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Abstract

The pathology in Duchenne muscular dystrophy (DMD) is characterized by degenerating
muscle fibers, inflammation, fibro-fatty infiltrate, and edema, and these pathological processes
replace normal healthy muscle tissue. The mdx mouse model is one of the most commonly
used preclinical models to study DMD. Mounting evidence has emerged illustrating that muscle
disease progression varies considerably in mdx mice, with inter-animal differences as well as
intra-muscular differences in pathology in individual mdx mice. This variation is important to
consider when conducting assessments of drug efficacy and in longitudinal studies. Magnetic
resonance imaging (MRI) is a non-invasive method that can be used qualitatively or
guantitatively to measure muscle disease progression in the clinic and in preclinical models.
Although MR imaging is highly sensitive, image acquisition and analysis can be time intensive.
The purpose of this study was to develop a semi-automated muscle segmentation and
guantitation pipeline that can quickly and accurately estimate muscle disease severity in mice.
Herein, we show that the newly developed segmentation tool accurately divides muscle. We
show that measures of skew and interdecile range based on segmentation sufficiently estimate
muscle disease severity in healthy wildtype and diseased mdx mice. Moreover, the semi-
automated pipeline reduced analysis time by nearly 10-fold. Use of this rapid, non-invasive,
semi-automated MR imaging and analysis pipeline has the potential to transform preclinical
studies, allowing for pre-screening of dystrophic mice prior to study enroliment to ensure more
uniform muscle disease pathology across treatment groups, improving study outcomes.
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Introduction

Duchenne muscular dystrophy (DMD) is an inherited muscle wasting disease caused by loss of
dystrophin. Dystrophin, a large protein that links the cytoskeleton with the extracellular matrix, is
encoded by the DMD gene. In the absence of dystrophin, the muscle membrane becomes
easily disrupted which causes muscles to degenerate, and in its place, the intact muscle
becomes replaced by fibrosis and fat, as well as immune infiltrate. The dystrophin-deficient mdx
mouse model is routinely used in preclinical therapeutic trials as it recapitulates many of the
same pathological features seen in humans with DMD. The mdx mouse model on the C57BI/10
background harbors a naturally occurring mutation in exon 23 of dystrophin resulting in a
premature stop codon %2, Although the mdx mouse does not produce any detectable dystrophin
protein, this model exhibits only mild histological and functional deficits in comparison to
humans with DMD. A more severe mouse model referred to as mdxD2 was generated through
backcrossing the mdxC57BI/10 model over 5 generations onto the DBA/2J strain 2. The muscle
pathology in mdxD2 mice has more similar features to human DMD pathology with increased
areas of muscle damage, fibrofatty deposition, impaired repair capacity, and, along with these
findings, greater functional deficits compared to the mdxC57BI/10 model 8. The increase in
disease progression on the DBA/2J background has been linked to multiple genetic modifiers,
including Latent TGFB binding protein 4 (Ltpb4), annexin A6 (Anxa6), and osteopontin (Sppl) *
11

The availability of multiple mouse models of DMD has allowed for extensive preclinical
studies evaluating potential therapeutics for the treatment of DMD. With preclinical testing
occurring across multiple animal colonies, there have been efforts to standardize procedures to
increase the reliability and translatability of endpoint measures (TREAT-NMD.org protocols). It
is well known that the mdx model displays a wide range of both intra-animal and inter-animal
variability 2. For example, mdx littermates can exhibit virtually no muscle damage or fibrosis in
one subject, while another is severely affected. Moreover, within the same animal one muscle
may have extensive pathology while the contralateral muscle is minimally affected. This inherent
variation can contribute to poor assay sensitivity and necessitate large cohorts of animals to
achieve the statistical power required to show treatment effects 3. Spurney et al showed that
guantitative histology measures of degeneration and regeneration and creatine kinase showed
high variance in the mdx model. Evans’ blue dye uptake, as a measure of muscle membrane
leak, also showed both animal to animal variability and intra-animal variability across studies 4.

