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ABSTRACT

The CDK4/6 inhibitor palbociclib blocks cell cycle progression in ER+/HER2- breast tumor cells.
Although these drugs have significantly improved patient outcomes in metastatic breast
cancers, a small percentage of tumor cells continues to divide in the presence of palbociclib—a
phenomenon we refer to as fractional resistance. It is critical to understand the cellular
mechanisms underlying fractional resistance because the precise percentage of resistant cells
in patient tissue is a strong predictor of clinical outcome. Here, we hypothesize that fractional
resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of
cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify
fractionally resistant tumor cells both in a cell culture model of ER+/HER2- breast cancer as well
as live primary tumor cells resected from a patient. We found that tumor cells capable of
proliferating in the presence of palbociclib showed both expected (e.g., CDK2, E2F1) and
unexpected (e.g., Cdt1, p21, cyclin B1) shifts in core cell cycle regulators. Notably, resistant
cells in both tumor models showed premature enrichment of the G1 regulators E2F1 and CDK2
protein and, unexpectedly, the G2/M regulator cyclin B1 just before cell cycle entry, suggesting
that resistant cells may use noncanonical mechanisms to overcome CDK4/6 inhibition. Using
computational data integration and trajectory inference approaches, we show how plasticity in
cell cycle regulators gives rise to alternate cell cycle “paths” that allow individual ER+/HER2-
tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and
how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting

fractionally resistant cells to improve patient outcomes.
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INTRODUCTION

Estrogen receptor-positive, human epidermal growth factor 2 receptor-negative (ER+/HER2-)
metastatic breast cancers shows altered cell cycle behaviors that contribute to progression of
the disease (1-3). Most ER+/HER2- tumors show elevated expression of the estrogen receptor
(ER, ESR1) and its transcriptional target, cyclin D1 (CCND1) (4—6). Estrogen signaling
upregulates expression of cyclin D1, which works together with other cyclins (e.g., cyclin E) to
activate cyclin dependent kinases (CDKs) (7). Cyclin D1 forms complexes with CDK4 and CDK6
(8, 9), whereas cyclin E forms complexes with CDK2. Active cyclin-CDK complexes
phosphorylate the retinoblastoma protein (RB) to its phosphorylated form (pRB) (10, 11). RB
phosphorylation relieves repression of a large set of target genes controlled by the E2F family of
transcription factors (e.g., E2F1) (12-14). Expression of E2F-regulated genes produces
additional positive feedback mechanisms to initiate S phase (13, 15). In general, ER+/HER2-
breast tumors show enhanced signaling through cyclin-CDK signaling pathways that converge

on phosphorylation of RB to initiate cell cycle entry and tumor cell proliferation (Figure 1A).

For over twenty years, the mainline treatments for ER+/HER2- breast tumors have been
endocrine therapies such as tamoxifen, aromatase inhibitors, and fulvestrant. These “anti-
estrogen” agents partially block or antagonize estrogen receptor signaling to reduce cyclin D1
expression. More recently, several potent CDK4/6 inhibitors such as palbociclib, abemaciclib, or
ribociclib, are being given in combination with endocrine therapy to improve patient outcomes.
These drugs have had a profound clinical impact. Data from multiple clinical trials shows that
combined anti-estrogen and CDK4/6 inhibitor therapy nearly doubles progression-free survival,
and many patients respond to CDK4/6 inhibitor therapy for several years (6, 16—18). However,
many patients are initially resistant to the CDK4/6 inhibitors or acquire resistance within the first
few months of treatment. Despite extensive investigation, the mechanisms of resistance to
CDK4/6 inhibitors in ER+/HER2- breast cancers remain unclear (19, 20).

An important clue in understanding resistance to CDK4/6 inhibitors and endocrine therapy
comes from Ki-67 staining, a common clinical diagnostic for breast tumors. Ki-67 is a nuclear
protein that is expressed in actively proliferating cells but is absent in arrested cells (21). Ki-67
staining in paraffin-.embedded tissues nearly always shows a subpopulation of proliferating cells
(21, 22) (Figure 1B). This percentage of proliferating cells is strongly predictive of clinical
outcomes. After receiving treatment, for example, patients showing a low percentage (0-2%) of

proliferating cells are considered “responsive” to therapy, whereas a higher percentage (3-15%)
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of Ki-67-positive cells predicts a poor response for ER+/HER2- patients (23). Recent work by
Gaglia et al. shows that Ki-67 likely underestimates the number of proliferative cells in tumor
tissues (24). These observations strongly suggest that a subpopulation of tumor cells continues
to divide, even in “responsive” ER+/HER2- patients. We refer to this phenomenon in which a
subpopulation of tumor cells continues to divide in the presence of a cell cycle-targeting drug as
fractional resistance. Fractional resistance is conceptually similar to fractional killing, a term
coined to describe the observation that each round of chemotherapy does not kill 100% of tumor
cells (25). Previous work (26—34) showed that fractional killing is a consequence of non-genetic,
cell-to-cell heterogeneity—that is, differences in the molecular makeup of individual cells that do
arise from genetic mutations. Additional studies indicate that cell-to-cell heterogeneity plays a

role in resistance in melanoma (28, 35, 36).

One source of cell-to-cell heterogeneity is cell cycle plasticity—differences in the cell cycle
behavior driven by different combinations of cell cycle regulators. A recent meta-analysis of
cancer cell lines by Kumarasamy and colleagues found that sensitivity to CDK4/6 inhibitors was
associated with activation of RB, inhibition of CDK2 activity and, in some cases, depletion of
CDK4 and CDKG6 (37). These results demonstrate how cell cycle plasticity across different cell
lines leads to drug resistance, but it does not indicate what cell cycle plasticity may exist within a
single type of tumor cell, potentially explaining its drug resistance. A growing body of evidence
(37—43), including our own work (44—47), has shown that differences in cell cycle behavior
occurs at the level of individual cells. These differences include changes in the timing of key cell
cycle events such as a shortened G1 duration (42, 44, 46, 48) as well as an altered ordering of
events at the G1/S transition (49, 50). The cell cycle can also vary at the single-cell level in its
pattern of cyclin expression (51), CDK activity (15, 38), and other molecular states (37, 43).
These studies strongly suggest that individual cells can take distinct trajectories, or “paths”,
through the cell cycle that are defined by a unique combination of molecular states over time
(52, 53) (Figure 1C).

