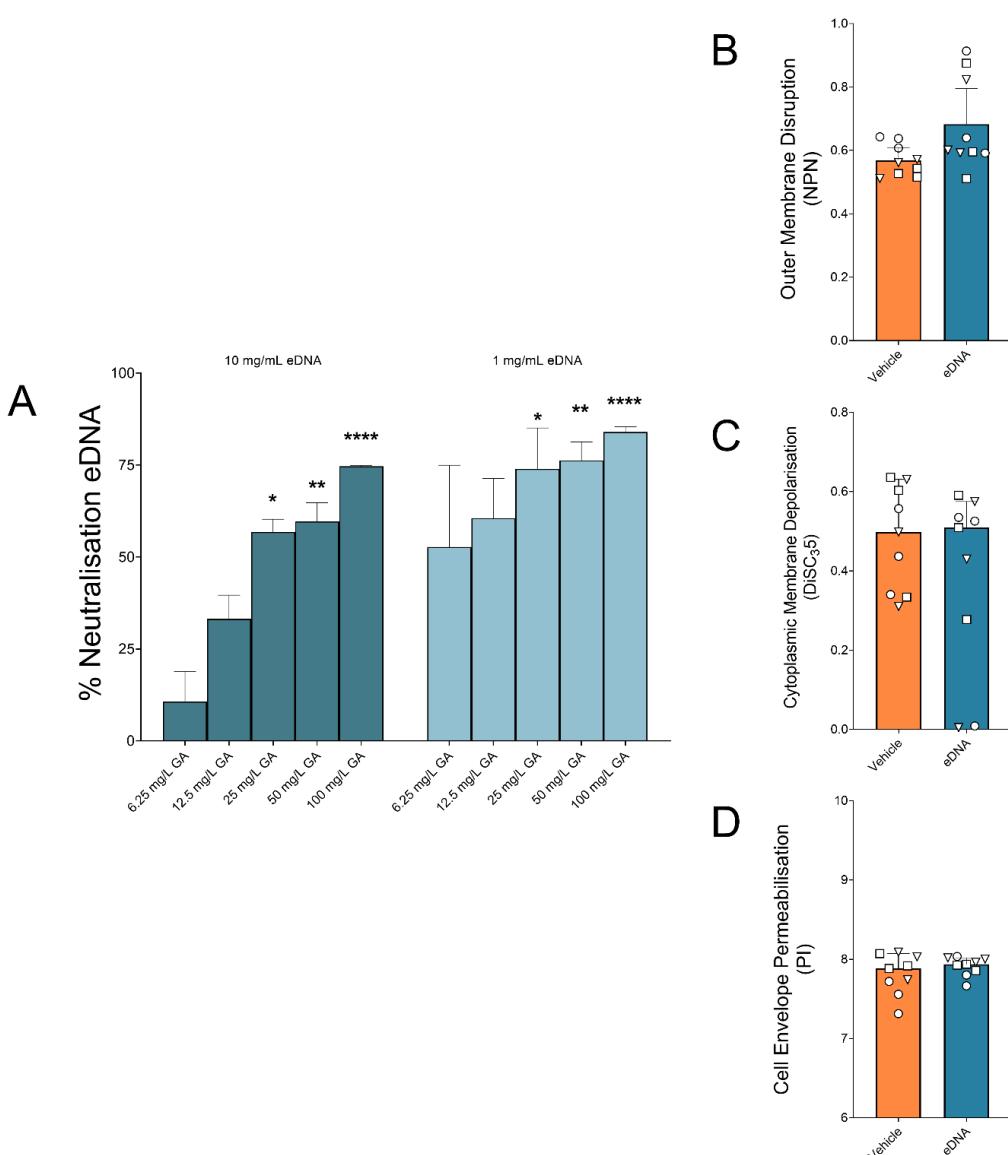
364

GA and *P. aeruginosa* LPS

365

366 *Figure 2. Effect of presence of CF sputum components on membrane perturbations resulting from 50*
367 *mg/L GA in P. aeruginosa strains PAO1, PA14 and PAK. A. Disruption of the OM of P. aeruginosa by GA*
368 *was significantly reduced by each concentration of LPS tested (each p < 0.0001) while Mg²⁺ at 1 (p =*
369 *0.0051) and 0.5 mM (p = 0.0081) both also reduced GA activity. B. Depolarisation of the CMs of P.*
370 *aeruginosa by GA was only significantly reduced by LPS at the supraphysiological concentration of 0.1*
371 *mg/mL (p = 0.001) and was unaltered by Mg²⁺ presence. C. Permeabilisation of the CE of P. aeruginosa*
372 *by GA was not seen for any LPS concentration tested but was significantly reduced by Mg²⁺ (each p <*
373 *0.0001). Log transformed data tested using Welch ANOVA with Dunnett's T3 multiple comparison.*
374 *Medians with 95% CIs of biological replicates (n = 9) of P. aeruginosa PAO1 (○), PA14 (□) or PAK (△).*

GA and *P. aeruginosa* LPS


375

376 **GA binds directly to eDNA**

377 We next wanted to test interactions of GA and eDNA, due to their opposing charges, previous
378 indications of GA-DNA aggregation and the high concentrations of eDNA in CF sputum playing
379 a role in chronic biofilm formation ^{50,78}. With both supraphysiological (10 mg/mL) and
380 physiological (1 mg/mL) concentrations of eDNA, GA reduced detectable eDNA using PI
381 fluorescence in a dose-responsive fashion. Thus, as GA concentrations increased, detectable
382 eDNA decreased, reaching statistical significance by 25 mg/L ($p < 0.05$) (**Figure 3A**). This
383 indicates binding and sequestration of eDNA by GA.

384 Similarly, to the experiments with LPS, we questioned whether such sequestration occurred
385 bilaterally, next assessing whether eDNA binding, reduced the activity of GA. As with LPS,
386 membrane perturbation assays were employed, after incubating GA-eDNA together at a CF-
387 physiological concentration of eDNA (1 mg/mL). Unlike LPS, no significant differences were
388 seen in the ability of GA to perturb the OM, CM and CE of *P. aeruginosa* strains PAO1, PA14
389 and PAK in these assays (**Figure 3B-D**).

