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Abstract

CRISPR-Cas systems provide their prokaryotic hosts with adaptive immunity against mobile genetic
elements. Many bacteriophages encode anti-CRISPR (Acr) proteins that inhibit host defense. The
identification of Acr proteins is challenging due to their small size and high sequence diversity, and
only a limited number has been characterized to date. In this study, we report the discovery of a novel
Acr protein, AcrlB2, encoded by the ¢CD38-2 Clostridioides difficile phage that efficiently inhibits
interference by the type I-B CRISPR-Cas system of the host and likely acts as a DNA mimic. Most C.
difficile strains contain two cas operons, one encoding a full set of interference and adaptation proteins
and another encoding interference proteins only. Unexpectedly, we show that only the partial operon is

required for interference and is subject to inhibition by AcrIB2.
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Introduction

Competition for survival in nature drives organisms to continuously adapt and evolve, leading
to the evolution of species over time (1, 2). A constant battle between prokaryotes and parasitic mobile
genetic elements (MGES), most notably viruses, provides a vivid illustration of this principle. To avoid
extermination by viruses, which are estimated to outnumber their prokaryotic hosts by an order of
magnitude (3), cells have evolved numerous defense strategies. In their turn, to avoid extinction, phages
have evolved countermeasures to overcome specific defenses of their hosts. Adaptive prokaryotic
CRISPR-Cas immunity systems have received much attention due to their unique mechanism of action
and significance for biotechnology and biomedicine. These RNA-guided defenses consist of CRISPR
arrays and associated cas genes. During CRISPR adaptation, the hosts integrate short sequences derived
from infectious agents' genomes as spacers into the CRISPR arrays. During CRISPR interference, the
Cas proteins guided by short CRISPR RNAs (crRNAs) transcribed from the array recognize and
eliminate invading pathogens genomes with sequences complementary to crRNA spacers (4-6).

One way in which bacteriophages and other MGEs can evade CRISPR-Cas immunity is by
modifying or removing targeted DNA sequences from their genome (7-9). However, this strategy has
limitations, particularly when CRISPR-Cas targets essential regions of MGE genomes. Another strategy
is to avoid recognition by CRISPR-Cas (and other DNA-targeting host defenses, such as restriction-
modification systems) by extensively modifying the invader’s DNA or creating excluded compartments
in infected cells that make invader DNA inaccessible to host defense systems (9-11). Yet another
common strategy relies on anti-CRISPR proteins (Acrs) that are encoded by MGEs and inhibit CRISPR-
Cas immunity by diverse mechanisms (12).

The number of identified and experimentally characterized Acrs is steadily growing (13) and is
constantly updated (tinyurl.com/anti-crispr). Known Acrs inhibit CRISPR interference by preventing
target binding, target cleavage, or crRNA interaction with Cas interference proteins (14). Most Acrs are
small proteins, and many have highly negative overall charge, likely acting as DNA mimics (15-18).

Within the phage genomes, known acr genes are often paired with anti-CRISPR-associated
(aca) genes. The Aca proteins are helix-turn-helix (HTH) domain-containing transcription factors that
regulate acr transcription (19). Genes coding for small proteins with the AP-2 DNA-binding domain
are also frequently observed in acr loci (20). While the diversity of Acrs poses a significant challenge
for their identification by means of bioinformatics (21), the "guilt-by-association™ approach involving
analysis of sequences flanking aca-like genes has met with considerable success (19, 22). Another
strategy involves the analysis of prokaryotic genomes containing CRISPR arrays with spacers matching
sequences in a host’s own genome. In these cases, self-immunity is often prevented by Acrs encoded in
prophages (19).

Interest in the discovery of new Acr proteins is driven by a potentially wide range of

applications that they could serve, including the development of phage therapy for pathogenic bacteria
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(14). A phage that can efficiently overcome host CRISPR-Cas defense by employing Acrs would clearly
be a preferred candidate for therapeutic application. Phage therapy is considered a promising alternative
to antimicrobial treatments against the widespread anaerobic spore-forming bacterium Clostridioides
difficile, which poses a significant threat to human health all over the world (23-25). The type I-B
CRISPR-Cas system of C. difficile is highly active and limits infection by phages (23, 26-28). Apart
from in silico predictions, no anti-CRISPR proteins that target type 1-B CRISPR-Cas systems have been
characterized yet (29).

In this paper, we report a discovery of a new Acr protein that inhibits interference by the C.
difficile CRISPR-Cas. This protein, which we name AcrIB2, is encoded by a temperate C. difficile
phage gCDHM?38-2. Sequence analysis indicates that proteins similar to AcrlB2 may be common to
other clostridial phages. Most C. difficile strains encode two sets of type I-B cas genes. We show that
the products of one cas gene set play no role in CRISPR interference, at least in laboratory settings.
Consequently, it follows that AcrIB2 targets CRISPR interference encoded by proteins encoded by the
remaining active cas genes set. Counterintuitively, the functional set of cas genes is incomplete, i.e.,
lacks genes required for CRISPR adaptation, while the apparently non-functional set has the full
complement of interference and adaptation genes. These findings thus may hint at functional
specialization between the duplicated cas operons of C. difficile, the nature of which remains to be

determined.

