

1 **N4-acetylcytidine (ac4C) promotes mRNA localization to stress granules**

2

3 Pavel Kudrin^{1,2}, Ankita Singh³, David Meierhofer⁴, Anna Kuśnierszyk⁵, and Ulf Andersson

4 Vang Ørom^{1, 6}

5

6 ¹ Institute of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark

7 ² Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu,
8 Estonia

9 ³ Institute of Biomedicine, Aarhus University, 8000 Aarhus, Denmark

10 ⁴ Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany

11 ⁵ Proteomics and Modomics Experimental Core (PROMEC), Department of Clinical and
12 Molecular Medicine, Norwegian University of Science and Technology and the Central
13 Norway Regional Health Authority, 7030 Trondheim, Norway.

14 ⁶ Lead Author, correspondence to ulf.orom@mbg.au.dk (UAVØ)

15

16

17 **Summary**

18 Stress granules are an integral part of the stress response that are formed from non-
19 translating mRNAs aggregated with proteins. While much is known about stress granules,
20 the factors that drive their mRNA localization are incompletely described. Modification of
21 mRNA can alter the properties of the nucleobases and affect processes as translation,
22 splicing and localization of individual transcript. Here, we show that the RNA modification
23 N4-acetylcytidine (ac4C) on mRNA associates with transcripts enriched in stress granules
24 and that stress granule localized transcripts with ac4C are particularly translationally
25 regulated. In addition, we show that ac4C on mRNA can mediate co-localization of the
26 protein NOP58 to stress granules. Our results show that acetylation of mRNA regulates
27 localization of both stress-sensitive transcripts and RNA-binding proteins to stress granules
28 and adds to our understanding of the molecular mechanisms responsible for stress granule
29 formation.

30

31

32 **Introduction**

33 Stress granules (SG) are membrane-less organelles formed by protein-RNA aggregates upon
34 stress, that are evolutionary conserved across eukaryotes ^{1,2}. SGs have been extensively
35 studied, and while it is well established that they form when translation initiation is limited ¹
36 and a variety of roles for SG within the cell has been proposed, their formation, dispersal and
37 function remain largely unclear ².

38 RNA modifications occur at all RNA species, particularly at rRNA and tRNA, but also
39 mRNA is increasingly reported to contain modified nucleosides ³. Particularly N6-
40 methyladenosine (m6A) has been shown to play important roles for mRNA translation ⁴. And
41 while m6A has also been proposed to play a role in mRNA localization to SG through
42 interaction with YTHDF ⁵, a functional relationship has recently been questioned ⁶. More
43 recently, the RNA modification N4-acetylcytidine (ac4C) has been shown to be deposited on
44 mRNA and regulate translation efficiency ⁷⁻⁹. ac4C is conserved through all kingdoms of life
45 and is induced upon several different stresses ⁷. ac4C is less abundant than m6A on mRNA
46 and due to difficulties in precise and quantitative mapping its function and occurrence on
47 mRNA has remained controversial ^{7,8}. A recent study using nucleotide-resolution mapping of
48 ac4C in HeLa cells identifies more than 6,000 acetylation sites in mRNA, demonstrating a
49 wide-spread occurrence of acetylation on human mRNA ⁹.

50 Here, we show that ac4C is enriched in SG and that acetylated transcripts are predominantly
51 localized to SG upon arsenite stress. We propose that acetylation of RNA can drive both
52 mRNA and RNA-binding protein localization to SG, providing new insight into both the
53 function of mRNA acetylation and mechanism of RNA localization to SG.

54

55

56

57 **Results**

58 *Acetylated RNA is enriched in membrane-less organelles*

59 ac4C is known to occur on 18S rRNA that is highly present in the nucleolus ¹⁰, where the
60 acetyltransferase NAT10 is also predominantly localized ¹¹. In addition, ac4C is induced by
61 oxidative stress from archaea to mammals ⁷. To assess ac4C distribution in the cell during
62 non-stressed and stressed conditions we used microscopy and staining for nucleolar marker
63 NCL and the SG marker G3BP (Figure 1a-e). Here, we used WT HeLa cells and a HeLa cell line
64 where the ac4C acetyltransferase NAT10 has been inactivated (NAT10 KO) ⁸, where the ac4C
65 levels are reduced by 80 per cent on all RNA species.