Here, we show that ER+/HER2- tumor cells show subtle, cell-to-cell differences in core cell
cycle regulators that allows a subset of tumor cells to escape CDK4/6 inhibitor therapy. We
used multiplex, single-cell imaging to build a proteomic profile for individual tumor cells treated
with palbociclib and identified fractionally resistant tumor cells both in a cell culture model of
ER+/HER2- breast cancer as well as from live primary tumor cells resected from a patient. We
found that resistant tumor cells harbored specific combinations of enriched and depleted cell
cycle regulators including cyclin B1, Cdt1, CDK2, and p21, some of which were common to both
4
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tumor models. Using computational data integration and trajectory inference approaches to
visualize resistant cells, our work shows how non-genetic plasticity in cell cycle regulators—at
the single-cell level—creates alternate cell cycle paths that allow individual ER+/HER2- tumor

cells to escape palbociclib treatment.
RESULTS

We first investigated fractional resistance in the T47D cell line, a well-established model of
ER+/HER2- breast cancer (54, 55). Cells were allowed to proliferate freely or treated with either
low (10 nM) or moderate (100 nM) doses of palbociclib for 24 hours. We then profiled protein
expression in 103,862 cells using indirect iterative immunofluorescence imaging, or “4i” (56)
(Figure 2A). For each cell, we quantified the abundance of 14 cell cycle regulators: pRB, RB,
Ki-67, CDK2, CDK4, cyclin D1, cyclin E, Cdt1, E2F1, cyclin A, cyclin B1, p21, and integrated
DNA (Table S1). These core regulators cover a broad range of molecular mechanisms
occurring throughout the cell cycle, including growth signaling (cyclins D and E, CDKs 2 and 4),
the G1/S transition (RB, pRB, E2F 1), DNA replication (Cdt1, Ki-67, DNA), and progression
through G2 and M phases (cyclins A and B). Given that a freely dividing population of tumor
cells is not synchronized to any particular cell cycle phase, 4i captures a diverse range of single-
cell states across all phases of the entire cell cycle. To facilitate a direct comparison of cell cycle
states across samples and treatment conditions, we performed principled downsampling of the
data using kernel herding sketching (57). This approach identifies a limited subset of
representative cells that preserves the original distribution of cell states. We selected an equal
number of cells (n = 2000) from each treatment condition (untreated, 10 nM, 100 nM), resulting
in a final downsampled dataset of 6,000 T47D cells (see MATERIALS AND METHODS).

To quantify the fraction of proliferating cells under each condition, we focused on the ratio of
phosphorylated to total RB protein, or pRB/RB. When quantified in individual cells, pRB/RB
often shows a bimodal distribution: low pRB/RB expression corresponds to a hypo-
phosphorylated RB state and is characteristic of arrested cells. High pRB/RB expression
represents the hyper-phosphorylated form of the RB protein and comprises actively proliferating
cells (58). As expected, palbociclib reduced the fraction of proliferating cells in a dose-
dependent manner (Figure 2B). Interestingly, however, we observed a small subset of cells that
maintained high pRB/RB levels at both 10 nM (48.4%) and 100 nM (5.9%) palbociclib, indicating
that some cells could evade drug treatment. Similarly, we observed a reduction in Ki-67

expression under increasing palbociclib concentration, but a fraction of cells maintained high
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Ki-67 expression in the presence of 10 nM and 100 nM palbociclib (Figure 2C). We observed a
similar level of fractional resistance in a biological replicate of T47D cells (Figure S1A-B). To
confirm the cells were truly capable of proliferating in the presence of palbociclib, and not
merely finishing the previous cell cycle within the 24-hour treatment time frame, we repeated the
experiment in long-term culture, exposing cells to one week of continuous palbociclib treatment.
Again, tumor cells showed fractional resistance as indicated by the continual presence of
proliferating cells (Figure S1C). Taken together, these results reveal that a small subset of
ER+/HER2- breast tumor cells continue to proliferate in the presence of palbociclib, implying

that cell-to-cell variation may account for fractional resistance.

We next asked what intracellular features may be enriched in proliferating cells in the presence
of palbociclib. We focused deliberately on differences in protein abundance—rather than
epigenetic or transcriptomic differences—because palbociclib acts directly on the CDK4/6
proteins (59), and because the core cell cycle regulators are largely regulated through protein
modification and degradation (60, 61). To identify only the proliferating cells, and exclude GO
cells, we set a threshold level of pPRB/RB above which cells were confidently expected to be in
the hyperphosphorylated state and therefore actively proliferating in either G1, S, G2, or M
phases (38, 62, 63). We set a conservative cutoff (see MATERIALS AND METHODS) to
capture this second peak of pRB/RB expression (dotted line in Figure 2B). We then compared
the single-cell profiles between these proliferating untreated and palbociclib-treated cells to
identify differences in cell cycle regulators that may be responsible for fractional resistance.
Shifts in the distributions of individual cell cycle proteins (Figure 3A) were quantified using a
two-sample t--test between untreated cells and either the 10 nM or the 100 nM treatment
condition, producing 95% confidence intervals (Cls) for any observable differences in single-cell

protein expression (Figure 3B).

Under palbociclib treatment, many cell cycle regulators (e.g., pRB, Ki-67, cyclin A) showed
similar distributions of expression compared to untreated cells. However, some regulators
showed significant shifts in protein expression under 10 nM and/or 100 nM palbociclib
treatment. For example, proliferating T47D cells showed elevated CDK2 levels under 10nM and
100 nM palbociclib treatment (0 vs. 10 nM 95% CI (0.09, 0.26); 0 vs. 100 nM (0.014, 0.41)) and
reduced expression of Cdt1 (0 vs. 10 nM (-0.30, -0.10,); 0 vs. 100 nM (-0.63, -0.19) at both drug
doses. Elevated expression of CDK2 activity is consistent with previous studies showing that
ER+/HER2- tumors cells often become resistant to CDK4/6 inhibitors via increases in cyclin
E/CDK2 activity (5, 16). However, we note that these studies are typically focused on genetic
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changes in cyclin E/CDK2 activity (e.g., mutations or copy number variation) and not cell-to-cell
variability in protein expression. On the other hand, reduced Cdt1 expression under palbociclib
treatment has, to our knowledge, not been previously described. Cdt1 encodes for a subunit of
the pre-replication complex necessary for DNA replication. Entry into S phase with sub-normal
Cdt1 levels could potentially lead to replication stress (64). Finally, we noted that proliferating
T47D cells showed a significant depletion of DNA content, likely reflecting a relative enrichment

of G1-arrested cells with elevated pRB/RB levels.

We next asked how expression of cell cycle regulators shifted as cells progressed through
individual cell cycle phases. To do this, we performed unsupervised clustering of the expression
levels of DNA, cyclin A, and cyclin B1 to assign each cell to a specific cell cycle phase: GO, G1,
S, or G2/M (MATERIALS AND METHODS). We then trained a logistic regression model within
each phase separately on the proteomic expression profiles from all 6,000 cells to classify
whether a cell belonged to either the control (untreated) or treatment (10 nM and 100 nM
palbociclib) group (Figure 3C). When paired with a raw comparison of changes in expression
(Figure 3D), this analysis reveals how differences in expression of cell cycle regulators—either
positive changes (red bars in Figure 3C) or negative changes (blue bars in Figure 3C)—are
associated with cell cycle progression under palbociclib treatment. The results were largely
consistent with the previous f-test analysis of proliferating cells. For example, we found that
elevated CDK2 expression was a significant, positive predictor of palbociclib-treated cells in
both GO and G1 phases. However, this analysis also revealed several new trends. For example,
increases in three other core cell cycle regulators—E2F1, RB, and cyclin B1—were significantly
associated with palbociclib-treated cells in GO and/or G1 phases. E2F1 expression was among
the strongest predictors of treatment in both GO and G1 cells, providing further clarity for the
overall E2F1 enrichment we observe under treatment in Figure 3B. These results suggest that
individual tumor cells with prematurely elevated E2F1 and CDK2 protein levels may be more

likely to transition from GO to G1 in the presence of palbociclib.