Results

Search for putative anti-CRISPR loci in the genomes of C. difficile bacteriophages

Previously, while searching for homologs of AcrIC5, a phage inhibitor of type I-C CRISPR-Cas system
from Pseudomonas delhiensis, Leon et al. discovered a 66 amino acid long hypothetical
Cryptobacterium curtum protein of an unknown function (30). This protein was 63% identical to
AcrlIC5. The gene coding for this protein is adjacent to a gene encoding a 196 amino acid protein with
a predicted AP2 DNA-binding domain. Genes encoding AP2 domain proteins are frequently observed
in acr loci (20). We found a Clostridium sp. gene encoding a 159 amino acid AP2 domain protein that
shared 30% sequence identity with Cryptobacterium curtum AP2 domain protein (Fig. 1A). Using the
Clostridium sp. sequence as a query, genes encoding highly similar AP2 domain proteins were found
in the genome of C. difficile LIBA2811 and in C. difficile phage pCDHM13 (Fig. 1A). The pCDHM13
gene is annotated as gp27 and has no assigned function (31). Immediately upstream of the gp27, gp26,
also a gene of unknown function, is located. A corresponding gene is also found in C. difficile
LIBA2811. gp28 and gp29, genes located immediately downstream of ¢CDHM13 gp27, partially
overlap. Their homologs in C. difficile LIBA2811 are fused. We hypothesized that the products of gp26
and/or gp28/gp29 might function as anti-CRISPR proteins targeting the C. difficile I-B CRISPR-Cas
system. The gp27 may function as an Aca protein.
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Subsequent bioinformatic analysis revealed that homologs of putative anti-CRISPR proteins
are encoded by some other clostridial prophages and phages. Similarly to the case of C. difficile
LIBA2811, some phages encoded CDHM 13 gp28-gp29 fusions (Fig. 1B). Genes coding for such fused
proteins were mostly found in phages that did not encode homologs of CDHM13 gp26 and gp27 (for
example, ¢CD38-2). Instead, they contained short open reading frames coding for proteins of unknown

function (grey in Fig. 1B).
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Figure 1. Putative anti-CRISPR loci of clostridial phages.

Genes are represented by arrowed boxes drawn to scale (a scale is shown at the bottom of each panel).

(A) A gene coding for an AP2 domain protein is located downstream of a homolog of Pseudomonas delhiensis
acrlC5 in Cryptobacterium curtum. A homolog of C. curtum AP2 domain protein coding gene was found in
Clostridium sp., leading to the identification of a potential anti-CRISPR locus centered around the AP2 domain
protein gene in C. difficile strain LIBA2811 and phage gCDHM13.

(B) Using phage gCDHM13 gp27 gene as a query, corresponding sequences from other clostridial phages and
prophages were retrieved. Homologous genes are shown by matching colors and percentage of identity to
corresponding 9CDHM 13 gene products is indicated. Genes whose products are non-homologous to pgCDHM 13
are colored grey. Genes denoted by a pink color encode potential transcriptional regulators or proteins containing
HTH domain. Grey- and pink-colored genes sharing high sequence similarity are indicated with the same pattern.
Light blue colored gene encodes amidase, a protein associated with a lysis module. The names of the two phages
whose putative anti-CRISPR proteins were tested for function are highlighted in bold font. The ¢CD38-2 gene
identified as acrIB2 gene in this work is indicated by a red outline.
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Experimental validation of AcrIB2 from phage ¢CD38-2 as an inhibitor of C. difficile CRISPR-

Cas interference

To assess the activity of predicted Acr proteins, each of the four genes from the predicted acr locus of
phage ¢CDHM13 and the fusion of gCDHM13 gp28 and gp29 homologs from phage ¢CD38-2 was
cloned, under the control of inducible pTet promoter, in a derivative of conjugative plasmid
pRPF185Agus (26, 32). The only difference of the cloning vector from pRPF185Agus was the presence
of a protospacer matching the first spacer of the C. difficile 630Aerm CRISPR3 array. The cloned
protospacer also contained a consensus CCA PAM sequence. Previous experiments showed that the C.
difficile 630Aerm CRISPR-Cas prevents conjugation of pRPF185Agus derivative carrying the
protospacer (28). We, therefore, reasoned that a plasmid-borne inhibitor of CRISPR interference might
restore conjugation efficiency. The original pRPF185Agus and its derivative carrying the protospacer
only were used as controls. Transconjugants were selected on plates supplemented with thiamphenicol
(Tm, pRPF185Agus provides cells with resistance to this antibiotic) and ATc to induce the expression
of cloned phage genes. In agreement with published data (28), no transconjugants were observed with
protospacer-containing pRPF185Agus plasmid. None of the gCDHMI13 genes tested, including the
gp28-gp29 pair encoding the putative split Acr, restored conjugation efficiency (data not shown).
However, conjugation of a plasmid expressing the fused homolog of CDHM 13 gp28-29 from ¢CD38-
2 was partially restored (Supplementary Fig. 1). We, therefore, concluded that the ¢CD38-2 protein
acts as an anti-CRISPR and named it AcriB2.

The partial effect of AcrlB2 on conjugation efficiency may be due to the fact that CRISPR
interference with pre-existing crRNA produced from the first spacer of CRISPR3 array in the recipient
cell may occur before the synthesis of sufficient amounts of AcrIiB2 takes place. To overcome this
limitation, we designed a different strategy that relies on a plasmid carrying an ATc-inducible mini
CRISPR array containing a spacer that targets the C. difficile hfg gene (Fig. 2A). Elsewhere, we show
that induction of mini CRISPR array transcription leads to cleavage of genomic DNA by the
endogenous CRISPR-Cas system of C. difficile, therefore, preventing conjugation (33). We reasoned
that if the self-targeting plasmid contains an ATc-inducible acrIB2 gene, the anti-CRISPR activity of
AcrIB2 will inhibit self-cleavage, leading to the appearance of transconjugants (Fig. 2A). Accordingly,
C. difficile 630Aerm transconjugants harboring various plasmids were obtained in the absence of
induction, and their growth in liquid cultures in the presence or in the absence of the ATc inducer was
monitored. As can be seen from Fig. 2B, the growth of induced culture harboring the self-targeting
plasmid was strongly inhibited. In contrast, cells harboring a self-targeting plasmid and the acrIB2 gene
grew as fast as control cells carrying the empty vector. The number of CFUs in the cultures was

determined at various times post-induction. As can be seen from Fig. 2C, as early as 1 hour post-
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induction, the number of viable cells in the culture harboring the self-targeting plasmid dropped 4 orders
of magnitude compared to the uninduced control.