66 In unstressed conditions we see that ac4C localize to nucleoli both in WT and NAT10 KO cells
67 (Figure 1a-b), albeit with different intensities due to the different baseline levels of ac4C.
68 Upon oxidative stress caused by arsenite we see formation of SG in both WT and NAT10 KO
69 cells as visualized by staining for G3BP. We see that ac4C co-localize with the SG marker in
70 both WT and NAT10 KO cells (Figure 1c-d), demonstrating a shuttling of acetylated RNA.
71 Depletion of NAT10 did not affect the formation nor the size of SG in our experiments,
72 determined by intensity of G3BP staining (Figure 1e), suggesting that ac4C is involved in but
73 not required for SG formation.

74 As the high concentration of mRNA in SG could lead to the increased ac4C signal seen with
75 immunofluorescence, we purified RNA from SG as described ¹ and performed RNA mass
76 spectrometry. In addition, we purified poly(A) RNA, total RNA, 18S rRNA and a tRNA fraction
77 (Supplementary Figure 1) for comparison and contamination control. We used the common
78 mRNA modifications m6A known to be deposited at mRNA and proposed to be involved in
79 mRNA recruitment to SG ⁵ and m7G that is present as a 5'cap at mRNAs and also at
80 relatively high levels at tRNA (Supplementary Figure 1). In addition, m6A and m7G are

81 present at different ratios at 18S rRNA and tRNA (Supplementary Figure 1d, e), making
82 contamination with these RNA species in SG and poly(A) RNA purifications possible. When
83 we compare SG levels of m6A, ac4C and m7G to their levels in the mRNA purification, we
84 see a 4.2-fold enrichment of ac4C in SG whereas m6A and m7G show relative levels of 0.59
85 and 0.37 fold, respectively (Figure 1f). This shows that, while an enrichment is not reflected
86 in the common mRNA modifications m6A and m7G, we show an enrichment of ac4C
87 supporting the observations from immunofluorescence that ac4C modified RNA are indeed
88 enriched in SG. Especially the lack of enrichment of m7G, present at relatively high levels in
89 18S rRNA (Supplementary Figure 1d), argues against a contamination with rRNA as the
90 reason for increased ac4C in SG.

91

92 *Stress granule purification in HeLa cells is highly reproducible*

93 To address the impact of ac4C on the SG transcriptome, we sequenced total RNA from SG
94 with random primers and without rRNA depletion to obtain the complete picture of the SG
95 RNA content. We sequenced total mRNA (including long ncRNAs) from arsenite stressed
96 cells using random primers after rRNA depletion for comparison to SG to determine relative
97 transcript enrichment (Figure 2a-b, Supplementary Table 1). To assess the reproducibility of
98 the protocol and evaluate the quality of our SG purifications, we compared to two previous
99 studies using the same protocol in U2OS cells^{1,12}. One study used the G3BP as marker for SG
100 purification¹, while the other used the SG marker PABP¹². We find a substantial and
101 significant overlap of enriched (Figure 2c) and depleted (Figure 2d) transcripts in SG,
102 especially the different cell type taken into account. For this initial comparison we used a
103 cut-off of 2-fold enrichment and p<0.05. We considered the transcripts overlapping in all
104 three datasets as high confidence and compared translation efficiency and mRNA length¹

105 for transcripts unique to HeLa cells between these studies and the high confidence set. For
106 the translation efficiency we do not see a significant difference between the two sets
107 (Figure 2e), whereas for transcript length (Figure 2f) the mRNAs in the high confidence set
108 are significantly longer on average. As transcript length is one of the well-described
109 properties directing mRNA to SG, we increased the fold change cut-off to >4-fold to favor
110 inclusion of high confidence transcripts for the following analysis.

111

112 *The stress granule transcriptome is acetylated*

113 Comparing transcript levels in SG to total RNA, we find 418 transcript that are enriched
114 more than 4 times in SG compared to total RNA in WT cells (with a p.adj.<0.05), whereas in
115 NAT10 KO cells only 55 transcripts are enriched using these same criteria, suggesting that
116 the SG RNA content in NAT10 KO cells is less pronounced and closer to the average
117 distribution of mRNA in the cell. When compared to acetylation status using data from [9]
118 we find that 223 of the 418 (53 per cent) SG enriched transcripts in WT cells are acetylated
119 (Figure 3a), which is a significantly higher fraction than expected.

120 Most acetylated mRNAs in the transcriptome are found to have a single site for ac4C
121 modification (56.6 per cent), while a subset display several acetylation sites, up to 25 for the
122 MKI67 transcript ⁹ (Figure 3b). 8 transcripts contain more than 15 ac4C sites, and 7 of these
123 are enriched more than 4-fold in WT SG, reflected in the general observation that ac4C
124 modified transcripts tend to localize to SG upon arsenite stress (Figure 3c and
125 Supplementary Figure 2a-d). The average number of ac4C sites in acetylated SG transcripts
126 is 3.7 compared to 2.0 for the average acetylated transcript in HeLa cells, showing that
127 mRNAs with several ac4C sites are more likely to be localized to SG.