Understanding and mitigating factors that can influence preclinical outcome measures is
critical when designing and evaluating therapeutic efficacy studies. Environmental factors such
as cage design, light/dark cycle, food, sex, age, and weight can be more easily controlled than
biological factors. Non-invasive imaging techniques such as magnetic resonance imaging (MRI)
can provide information on in vivo muscle tissue health without the need for tissue sampling or
sacrifice. Although MRI can accurately distinguish between healthy and diseased tissue,
gualitative estimates of severity are highly subjective, and quantitative image analysis can be
cumbersome, making it less than ideal as a screening tool. Further, it can be challenging to
identify a numerical summary statistic that reflects qualitative differences readily observed
between imaging datasets. For example, in datasets with small, localized regions of signal
change, simple signal averaging can obscure differences due to the much larger areas of
unchanged tissue. Indeed, previous efforts to use average T, values as an imaging biomarker of
disease progression in mdx mice have been hampered by high variance that has been
interpreted as a lack of significant difference between timepoints or groups, but more likely
reflects the inadequacy of bulk averaging as a summary statistic®>. We propose a rapid high-
throughput screening method that uses a combination of MR imaging, semi-automated
segmentation, and quantitative analysis with meaningful summary statistics to estimate disease
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severity in vivo, balance treatment groups, and a priori exclude animals with unusually high or
low disease burdens.

Methods

Animals

Male mice, 6-7 weeks old, WT, mdxB10 and mdxD2 mice were purchased from the Jackson
Laboratory (stock 000664, 001801, and 013141). Mice were housed in a specific pathogen—free
facility on a 12-hour light/12-hour dark cycle and fed ad libitum in accordance with the
Northwestern University’s Institutional Animal Care and Use Committee regulations.

MR Image acquisition

Mice were anesthetized in an induction chamber with inhaled isoflurane and then transferred to
a dedicated imaging bed with a hosecone to deliver continuous isoflurane. Each mouse was
positioned prone with legs tucked beneath the abdomen to reduce susceptibility artifacts.
Respiration was monitored using a pressure sensitive pillow and warming was performed MRI
was performed on a 9.4T Bruker Biospec 9430 (Bruker Corporation, Billerica, MA, USA) with a
30 cm bore and 12 cm gradient insert, running Paravision 6.0.1. Each mouse was in a 40 mm
guadrature volume coil (Bruker) operating in transmit/receive mode. After localizer images were
acquired, a T map was acquired using a spin echo sequence (Multi Slice Multi Echo, MSME)
oriented axially and centered at the mid-calf. The following parameters were used: TR = 4000
ms, TE = 9-225 ms (30 echoes, echo spacing = 9 ms), MTX = 256 x 256, FOV 3.5x3.5cm, 5
slices, 1 mm slice thickness and 1 signal average. Acquisition time was approximately 18
minutes.*®

Training of Segmentation Network

Images were imported into Amira 2020.2 software (Thermo Fisher Scientific, Waltham, MA,
USA) and the first echo of the T, map acquisition (TE = 9 ms), a relatively proton-density
weighted image, was used to segment a region of interest (ROI) containing hindlimb and
paraspinal muscles, and remove other tissues such as bladder, skin, fat, and chemical shift
artifacts. As this was a time-consuming manual process, a deep learning prediction model was
trained in Amira using the built-in tools. A training dataset was assembled using segmentation
and image data 24 MDX scans and 7 wildtype scans and concatenated with a validation dataset
assembled from segmentation and image data obtained by rescanning 5 MDX mice and 3
wildtype mice 2-3 days after their initial imaging session. A preliminary model was trained using
the “Deep Learning Training” module in Amira with type BackbonedUNet, number of classes =
2, resnetl8 backbone, patch size 128, batch size 8, max patch overlap 0.3, maximum number
of epochs 100, Adam optimizer, learning rate 0.0001, and no data augmentation. A refined
model was trained using the same module, initialized with the weights of the preliminary model,
with the following modifications: patch size 256, maximum number of epochs 500, learning rate
0.0005, and data augmentation with geometry transforms including horizontal and vertical flip,
30-degree rotation, 10% zoom, and 10 degree shear, and an early stopping criterion to stop if
no model improvement for 25 iterations. The “Segmentation Metrics” Amira Xtra module was
used to assess the performance of the model on the validation dataset.?’