The same result was obtained when serial dilutions of aliquots of uninduced transconjugant
cultures were spotted on plates with or without ATc. As can be seen from Fig. 2D, colony formation by
cells harboring the self-targeting plasmid in the presence of ATc was severely impaired. In contrast,
cultures harboring the self-targeting plasmid with acrIB2 or the empty vector plasmid contained the
same number of viable cells both in the presence and in the absence of the inducer. While rare colonies
that formed in the places where drops of concentrated cultures of cells harboring the self-targeting
plasmid were not studied systematically, we assume that they are escapers that contain mutations in the
CRISPR-Cas system of the host, the targeted protospacer of the host, or in the plasmid-borne mini
CRISPR-array. The genome of one randomly chosen colony was sequenced, and indeed a duplication
of a fragment of the hfq protospacer that should prevent recognition by the CRISPR effector was
observed (Supplementary Table 1).

The results presented in Fig. 2C suggest that self-targeting has a bactericidal effect. Previously,
we used a similar self-targeting system to study the details of CRISPR action in E. coli (34). We found
that extended regions of DNA flanking the target protospacer were removed due to the Cas3
nuclease/helicase action. We were interested in determining the fate of DNA at and around the targeted
protospacer in C. difficile. Accordingly, we prepared genomic DNA from ATc-induced cultures 1 hour
post-induction, when the drop in viable cell counts was evident (Fig. 2E), and 3 hours post-induction,
when growth inhibition of cultures carrying the self-targeting plasmid started to appear (Fig. 2E).
Genomic DNA was prepared from each culture and subjected to whole genome sequencing (WGS).
The resulting reads were mapped onto the C. difficile 630Aerm genome. The overall genome coverage
for each culture was between 200 and 300. In the 3 hour induced culture of cells harboring the self-
targeting plasmid, a deep drop in the coverage centered at the targeted protospacer in the hfg gene was
observed. The coverage gradually and symmetrically increased to the mean level of ca. 100 kbp
upstream and downstream of the targeted protospacer. The results are very much in line with the E. coli
data, where self-targeting by a type I-E system was studied (34). Importantly, no decrease in genome
coverage in induced cultures of cells harboring the self-targeting plasmid containing the acriB2 gene
was observed, confirming once again that AcrIB2 is able to abrogate C. difficile CRISPR interference.
At 1 hour post-induction samples, the decrease in coverage at and around the hfg protospacer was minor.
Since colony formation by cells collected at this time point is severely decreased (Fig. 2C), we surmise
that events leading to the destruction of host DNA have not yet been initiated. Presumably, at the 1-
hour time-point, the self-targeting crRNA is not yet produced in sufficient amounts (or did not enter the
Cascade complex). However, once such cells are deposited on the surface of the ATc-free medium,
sufficient amounts of self-targeting Cascade accumulate and prevent cell division.

In E. coli, self-targeting by CRISPR-Cas leads to an SOS response that results in cell
filamentation (34). In C. difficile, DNA damage also leads to filamentous cell morphology (35, 36). We
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decided to check the cell morphology of induced self-targeting C. difficile. Compared to controls,

elongation of C. difficile cells carrying the self-targeting plasmid was observed in cultures collected 3

hours post-induction (Supplementary Fig. 2).
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Figure 2. Anti-CRISPR protein AcrIB2 inhibits CRISPR interference in C. difficile.
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(A) A self-targeting strategy to reveal anti-CRISPR activity of plasmid-borne genes relies on a plasmid that
carries, under the control of an inducible Ptet promoter, a mini CRISPR array with a spacer that targets the C.
difficile hfg gene. Green rhombi indicate CRISPR repeats, the blue rectangle indicates a spacer, the leader
sequence is indicated in yellow. “Self-targ” stands for self-targeting plasmid, “AcrIB2 + self-targ” stands for self-
targeting plasmid with an ATc-inducible acriB2 gene. The control plasmid is referred to as “empty”. (B) The
effect of anti-CRISPR on self-targeting inhibition of bacterial growth in liquid BHI medium supplemented with
thiamphenicol (Tm, selects for cells carrying plasmids) in the presence or in the absence of the ATc inducer.
Plotted values represent means, and error bars represent the standard error of the means (N = 3 biologically
independent samples). (C) C. difficile cultures were grown in liquid BHI medium supplemented with Tm and
induced with ATc. At indicated times post-induction, logio0CFU/mL was determined by plating serial dilutions of
cultures on BHI agar with Tm only. Values represent means, and error bars represent the standard error of the
means (N = 3 biologically independent samples). (D) Aliquots of tenfold serial dilutions of C. difficile cultures
conjugated with indicated plasmids were deposited on the surface of BHI agar supplemented with Tm with or
without the ATc inducer. A representative result from at least three independent experiments is shown. (F) The
effect of self-targeting/its inhibition by AcriB2 on genomic DNA content as revealed by coverage of a fragment
of C. difficile genome containing the self-targeted protspacer with ILLUMINA sequencing reads. The red vertical
line indicates the location of the protospacer.