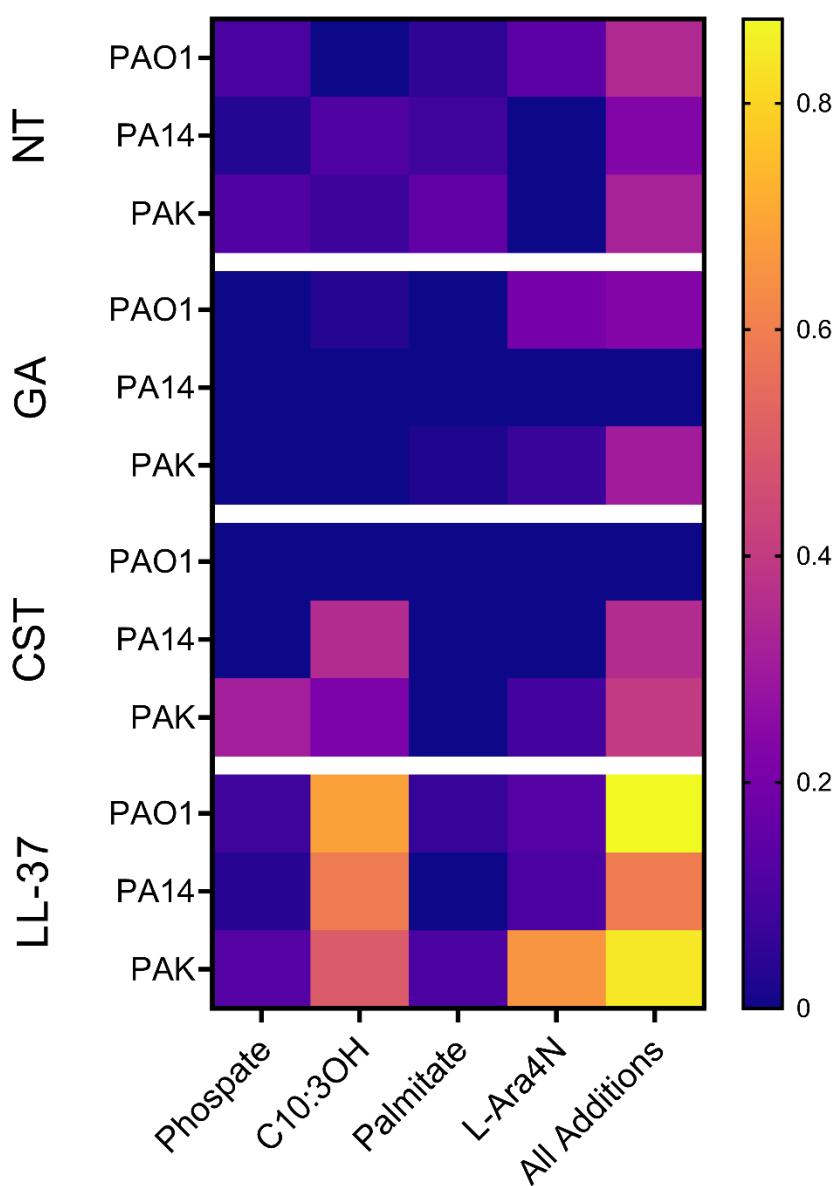
390

391

392 *Figure 3. Effect of GA on eDNA availability and effect of CF-relevant eDNA on GA activity. A.*
393 *Neutralisation of eDNA was calculated as the percentage reduction of the detectable eDNA in the*
394 *presence of GA at each eDNA concentration. All GA concentrations > 25 mg/L significantly increased*
395 *eDNA neutralisation. At 1 mg/mL eDNA, GA at 25 ($p = 0.0111$), 50 ($p = 0.0068$) and 100 mg/mL ($p <$*
396 *0.0001) while at 10 mg/mL eDNA, GA at 25 ($p = 0.0223$), 50 ($p = 0.0027$) and 100 mg/mL ($p < 0.0001$)*
397 *showed neutralisation (Kruskal-Wallis test with Dunn's multiple comparison). (Medians with 95%CI. n*
398 *= 5). The CF-relevant concentration of 1 mg/mL eDNA did not alter the ability of 50 mg/L GA to disrupt*
399 *the OM (B), depolarise the CM (C) or permeabilise the CE (D) of *P. aeruginosa* PAO1 (O), PA14 (□) or*
400 *PAK (△). Welch's t test of Log transformed data. Medians with 95%CI of biological replicates ($n = 9$).*

401

402 **Modification of *P. aeruginosa* Lipid A of type strains after GA and AMP exposure**


403 Having identified the interaction of GA and LPS and in the knowledge that many AMPs target
404 the Lipid A component of LPS for membrane attachment, we next tested the reaction of *P.*

GA and *P. aeruginosa* LPS

405 *aeruginosa* to the targeting of its LPS by GA. *P. aeruginosa* has been shown to react to attack
406 by other AMPs by sensing the peptides via Two Component Systems (TCSs) and modifying the
407 Lipid A portion of its LPS structures, reducing the charge of its cell envelope and vulnerability
408 to cationic AMPs. MALDI-TOF mass spectrometry was used to investigate if exposure to GA
409 induces changes in the Lipid A structures, as Lipid A modification can result in resistance to
410 AMPs⁷⁹. The MALDI-TOF spectra of the strains PAO1, PA14 and PAK were acquired with and
411 without exposure to AMPs (GA, CST and LL-37) and abundances of each Lipid A modification
412 type (additions of phosphate, C10:3OH groups, palmitate and L-Ara4N) were normalised to
413 native Lipid A, by ratio. No significant differences were seen in any modification of Lipid A
414 across the *P. aeruginosa* type strains after GA exposure, when compared to the cultures
415 without GA stress (**Figure 4**). LL-37, as a positive inducer of LPS modification, showed the
416 highest (but non-significant) addition of C10-3OH and L-Ara4N in the 3 strains⁸⁰. No significant
417 changes in LPS Lipid A modification resulted from CST exposure in the CST-sensitive type
418 strains.

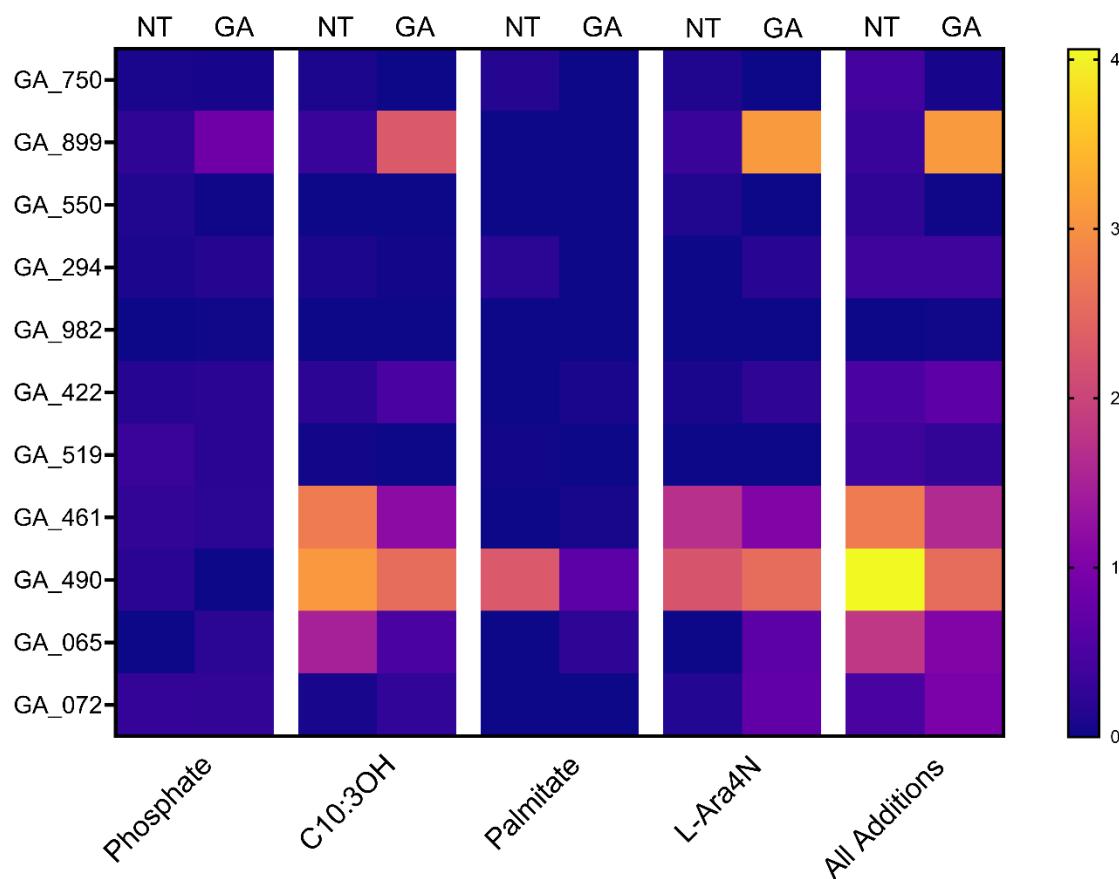
419

GA and *P. aeruginosa* LPS

420

421 *Figure 4. Additions to LPS Lipid A of *P. aeruginosa* type strains PAO1, PA14 and PAK in response to AMP*
422 *exposure. Heatmap of ratios of Native Lipid A:Modified Lipid A for each modification type. No*
423 *significant differences from No Treatment (NT) were seen for any modification type as the result of any*
424 *AMP tested; 50 mg/L GA, 0.5 mg/L CST or 16 mg/L LL-37 (Friedman test with Dunn's multiple*
425 *comparison). Median values of triplicate biological replicates, except LL-37 which was run in duplicate*
426 *due to resource limitation.*

427


428 **Modification of *P. aeruginosa* Lipid A of clinical strains from people with CF after GA**
429 **exposure**

430 We next investigated changes in the Lipid A structures of 11 clinical *P. aeruginosa* isolates
431 from people with CF, after the bacteria were exposed to GA, determining their lipid A profiles

GA and *P. aeruginosa* LPS

432 with and without treatment with GA and using clinical isolates which had already be
433 characterised for GA-antibiotic synergy ⁵¹. As previously, each modification type was
434 examined as a ratio with native Lipid A and GA-exposed cultures compared to untreated.
435 Clinical respiratory strains from people with CF showed no significant changes for any
436 modification type of Lipid A (**Figure 5**).