More surprisingly, we found that enrichment of cyclin B1 was positively associated with
palbociclib-treated cells in GO, G1, and G2/M phases. Cyclin B1 is a G2 cyclin that is required
for entry into M phase (65). The untimely enrichment of cyclin B1 among treated cells in GO and
G1 phases suggests that elevated cyclin B1 levels may facilitate resistance to palbociclib
through noncanonical mechanisms of cell cycle progression. Enrichment of cyclin B1 in GO and
G1 phases was confirmed after performing the same analysis on a biological replicate of T47D
cells (Figure S2C). Overall, we found that fewer cell cycle regulators reached statistical
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significance in S or G2/M phases than in GO or G1 phases, likely because of the smaller sample
sizes for these subpopulations of cells, especially under palbociclib treatment where most cells
were arrested in GO. Nevertheless, several overall trends were consistent across all phases;
specifically, these phase-specific analyses show that palbociclib either promotes, or selects for,
proliferation of tumor cells with altered protein expression profiles characterized by increases in
E2F1, CDK2, and cyclin B1, and decreases in Cdt1.

Although T47D is a well-established model of ER+/HER2- breast cancer, it may not reflect the
physiology of primary tumor cells from an actual breast cancer patient. Thus, we developed an
experimental strategy for studying fractional resistance in surgically resected primary human
tumors (Figure S3, MATERIALS AND METHODS). Briefly, we obtained a specimen from a
primary ER+/HER2- invasive lobular carcinoma which was delivered immediately from the
operating room to the laboratory. After dissociation, cells were plated, treated with palbociclib or
control media for 24 hours, and subjected to 4i profiling. Because tissue samples contain
complex mixtures of cell types, we used expression of the epithelial marker pan-cytokeratin
(PanCK), as well as the estrogen and progesterone receptors (ER/PR) to computationally
separate the tumor cells for downstream analysis. Out of a total population of 100,191 cells, we
identified a subpopulation of 14,789 cells showing high expression of ER, PR, and PanCK
(Figure S4). As above, we performed principled downsampling to a size of 6,000 cells (2,000

cells per condition) to match the T47D analysis.

We first looked for shifts in protein expression between untreated and palbociclib-treated
primary tumor cells. As before, we focused initially only on the proliferating subpopulations (i.e.,
G1, S, and G2/M cells) using a conservative cutoff for pRB/RB levels to identify fractionally
resistant tumor cells (Figure S5). Although we did not observe consistent changes in Cdt1 or
CDK2 expression, primary tumor cells shared many of the same shifts in expression as T47D
cells. For example, we observed a significant depletion of DNA content (0 vs. 100 nM 95% CI (-
0.89, -0.21)) and additionally, Ki-67 expression (0 vs. 100 nM 95% CI (-0.95, -0.12)) (Figure
4B). As with T47D, the depletion of Ki-67 and DNA was likely due to the accumulation of G1
cells under treatment, which would be predicted to have lower DNA and Ki-67 content (66). We
also observed a significant upregulation of E2F1 protein levels, as previously observed in T47D.
A distinct finding in primary tumor cells was the consistent and significant depletion of cyclin A
(95% CI (-1.12, -0.54)) and p21 (95% CI (-0.80, -0.28)) under palbociclib treatment. The
downward shift in cyclin A could be due to a depletion of S and G2/M cells relative to G1 cells

among proliferating treated cells.
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Although CDK2 showed an inconsistent pattern of expression characterized by apparent
enrichment at 10 nM and depletion at 100 nM palbociclib treatment, this discrepancy was
clarified by the logistic regression model, which identified elevated CDK2 expression as a top-
ranking predictor of palbociclib treatment across all cell cycle phases (Figure 4C). By examining
the average change in expression for each cell cycle regulator across the cell cycle phases
(Figure 4D), we observed a gradual accumulation of CDK2 as cells progressed from G1,
through S phase, peaking in G2/M, consistent with the protein’s known dynamical pattern of
expression (67, 68). Thus, accumulation of CDK2 protein in palbociclib-treated tumor cells
suggests a potential axis of nongenetic resistance mediated by enhanced cyclin E/CDK2 activity

signaling.

A more striking consistency with T47D cells was that the same four cell cycle regulators—
CDK2, cyclin B1, E2F1, and RB—were again the highest-ranking and most significant positive
factors associated with GO arrest in primary tumors cells. This result points to a potentially
common mechanism of non-genetic drug resistance. In addition, we also noted that increased
cyclin B1 expression in GO cells was positively associated with palbociclib treatment (Figure
4C), consistent with results in T47D. At first, this result seemed to contradict the results shown
in Figure 4B, where cyclin B1 is apparently decreasing under palbociclib treatment. However, a
closer examination of average cyclin B1 expression in Figure 4D shows that the decrease is
driven primarily by G2/M cells, the least populous phase of tumor cell (see pie charts in Figure
5C) and the remaining phases are either increasing in expression of cyclin B1 under treatment,
or staying at the same level. Furthermore, as there are fewer proliferating cells under 100 nM of
palbociclib than at 10 nM, the apparent decrease under the higher dose may be lost by grouping

treatment conditions.

Interestingly, the cell cycle inhibitor, p21, which serves to block phosphorylation of RB by
inhibiting cyclin-CDK complexes, was significantly downshifted under both 10 nM and 100 nM
palbociclib treatment (Figure 4B, 0 vs. 10 nM 95% CI (-0.44, -0.13), 0 vs. 100 nM (-0.79, -
0.28)). The logistic regression model also identified p21 as a strongly negative predictor of
palbociclib treatment across all cell cycle phases (Figure 4C), and p21 showed a consistent
pattern of reduced expression across all phases (Figure 4D). This result was not observed for
T47D cells. The palbociclib-induced reduction in p21 levels could potentially relax cell cycle
arrest and allow cells to enter G1 with modest cyclin/CDK activity. This observation is consistent
with enrichment of E2F1 under palbociclib treatment, which was significantly upshifted in
primary human tumor cells. Despite these discrepancies among tumor models, consistent
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enrichment of CDK2, E2F1 and cyclin B1 in GO and G1 phases, both in T47D and primary
tumor cells, suggests a potentially common mechanism of fractional resistance. The
accumulation of such factors potentially allows a subpopulation of cells to prematurely enter G1
with elevated pRB/RB levels. These findings indicate that the tumor cell cycle is inherently
plastic; individual cells can take different molecular paths through the cell cycle, some of which
are resistant to CDK4/6 inhibitors.

We next sought to visualize resistant cell cycle paths taken by individual tumor cells. To this
end, we first identified a shared latent space of T47D and primary tumor samples by performing
data integration with Tumor Response Assessment by Nonlinear Subspace Alignment of Cell
lines and Tumors (TRANSACT) (69) (see MATERIALS AND METHODS). We then applied
Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE) (70) on the joint
latent space to generate a low-dimensional projection of the combined tumor cell cycle (52, 53).
Figure 5 shows the resulting saddle-shaped structure that captured the progression of four cell
cycle phases and revealed significant variability in single cell states. Each dot in the structure
represents an individual cell, and dots nearer to each other have similar expression profiles of
cell cycle regulators. By overlaying expression levels for individual cell cycle regulators

(Figure 5A), we observed well-established cell cycle events, including elevated pRB and Ki-67
in proliferating cells; a peak in Cdt1 expression in late G1; accumulation of E2F1 in S phase;
and sequential expression of cyclin A and cyclin B1. These temporal trends in core cell cycle
regulators, which emerged without providing any input to the model, allowed us to estimate the
general path of cells from GO to G1, S, and G2/M phases (back curve in Figure 5B). As
expected, we found that palbociclib gradually depleted the number of cells in proliferative
phases for both T47D (Figure 5B) and primary tumor cells (Figure 5C), potentially altering the

path of proliferation through the cell cycle.