We also tested the ability of AcriB2 to overcome CRISPR interference in a biologically relevant
context. 9CD38-2 is a prophage of C. difficile CD125 strain. We conjugated CD125 and the isogenic
R20291 strain that lacks the prophage with a plasmid containing the self-targeting mini-array or an
empty vector. Transconjugants were selected in the absence of ATc. Next, transconjugant cultures were
serially diluted and spotted on plates with and without the ATc inducer. As can be seen from Fig. 3, the
number of viable cells decreased in cultures of R20291 carrying the self-targeting plasmid by at least
10-fold. No such effect was observed in cells that carried the prophage. As expected, no decrease in
viable cell counts was observed in ATc-induced R20291 carrying the self-targeting plasmid that also

expressed AcriB2.
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Figure 3. AcrIB2 expressed from a prophage decreases CRISPR interference.

Tenfold serial dilutions of transconjugant mixtures of control (“empty”), self-targeting (“self-targ”), or
AcrIB2+self-targeting (“AcrIB2+self-targ”) plasmid for R20291 control C. difficile strain or CD125 derivative
carrying the CD38-2 prophage were deposited on the BHI agar plates supplemented with Tm in the presence or
in the absence of the ATc inducer. A representative result from at least three independent experiments is shown.
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Only one of the two C. difficile type I-B cas operons is interference-proficient and is targeted
by AcriB2

Most C. difficile strains contain at least two cas operons per genome (Supplementary Fig. 3).
For example, the C. difficile 630Aerm strain used in this work carries two (27). The first cas operon,
CD2982-CD2975, is referred to as a “full” cas operon and encodes a complete set of proteins necessary
for both interference and adaptation. In contrast, the second cas operon, CD2455-CD2451, referred to
as “partial”, lacks genes coding for adaptation proteins Casl, Cas2, and Cas4 (Supplementary Fig. 3A).
Notably, the full cas operon is absent in ~10% of analyzed C. difficile strains. The relative contribution
of each of the two cas operons to CRISPR interference remains unclear.

To determine the contribution of individual C. difficile 630Aerm cas operons and identify which
one of them is targeted by AcrIB2, we generated mutants lacking either the full cas operon (Afull), the
partial one (Apartial) or both (Adouble). The strains were conjugated with plasmids carrying the self-
targeting mini CRISPR arrays with or without acrIB2. Wild-type C. difficile 630Aerm was used as a
control. Transconjugants were selected on plates without the ATc inducer, and the number of viable
cells was determined by comparing cell counts on media with and without the inducer.

All strains formed the same amounts of CFUs in the absence of the inducer, though colonies
formed by wild-type and Afull cells carrying the self-targeting plasmids appeared to be slower (Fig. 4
middle panel), indicting slower growth possibly due to partial self-interference in the absence of the
inducer. CRISPR interference in the Afull mutant was as efficient as in the wild-type control (as judged
by the drop of viable cells upon induction of self-interference, Fig. 4 right panel). In contrast, the
viability of cells in either the Apartial or the Adouble mutant cultures was not affected by induction.
Thus, the full cas operon is not capable of interference, at least with the self-targeting crRNA used.
Expression of acrIB2 restored the viability of cells in induced self-targeting wild-type and Afull cultures
(Fig. 4, right panel), indicating that the products of the partial operon are inhibited by AcrIB2.

The finding that the full cas operon is apparently non-functional is an unexpected one since
sequence analysis of the products of the full operon reveals no potentially inactivating mutations in any
of the genes. In the prior study, RNA-seq analysis of C. difficile 6304erm showed that the steady-state
levels of transcripts of both cas operons are comparable and low in relation to an overall average
transcription level under standard laboratory growth conditions with rather uniform coverage detected
by both RNA-seq and qRT-PCR (27). To estimate the relative amounts of protein products of both
operons, lysates of C. difficile 6304erm were analyzed by liquid chromatography coupled to tandem
mass spectrometry (LC-MS/MS). In agreement with the RNA-seq data, the relative quantitative values
(total spectrum counts) for Cas proteins were low (between 1 and 21, Supplementary Table 2). For
comparison, the relative quantitative values for the most abundant C. difficile protein SIpA is more than
3,000, and 150 for RpoA, a subunit of RNA polymerase. Relative quantitative values for subunits of

Cascade encoded by the full cas operon were consistently 2-3 times lower than for the counterpart
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encoded by the partial operon. As expected from Cascade stoichiometry, total spectrum counts for Cas7
proteins encoded by each operon were the highest (Supplementary Table 2), adding confidence to our
measurements. Perhaps most significantly, the relative quantitative values for Cas3, a protein strictly
required for interference, were 20 times higher for the product of the partial operon and minimal (a total
spectrum count of 1) for the product of the full operon. We, therefore, speculate that the inactivity of

the full operon is due to the low levels of its protein products, most probably, Cas3.
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Figure 4. The partial C. difficile cas operon is responsible for CRISPR interference and is targeted by
AcrlIB2. On the left side, cas operons content is depicted for each strain. The percentage of amino acid sequence
identity of corresponding products between two cas operons of C. difficile 6304erm WT are indicated. Middle
and right panels show growth of tenfold serial dilutions of indicated cells conjugated with control, self-targeting,
and AcrIB2+self-targeting plasmids on the surface of BHI agar plates with or without the ATc inducer.