437

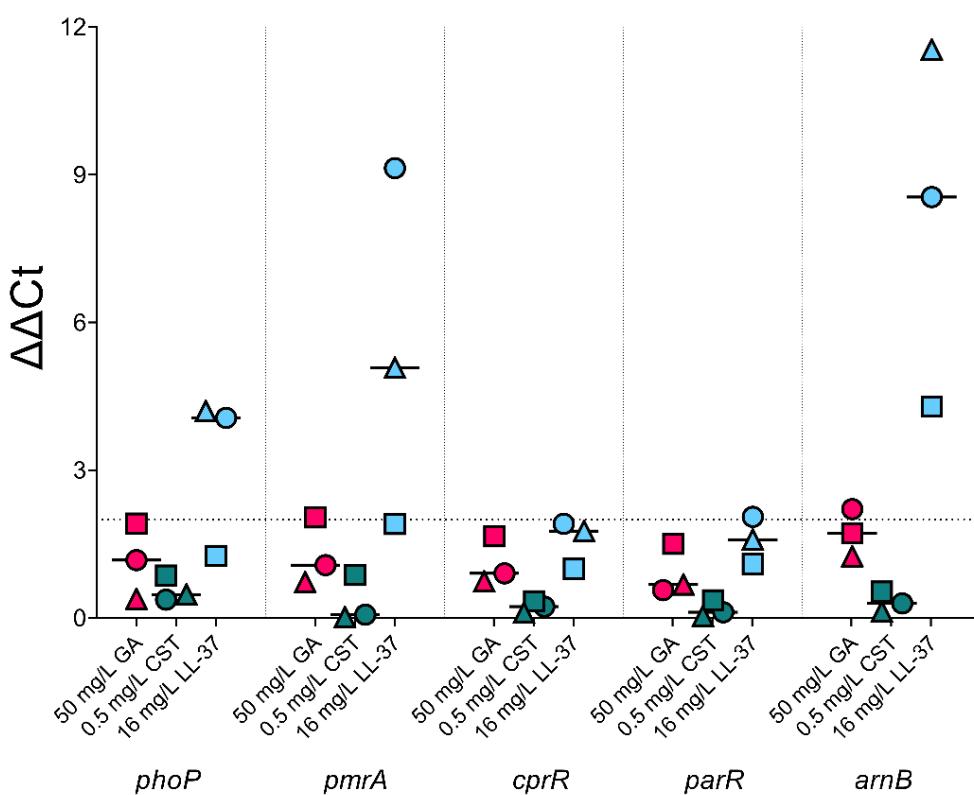
438
439 *Figure 5. Changes in Lipid A of *P. aeruginosa* clinical strains from people with CF in response to GA*
440 *exposure. Heatmap of the ratios of Modified Lipid A:Native Lipid A for each modification type. No*
441 *significant differences resulted from exposure to 50 mg/L GA, from No Treatment, for any modification*
442 *type across the 11 clinical strains (Wilcoxon test). Median values of triplicate biological replicates.*
443 **GA_899 biological duplicates displayed as one replicate lost for technical reasons. Median value of*
444 *biological replicates displayed.*

445

446 **Expression of Two Component Systems (TCS) and *arn* operon genes of *P. aeruginosa* type**
447 **strains after GA and AMP exposure**

448 In the absence of significant LPS Lipid A modification increases in response to GA exposure
449 and for more detail on the bacterial response to GA, the expression of the response regulator

GA and *P. aeruginosa* LPS


450 genes of TCSs (*phoP*, *pmrA*, *cprR* and *parR*) frequently associated with AMP detection as well
451 as a gene involved in the LPS L-Ara4N modification process (*arnB*) were investigated using
452 qRT-PCT^{34,81–83}. The effect of exposure of the *P. aeruginosa* type strains to GA was once again
453 compared to that of AMPs CST and LL-37. No significant differences were seen in the
454 expression of any of the TCS genes, which had been normalised to expression of the
455 housekeeping gene *rpsL* (ΔCt), with any intervention (**Supplementary Data**). For the $\Delta\Delta Ct$,
456 changes compared to untreated cultures, exposure to LL-37 resulted in expression increases
457 >2-fold of the TCS genes *phoP* (4.06 [95%CI 1.26-4.20]) and *pmrA* (5.08 [95%CI 1.91-9.13]) and
458 the modification gene *arnB* (8.55 [95%CI 4.29-11.54]). Exposure to GA and CST did not result
459 in a $\Delta\Delta Ct$ of >2-fold increase for any of the genes tested in the type *P. aeruginosa* strains (each
460 of which is sensitive to CST) (**Figure 6**). These results are in keeping with the above Lipid A
461 modification data where only LL-37 stimulates any response from the type *P. aeruginosa*
462 strains.

463

464

465

GA and *P. aeruginosa* LPS

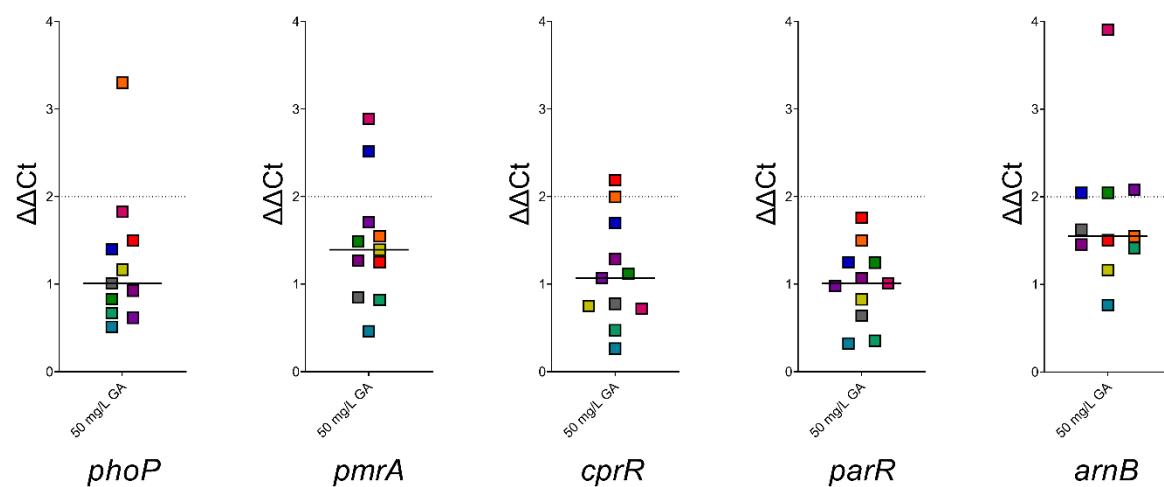
466

467 *Figure 6. Expression of Two Component System genes phoP, pmrA, cprR and parR and L-Ara4N*
468 *modification gene arnB of *P. aeruginosa* strains PAO1, PA14 and PAK after exposure to AMPs GA, CST*
469 *and LL-37. ΔΔCt results of gene expression, normalised to untreated *P. aeruginosa*. Only exposure to*
470 *LL-37 resulted in fold increases in gene expression > 2 with median expression of phoP of 4.06 (95%CI*
471 *1.26 - 4.20), pmrA of 5.08 (95%CI 1.91 - 9.13) and arnB of 8.55 (95%CI 4.29 - 11.54). Each point is the*
472 *median of biological replicates for *P. aeruginosa* PAO1 (○), PA14 (□) or PAK (△). Line at median.*

473

474 **Expression of Two Component Systems and arn operon genes of clinical *P. aeruginosa* from**
475 **people with CF after GA exposure**