To obtain a more objective and quantitative calculation of the various paths cells take through
the cell cycle under palbociclib treatment, we performed trajectory analysis using Slingshot (71)
through the low-dimensional PHATE embedding. Without specifying the correct order of phases,
this analysis determined the proper cell cycle ordering from GO, to G1, to S, and to G2/M phase
in most of the trajectories (see MATERIALS AND METHODS). To allow direct comparisons
between each path, we aligned the separate treatment trajectories into one shared axis for each
data source using TrAGEDYy (72). Figure 6 shows a visualization of the different temporal
expression trends of cell cycle regulators under each experimental condition. In both T47D and
the primary tumor cells (Figure 6A, D), we observed a clear inward movement of the
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trajectories—away from proliferating subpopulations—as palbociclib dose increased. Heatmaps
in Figures 6B and 6E illustrate the scaled expression of cell cycle regulators ordered along the
aligned pseudotime axis. As an alternative visualization, Figures 6C and 6F directly compare
the aligned pseudotime traces for each cell cycle regulator across treatment conditions for T47D
and primary tumor samples, respectively. To facilitate comparison among the drug doses, we
defined a common transition point as the time at which 50% of the cells remained in GO and

50% of the cells had progressed to a proliferative phase (vertical lines in panels B, C, E, and F).

As expected, the temporal trends of increasing pRB/RB and Ki-67 levels, representing escape
from cell cycle arrest, were delayed (i.e., right-shifted) under palbociclib treatment in a dose-
dependent fashion (Figures 6C and 6F). Despite these delays in cell cycle entry, however,
many other cell cycle regulators nevertheless maintained synchronized trends. For example, in
both tumor models, CDK2, E2F1, and cyclin B showed temporally synchronized increases in
expression among all treatment groups. Importantly, however, in palbociclib-treated cells, these
factors accumulated for longer times and to greater extents before the population reached the
GO0/G1 transition point, when approximately half of the cells were determined to begin
proliferation. More strikingly, other cell cycle regulators showed a reversal of temporal trends.
For example, T47D cells treated with 100 nM of palbociclib showed early increases in CDK4,
cyclin D1, and cyclin E compared to 10 nM and untreated cells. Conversely, Cdt1 expression
was both reduced and delayed upon drug treatment (Figure 6A-C). In contrast to T47D, in the
primary ER+/HER2- tumor (Figure 6D-F), expression of p21 was reduced among treated cells.
Taken together, this analysis supports the observation that accumulation of distinct cell cycle-
promoting factors, including E2F1, CDK2, and the G2-associated cyclin B1, precedes—and

potentially facilitates—escape from palbociclib-mediated arrest in T47D and primary tumor cells.
DISCUSSION

In ER+/HER2- breast cancer, drugs that specifically inhibit cyclin-dependent kinases 4 and 6
(CDK4/6 inhibitors)—when given in combination with endocrine therapy—have dramatically
improved oncologic outcomes and overall survival. Unfortunately, there is considerable
heterogeneity in the clinical responses to CDK4/6 inhibitors, and most patients eventually
develop drug resistance. The field has poured tremendous effort into genetic profiling studies
with the hope of identifying molecular mechanisms that predict resistance to CDK4/6 inhibitors.
Besides identifying a handful of genes associated with resistance, there is currently no

biomarker in clinical use that can predict how an ER+/HER2- patient will respond to endocrine
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therapy and CDK4/6 inhibitors. This is not just a failure of precision medicine—it also reveals a

serious gap in our understanding of the mechanisms that underlie drug resistance.

Here, we provide a new framework for how drug resistance may arise in ER+/HER2- breast
tumors. We show that cell-to-cell differences in core cell cycle regulators allow a subset of tumor
cells to escape CDK4/6 inhibitor therapy. We refer to this phenomenon as fractional
resistance—the incomplete arrest of tumor cells by a drug. By interrogating the multidimensional
protein state of individual cells, we demonstrate the phenomenon of fractional resistance both in
a well-established ER+/HER2- model, T47D, as well as a primary tumor resected from a breast
cancer patient. Through single-cell analysis, we found that tumor cells capable of proliferating in
the presence of palbociclib showed unique combinations of enriched and depleted cell cycle
regulators including cyclin B1, Cdt1, CDK2, and p21. Notably, resistant cells in both tumor
models showed a common enrichment of the E2F1 transcription factor in GO and G1 phases,
suggesting that resistant cells may use a common molecular mechanism to overcome CDK4/6
inhibition. Tumor cells also showed an untimely enrichment of cyclin B in palbociclib treated
cells, suggesting that this G2-associated cyclin might mediate drug escape. By tracing the
trajectories of resistance in each tumor model, we visualize how plasticity in cell cycle regulators
creates alternate cell cycle “paths” that allow some ER+/HER2- tumor cells to escape

palbociclib treatment.

These findings explain several longstanding observations about ER+/HER2- breast cancer. For
example, it has long been known that a correlation exists between the fraction of proliferating
cells (i.e., Ki-67 staining) in a patient tumor and patient outcomes (23). Our work suggests that
patients with more Ki-67-positive cells may have more plastic cell cycles that increase fractional
resistance. Secondly, our work provides an alternative mechanism by which core cell cycle
regulators can promote oncogenesis. Besides acquiring mutations in specific cell cycle genes,
such as RB or cyclin E, we show that cell-to-cell variability in these same factors can promote
drug resistance. Indeed, our observations of the enrichment of oncogenic protein factors may
reflect the evolutionary pressure acting on tumor cells to select specific genetic alternations.
Third, our work suggests a specific mechanism by which escaping tumor cells, through the
accumulation of genetic events due to downregulation of the DNA licensing factor Cdt1, may be
the seeds of genetically distinct tumor cells with more robust drug resistance. Supporting this
idea, a recent study linked palbociclib-mediated arrest to downregulation of replisome
components, defective origin licensing, and replication stress (73). Clinically, tumor mutational
burden is associated with resistance to CDK4/6 inhibitors in patients with ER+/HER2- breast
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cancer (74) and deficient licensing due to downregulation of Cdt1 could be a key mechanism
leading to accumulation of resistance promoting genetic events. Future work should investigate

whether fractionally resistance cells are more prone to replication stress and genetic mutation.