Discussion

Anti-CRISPR proteins have evolved in response to the co-evolutionary arms race between
prokaryotes and their viruses. These proteins exhibit a wide range of structural and functional diversity,
and only a small fraction of them have been identified and functionally characterized to date (37). The
discovery of Acr proteins has a wide range of applications, including phage therapy of pathogenic
bacteria, where Acrs can inhibit the CRISPR-Cas system of the host, thus increasing the ability of the
phage to clear the infection (14).
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The C. difficile CRISPR-Cas system is highly effective in combating MGEs and presumably
contributes to the ability of this dangerous pathogen to survive in the phage-rich microbiome of the
colon. Indeed, multiple spacers matching the genomes of phages infecting C. difficile have been
identified (27). All currently identified phages of C. difficile are temperate and are capable of either
inserting their genetic material into the bacterial genome or exist as episomes (23). Therefore, it is likely
that C. difficile phages evolved anti-CRISPR mechanisms to protect themselves from CRISPR targeting
while in the lysogenic state. However, no such mechanisms have been defined.

In this work, we describe the first anti-CRISPR protein that inhibits the type I-B CRISPR-Cas
system of C. difficile. The putative anti-CRISPR locus was identified in C. difficile phage genomes in
the course of a bioinformatic search that used a previously validated AcrIC5 from Pseudomonas as bait.
We identified a gene coding for a homologous protein next to a gene coding for a potential DNA-
binding AP2 domain protein known to be associated with some acr loci (20). Using the AP2 domain
protein as another bait, putative Acr proteins in several C. difficile phages were predicted (Fig. 1B). The
putative clostridial Acrs are similar to each other but share no identifiable sequence similarity to known
Acrs.

The validated acr gene of C. difficile phage ¢CD38-2 (acrIB2), together with two unknown-
function genes upstream, is located immediately downstream of a long cluster of capsid, DNA
packaging, tail, and lysis proteins genes and is transcribed in the same direction (38). Immediately
downstream of acrIB2 is a putative lysogenic conversion region that is transcribed in the opposite
direction. The acrIB2 gene and other upstream genes shown in Fig. 1B are highly transcribed in a stable
lysogen carrying the CD38-2 episome (38). Phages that encode acrIiB2 homologs belong to different
morphological classes (sipho- and myoviridae) and likely rely on different developmental strategies.
While some phages encode an AP2 domain protein used for the search, others, including the pCD38-2
that encodes the validated AcrIB2 protein, do not (Fig. 1B). Some of the unknown-function genes that
are adjacent to acrlB2 gene homologs in these phages may encode novel Aca proteins. Interestingly,
the majority of phages possess a highly conserved gene of an unknown function downstream from
acrlB2 homologous genes. Of particular interest is phage CD211 (39). Its genome is much larger than
the genomes of other phages encoding AcriB2 homologs. In the immediate neighborhood of its acriB2-
like gene, there is an open reading frame coding for a short C-terminal fragment of a Cas3-like protein
and a 4-spacer CRISPR array targeting some known C. difficile phages (39). It is possible that this locus
is used in inter-phage warfare as other prophage-located and prophage-targeting CRISPR arrays in
several C. difficile strains (27).

Our top hits for the AP2 domain protein encoding gene in C. difficile phages are neighbored by
genes encoding split AcriB2 homologs. Presumably, these phages encode either a unique split anti-
CRISPR protein or produce a fusion protein as a result of +1 translational frameshifting between gp28
and gp29 ORFs as previously described in other bacteriophages (40—42).
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AcrIB2 has a very strong effect on CRISPR interference against conjugating plasmids in the
self-targeting model when expressed from an inducible promoter. In a biologically more relevant
context of a ¢CD38-2 lysogenic strain, its effects are milder, increasing survival in a self-targeting
model ca. 10-fold. Although this has not been tested in this work, we assume that the protective effects
of AcrIB2 in the context of phage infection will also be partial. We attempted to delete the acrIB2 gene
from the @CD38-2 genome. Regrettably, this proved impossible, perhaps because in the ¢CD38-2
lysogens multiple copies of phage episome exist, making it difficult to select desired clones.

The AcrIB2 protein and its homologs from other C. difficile phages have a high number of
negatively charged amino acids and aromatic amino acids. Thus, they may act as a DNA mimic (Fig.
5A). The secondary structure prediction indicates a prevalence of alpha-helix motifs in the protein
structure (Fig. 5B). The AcrIB2 structure predicted with the AlphaFold tool reveals clustering of
negatively charged residues along the long axis of the protein (Fig. 5C), consistent with the DNA
mimicry hypothesis regarding the mechanism of action of AcriB2. The negatively charged positions
are conserved among AcriB2 homologs, suggesting their essentiality (Fig. 5A, 5D). In the predicted
structure, the position of the split that occurs in cases when an AcrB2 homolog is encoded by two
separate genes is located in an unstructured linker (Fig. 5D) and should not prevent the C-terminal
fragment of the protein from making tight interactions with the N-terminal part that makes a structurally
compact core from which a linker with conserved negatively charged residues (D92, E94, E95, Fig. 5D)

protrudes.


https://doi.org/10.1101/2023.05.22.541795
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.22.541795; this version posted May 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