476 Clinical *P. aeruginosa* isolates from people with CF were next tested for their reaction to GA
477 exposure using the same set of genes as the type strains. Exposure to GA resulted in a
478 significant increase in the expression of genes pmrA ($p < 0.05$) and arnB ($p < 0.01$) compared
479 with untreated cultures (Supplementary Data). However, only a modest (< 2-fold) median
480 $\Delta\Delta C_t$ change was seen for each (pmrA of 1.39 [95%CI 0.82 - 2.52] and arnB of 1.55 [95%CI
481 1.16 - 2.08]) (Figure 7A). Change in expression of these two genes after exposure to 50 mg/L
482 GA was also positively correlated ($p < 0.005$, Spearman $r = 0.8$ [95%CI 0.36 - 0.95]) (Figure 7B).
483 The remaining genes tested were not significantly altered by GA in clinical *P. aeruginosa*,
484 when compared to untreated cultures, and each had expression fold changes < 2; phoP 1.01


GA and *P. aeruginosa* LPS

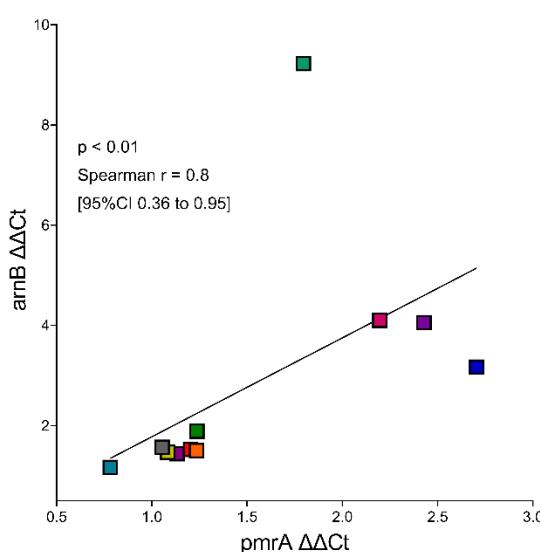
485 (95%CI 0.62 - 1.83), *cprR* 1.07 (95%CI 0.48 - 2.00) and *parR* 1.01 (95%CI 0.36 - 1.50) (**Figure**
486 **7A**). No correlation was seen in the expression levels for any of these TCS genes with
487 expression of *arnB* after exposure of the clinical *P. aeruginosa* strains to GA.

488

489

A

phoP


pmrA

cprR

parR

arnB

B

491

492 *Figure 7. Expression of Two Component System genes phoP, pmrA, cprR and parR and L-Ara4N*
493 *modification gene arnB of P. aeruginosa clinical strains from people with CF after exposure to GA. A.*
494 *ΔΔCt results of gene expression, normalised to untreated P. aeruginosa for each strain. No gene tested*
495 *had > 2-fold median increase across the 11 clinical P. aeruginosa tested. On each graph, each point is*
496 *the median of biological replicates for a clinical P. aeruginosa strain, line at median. B. Correlation*
497 *analysis of ΔΔCt expression levels of pmrA and arnB. Across the clinical strains tested, there was*
498 *significant positive correlation between the expression of pmrA and arnB after exposure to GA ($p =$*
499 *0.0047, Spearman $r = 0.8$ [95%CI 0.36 - 0.95]). Strain colour coding and values can be found in*
500 *Supplementary Material.*

GA and *P. aeruginosa* LPS

501
502 Resistance to CST and other AMPs has been associated with specific, non-synonymous
503 mutations in TCS genes; in true resistance these SNPs frequently lead to inactivation of the
504 sensor genes of TCS(s) which results in constitutive activation of the L-Ara4N modification
505 system encoded by the Arn operon ⁸⁴. To confirm that TCS genes from the 11 clinical strains
506 tested were not identical, the sequences examined for SNPs resulting in amino acid changes.
507 All clinical isolates had at least one amino acid (aa) change to one of the TCS genes examined
508 (compared with PAO1). A total of 24 aa changes were identified in clinical isolates TCS genes
509 ranging from 1 to 11 (**Table 1, Supplementary Table 3**). The strain with the highest number
510 of aa changes (GA_899) had aa changes in the sequence of PmrB which have been associated
511 with an intermediate level of CST resistance in clinical *P. aeruginosa* previously but gene
512 expression was < 2-fold for all genes tested in this strain ⁸⁵. (Expression of the ColSR system
513 was not measured in this study and no amino acid changes were found in any strain in this
514 system).

515

516

517

518

519

520

521

522

523

524

525

GA and *P. aeruginosa* LPS

526 *Table 1. Non-synonymous changes found in the gene sequences of sensory components of Two*
527 *Component Systems of 11 clinical *P. aeruginosa* strains from cystic fibrosis. For gene accession*
528 *numbers see Supplementary Table 3.*

Gene	Amino Acid Changes*	Strain
<i>phoP</i>	P31Q	GA_519
<i>phoQ</i>	V57M	GA_294
	S153R	GA_065
	H408R	GA_422
<i>pmrA</i>	L71R	GA_750, GA_294, GA_422, GA_982, GA_490, GA_065
	L71R, D104Y	GA_461
<i>pmrB</i>	S2P, A4T, V15I, G68S, Y345H [#]	GA_899
	A83P, Y345H	GA_490
	E218E, Y345H	GA_065
	Y345H	All
<i>cprS</i>	T14S, D32N, G282A, E386D	GA_899
	T14S	GA_519
	S173L	GA_422
<i>cprR</i>	-	
<i>parS</i>	A55P, H398R	GA_519
	A215T, H398R	GA_072
	H398R	All
<i>parR</i>	V55I	GA_982
	L153R, S170N	GA_899, GA_065
<i>colS</i>	-	
<i>colR</i>	-	

529 *Aligned to PAO1

530 #Combination of amino acid changes associated with Intermediate colistin in clinical *P. aeruginosa* (Lee et al.,
531 2014)

532

533 DISCUSSION

534

535 The evidence from our previous work was that GA acts on *P. aeruginosa* inner and outer cell
536 membranes, damaging both and permeabilising the cell, and it was therefore of interest to
537 test whether electrostatic interactions with LPS were the point of contact between GA and
538 the bacterial cell, as seen with many other cationic AMPs^{50,51,61,86}. Here we have confirmed
539 the binding of GA and *P. aeruginosa* LPS to each other via both LPS quantification and GA

GA and *P. aeruginosa* LPS

540 activity. GA sequesters and neutralises *P. aeruginosa* LPS and, conversely, LPS can sequester
541 GA. These results indicate that the LPS on the surface of *P. aeruginosa* is a cellular target for
542 GA, via its cationic properties allowing binding to the bacterial cell and resulting in its
543 membrane perturbing effects.

544 With this information it was therefore necessary to investigate the significance for GA activity
545 of GA-LPS interactions, particularly given the salience of free-LPS in CF sputum ^{39,41,56,87}. The
546 results here for membrane perturbation assays further demonstrate interaction between GA
547 and *P. aeruginosa* LPS; the presence of a supraphysiological concentration of LPS significantly
548 reduced GA disruption of the OM and depolarisation of the CM. However, a CF physiological
549 LPS concentration (0.02 mg/mL) has less impact: across the three membrane assays and the
550 three *P. aeruginosa* strains tested, only OM disruption was reduced. Divalent cations of Mg²⁺
551 were also protective against previously reported OM disruption and CE permeabilisation
552 activities of GA ⁵¹. This is further confirmation of our earlier observation of GA and LPS binding
553 and of competition between GA and Mg²⁺ for LPS binding, which indicates that the interaction
554 is driven by their opposing charges, a feature of AMP activity ³¹. While we recognise testing
555 these elements in isolation of each other may not reflect the full complexity of the CF lung
556 environment – which may be more detrimental to GA activity than each element alone – the
557 elements tested here are also known to interact with and/or sequester each other and may
558 exert a less confounding effect on GA due to their competitive binding with each other ^{31,46}.

559 We note that the protective effect of Mg²⁺ cations against GA activity was seen for the OM
560 and CE, but absent for the CM. This may indicate that the activity of GA against *P. aeruginosa*
561 cells is multimodal rather than via one distinct mechanism. GA is a random peptide with huge
562 heterogeneity (formed of up to 10³⁰ possible peptides), has the ability to adopt more than
563 one conformation in solution and to oligomerise, therefore evidence of activity against the
564 bacterial cell via more than one mechanism is perhaps not surprising ^{54,55,88}.