Semiautomated Image Segmentation

After the deep learning model was generated, segmentation was performed by importing the
first echo of the T2, map acquisition into Amira and generating a segmentation using the “Deep
Learning Prediction” module using the established model weights. The segmentation was
inspected by a trained observer and manually refined as necessary to correct minor errors (e.g.,
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incomplete removal of the bladder). Muscle ROIs were exported from Amira as a mask image to
be used in further processing steps.

MR Image Processing

All echoes of the T, map acquisition, were imported into JIM 7 (Xinapse Systems Ltd, West
Bergholt, Essex, UK), masked to include only muscle voxels using the mask image generated in
the segmentation step, and fit using the built in nonlinear curve fitting module. A custom Python
script was used to extract a list of muscle T, values from the resultant maps. T, values < 15 ms
and > 100 ms were excluded as these overwhelmingly corresponded to voxels with low signal
and low-quality fitting.

Evans Blue Dye

To validate the skew and interdecile range of the T, distribution as metrics for disease severity,
they were compared to Evans Blue dye uptake. WT mice (n=5), mdx mice (n=4) and mdxD2
mice (n=3) underwent the MRI protocol described above and then underwent measurements of
Evans Blue dye uptake that were quantified as described previously ° & 19 Briefly, mice were
injected with 5 pl per gram of body weight of 10 uM Evans Blue dye (E2129, Sigma-Aldrich).
Mice were euthanized, tissue excised, minced, and placed in 1ml of formamide in a 24-well
plate placed at 55 °C for 2 hrs. Subsequently, absorbance was measured at 620 nm on a
Synergy HTX multi-mode plate reader (BioTek®) from 200 pl of sample solution in a 96-well
plate. Each sample was assessed in duplicate. Results are reported as the average arbitrary
optical density units/mg of tissue.

Statistical Analysis

A key purpose of this study was to identify and validate relevant summary statistics for MRI
image distributions based on the hypothesis that the distribution of T, values would be
sufficiently non-normal as to render mean and standard deviation inappropriate summary
statistics. A custom Python script was used to test the normality of the distribution of T, values
for each animal using D’Agostino’s K2 test, and compute summary statistics.2°2* All distributions
observed were markedly non-normal (p < 0.001). As a result, summary statistics of skew and
interdecile range were calculated to describe the width and asymmetry of distributions and
enable quantitative comparisons. Correlation coefficients for the test-retest variability and the
comparisons of skew and IDR with Evans’ Blue dye uptake were calculated using a simple
linear regression model.

Code Availability
Imaging data and associated code for processing and analysis is available online.?

Results

Development of a semi-automated muscle segmentation tool. Manual segmentation of the
muscle ROI including the hindlimb and paraspinal muscles was a lengthy manual process due
to the need to manually remove bone signals as well as signals from normal fluid and fat that
are present subcutaneously and at intramuscular interfaces. The signals from regions of fat
additionally required removal of chemical shift artifacts. Because of the manual and subjective
nature of this process, it was highly subject to intra- and interoperator variability. Use of the
deep learning model reduced the time for generating muscle ROIs from over an hour to a few
seconds and reduced total hands-on analyst time to 5-10 minutes. In the validation dataset, the
model-predicted label field matched the ground truth label field with a Jaccard Index of 0.97,
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indicating excellent agreement. An example segmentation of a dataset not included in the
training data is shown in Figure 1.

Stratification of muscle disease through semi-automated MR imaging analysis. mdxB10 mice
expressing a severe disease phenotype (Figure 2A), mild disease phenotype (Figure 2B), and
healthy wildtype controls (Figure 2C) were imaged to cover a wide range of muscle health.
Examination of the T, maps shown in Figure 2A and Figure 2B illustrates the wide range of
disease phenotype present in this cohort of same-aged and same-sex mdx mice. Figure 2A
illustrates a mouse with severe disease as indicated by extensive regions of mildly elevated T,
in addition to several focal regions of highly elevated T». In contrast, Figure 2B illustrates a
mouse with comparatively mild disease, in which there are focal regions with mildly elevated T,
and many fewer voxels with highly elevated T-. The healthy wildtype mouse shown in Figure 2C
has few voxels with high T, and these are primarily located at the intermuscular interfaces. For
each T, map, the distribution of T, values is plotted immediately to the right, with the mean
plotted in red and the standard deviation represented by red error bars (Figure 2A-C). The
distribution of T, values is immediately seen to be non-normal (as confirmed by D’Agostino’s K?
test of normality). A plot of skew vs. interdecile range of the distribution of T, values was
effective in stratifying disease severity and correlated well with visual assessment of the
selected T, maps (Figure 2D). Together these data show that MR image-based measures
extracted using the newly developed, semi-automated segmentation and analysis pipeline
stratify muscle disease severity across healthy to severe pathology.