$CD382 - - -MNKQKARRFLRVIBMN IBK I AIKAFKESCLIKETNNIKIYIBIQGKVEAIAVQTWAKLLGBBKE- INIFT--LNQ74
D032 . . .MNKQKARRFLRV IBMN I BK | AIlKAFKESCL IK TNIIKIYI IQGKVEA I AVQTWAKLL KE-INIFT--LNQ74
D033 . . .MNKQKARRFLRVIBMN IBK I AIKAFKESCLIKETNBIK1YIBIQGKVEAIAVQTWAKLL KE- INIFT--LNQ74
$CD418 - . -MNKQK I KRFLK I | BKNMNE | AIKAYKESFLAK-BINNIRIYINLAGKVEAVVVPSWSRY | YE-KEIFVCEFBK75
$CD481-1 - - -MNKQKARRFLRV IBMN I BK I AIKAFKESCLIKETNBIKIYIBIQGKVEAIAVQTWAKLLGEBBKE- INIFT--LNQ74
#CD506 - - -MNKQKARRFLRV I BMN I BK | AIKAFKESCLIKETNNIKIYIBIQGKVEAIAVQTWAKLL KE- INIFT--LNQ74
$CD1801 - - -MNKQKARRFLRV I BMN | BK | AIKAFKESCLIKETNNIKIYIBIQGKVEAIAVQTWAKLL KE- INIFT--LNQ74
D111 . . .MNKQKARRFLRV I BMNMBK | AIKAFKESCLIKEANNIKIYIBIQGKVEAIAVQTWAKLL KE-INIFT--LNQ74
$CDSH1 - - -MNKQKARRFLRV I BMN 1 BK | AIKAFKESCLIKETNNIKIYIBIQGKVEAIAVQTWAKLLGEBBKE- INIFT--LNQ7
$C0146 - - -MNKQKARRFLRV IBMN I BK I AIKAFKESCLIKETNNIKIYIBIQGKVEAIAVQTWAKLLGBBKE- INIFT--LNQ74
0211 MGKMBIKKEAKKFLKVVEMN 1 BK | ATKIYKECYLIETTBTIRISINLKGVVKS-TISSWQGYS FNMRE! | VYEFSQ79
$cp3s2 APTHLNBMLGEICY N NL SYKKFNKENFEE | ABRN IDBSTSVFLEELQKG IESCKQELQNV | EN1s7
0032 APTHLRPBMFGE Y KEBKS L SYEKFNKENFEE | AERN | DBSSSAFLEKLREG I ENCKQELQN | VEN157
0033 APTHLBBMFGE Y KEBKS L SYEKFNKENFEE | AERN I DBSSSAFLEKLREG I ENCKQELQN | VEN157
¢cpa18 EEINLNELLGELC 1 L SYKKFNKBNFDEF | EBRN I EYSLSBFLKELSES | ENCKQBLKLMIE 158
$cD4811 APTHLEBIBMFGE | Y K L KFNKENFEE | AERN IDBSSSAFLEKLHES | ENCKQELQN | VEN157
#cps06 APTHLNBMLGE I C N L NFEE | AERN IBBSTSVFLEELQKG I ESCKQELQN | VEN157
01801 TPTHLNBMLGE I C N L NFEE | AERN IBBCASVFLEELREG I ESCKQELQNAVEN157
40111 TPTHLNBLFGE!IC N L NFEE | AERN I DBSTSVFLEELQKS | ESCKQELQNV | EN157
¢cDsH1 APTHLNBMLGE ! C N L NFEE | ABRN 1BBSTSVFLEELQKG I BSCKQELQNV I EN157
#0146 APTHLNBMLGE I C N L NFEE | AERN IDBSTSVFLEELQKG | §SCKQELQNV | EN157
4211 GEvVQIEBLLGELC T L NFRELVERN | EBSLPBFLEELSES |ENCKQELKSMIE ! 162
92 94-95 fused 121-122 125
- Neutral polar AA Neutral nonpolar AA 5 = aihelix B%tFaRd CC = Coiled Colls DO = Disorder

2 ¢ 58 W_u W % W N 2 M X AN
n--q-A_v\-vl---l-lAx-Av-st

» “ = @
Ll_"ll-l'l-lQﬁ-'-lllv"'A-Llﬁ—tllr

AA QUERY
S5_PSIPRED HOHHHHHHH KN HHHHHHH RN KN HOHHHHH
$5_SPIDER3 KWK HH KK HH KKK HHHHHHE R KN
S5_PSSPRED4 HHHHHHHEHHEHN uununnunuuuunnnunuu HHHHHEKHHKH
SS_DEEPCNF HHHHHHHHHHHHHEHHEHHAHEHEHHHHHHH Illlllll
$S_NETSURFP2 HOHH KK HHH KKK KHHE KKK KRN KR NH NN EEE
DO_DISOPRED poDOD
DO_SPOTD L)

now o » W e M e m s m e m e e e
AA QUERY nlc.vv-c-‘ula-x:vvu-v_vbu-:.ulnnu LY IS YD W EERN F ORNES T A EEEBN T DEERS TOSIV F L ENERL OWBC 1
SS_PSIPRED Hunnw [EEE HHHHHHHHK HHHHHHH HHE HHHNHHHE HHEHHHHHANHEHNNK NN
$S_SPIDER3 HHHHH WK HHHHHHNHK HHHHHHE  HHHHHHNHNH HHHHHHHHHA N
SS_PSSPRED4 HOHHHHHHH K HHHHHHHKE RN K HHMHHHE HHKHHHKHAHK HHHHHHHHH RN
$S_DEEPCNF H HHHHAH HHHHHHE  HHHHH KRN HHHHHHHN KRN
SS_NETSURFP2 HHHH [EEE HHHHWHHHHHHR HWHHHHEH  HHHHHE KA KK N KN NN
CC_PCOILS_w28 ccccccccccccccccc

e W m s W s

AA_QUERY -lt-q‘l"vl.lli-PQF_h
ss_PSIPRED WM W W W HH HHH W
SS_SPIDER3 HHHHHHHHHHNH
SS_PSSPRED4 HHHHHHHHHNNHN
S5_DEEPCNF HHHHHHHHHHH N