565 We were also interested in investigating any interactions between GA and eDNA. As with LPS,
566 eDNA is an important component of CF sputum; it is negatively charged, important in *P.*
567 *aeruginosa* infection and has been shown to be a factor in AMP resistance in bacteria ^{46,47,78,89}.
568 There were also previous indications of DNA aggregation by GA ⁵⁰. In common with our
569 observations for LPS, here we have shown that there is direct interaction between GA and
570 eDNA; quantifiable eDNA (1 and 10 mg/mL) was reduced by GA in a dose-dependent manner,

GA and *P. aeruginosa* LPS

571 significantly so at GA \geq 25 mg/L. At a physiologically relevant concentration of eDNA, the
572 activity of GA was not impaired⁵⁸.

573 With confirmation of GA interactions with LPS as a mechanism of GA activity, this leads to the
574 question of whether or not *P. aeruginosa* strains would mount a defence against the targeting
575 of its LPS by GA. Resistance to AMPs, such as CST, is associated with the modification of the
576 Lipid A portion of LPS; the addition of positively charged moieties of various kinds to
577 neutralise the charge of the bacterial cell and limit AMP binding^{63,90,91}. The modification of
578 the Lipid A component of LPS was tested using MALDI-TOF analysis on which we saw no
579 significant changes in any of the Lipid A additions tested across the type *P. aeruginosa* strains.
580 These results show that GA exposure does not result in a significant response being mounted
581 by the type strains in response to GA activity, in the manner commonly described for other
582 AMPs. For further details on the reaction to AMP exposures, the expression of genes involved
583 in TCSs known to detect AMPs in *P. aeruginosa* (*phoPQ*, *pmrAB*, *cprSR* and *parSR*) and a gene
584 of the *arn* operon were tested. These TCSs feed information to the Arn operon which controls
585 the modification of LPS with L-Ara4N, as protection against AMP attack. We found no
586 significant changes in gene expression levels across the type strains of *P. aeruginosa* due to
587 AMP exposure, including GA. Only the human cathelicidin LL-37 resulted in median $\Delta\Delta Ct > 2$ -
588 fold across the type strains which was the case for *phoP*, *pmrA* and *arnB*.

589 In clinical *P. aeruginosa* strains, no significant increases in Lipid A additions were seen after
590 GA exposure. Expression of genes *pmrA* and *arnB* were increased in clinical strains due to GA
591 exposure, but in neither case > 2 -fold greater than untreated bacteria. There was a correlation
592 between the expression of the two significantly increased genes indicating that, even at the
593 low level of the effect recorded, sensing of and reaction to GA by clinical *P. aeruginosa* is
594 taking place via the well documented cascade of PmrAB to the Arn operon^{36,85}. This suggests
595 that the clinical *P. aeruginosa* did not fail to detect the presence of GA even if this did not lead
596 to a notable fold increase in gene expression nor Lipid A modification by addition of L-Ara4N
597 in clinical strains. This is despite L-Ara4N addition being the process which the Arn operon
598 mediates. Neither was an increase in any of the other Lipid A modification types tested here
599 seen due to GA exposure.

600 The search for solutions to the global AMR crisis has resulted in a renewed and increased
601 interest in the utility of AMPs²⁰. While issues of cytotoxicity at effective, antibacterial doses

GA and *P. aeruginosa* LPS

602 has limited the number of AMPs transferring to the clinic so far – unlikely to be an issue for
603 the already clinically used GA – many AMPs are under investigation as new antimicrobials and
604 AMPs have several advantages over conventional antibiotics and other novel therapies^{7,8,20}.
605 Chief among these is the low rate of resistance generation resulting from AMP exposure;
606 AMPs have been shown to be less likely to produce resistance, to result in a lower
607 recombination rate than antibiotics and CST resistance took longer to emerge than resistance
608 to other antibiotics^{24,33,92}. While concerns have been raised about cross-resistance between
609 AMPs – due to their similar mechanisms of action – we did not note any crossover between
610 the reaction of clinical *P. aeruginosa* to GA and their CST-sensitivity phenotypes, in our short
611 term exposures⁹³. The clinical strain with the strongest reaction to GA in its LPS modification
612 (GA_899) was designated CST-sensitive clinically and the CST-resistant strain in the panel
613 (GA_422) did not mount a strong LPS modification reaction to GA exposure. Encouragingly,
614 overall the results presented here for GA indicate that *P. aeruginosa* does not mount a strong
615 response to GA activity in a manner seen for exposure to other AMPs.

616 Moreover, our previous work proposes a role for GA less as a direct acting antibiotic and more
617 as an antibiotic adjuvant to be given in combination with the aminoglycoside tobramycin, with
618 which we demonstrated to have substantial synergy⁵¹. The non-bactericidal nature of GA at
619 a synergistic concentration and the absence of a resistance response in the results presented
620 here both suggest reduced selective pressures for AMR development by *P. aeruginosa* strains
621 in response to GA exposure. As mentioned, GA is a random peptide and random peptides are
622 currently being researched as “resistance proof” antimicrobials with synergy between AMPs
623 being well documented and resistance evolution having been shown to be less common for
624 AMP combinations/cocktails than single AMPs or conventional antibiotics^{94–98}. A co-
625 treatment strategy with a conventional antibiotic further alleviates concerns for the future
626 generation of resistance with combinations and synergy less likely to result in antimicrobial
627 resistance and loss of utility (while also rescuing the efficacy of tobramycin in the case of GA)
628^{96,99–102}.

629 The results presented here point to further potential ancillary benefits of GA – on top of the
630 known advantages of antibiotic synergy, little bacterial response and its immunomodulatory
631 properties – with evidence that both *P. aeruginosa* LPS and eDNA were stably bound and
632 sequestered by GA. As well as being highly immunogenic in infection generally, free-LPS is

GA and *P. aeruginosa* LPS

633 particularly important in CF lung infections ^{40,103}. In common with other areas of the body, LPS
634 is pro-inflammatory in CF sputum and contributes to NETosis, a key driver of cycles of
635 inflammation and bacterial infection in CF ^{43–45}. Free-LPS has also been shown to exacerbate
636 the CFTR defect and to contribute to longer-term lung damage ^{104,105}. NETosis can also lead
637 to an increase in the eDNA content of CF sputum which is detrimental to the lung in a number
638 of ways; eDNA is a vital component of *P. aeruginosa* biofilms, increases resistance to AMPs
639 and contributes to sputum acidification resulting in increased AMR and viscosity ^{47,78,89}.
640 Therefore, neutralisation of either/both of these sputum components could be of benefit in
641 reducing inflammation and cycles within the CF lung which can promote *P. aeruginosa*
642 persistence ^{48,49,76,77,86}. Both CST and LL-37 have been investigated as LPS neutralisers, to
643 beneficial effect, as well as other AMPs ^{48,75,76,106}.

644 Gram-negative LPS is a crucial point of contact in host-pathogen interactions. LPS is detected
645 by host immune systems as a marker of infection and LPS is targeted as a binding site for host
646 defence AMPs but LPS and its modification also provide bacteria with a defence against
647 antimicrobials. In CF, this is further complicated by the presence of free-LPS in the airway.
648 Here, we have demonstrated that LPS plays a role in the activity of GA but the latter was not
649 extensively inhibited by free-LPS when present in the background. We also showed that, in
650 both type strains and isolates from people with CF, GA did not trigger a strong response in
651 LPS modification by *P. aeruginosa*, either at the genetic or physical level, to defend its LPS
652 against GA. This appears compatible with the fact that GA is not exerting strong selective
653 pressure on systems frequently associated with AMP resistance. Interest in research into
654 random peptide cocktails is increasing with the aim of producing “resistance proof”
655 antimicrobials ^{94–96}. These results add to the previously published evidence for GA as an AMP
656 with strong suitability for repurposing and with a strong, longstanding safety profile could be
657 a forerunner of random peptides as treatments for infection.