128

129 *Translation efficiency is dependent on ac4C level*

130 The mRNAs with high number of ac4C sites have low translation efficiency (TE) (using
131 ribosome profiling data for WT and NAT10 KO cells from ⁸). This is according to the
132 observation that SG are composed of long and less efficiently translated transcripts ¹, that
133 often correlate with lower TE determined by ribosome profiling ¹³. When looking at TE of
134 acetylated transcripts enriched in SG compared to those that are less than 2-fold enriched,
135 the ac4C transcripts localized to SG (enriched more than four times, logFC<-2) have lower TE
136 on average than acetylated transcripts not enriched in SG (logFC>-1) (Figure 3d).
137 Interestingly, in the NAT10 KO cells with depletion of ac4C, the ac4C transcripts enriched in
138 SG have a lower TE on average than in WT cells, while TE for ac4C transcripts not enriched in
139 SG are not affected on average, suggesting that translation of transcripts that are prone to
140 accumulate in SG are particularly sensitive to acetylation status.

141 When we look at ac4C status in HeLa cells of the model transcripts used by ¹, we see that
142 the non-SG control GAPDH is not acetylated. The intermediately SG enriched transcripts
143 POL2RA and TFRC show no acetylation as well. For the SG enriched transcripts DYNC1H1,
144 ZNF704, CDK6 and AHNAK all but ZNF704 are acetylated, as well as the top acetylated
145 transcript MKI67 highly enriched in SG (Figure 3e). The enrichment in SG compared to total
146 RNA of all model transcripts changes between WT cells and NAT10 KO cells towards less
147 pronounced, *i.e.* SG and total RNA composition becomes more similar in the absence of
148 ac4C (Figure 3e). We observe, that those transcripts that are acetylated undergo the largest
149 change in SG enrichment from WT cells to NAT10 KO cells, whereas *e.g.* POLR2A that in our
150 data is highly SG enriched, does not change its distribution in the NAT10 KO cells compared
151 to WT cells.

152

153 *RNA localization detected with smFISH*

154 To further substantiate the localization of acetylated RNA to SG we used smFISH to visualize
155 the control non-SG mRNA GAPDH (Figure 4a) and the core SG mRNA AHNAK (Figure 4b)
156 localization to SG following arsenite treatment.

157 ac4C promotes mRNA decoding efficiency ⁸, and it is thus possible that long mRNAs with
158 ac4C modifications exit translation less efficiently in ac4C depleted NAT10 KO cells. This
159 would result in mRNAs remaining in polysomes and not partitioning into SG. To assess if this
160 is the case we used puromycin treatment at the same time as arsenite treatment (shown in
161 Figure 4a,b), where puromycin releases residual ribosomes that would inhibit partitioning of
162 mRNA into SG ¹⁴. We observe, that puromycin treatment yields more efficient partitioning
163 of AHNAK into SG in both WT and NAT10 KO conditions with both stronger and more SGs
164 formed (Figure 4c), but that the partitioning into SG is still significantly decreased in NAT10
165 KO cells. The overall distribution of AHNAK into SGs shows a markedly reduced partitioning
166 into SG in NAT10 KO cells compared to WT (Figure 4d), and while the puromycin effect is
167 clearly promoting SG formation it does not overrule the impact of ac4C modification of
168 partitioned transcripts. The expression on mRNA level of AHNAK is higher in NAT10 KO cells
169 by RNA sequencing, further supporting that the decreases partitioning of AHNAK into SG in
170 NAT10 KO cells is an effect of ac4C rather than of mRNA level in the cell. Thus our data
171 suggest that ac4C directly affect the targeting of RNA into SG rather than indirectly through
172 its reported effect on decoding efficiency ⁸.

173

174 *Identification of ac4C binding proteins*

175 To identify protein binders recognizing the ac4C modification, we *in vitro* synthesized three
176 biotinylated 76 nts RNAs containing 21, 24 and 16 C nucleotides, respectively, in various

177 sequence contexts. The RNA was synthesized in the presence of unlabeled A, U and G
178 ribonucleotides and increasing concentrations of ac4C ribonucleotides (0, 50 and 100 per
179 cent ac4C over C, respectively). The *in vitro* synthesized RNA was incubated with total
180 cellular lysate from NAT10 KO cells, to increase the unbound fraction of ac4C binders. We
181 eluted bound proteins from RNA using excess biotin and RNase, and subjected purified
182 proteins to liquid-phase mass spectrometry (LC/MS). Here, we identify 18 proteins
183 preferentially bound by the ac4C labeled RNA compared to the control non-acetylated RNA
184 (Figure 5a, Supplementary Figure 4, Supplementary Table 2).