Our work is consistent with the well-known additive effects of combining endocrine therapy and
CDKA4/6 inhibitors. If these drugs work together to reduce fractional resistance, then it may be
profitable to consider additional combination therapies that further reduce the fractionally
resistant subpopulation in ER+/HER2- breast tumors. Indeed, we found that the combination of
palbociclib and tamoxifen, a drug that blocks estrogen receptor signaling, reduced fractional
resistance in primary tumor cells (Figure S6). Finally, cells that are resistant to palbociclib
showed higher levels of CDK2, implying that accumulating CDK2 may allow cells to overcome
CDK4/6 mediated arrest. Therefore, CDK4/6 inhibitors with activity against CDK2 may have
greater efficacy by also arresting this fractionally resistant subpopulation. In fact, patients with
ER+/HER2- breast cancer treated with abemaciclib or ribociclib, which have greater activity
against CDK2 compared to the more CDK4/6 specific palbociclib, have improved responses
(75—78). Thus, using this human tumor 4i model we have uncovered a mechanism that explains
clinical findings and supports the need for experimental systems using primary human tumors at

the single-cell level to understand how tumors respond and resist therapies.

Evaluating therapeutic responses in terms of fractional resistance and cell cycle paths enhances
our understanding of drug resistance mechanisms. Previous work has shown that cell cycle
behaviors vary among tumors; here, we show that it also varies within the same tumor at a
single-cell level. With the ability to fully profile the cell cycle behaviors in tumor cells—and
distinguish among them—the field could make better predictions for when targeted therapy will
work or how to develop new targeted treatments to arrest proliferating tumor cells. Future study
will focus on understanding the range of sensitive and resistant cell cycle paths, and unique
targetable drivers of resistant paths, both in ER+/HER2- tumors treated with CDK4/6 inhibitors,
and in other human solid organ tumors. Identifying and characterizing tumor subpopulations
with distinct sensitivities to targeted therapies could allow development of precision therapeutic

regimens for individual patients based on specific tumor subpopulation drug sensitivities.

MATERIALS AND METHODS

Primary human breast tumor cells

Under an Institutional Review Board (IRB) approved protocol, we obtained a tumor sample from

a female patient with invasive lobular carcinoma that was positive for expression of the estrogen
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receptor (ER+) and negative for amplification of HER2 (HER2-). The patient provided written
informed consent. This tumor specimen was obtained in the operating room suite within 15
minutes of resection. The sample was placed in DMEM/F12 (Gibco) media with 1% Penicillin-
Streptomycin and transferred immediately to the laboratory on ice. The tumor specimen was
sharply minced into 2-4 mm fragments. Enzymatic dissociation was performed using Gentle
Collagenase/Hyaluronidase (Stemcell Technologies Inc. 07919) in DMEM/F12 supplemented
with 5% BSA, Hydrocortisone (Stemcell Technologies Inc.), HEPES (Corning), and Glutamax
(Gibco) for 16 hours at 37°C with cell agitation. The cells were gently centrifuged and washed
twice with PBS supplemented with FBS and HEPES buffer. Cells were resuspended in
ammonium chloride solution (Stemcell Technologies Inc. 07800) and incubated at 37°C with 5%
CO2 to remove red blood cells. Cells were centrifuged and briefly trypsinized in warm 0.05%
Trypsin-EDTA (Gibco) and DNase |. Cells were centrifuged and washed then resuspended in
DMEM/F12 with 10% FBS. Cells were then strained using multiple rounds of sequential
straining with 100 um and 40 um cell strainers to remove cell debris. Cells were counted using
fresh trypan blue and the Countess cell counter (Life Technologies). Cells were plated on a
glass 96-well plate coated with poly-L lysine at 100,000 cells per well. Cells were allowed to
adhere for 48 hours at 37°C with 5% CO2 in DMEM/F12 media with 10% FBS. After 24 hours,
media and non-adherent cells were removed. DMEM/F12 media with 10% FBS was added
containing vehicle, or palbociclib at 10 or 100 nM. Cells were incubated at 37°C with 5% CO2.

After 24 hours of treatment, cells were fixed with PFA and 4i performed as described below.

FFPE slides sectioned at 4 microns were obtained from clinical pathology for the primary
ER+/HER2- tumor. Immunohistochemistry (IHC) for Ki-67 antigen was performed using the Ki-
67 Antibody (MIB-1, Dako) at 1:100 as we have previously described (79). A positive control
was included. Ki-67 was scored according to the Ki-67 IHC MIB-1 pharmDx (Dako Omnis)
Interpretation Manual for Breast Carcinoma. The Ki67 pharmDx score (%) was calculated as
number of Ki-67 staining viable invasive (in situ disease was excluded) tumor cells divided by
the total number of viable invasive tumor cells, multiplied by 100 for 2000 cells scored cells. The
Ki67 staining for the primary tumor sample is shown in Figure 1B, which was scored as 14%
Ki67+.

Iterative immunofluorescence

We followed the protocol of Gut et al. (56) with the following modifications. T47D (ATCC HTB-

133) or primary cells from human tumors were fixed by adding 8% PFA (Thermo Scientific

cat#28908) directly to the samples (1:1 v/v with media) for a final concentration of 4% PFA and
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incubated for 30 minutes at room temperature (RT). Samples were rinsed 3 times with PBS
(pH=7.4)(200 pL/well for 96 well format) and incubated with 0.1% Triton X-100 (50
uL/well)(Fisher cat#BP151) for 15 minutes at RT to permeabilize the cells for
immunofluorescence. Samples were then rinsed a single time with PBS and then incubated with
Hoechst (Sigma cat#94403)(50 uL/well; 1:2500 dilution in PBS) for 15 minutes at RT to stain the
DNA contained in the nucleus of the cells. Cells were rinsed once with PBS,100 pL/well of PBS
was added to the wells, and cells were imaged. This ‘pre-stain’ is a key first step as it ensures
that 1) the cells are well distributed in the well and 2) serves as a necessary quality control step
to ensure that the cells are suitable for 4i. Samples deemed suitable for 4i were eluted, even
though labeling with a primary antibody has not occurred. This is done as the elution process

further opens the cells and permits optimal labeling.

Elution of samples was carried out by first rinsing the samples three times with water. Elution
buffer (EB) was prepared fresh from a pre-mix stock (L-Glycine [0.5M](Sigma cat#50046), Urea
[3M](Sigma cat#U4883) and Guanidinum Chloride [3M](Invitrogen cat#15502-016)) combined
with TCEP-HCI [70 mM](Sigma #646547) and HCI (Fisher cat#SA49) to obtain a pH to 2.5.
Samples were washed three times with EB (50 pL/well) for 10 minutes at RT with gentle
shaking. Of note, it is important not to exceed the number of washes or the duration of the
washes as this may degrade the samples. Once elution was complete, the sample was rinsed

one time with PBS prior to labeling with primary antibodies.