658

659

660

661

GA and *P. aeruginosa* LPS

662 **Data Availability**

663 The data that support the findings of this study are available from the corresponding author
664 upon reasonable request. Gene accession numbers can be found in Supplementary Table 3.

665

666 **ACKNOWLEDGEMENTS**

667 Authors would like to thank the Quadram Institute Biosciences Core Sequencing and Core
668 Bioinformatics teams their assistance in this project.

669

670 **FUNDING**

671 This project was funded by CF Trust as part of a Strategic Research Centre grant and Venture
672 Innovation Award. Sequencing and Bioinformatics in this project was funded by BBSRC
673 Institute Strategic Programme Microbes in the Food Chain BB/R012504/1. AS was supported
674 by a PhD studentship funded by a Medical Research Council Doctoral Training Award to
675 Imperial College London (MR/N014103/1). AME acknowledges support from the National
676 Institute for Health Research (NIHR) Imperial Biomedical Research Centre (BRC). LMN was
677 supported by an Imperial College Research Fellowship (ICRF) and a Cystic Fibrosis Trust
678 Venture Innovation Award (VIA 070). The group is supported by the National Institute for
679 Health and Care Research through the Imperial Biomedical Research Centre and a Senior
680 Investigator Award (JCD).

681

682 **REFERENCES**

683

684 1. Murray, C. J. *et al.* Global burden of bacterial antimicrobial resistance in 2019: a systematic
685 analysis. *Lancet* **0**, 629–655 (2022).

686 2. Laxminarayan, R. The overlooked pandemic of antimicrobial resistance. *Lancet* **0**, (2022).

687 3. Fowler, V. G., Jezek, A., Spivak, E. S. & Talkington, K. Urgent, Comprehensive Federal Action
688 Needed To Stem Mortality and Medicare Costs Associated With Antimicrobial Resistance.

GA and *P. aeruginosa* LPS

689 *Clin. Infect. Dis.* (2021) doi:10.1093/cid/ciab697.

690 4. O'Neill, J. Tackling drug-resistant infections globally: final report and recommendations: the
691 review on antimicrobial resistance. 1–35 (2019).

692 5. Mistrovic, T. *et al.* The burden of bacterial antimicrobial resistance in the WHO European
693 region in 2019: a cross-country systematic analysis. *Lancet Public Heal.* (2022)
694 doi:10.1016/S2468-2667(22)00225-0.

695 6. Laws, M., Shaaban, A. & Rahman, K. M. Antibiotic resistance breakers: Current approaches
696 and future directions. *FEMS Microbiology Reviews* vol. 43 490–516 (2019).

697 7. Browne, K. *et al.* A new era of antibiotics: The clinical potential of antimicrobial peptides.
698 *International Journal of Molecular Sciences* vol. 21 1–23 (2020).

699 8. Theuretzbacher, U., Outterson, K., Engel, A. & Karlén, A. The global preclinical antibacterial
700 pipeline. *Nat. Rev. Microbiol.* **18**, 275–285 (2020).

701 9. Miró-Canturri, A., Ayerbe-Algaba, R. & Smani, Y. Drug repurposing for the treatment of
702 bacterial and fungal infections. *Frontiers in Microbiology* vol. 10 (2019).

703 10. World Health Organization (WHO). *Prioritization of Pathogens to Guide Discovery, Research
704 and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including
705 Tuberculosis*. *WHO Bulletin* vol. 13 (2017).

706 11. Diggle, S. P. & Whiteley, M. Microbe profile: *Pseudomonas aeruginosa*: Opportunistic
707 pathogen and lab rat. *Microbiol. (United Kingdom)* **166**, 30–33 (2020).

708 12. Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B. & Gibson, R. L. *Pseudomonas
709 aeruginosa* and other predictors of mortality and morbidity in young children with cystic
710 fibrosis. *Pediatr. Pulmonol.* **34**, 91–100 (2002).

711 13. Nixon, G. M. *et al.* Clinical outcome after early *Pseudomonas aeruginosa* infection in cystic
712 fibrosis. *J. Pediatr.* **138**, 699–704 (2001).

713 14. Heltshe, S. L. *et al.* Longitudinal development of initial, chronic and mucoid *Pseudomonas
714 aeruginosa* infection in young children with cystic fibrosis. *J. Cyst. Fibros.* **17**, 341–347 (2018).

715 15. Williams, H. D. & Davies, J. C. Basic science for the chest physician: *Pseudomonas aeruginosa*
716 and the cystic fibrosis airway. *Thorax* **67**, 465–467 (2012).

717 16. Kosorok, M. R. *et al.* Acceleration of lung disease in children with cystic fibrosis after

GA and *P. aeruginosa* LPS

718 Pseudomonas aeruginosa acquisition. *Pediatr. Pulmonol.* **32**, 277–287 (2001).

719 17. Moriarty, T. F., Elborn, J. S. & Tunney, M. M. Effect of pH on the antimicrobial susceptibility of
720 planktonic and biofilm-grown clinical Pseudomonas aeruginosa isolates. *Br. J. Biomed. Sci.* **64**,
721 101–104 (2007).

722 18. Høiby, N., Ciofu, O. & Bjarnsholt, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. *Future*
723 *Microbiol.* **5**, 1663–1674 (2010).

724 19. Elborn, J. S. Cystic fibrosis. *Lancet* **388**, 2519–2531 (2016).

725 20. Liu, Y. *et al.* The revitalization of antimicrobial peptides in the resistance era. *Pharmacol. Res.*
726 **163**, 105276 (2021).

727 21. Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: Application informed by
728 evolution. *Science (80-.).* **368**, (2020).

729 22. Abd, M. *et al.* Colistin and its role in the Era of antibiotic resistance: an extended review
730 (2000-2019). (2020) doi:10.1080/22221751.2020.1754133.

731 23. Koo, H. B. & Seo, J. Antimicrobial peptides under clinical investigation. *Pept. Sci.* **111**, e24122
732 (2019).

733 24. Rodríguez-Rojas, A., Moreno-Morales, J., Mason, A. J. & Rolff, J. Cationic antimicrobial
734 peptides do not change recombination frequency in *Escherichia coli*. *Biol. Lett.* **14**, (2018).

735 25. Bacalum, M. & Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: An
736 analysis using therapeutic index integrative concept. *Int. J. Pept. Res. Ther.* **21**, 47–55 (2015).

737 26. Dijksteel, G. S., Ulrich, M. M. W., Middelkoop, E. & Boekema, B. K. H. L. Review: Lessons
738 Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). *Front. Microbiol.* **12**, 287
739 (2021).

740 27. Zgurskaya, H. I. & Rybenkov, V. V. Permeability barriers of Gram-negative pathogens. *Ann. N.*
741 *Y. Acad. Sci.* **1459**, 5 (2019).

742 28. Peterson, A. A., Hancock, R. E. W. & McGroarty, E. J. Binding of polycationic antibiotics and
743 polyamines to lipopolysaccharides of Pseudomonas aeruginosa. *J. Bacteriol.* **164**, 1256–1261
744 (1985).

745 29. Hancock, R. E. W. Peptide antibiotics. *Lancet* vol. 349 418–422 (1997).

746 30. Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modifications and their

GA and *P. aeruginosa* LPS

747 consequences. *Nature Reviews Microbiology* vol. 17 403–416 (2019).

748 31. Smart, M., Rajagopal, A., Liu, W. K. & Ha, B. Y. Opposing effects of cationic antimicrobial
749 peptides and divalent cations on bacterial lipopolysaccharides. *Phys. Rev. E* **96**, 42405 (2017).

750 32. Klein, G. & Raina, S. Regulated assembly of LPS, its structural alterations and cellular response
751 to LPS defects. *Int. J. Mol. Sci.* **20**, (2019).

752 33. Hamel, M., Rolain, J. M. & Baron, S. A. The History of Colistin Resistance Mechanisms in
753 Bacteria: Progress and Challenges. *Microorganisms* **9**, 1–18 (2021).

754 34. Lee, J. Y. *et al.* Development of colistin resistance in pmrA-, phoP-, parR- and cprR-inactivated
755 mutants of *Pseudomonas aeruginosa*. *J. Antimicrob. Chemother.* **69**, 2966–2971 (2014).