Semi-automated MR image-based measures are reproducible across disease severity. To
assess the repeatability of measurements of the skew and interdecile range of the T,
distribution, 5 mdx mice and 3 WT mice were reimaged two days after their initial imaging
session. Both sets of data were analyzed by a trained observer according to the protocol
described above. Both skew and interdecile range were found to be highly repeatable across
imaging sessions (Figure 3). The first and second measurements were highly correlated for
both skew (R?=0.97, p < 0.001) and interdecile range (IDR) (R?2=0.81, p = 0.002)

High correlation between measures of muscle membrane leak and semi-automated MR
imaging-based measures. Quantification of Evans blue dye uptake is commonly used to
evaluate muscle membrane permeability and stability as a measure of muscle health, as dye is
excluded from healthy intact muscle. To determine if the MR image-based measures, skew, and
IDR, correlate with dye uptake measures, mdxB10, mdxD2, and WT mice underwent MR
imaging and subsequently were evaluated for Evans blue dye uptake in hindlimb muscles.
Good agreement was observed between the in vivo imaging based metrics (skew and IDR) and
the ex vivo Evans Blue dye uptake measurements (Figure 4). Healthy WT muscle had the
lowest level of dye uptake and IDR followed by mdxB10, with mdxD2 muscle taking up the
highest levels of dye and having the highest IDR values. IDR exhibited a strong linear
correlation with the Evans Blue Dye with R? = 0.9 (p < 0.001). Skew was also linearly correlated
with RZ = 0.71 (p < 0.001). This suggests that the in vivo imaging based metrics can serve as a
surrogate measure of muscle membrane health and integrity as compared to the terminal Evans
blue dye uptake assessment.

Discussion
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We have outlined a non-invasive, quick, and reproducible imaging and analysis protocol that
can accurately stratify animals to aid in preclinical therapeutic study design. Screening of
animals to assess disease severity prior to assigning treatment groups can help mitigate the
potential effects of the wide range of disease severities in the mdx model, as treatment effects
can be obscured if there are differences in the underlying severity of disease between the
groups. Many studies rely on comparing histopathological findings or Evans Blue dye uptake in
separate groups of untreated and treated animals. These measures rely on terminal procedures
that cannot be undertaken at the outset of a study.

Previous efforts to use MRI in the assessment of disease severity in mdx mice have
focused on T, maps and T, weighted images because regions of muscle damage tend to have
abnormally elevated T» values. However, researchers have consistently noted very small
differences in the average value of muscle T, (on the order of a few milliseconds) between mdx
and wildtype animals.'> 26 Such a small difference, while in some cases statistically significant,
can be easily confounded by minor systemic errors in image acquisition and fitting. Upon deeper
interrogation of our study data, we found that the mean and standard deviation of T, values over
a region of interest comprising hindlimb and paraspinal musculature were very poor descriptors
of the actual distribution of measured T, values and were not appropriate for stratifying the
severity of disease in mdx animals. Attempts to differentiate the groups by setting a T, threshold
and counting voxels above that threshold were highly dependent on the specific threshold
selected and ineffective at stratifying disease.

Inspection of the distribution of T, values for a muscle region of interest in mdx and WT
mice yielded stark differences in the peak shape and width of the distribution of T, values
between the mdx and WT mice. In particular, in WT mice, the distribution of T, values was a
sharp narrow peak roughly centered around a low T, value, with a shallow tail of higher values
corresponding to blood vessels, inter-muscular interfaces, and noisy voxels with poor T fitting.
In contrast, for the mdx mice, the distribution was shifted rightwards in the direction of higher T,
values, and markedly asymmetric with a “heavy” tail of high T» values, mostly corresponding to
regions of edema and necrosis. The distributions were assessed for normality and found to be
markedly non-normal, confirming that the mean and standard deviation were inappropriate
summary statistics for these data.