Labeling with primary antibodies first requires incubation with sBS (4i blocking solution) for 1
hour at room temperature (50 pL/well). The blocking solution was made up fresh and for every
mL of solution one adds 14.6 mg Malemide [100 mM](Sigma cat#129585) and 5.35 mg NH4Cl
[100 mM](Sigma cat#A9434) to conventional blocking solution (cBS)(1% BSA (Sigma
cat#A7906) in PBS). Once incubation with blocking solution was complete, samples were rinsed
one time with PBS and primary antibodies (50 uL/well) were applied for an overnight incubation
at 4°C with gentle rocking/shaking. It is important to note that the antibody solution was made in
a conventional blocking solution at a dilution that is empirically determined and may contain
several different antibodies. This does not present an issue as long as the antibodies have
different species of origins (see Table S1 for a list of primary antibodies used in this study).
Alternatively, samples may be incubated with the primary antibody solution at room temperature
for an hour or more, but labeling may not be as robust. Once the incubation with the primary
antibody solution was complete, samples were rinsed one time with PBS, followed by three
washes with PBS for 5 minutes each, followed by one final rinse in PBS. The final rinse with
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PBS was carefully aspirated off the sample to ensure all residual antibodies had been removed.
Immediately following incubation with primary antibodies, fluorescent secondary antibodies
specifically directed at the primary antibodies were applied. We used the Alexa series of
secondary antibodies at a dilution of 1:500 in cBS along with Hoechst DNA stain at 1:2500. The
secondary solutions (50 uL/well) were incubated for 1 hour at RT with gentle rocking and under
conditions excluding light to prevent any photobleaching of the secondary fluorophores. Once
this step was complete, cells were rinsed/washed in the same exact manner as the end of the
primary antibody incubation step. During the wash step, fresh imaging buffer (IB) was prepared,
which consists of N-acetylcysteine (NAC, Sigma cat#A7250) in water at a final concentration of
700 mM and pH of 7.4. We added 100 uL/well of IB to the samples and immediately imaged the

cells.

Imaging was performed on a Nikon TiE inverted microscope utilizing a plan apo lambda 20X
objective lens (NA = 0.75) with an Andor Zyla 4.2P sCMOS camera as a detector. NIS-
Elements HCA (high content analysis) JOBS software was utilized in the acquisition of images
as it permits the imaging of entire wells in a fast and automated fashion. Upon completion of
imaging, samples were eluted per the protocol described above and the next round of labeling
and imaging was performed. It should be noted that every other round after elution, and before
the next round of labeling, samples were imaged with the same exact experimental parameters
with successful elution. This results in little to no fluorescent signal and ensures that the
antibodies from the previous round have been successfully removed via the elution process and
that no residual labeling is present to ‘contaminate’ the next round of imaging. This process of
imaging and elution was repeated in an iterative manner to build a molecular profile for

individual cells for each sample and treatment condition.

Image processing and cell property quantification

The image processing pipeline consisted of several steps to convert the raw images in the
Elements nd2 format to a matrix of single cells with protein expression quantified in the nucleus,
ring, and cytoplasm. The four primary steps were: 1) cell segmentation via the Cellpose
algorithm (71) to define the nucleus for each round from the Hoechst staining, 2) cell segmented
masks were aligned across all rounds of images, 3) punchmasks were manually drawn to
exclude any debris (cellular or otherwise), and 4) cell properties were calculated from
individual segmented nuclei for all the intensity channels. We followed the image preprocessing

pipeline as described in the GitHub repository: https://github.com/fiorka/4i_analysis.
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Data preprocessing

To compare tumor cells from a cell culture model of ER+ breast cancer (T47D) and tumor cells
from a primary tumor sample resected from a patient, we performed a series of preprocessing
steps. Following image preprocessing and cell property quantification, we computationally
filtered cells within the primary tumor sample to retain only the tumor epithelial cells by gating
cells according to the median expression of ER and PR (see Figure S4). Feature selection was
then performed by selecting the intersection of core cell cycle regulators profiled in both
datasets (P = 14). Lastly, T47D and primary tumor datasets were standardized independently
by mean centering and scaling to unit variance. The abbreviated experimental pipelines for the

T47D and primary tumor samples are shown in Figure 2A and Figure S3, respectively.

Cell cycle annotations

The bimodal distribution of the ratio of phosphorylated to total RB levels (pRB/RB) was used to
distinguish proliferative cells (G1/S/G2/M, high pRB/RB) from arrested cells (GO, low pRB/RB).
To agnostically set the pRB/RB threshold for both datasets without any underlying assumptions
on the shape or spread of the distribution, we implemented a data normalization step outlined
previously in Ref. (80), based on the idea that if a distribution is bimodal, there will be a region
of higher density on one side of the median as compared to the other. More precisely, given a
sorted list of expression values, xprers, We first computed the median of the distribution as m =
median(Xprars)). We then folded the left side of the distribution, xpreirs < m, over the right side of
the median by z,raire [XpreiRE < M] = 2*M — XprEIRB [XprEIRE < M], Where Z is the new one-sided
distribution. Next, we computed a specified percentile, p, of this one-sided distribution and
subtracted the median, denoting this difference as a, zyrars, p) — m = a. The cutoff point of the
second mode of the distribution (i.e., proliferative cells with high pRB/RB) was then defined
according to the values of x,ra/rs that fell within the range (m — a, m + a). More specifically, we
denote s = |(z € (m— a, m + a))|, where | is the cardinality of the set within the specified range.
We define the point separating the modes of the distribution, ¢, as ¢ = s/ n, where n is the total
number of cells in the distribution. We selected a percentile value of (p = 0.2) for T47D, (p = 0.7)
for T47D replicate, and (p = 0.7) for the primary tumor sample based on the distribution of
pRB/RB expression values (See Figures 2B, S1A, S5).

For the proliferative cells, as indicated above by high expression of pRB/RB, cell cycle phase
annotations (G1, S, and G2/M) were subsequently determined by fitting a three component
Gaussian Mixture Model to the log-transformed measurements of DNA content, cyclin A, and

cyclin B1. Unsupervised clusters were annotated as follows: G1 (DNA content = 2C, low cyclin
17


https://doi.org/10.1101/2023.05.22.541831
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.22.541831; this version posted May 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A), S (DNA content = 2-4C, medium cyclin A), and G2/M (DNA content = 4C, high cyclin A). The

Gaussian Mixture Model was implemented using the sklearn 0.24.1 package in Python.

Sketching

To identify a limited subset of representative cells for each dataset and facilitate a direct
comparison cell cycle states across samples and treatment conditions, we selected an equal
number of cells (n = 2,000) from each treatment condition (untreated, 10 nM, and 100 nM
palbociclib) within a dataset (T47D, primary tumor) using kernel herding sketching (57). Kernel
herding sketching performs principled downsampling of the data and selects prototypical cells
that are representative of the original distribution of cell type frequencies (e.g., cell cycle
phases), while also ensuring rare cell types are sufficiently sampled. For each dataset, sketched
cells from each condition were then vertically concatenated into a N x P matrix prior to
downstream analysis, where N is the number of sketched cells across three treatment

conditions (N = 6,000) and P is the number of profiled proteomic imaging features (P = 14).

Confidence intervals

To identify shared and distinct mechanisms of resistance to palbociclib treatment, we examined
the fractional arrest profiles of proliferating T47D and primary tumor cells as follows. For each
dataset (T47D, primary tumor), we computed two sample t-tests assuming equal variance
between each cell cycle effector in untreated proliferative cells and each treatment condition
separately. More specifically, we computed 95% confidence intervals between proliferative
untreated and 10 nM palbociclib cells, and 95% confidence intervals between proliferative

untreated and 100 nM palbociclib cells.