SS_NETSURFP2

HHHHHHHHHHHEHH

CC_PCOILS_w28 cccectccoccocococcccoccoe

DO_NETSURFPD2 oDD
DO_DISOPRED ] L
DO_SPOTD Do
C.
« top view » « bottom view »

P |

AlphaFold confidence
(unsure) -> (confident)

Rotate
180°

Electrostatic potential
(negative/acidic) ->
(positive/basic)

Sequence context

D92 E94 E95 YUND,,YEL EYFEN
Evolutionary conservation b
(variable) -> (conserved) N N102-E103

/

E121

Sequence context

E125 ENFE,E5,AE RN

E122

Figure 5. AcrIB2 structure prediction. (A) Alignment of several AcrIB2 homologs performed with UniProt
Align tool (43). Negatively charged amino acids are highlighted in blue. Conserved amino acids are marked in
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red frames. The purple dashed line indicates the location of the split in AcrlB2 homologs encoded by two separate
genes. (B) AcriB2 secondary structure prediction with Quick2D tool (44). (C) The AlphaFold AcrIiB2 structure
prediction with indicated confidence (as measured by the pLDDT score, from red for low model confidence to
blue for high confidence) and electrostatic potential mapped on the surface. (D) Mapping of evolutionary
conservation on the AcrlB2 AlphaFold structural model, from white (variable) to red (conserved). Side chains of
clustered conserved amino acids are shown in spacefill representation. The blue star indicates the position of a
split that occurs in AcrlB2 homologs encoded by two separate genes.

Most C. difficile strains contain two cas operons, and their individual contribution to
interference was not explored before the present study. Surprisingly, our results demonstrate that the
mutant lacking the partial cas operon exhibited a complete loss of CRISPR interference activity, which
indicates that it plays the primary role in CRISPR defense that is inhibited by AcrlB2. When expressed
in E. coli heterologous host, the full cas operon led to a decrease in the transformation rate of CRISPR-
targeted plasmid even though the efficiency was rather low as compared to CRISPR interference in
natural settings in C. difficile (27). Since the partial operon lacks the adaptation module, spacer
acquisition must be driven by the products of the full operon. Indeed, we have recently shown that the
adaptation module is functional in naive adaptation when expressed from a plasmid (28). Interestingly,
both cas operons are associated with general stress response SigB-dependent promoters, but we
observed a stronger effect of sigB mutation on the full cas operon expression as compared to partial
cas operon (45). This differential expression could suggest a potential role of full cas operon under
stressful conditions. While the function of the interference module of the full C. difficile cas operon
needs to be specified, it is attractive to speculate that it may be involved in regulatory function in concert
with specific crRNAs or, together with the products of the adaptation module, be responsible for primed
adaptation.

In conclusion, the identification of a new anti-CRISPR protein targeting C. difficile type 1-B
CRISPR-Cas contributes to a better knowledge of the phage-host relationship and coevolution of
defense and counter-defense systems for this important human pathogen and opens interesting
perspectives for further developments of applications in biotechnology and health. Apart from its
potential applications in phage therapy and phage selection (46), AcrIB2 can also be leveraged as a
control for CRISPR-Cas endogenous editing tool (33). Moreover, AcriB2 holds promise for enhancing
the efficacy of the newly developed phage-delivered CRISPR-Cas3 antimicrobial, which triggers the
self-elimination of C. difficile caused by the activity of the endogenous CRISPR-Cas system(47).

Material and Methods

Bioinformatic search of putative anti-CRISPR

The guilt-by-association bioinformatic method was used to identify the putative anti-CRISPR I-B type

protein. The method is based on a chain search of homologs of acr and aca genes using BLAST (48).
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Uncharacterized ORFs were identified with ORFfinder NCBI (49). The identification of other putative
acr and aca loci in C. difficile phages and prophages was made by BLAST search (48). The list of
clostridial phages and identified putative Acrs can be found in Supplementary Table 3.

Plasmid construction

The nucleic acid and amino acid sequences of anti-CRISPRs used in this study are listed in
Supplementary Table 4. The list of plasmids used for this study is summarized in Supplementary Table
5. The putative acr gene from ¢CDHM13 phage was cloned into the protospacer, and self-targeting
plasmids (pRPF185 derivatives) accompanied by regulatory elements (P.: promoter, RBS, and
terminator) in the form of gBlock (dsDNA) from IDT (France). The cloning was achieved through
Gibson Assembly by using NEB Gibson Assembly® Master Mix — Assembly (E2611) (50). The
resulting constructions were transformed into E. coli NEB beta cells (New England BioLabs) and
verified by Sanger sequencing.

To construct editing plasmids, approximately 800 bp long flanking regions of partial and full cas operon
of the C. difficile 630Aerm strain were amplified by PCR and introduced into the pMSR vector (51)
using Gibson assembly reaction (51). The resulting constructions were transformed into E. coli NEB
beta cells (New England BioLabs) and verified by Sanger sequencing. The list of primers used for this

study is summarized in Supplementary Table 6.