756 35. Macfarlene, E. L. A., Kwasnicka, A. & Hancock, R. E. W. Role of *Pseudomonas aeruginosa*
757 Phop-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides.
758 *Microbiology* **146**, 2543–2554 (2000).

759 36. McPhee, J. B. *et al.* Contribution of the PhoP-PhoQ and PmrA-PmrB two-component
760 regulatory systems to Mg²⁺-induced gene regulation in *Pseudomonas aeruginosa*. *J.*
761 *Bacteriol.* **188**, 3995–4006 (2006).

762 37. Fernández, L. *et al.* The two-component system CprRS senses cationic peptides and triggers
763 adaptive resistance in *Pseudomonas aeruginosa* independently of ParRS. *Antimicrob. Agents*
764 *Chemother.* **56**, 6212–6222 (2012).

765 38. Gutu, A. D. *et al.* Polymyxin resistance of *Pseudomonas aeruginosa* phoQ mutants is
766 dependent on additional two-component regulatory systems. *Antimicrob. Agents Chemother.*
767 **57**, 2204–2215 (2013).

768 39. Ernst, R. K. *et al.* Specific lipopolysaccharide found in cystic fibrosis airway *Pseudomonas*
769 *aeruginosa*. *Science (80-)* **286**, 1561–1565 (1999).

770 40. Moskowitz, S. M. & Ernst, R. K. The role of *Pseudomonas* lipopolysaccharide in cystic fibrosis
771 airway infection. *Subcell. Biochem.* **53**, 241 (2010).

772 41. Kronborg, G., Shand, G. H., Fomsgaard, A. & Høiby, N. Lipopolysaccharide is present in
773 immune complexes isolated from sputum in patients with cystic fibrosis and chronic
774 *Pseudomonas aeruginosa* lung infection. *APMIS* **100**, 175–80 (1992).

775 42. Okshevsky, M. & Meyer, R. L. The role of extracellular DNA in the establishment,
776 maintenance and perpetuation of bacterial biofilms. *Crit. Rev. Microbiol.* **41**, 341–352 (2015).

GA and *P. aeruginosa* LPS

777 43. Dwyer, M. *et al.* Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil
778 extracellular trap release is regulated by macrophage migration-inhibitory factor. *J. Innate*
779 *Immun.* **6**, 765–779 (2014).

780 44. Pieterse, E., Rother, N., Yanginlar, C., Hilbrands, L. B. & van der Vlag, J. Neutrophils
781 discriminate between lipopolysaccharides of different bacterial sources and selectively
782 release neutrophil extracellular traps. *Front. Immunol.* **7**, 484 (2016).

783 45. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. *Nature Reviews*
784 *Immunology* vol. 18 134–147 (2018).

785 46. Wilton, M. *et al.* Chelation of membrane-bound cations by extracellular DNA activates the
786 type VI secretion system in *Pseudomonas aeruginosa*. *Infect. Immun.* **84**, 2355–2361 (2016).

787 47. Lewenza, S. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in
788 *Pseudomonas aeruginosa*. *Frontiers in Microbiology* vol. 4 (2013).

789 48. Warren, H. S., Kania, S. A. & Siber, G. R. Binding and neutralization of bacterial
790 lipopolysaccharide by colistin nonapeptide. *Antimicrob. Agents Chemother.* **28**, 107–112
791 (1985).

792 49. Pulido, D., Nogús, M. V., Boix, E. & Torrent, M. *Lipopolysaccharide neutralization by*
793 *antimicrobial peptides: A gambit in the innate host defense strategy*. *Journal of Innate*
794 *Immunity* vol. 4 327–336 (Karger Publishers, 2012).

795 50. Christiansen, S. H. *et al.* The Immunomodulatory Drug Glatiramer Acetate is Also an Effective
796 Antimicrobial Agent that Kills Gram-negative Bacteria. *Sci. Rep.* **7**, 1–16 (2017).

797 51. Murphy, R. A. *et al.* Synergistic Activity of Repurposed Peptide Drug Glatiramer Acetate with
798 Tobramycin against Cystic Fibrosis *Pseudomonas aeruginosa*. *Microbiol. Spectr.* e0081322
799 (2022) doi:10.1128/spectrum.00813-22.

800 52. Schrempf, W. & Ziemssen, T. Glatiramer acetate: Mechanisms of action in multiple sclerosis.
801 *Autoimmun. Rev.* **6**, 469–475 (2007).

802 53. Carter, N. J. & Keating, G. M. Glatiramer acetate: A review of its use in relapsing-remitting
803 multiple sclerosis and in delaying the onset of clinically definite multiple sclerosis. *Drugs* vol.
804 70 1545–1577 (2010).

805 54. Jalilian, B., Einarsson, H. B. & Vorup-Jensen, T. Glatiramer acetate in treatment of multiple
806 sclerosis: A toolbox of random co-polymers for targeting inflammatory mechanisms of both

GA and *P. aeruginosa* LPS

807 the innate and adaptive immune system? *Int. J. Mol. Sci.* **13**, 14579–14605 (2012).

808 55. Christiansen, S. H. *et al.* The random co-polymer glatiramer acetate rapidly kills primary
809 human leukocytes through sialic-acid-dependent cell membrane damage. *Biochim. Biophys.*
810 *Acta - Biomembr.* **1859**, 425–437 (2017).

811 56. Raoust, E. *et al.* *Pseudomonas aeruginosa* LPS or flagellin are sufficient to activate TLR-
812 dependent signaling in murine alveolar macrophages and airway epithelial cells. *PLoS One* **4**,
813 (2009).

814 57. Buyck, J. M. *et al.* *P. aeruginosa* LPS stimulates calcium signaling and chloride secretion via
815 CFTR in human bronchial epithelial cells. *J. Cyst. Fibros.* **12**, 60–67 (2013).

816 58. Brandt, T., Breitenstein, S., Von Der Hardt, H. & Tümmler, B. DNA concentration and length in
817 sputum of patients with cystic fibrosis during inhalation with recombinant human DNase.
818 *Thorax* **50**, 880–882 (1995).

819 59. Kilbourn, J. P. Composition of Sputum from Patients with Cystic. *Curr. Microbiol.* **11**, 19–22
820 (1984).

821 60. Sanders, N. N. *et al.* Role of magnesium in the failure of rhDNase therapy in patients with
822 cystic fibrosis. *Thorax* **61**, 962–968 (2006).

823 61. Sabnis, A. *et al.* Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic
824 membrane. *Elife* **10**, (2021).

825 62. Hubbard, A. T. M. *et al.* Mechanism of Action of a Membrane-Active Quinoline-Based
826 Antimicrobial on Natural and Model Bacterial Membranes. *Biochemistry* **56**, 1163–1174
827 (2017).

828 63. Jeannot, K. *et al.* Detection of Colistin Resistance in *Pseudomonas aeruginosa* Using the
829 MALDIxin Test on the Routine MALDI Biotyper Sirius Mass Spectrometer. *Front. Microbiol.* **12**,
830 2466 (2021).

831 64. Seemann, T. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069
832 (2014).

833 65. Seeman, T. *Shovill: Faster SPAdes assembly of Illumina reads*. GitHub (2017).

834 66. Cuccuru, G. *et al.* Orione, a web-based framework for NGS analysis in microbiology.
835 *Bioinformatics* **30**, 1928–1929 (2014).

GA and *P. aeruginosa* LPS

836 67. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome
837 assembly evaluation with QUAST-LG. *Bioinformatics* **34**, i142–i150 (2018).

838 68. Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: Evaluation of metagenome
839 assemblies. *Bioinformatics* **32**, 1088–1090 (2016).

840 69. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome
841 assemblies. *Bioinformatics* **29**, 1072–1075 (2013).

842 70. Mikheenko, A., Valin, G., Prjibelski, A., Saveliev, V. & Gurevich, A. Icarus: Visualizer for de
843 novo assembly evaluation. *Bioinformatics* **32**, 3321–3323 (2016).

844 71. Rhodes, K. A. & Schweizer, H. P. Antibiotic resistance in Burkholderia species. *Drug Resist.*
845 *Updat.* **28**, 82–90 (2016).