Logistic regression

Logistic regression (81) is a supervised learning algorithm that can be used to predict the
probability of a binary outcome (e.g., control, treated) based on a set of input features (e.qg.,
proteomic imaging features). To ascertain changes in cell cycle regulators associated with
palbociclib treatment, a logistic regression model was trained on the proteomic expression
profiles of cells within each cell cycle phase (G0, G1, S, G2/M) for each dataset (T47D, primary
tumor) to predict the treatment group of a tumor cell (control, treated). In this case, the control
group consisted of untreated cells, whereas the treated group consisted of cells treated with
either concentration of palbociclib (10 nM, 100 nM). For each dataset and phase, nested ten-
fold cross-validation was performed using stratified random sampling to assign cells within a

particular phase to either a training or a test set. Using a grid search, hyperparameters were
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tuned within each fold prior to training the model, and cells were classified as control or treated
from the test data. Classification performance was subsequently assessed by computing the
area under the receiver operator characteristic curve (AUC ROC). Logistic regression was

implemented using the sklearn v0.24.1 package in Python.

Data integration with TRANSACT

TRANSACT (Tumor Response Assessment by Nonlinear Subspace Alignment of Cell lines and
Tumors) (69) is a nonlinear data integration method that can be used to identify a shared
subspace of preclinical cell lines and patient-derived samples. Briefly, TRANSACT merges
datasets by performing kernel principal components analysis (82) on each individual dataset,
and then geometrically aligns these nonlinear principal components to extract principal vectors
that represent similar nonlinear weighted combinations of expression profiles across data
samples. A consensus data representation, corresponding to biological processes that are
present within both preclinical cell lines and primary tumor samples, is then computed by
optimizing the match between interpolated sets of principal vectors using geodesic flow (83).
We performed data integration of T47D and primary tumor samples using TRANSACT to more
robustly represent and compare cell cycle trajectories under palbociclib treatment. More
specifically, we identified a shared latent space by first computing consensus features for T47D
and primary tumor samples, and then projecting both datasets onto the consensus features.
Here, the integrated dataset, F™#7P.7um consisted of 12,000 cells and 14 shared consensus
features. Of note, integration was performed on the sketched datasets to ensure that the joint
latent space was not overwhelmed by one data modality when performing downstream
analyses, such as dimensionality reduction and trajectory inference. TRANSACT was
implemented using the transact-dr v1.0.1 package in Python, where cell similarity was defined

using a radial basis function with a scaling factor, y = 1/v/500.

PHATE dimensionality reduction

To visualize high dimensional single-cell 4i profiles of the cell cycle, we performed nonlinear
dimensionality reduction with PHATE (Potential of Heat-diffusion for Affinity-based Trajectory
Embedding) on the integrated dataset of T47D and primary tumor samples. PHATE (70) is a
nonlinear dimensionality reduction method that effectively represents the geometry of complex
continuous data structures and has been shown previously (52, 53, 84) to successfully
recapitulate proliferative and arrest cell cycle trajectories. PHATE was implemented using the

phate v1.0.7 package in Python by constructing a k-nearest neighbor graph (k = 150) according
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to pairwise Euclidean distances between all pairs of cells from the consensus feature space
computed by TRANSACT, FT47D,Tum,

Trajectory inference and alighment

To characterize trajectories through the cell cycle under palbociclib treatment, we performed
trajectory inference using Slingshot (71) on each dataset (T47D, primary tumor) and treatment
condition (untreated, 10 nM, and 100 nM palbociclib). This trajectory inference method was
chosen as it was shown previously (85) to outperform alternative methods on inferring simple
continuous or branched cellular trajectories. Slingshot was implemented using the slingshot
v2.7.0 package in R by 1) fitting a minimum spanning tree through cluster centroids defined by
cell cycle phase annotations, and then 2) estimating pseudotime by projecting cells onto the
principal curves fit through the PHATE embedding generated from the consensus feature space
computed by TRANSACT. The root (starting) cluster was defined as the GO phase. Across most
inferred cellular trajectories, Slingshot identified the canonical ordering of cell cycle phases (GO
to G1 to S to G2/M). However, we note that in two scenarios (untreated T47D and 100 nM
palbociclib primary tumor), Slingshot identified a minimum spanning tree spanning from GO to
G1 to G2/M phases for the primary tumor and GO to S to G2/M for the T47D, respectively.

Given that trajectory inference was performed on cells from each treatment condition
separately, we subsequently aligned the trajectories onto one common pseudotime axis using
TrAGEDy to enable a direct comparison of continuous proteomic expression profiles across
treatment conditions. TrAGEDYy (Trajectory Alignment of Gene Expression Dynamics) (72) is a
trajectory alignment method that can align cells from two independently generated trajectories
and has been shown previously to enable robust comparisons of continuous expression trends
across treatment conditions when aligning Slingshot trajectories from PHATE dimensionality
reduced single-cell data. Methodologically, TrTAGEDy first interpolates points at different regions
of the trajectory to overcome any noise inherent to single-cell data. Next, the Spearman
correlation is computed between the set of interpolated points along the two trajectories to
define a trajectory similarity matrix. Lastly, TTAGEDy uses a dynamic time warping approach
(86) with modifications to account differences in cell states in order to find the optimal alignment
through the similarity matrix of interpolated points. This approach ensures that the original
pseudotemporal ordering is preserved, while the distance between points across trajectories is
minimized. For each dataset, we performed trajectory alignment with TrAGEDy by aligning the

10 nM and 100 nM trajectories to one another, followed by alignment to the untreated trajectory.
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TrAGEDy was implemented with 50 interpolating points using the R code provided in the GitHub
repository at: https://github.com/No2Ross/TrAGEDy.

To visualize continuous feature expression trends, a generalized additive model (GAM) with a
cubic spline basis function with shrinkage was fit for each feature as an outcome along the
aligned pseudotime as sole covariate using the mgcv v1.8-42 package in R. Moreover, to
identify an approximate transition point from arrest into proliferation, we computed the inflection
point where approximately 50% of the cells were GO and 50% of the cells were proliferative
(non-GO0) for each trajectory. To do so, we discretized the aligned pseudotime values into bins
and then computed the ratio of GO/non-GO cells for each bin. The transition point was defined
as the aligned pseudotime value where this ratio was approximately one. For the untreated
trajectories, we chose a smaller number of bins (n = 25) to find the inflection point due to the
larger number of proliferative cells, whereas for the treated trajectories, we chose a larger
number of bins (n = 50). Of note, this transition point was excluded for the 100 nM palbociclib

primary tumor trajectory due to the small sample size of proliferative cells.
DATA AND CODE AVAILABILITY