Because the goal was to identify animals with a higher concentration of high-T, voxels,
corresponding to the heaviness of the distribution tail, skew was investigated as a higher-order
summary statistic and interdecile range as a measure of spread of the values, on the premise
that these metrics would better reflect the shape of the distribution and might be more suitable
for stratifying degree of disease. The plot of these two metrics correlated with the spectrum of
disease severity, clearly and repeatably differentiating mdx animals from wildtype animals and
correlating well with the terminal measurements made using Evans Blue Dye. In this study,
skew and IDR were identified as metrics suitable to describe the acquired data. In future
studies, this analysis will be extended to a more comprehensive radiomics approach in an effort
to identify texture-based image features that may reflect localized areas of muscle damage.?’

A major strength of this rapid semiautomated imaging and analysis pipeline is that
images of several major hindlimb muscle groups can be acquired in approximately 30 minutes,
with only 10-15 minutes per animal needed for semiautomated segmentation and processing.
This significantly increases the throughput relative to manual segmentation and processing,
which required 1.5-2 hours per animal, and renders it suitable for screening of cohorts of
animals prior to assigning treatment groups. The proposed pipeline could substantially improve
the quality of studies of therapeutic efficacy in mouse models of muscular dystrophy by ensuring
that study cohorts are appropriately balanced across the spectrum of disease and a priori
excluding animals with either extremely severe or extremely mild disease.
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Figures and Legends
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Figure 1: Reliable semi-automatic muscle segmentation. (A) Proton density weighted axial
image showing hindlimb and paraspinal musculature. Muscle groups visualized include
gastrocnemius and soleus (lower hindlimb), quadriceps and hamstrings (upper hindlimb) and
gluteal muscles (near pelvis). (B) Manual segmentation of muscle ROI. (C) Result of
segmentation using the trained deep learning model. (D) Difference between manual and
automated segmentation showing overall excellent agreement with minor variation around the
muscle-skin and muscle-bone interfaces.
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Figure 2. MR image-based measures stratify muscle disease severity. (A-C) on the left are
representative T, map slices from 3 different animals in the study. (A) shows an mdxB10 animal
with a severe muscle disease phenotype as evidenced by the globally higher T, values as well as
localized areas of high T» corresponding to muscle damage. (B) shows an mdxB10 animal with a
relatively mild disease phenotype seen by moderate regions of high T, values. (C) is a healthy
wildtype (WT) control animal showing minimal regions of high T, aside from normal intramuscular
interfaces. Plots to the right of each image show the distribution of T, values for that animal. The
red square and error bars correspond to the mean and standard deviation of the T, values and
demonstrate the insensitivity of those metrics to changes in the shape of the distribution. (D) A
plot of skew vs interdecile range (IDR) for 20 mdxB10 animals and 5 healthy WT control animals,
demonstrating that skew and IDR clearly separate the two genotypes as well as stratifying disease
severity for the mdx animals. Data points marked A-C correspond to the individual datasets shown
on the left.
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Figure 3: Reproducible MR image-based measures in healthy and diseased muscle. Test-
retest reliability comparison of measured values of skew (left) and IDR (right) in mdxB10 mice
reimaged 2 days after the initial imaging session. Both values exhibited a strong linear
correlation with skew R? = 0.97 and IDR R? = 0.81 including diseased (mdx) and healthy (WT)
muscle.
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Figure 4: Strong correlation between dye uptake and MRI measures across muscle
disease severity. Comparison of honinvasive in vivo image-based measurements of disease
severity (skew and interdecile range) with ex vivo measurement of Evans Blue Dye. No muscle
disease occurred in healthy WT controls (n=5), mild disease was present in mdxB10 mice (n=4),
and severe disease was evident in mdxD2 mice (n=3). Both measures exhibited a strong linear
correlation with the Evans Blue Dye (R? vs skew: 0.71; R? vs IDR: 0.9).
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