Bacterial strains and growth conditions

All bacterial strains used in this study are listed in Supplementary Table 4. C. difficile was cultivated in
the anaerobic chamber (Jacomex, France), filled with an atmosphere of 5% H2, 5% CO2, and 90% N2.
Both liquid cultures and plate growth were conducted using Brain Heart Infusion (BHI) medium (Difco)
at 37°C. When working with strains carrying plasmids, thiamphenicol (Tm) at the final concentration
of 15 pg/ml was added to overnight cultures, and 7.5 pg/ml was used for the day cultures. In order to
induce the inducible Ptet promoter of pRPF185 derivatives in C. difficile, the non-antibiotic analog
anhydrotetracycline (ATc) was added at the final concentration of 100 ng/ml. The E. coli strains were
cultured in LB medium at 37°C supplemented with 100 pg/ml ampicillin (Amp) and 15 pug/ml

chloramphenicol (Cm) when required.

Plasmid conjugation and estimation of conjugation efficiency

All plasmids were transformed into the E. coli strain HB101 (RP4). Transformants were further mated
with C. difficile cells on BHI agar plates for 8h (for C. difficile 630) or 24h (for C. difficile R20291) at
37°C. Further, C. difficile transconjugants were selected on BHI agar plates containing Tm (15 pg/ml),

D-cycloserine (Cs) (25 pg/ml), and cefoxitin (Cfx) (8 pg/ml).
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To estimate conjugation efficiency, after the mating step, C. difficile conjugation mixture was serially
diluted and plated on BHI agar supplemented with Tm, Cs, and Cfx, or Cs and Cfx only. Then the ratio
of C. difficile transconjugants to the total number of CFU/mI was estimated.

Growth assays

C. difficile carrying either plasmid maintained in 7.5 pg/ml Tm was grown to an ODs equal to 0.4-0.5,
after which ATc inducer was added to a final concentration of 100 ng/ml. Then cultures were either
transferred to a 96-well plate to obtain growth curves by using the CLARIOStar Plus machine or serially
diluted and plated on BHI + Tm (15 pg/ml) plates at a certain time point and grown overnight before
CFU counting.
For the drop tests, C. difficile carrying either plasmid was serially diluted from starting ODegg 0f 0.4 and
spotted on BHI Tm plates (15 pg/ml) with or without ATc inducer (100 ng/ml). Plates were incubated
at 37°C for 24h or 48h and photographed.

Microscopy

For phase-contrast microscopy, C. difficile carrying either plasmid maintained in 7.5 pg/ml Tm was
grown to an ODggo equal to 0.4-0.5, after which ATc inducer was added to a final concentration of 100
ng/ml. After 3 h of incubation at 37°C, 1 ml of culture was centrifuged at 3500 rpm for 5 min, and the
pellet was resuspended in 20 pl of sterile H>O. Cells were fixed with 1.2% agarose on the slide. Images
were captured on a Leica DM1000 microscope using a FLEXACAM C1 12 MP camera with the LAS

X software.

High-throughput sequencing of total genomic DNA.

Total genomic DNA was purified by NucleoSpin Microbial DNA Mini kit (Machery-Nagel). For library
preparation, the NEBNext® Ultra™ II DNA Library Prep Kit for lllumina (NEB) was used, and the
sequencing was carried out on an lllumina platform (NovaSeq 6000).

To ensure accurate data analysis, raw reads were trimmed using Trimmomatic v0.39 (NexteraPE-
PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:20). Reads were then
aligned to the reference genome using Bowtie2 aligner with end-to-end alignment mode and one
allowed mismatch (52). Only reads with unique alignment were retained for further analysis.

BAM files were analyzed using the Rsamtools package, and reads with MAPQ scores equal to 42 were
selected for downstream coverage analysis and calculating the mean coverage across the genome (34,
53).
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Deletion of cas operons in C. difficile

An allele-coupled exchange mutagenesis approach described previously (51) was used to delete the
partial and full cas operons from the C. difficile 630Aerm strain. Editing plasmids were conjugated into
C. difficile. Transconjugants were selected on BHI supplemented with Cs, Cfx, and Tm and then
restreaked onto fresh BHI plates containing Tm twice in a row to ensure the purity of the single
crossover integrant. The purified colonies were then streaked onto BHI plates with ATc (100 ng/ml)
plates to ensure the selection of cells where the plasmid had been excised and lost. If the plasmid was
still present, the toxin was produced at lethal levels, and colonies did not form in the presence of ATc.

Growing colonies were tested for the success of the deletion by PCR and Sanger sequencing.

AlphaFold structure prediction

The AcrlB2 amino-acid sequence was used as input of the MMsegs2 homology search program (54)
with three iterations against the Uniref30_2202 database to generate a multiple sequence alignment
(MSA). This MSA was filtered with HHfilter using parameters (‘id’=100, ‘qid’=25, ‘cov’=50),
resulting in 68 homologous sequences, then full-length sequences were retrieved and realigned with
MAFFT (55) using the default FFT-NS-2 protocol. Then 5 independent runs of the AlphaFold2 (56)
algorithm with 6 recycles were performed with this input MSA and without template search, using a
local instance of the ColabFold (57) interface on a local cluster equipped with an NVIDIA Ampere
A100 80Go GPU card. Each run generated 5 structural models. The best model out of 25 was picked
using the pLDDT confidence score as a metric and used for further structural analysis (pLDDT for this
model: 83.5). The qualitative electrostatic surface was generated using PyMOL (58) (local protein
contact potential). The evolutionary conservation scores were generated using the AlphaFold2 MSA as

an input to the Rate4Site (59) program, which computes the relative evolutionary rate for each site.
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