Preprocessed single-cell 4i datasets are publicly available in the Zenodo repository:

https://doi.org/10.5281/zenodo.7930054. Source code for image preprocessing, including cell

segmentation, transformation, alignment, and quantification are publicly available in the GitHub

repository: https://github.com/fiorka/4i_analysis. Source code for computational analyses,

including functions for preprocessing, sketching, integration, trajectory inference, and other
computational analyses as described in this manuscript are publicly available in the GitHub

repository: https://github.com/purvislab/fractional_resistance.
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Figure 1. Cell cycle regulation and fractional resistance to CDK4/6 inhibitors ER+/HER2- breast tumor cells. A. Core cell cycle
signaling network and points of drug activity in ER+/HER2- breast tumors. Cell cycle protein regulators shown in beige were measured
in single tumor cells. B. KI-67 staining (brown) from an ER+/HER2- breast tumor with 14% KI-67+ cells. C. Hypothetical model in which
plasticity in cell cycle progression among individual cells could create different molecular “paths” with distinct sensitivities to CDK4/6
inhibitors. Red, yellow, and green paths represent distinct molecular trajectories for a single cell. In the proposed model of fractional
resistance, CDK4/6 inhibitors do not block all paths, allowing some cells to complete the cell cycle in the presence of the drug.
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Figure 2. Single-cell proteomic profiling reveals fractional resistance to palbociclib in
ER+/HER2- breast tumor cells. A. Workflow for 4i profiling of breast tumor cells. Asynchronous
T47D cells were treated with increasing concentrations of palbociclib for 24 hours. Cells were
fixed and subjected to iterative indirect immunofluorescence imaging (4i) to quantify nuclear
levels of pRB, RB, Ki-67, CDK2, CDK4, cyclin D1, cyclin E, Cdt1, E2F1, cyclin A, cyclin B1, p21, and
DNA in each cell. The resulting data structure is a matrix containing 103,862 cells and imaging
features representing the 14 cell cycle regulators. Because the cells are not synchronized, 4i
captures a highly granular representation of proliferating and arrested cell cycle states. B.
Distribution of pRB/RB at 0, 10, or 100 nM palbociclib. The dotted line marks the statistically
determined threshold for demarcating cells as proliferating despite palbociclib treatment. Cells
above the dotted line were used for characterizing proliferating cells. C. Distribution of nuclear
Ki-67 levels at 0, 10, or 100 nM palbociclib. *** indicates a P-value < 0.001 using a two-sided
Kolmogorov-Smirnov test between untreated and treated cells.
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Figure 3. Shifts in expression of cell cycle proteins among fractionally resistant tumor cells. A. Beginning with a downsampled dataset
containing 2,000 cells from each condition (see MATERIALS AND METHODS), we identified the proliferating cells using the pRB/RB
threshold defined in Figure 2B. Proliferating single-cell distributions of cell cycle regulators at 0 nM, 10 nM, or 100 nM palbociclib, showing
an expected reduction in the number of cells at higher drug concentrations. B. 95% confidence intervals (Cl) of proliferating cells for the
differences in mean expression (normalized z-scores) between either untreated cells and 10 nM palbociclib (purple); or untreated and 100
nM palbociclib (orange). Confidence intervals overlapping with the dashed line at 0 indicate a lack of statistical significance. Confidence
intervals are wider when comparing 0 vs. 100 nM due to lower sample sizes at the highest dose of palbociclib. C. Logistic regression on all
6,000 cells predicting the odds that a given cell is either untreated (0 nM) or treated (10 nM or 100 nM) based on expression of its cell cycle
regulators. Cell-to-cell increases in regulators shown in red (e.g., CDK4), or decreases in regulators shown in blue (e.g., CDK2), increase the
odds of association with treated (10 nM or 100 nM) versus untreated cells. A separate regression was performed for each phase (GO, G1, S,
G2/M), where the last three are considered proliferating (high pRB/RB). This analysis was performed on all cells, including non-proliferating
(GO) cells. Significance: ¥, P < 0.05; **, P < 0.01, ***, P < 0.001. D.Expression levels of cell cycle features, stratified by cell cycle phase for all
6,000 cells. Bar height is the mean expression for untreated (ctrl) or palbociclib-treated (10 nM and 100 nM) cells. Error bars represent
confidence intervals.
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Figure 4. Palbociclib reveals shifts in expression of cell cycle proteins in primary tumor cells. A. As with T47D, we identified proliferat-
ing primary tumor cells using the pRB/RB threshold defined in Figure S5. Proliferating single-cell distributions of cell cycle regulators at 0
nM, 10 nM, or 100 nM palbociclib, showing an expected reduction in the number of cells at higher palbociclib concentrations. B. 95%
confidence intervals (Cl) of proliferating cells for the differences in mean expression (normalized z-scores) between either untreated cells
and 10 nM palbociclib (purple); or untreated and 100 nM palbociclib (orange). Confidence intervals overlapping with the dashed line at 0
indicate a lack of statistical significance. Confidence intervals are wider when comparing 0 vs. 100 nM due to lower sample sizes at the
highest dose of palbociclib. C. Logistic regression on all 6,000 cells predicting the odds that a given cell is either untreated (0 nM) or treated
(10 nM or 100 nM) based on expression of its cell cycle regulators. Cell-to-cell increases in regulators shown in red (e.g., CDK2), or decreases
in regulators shown in blue (e.g., p21), increase the odds of association with treated (10 nM or 100 nM) versus untreated cells. A separate
regression was performed for each phase (GO, G1, S, G2/M), where the last three are considered proliferating (i.e., high pRB/RB). This analysis
was performed on all cells, including non-proliferating (GO) cells. Significance: *, P < 0.05; **, P < 0.01, ***, P < 0.001. D. Expression levels of
cell cycle features, stratified by cell cycle phase for all 6,000 cells. Bar height is the mean expression for untreated (ctrl) or palbociclib-treated
(10 nM and 100 nM) cells. Error bars represent confidence intervals.
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Figure 5. Visualization of single cell states in ER+/HER2- breast tumors under palbociclib treatment. T47D and primary tumor samples
were independently downsampled to yield a sample size of 6,000 cells each (2,000 cells from each of the three palbociclib treatment
conditions). The datasets were then integrated into a joint latent space of 12,000 cells using TRANSACT. We then applied the nonlinear
dimensionality method PHATE to produce a 2-dimensional visualization of cell cycle under each condition. Each dot is an individual cell. A.
Expression levels of each cell cycle regulator overlaid onto the PHATE embedding for both tumor models. B. Visualization of cell cycle states
for TA7D cells, separated by treatment condition. Pie charts indicate the proportion of cells in each cell cycle phase. A hand-drawn estimate
of cell cycle progression is shown on the firstimage based on the progression of overlaid features in panel A. C. Visualization of cell cycle
states for primary tumor cells, separated by treatment condition.
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Figure 6. ER+/HER2- tumor cells take alternate cell cycle trajectories under palbociclib treatment. Trajectory inference was performed
on cells from each treatment condition for T47D (A-C) and primary tumor (D-F) samples using Slingshot on the joint PHATE embedding.
Each trajectory started in GO, progressed through the proliferative phases of the cell cycle, and ended in G2/M. A common pseudotime axis
(B, C, E, F) was determined by aligning trajectories across treatment conditions using TrAGEDy (see MATERIALS AND METHODS). A, D.
Trajectories for each treatment condition projected onto the joint two-dimensional PHATE embedding. B, E. Heatmaps showing expression
of cell cycle regulators along the pseudotime trajectories in panel A. The color strip above the heatmaps represents the cell cycle phase
annotations for each cell in the pseudotime ordering. Vertical lines indicate the time at which approximately half of the cells have
transitioned from GO to a proliferative phase (G1, S, G2/M). No line was detectable for primary tumor cells under 100 nM palbociclib
treatment because too few cells entered proliferative phases. C, F. Comparison of trajectories across treatment conditions for each cell cycle
regulator. Vertical lines mark the same common transition point from GO to proliferation for each drug dose.
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