846 72. Batut, B. *et al.* Community-Driven Data Analysis Training for Biology. *Cell Syst.* **6**, 752-758.e1
847 (2018).

848 73. Winsor, G. L. *et al.* Enhanced annotations and features for comparing thousands of
849 Pseudomonas genomes in the Pseudomonas genome database. *Nucleic Acids Res.* **44**, D646–
850 D653 (2016).

851 74. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary
852 genetics analysis across computing platforms. *Mol. Biol. Evol.* **35**, 1547–1549 (2018).

853 75. Scott, A. *et al.* Evaluation of the ability of LL-37 to neutralise LPS in vitro and Ex vivo. *PLoS One*
854 **6**, e26525 (2011).

855 76. Schromm, A. B. *et al.* Cathelicidin and PMB neutralize endotoxins by multifactorial
856 mechanisms including LPS interaction and targeting of host cell membranes. *Proc. Natl. Acad.*
857 *Sci. U. S. A.* **118**, (2021).

858 77. Grassi, L. *et al.* The anti-microbial peptide (Lin-SB056-1)2-K reduces pro-inflammatory
859 cytokine release through interaction with *Pseudomonas aeruginosa* lipopolysaccharide.
860 *Antibiotics* **9**, 1–14 (2020).

861 78. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required
862 for bacterial biofilm formation. *Science (80-.).* **295**, 1487 (2002).

863 79. Bechinger, B. & Gorr, S. U. Antimicrobial Peptides: Mechanisms of Action and Resistance. *J.*
864 *Dent. Res.* **96**, 254–260 (2017).

GA and *P. aeruginosa* LPS

865 80. Strempe, N. *et al.* Human host defense peptide LL-37 Stimulates virulence factor production
866 and adaptive resistance in *Pseudomonas aeruginosa*. *PLoS One* **8**, e82240 (2013).

867 81. Fernández, L. *et al.* Adaptive resistance to the 'last hope' antibiotics polymyxin B and colistin
868 in *Pseudomonas aeruginosa* is mediated by the novel two-component regulatory system
869 ParR-ParS. *Antimicrob. Agents Chemother.* **54**, 3372–3382 (2010).

870 82. Zhang, H., Srinivas, S., Xu, Y., Wei, W. & Feng, Y. Genetic and Biochemical Mechanisms for
871 Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. *Trends in Biochemical
872 Sciences* vol. 44 973–988 (2019).

873 83. Baron, S. *et al.* Inactivation of the *arn* operon and loss of aminoarabinose on
874 lipopolysaccharide as the cause of susceptibility to colistin in an atypical clinical isolate of
875 *proteus vulgaris*. *Int. J. Antimicrob. Agents* **51**, 450–457 (2018).

876 84. Olaitan, A. O., Morand, S. & Rolain, J. M. Mechanisms of polymyxin resistance: Acquired and
877 intrinsic resistance in bacteria. *Frontiers in Microbiology* vol. 5 (2014).

878 85. Lee, J. Y. & Ko, K. S. Mutations and expression of *PmrAB* and *PhoPQ* related with colistin
879 resistance in *Pseudomonas aeruginosa* clinical isolates. *Diagn. Microbiol. Infect. Dis.* **78**, 271–
880 276 (2014).

881 86. Xhindoli, D. *et al.* The human cathelicidin LL-37 - A pore-forming antibacterial peptide and
882 host-cell modulator. *Biochim. Biophys. Acta - Biomembr.* **1858**, 546–566 (2016).

883 87. Porro, C. *et al.* Pro-inflammatory effect of cystic fibrosis sputum microparticles in the murine
884 lung. *J. Cyst. Fibros.* **12**, 721–728 (2013).

885 88. Bawa, R., Audette, G. F. & Rubinstein, I. *Handbook of Clinical Nanomedicine: Nanoparticles,
886 Imaging, Therapy and Clinical Applications. Handbook of Clinical Nanomedicine:
887 Nanoparticles, Imaging, Therapy and Clinical Applications* vol. 1 (2016).

888 89. Sarkar, S. Release mechanisms and molecular interactions of *Pseudomonas aeruginosa*
889 extracellular DNA. *Applied Microbiology and Biotechnology* vol. 104 6549–6564 (2020).

890 90. Sultan, M., Arya, R. & Kim, K. K. Roles of two-component systems in *Pseudomonas aeruginosa*
891 virulence. *Int. J. Mol. Sci.* **22**, (2021).

892 91. Jeannot, K., Bolard, A. & Plésiat, P. Resistance to polymyxins in Gram-negative organisms. *Int.
893 J. Antimicrob. Agents* **49**, 526–535 (2017).

894 92. Yu, G., Baeder, D. Y., Regoes, R. R. & Rolff, J. Predicting drug resistance evolution: Insights

GA and *P. aeruginosa* LPS

895 from antimicrobial peptides and antibiotics. *Proc. R. Soc. B Biol. Sci.* **285**, (2018).

896 93. Fleitas, O. & Franco, O. L. Induced bacterial cross-resistance toward host antimicrobial
897 peptides: A worrying phenomenon. *Front. Microbiol.* **7**, 381 (2016).

898 94. Bennett, R. C. *et al.* Random Peptide Mixtures as Safe and Effective Antimicrobials against
899 *Pseudomonas aeruginosa* and MRSA in Mouse Models of Bacteremia and Pneumonia. *ACS*
900 *Infect. Dis.* **7**, 672–680 (2021).

901 95. Amso, Z. & Hayouka, Z. Antimicrobial random peptide cocktails: a new approach to fight
902 pathogenic bacteria. *Chem. Commun.* **55**, 2007–2014 (2019).

903 96. Maron, B., Rolff, J., Friedman, J. & Hayouka, Z. Antimicrobial Peptide Combination Can Hinder
904 Resistance Evolution. *Microbiol. Spectr.* **10**, (2022).

905 97. Dobson, A. J., Purves, J., Kamysz, W. & Rolff, J. Comparing Selection on *S. aureus* between
906 Antimicrobial Peptides and Common Antibiotics. *PLoS One* **8**, e76521 (2013).

907 98. Yu, G., Baeder, D. Y., Regoes, R. R. & Rolff, J. Combination effects of antimicrobial peptides.
908 *Antimicrob. Agents Chemother.* **60**, 1717–1724 (2016).

909 99. Liu, Y., Li, R., Xiao, X. & Wang, Z. Antibiotic adjuvants: an alternative approach to overcome
910 multi-drug resistant Gram-negative bacteria. *Critical Reviews in Microbiology* vol. 45 301–314
911 (2019).

912 100. Worthington, R. J. & Melander, C. Combination approaches to combat multidrug-resistant
913 bacteria. *Trends in Biotechnology* vol. 31 177–184 (2013).

914 101. Langendonk, R. F., Neill, D. R. & Fothergill, J. L. The Building Blocks of Antimicrobial Resistance
915 in *Pseudomonas aeruginosa*: Implications for Current Resistance-Breaking Therapies. *Front.*
916 *Cell. Infect. Microbiol.* **11**, (2021).

917 102. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic
918 resistance. *Science* vol. 351 (2016).

919 103. Huszczynski, S. M., Lam, J. S. & Khursigara, C. M. The role of *Pseudomonas aeruginosa*
920 lipopolysaccharide in bacterial pathogenesis and physiology. *Pathogens* **9**, 6 (2020).

921 104. Bruscia, E. M. *et al.* Increased susceptibility of Cftr/_ mice to LPS-induced lung remodeling.
922 *Am. J. Physiol. - Lung Cell. Mol. Physiol.* **310**, L711–L719 (2016).

923 105. Cho, D. Y. *et al.* LPS decreases CFTR open probability and mucociliary transport through

GA and *P. aeruginosa* LPS

924 generation of reactive oxygen species. *Redox Biol.* **43**, 101998 (2021).

925 106. Matzneller, P. *et al.* Colistin Reduces LPS-Triggered Inflammation in a Human Sepsis Model In
926 Vivo: A Randomized Controlled Trial. *Clin. Pharmacol. Ther.* **101**, 773–781 (2017).

927