185 Due to the artificial nature of the acetylated RNA oligonucleotides and as a complementary
186 approach to identify biological relevant proteins interacting with the SG enriched
187 transcripts, we used Catrapid ¹⁵ to predict proteins interacting with MKI67, that is highly
188 enriched in SG and contains the most ac4C sites of all transcripts in HeLa. Here, we find that
189 NOP58 is the top predicted protein to bind MKI67, which is also one of the best hits of
190 proteins identified to bind acetylated RNA in our mass spectrometry analysis. Overall, when
191 using the model transcripts GAPDH, POL2RA, TFRC, DYNC1H1, ZNF704, CDK6, AHNAK and
192 MKI67 we see a high degree of correlation between the interaction propensity score from
193 Catrapid as a function of change in SG localization between WT cells and NAT10 KO cells
194 (Figure 5b), supporting the identification of NOP58 as a *bona fide* ac4C binder.

195 Due to the experimental identification and prediction of NOP58 to bind to acetylated SG
196 transcripts we focused our further validation and functional characterization of ac4C binding
197 proteins in SG localization on NOP58. NOP58 is a nucleolar protein that has also been shown
198 to be localized to SG ¹⁶. In unstressed cells, ac4C is highly present in the nucleolus. We
199 validate the interaction between ac4C and NOP58 by repeating the pull-down procedure
200 and western blotting using a NOP58-specific antibody, confirming a dose-dependent binding

201 between ac4C on RNA and NOP58 (Figure 5c), and using RIP-qPCR, compared to IgG control,
202 we further validated the interaction between NOP58 and the core SG mRNA AHNAK, having
203 16 ac4C sites, and the most acetylated mRNA MKI67, having 25 ac4C sites (Figure 5d).

204

205 *NOP58 is binding to acetylated mRNA and localized to stress granules*

206 To study the cellular connection between ac4C and NOP58 localization to SG we stained for
207 NOP58 in WT and NAT10 KO cells either in unstressed cells or in cells treated with arsenite.

208 In untreated cells, NOP58 localizes to nucleoli in both WT and NAT10 KO HeLa cells (Figure
209 5e). Upon arsenite stress and induction of SG we see that in WT HeLa cells NOP58 is
210 recruited to SG (Figure 5f, upper panel) (in agreement with the SG proteome from ¹⁶),
211 whereas in NAT10 KO this recruitment is abrogated (Figure 5f, lower panel). Quantification
212 of NOP58 levels show that NAT10 KO HeLa cells have higher levels of NOP58 in the nucleoli
213 (Figure 5g-h), and that SG levels of NOP58 are significantly higher in WT compared to NAT10
214 KO HeLa cells. This suggests that ac4C modified RNA binds NOP58 (and other proteins) and
215 is able to recruit them to SG, proposing that acetylated RNA is important for shaping both
216 RNA and protein content of SG.

217

218 **Discussion**

219 A recent review on SG asked the question, how does RNA contribute to SG formation, and
220 which RNAs are important? ². Several studies using diverse approaches have suggested that
221 transcript length is the key determinant of mRNA recruitment to SG ^{1,12,17}. Here, we show
222 that transcripts modified with ac4C are particularly important for defining the diversity of
223 mRNA in SG. The formation of SG is maintained in NAT10 KO HeLa cells albeit with different
224 mRNA content, showing that SG can still form but the mRNA distribution is more similar to

225 the average mRNA distribution of the cell. We do not see relative enrichment of m6A in SG
226 which could be expected due to the observation that m6A mRNA is transported to SG by
227 YTHDF⁵, but this lack of enrichment of m6A is in line with a recent study showing a modest
228 impact of m6A on SG RNA composition⁶.

229 Our findings that ac4C affects the composition and distinctness of SG mRNA content adds
230 the question how diverse SG content are across cell lines, tissues and external stimuli, and
231 how this is affected by different acetylation patterns across cell lines and tissues. Part of this
232 question might be answered more in-depth once we have a more comprehensive picture of
233 RNA ac4C in a panel of cell lines and tissues, but our comparison with previous SG
234 purification from U2OS cells identifying high-confidence SG transcripts suggest that ac4C
235 levels are partially comparable between cell lines and involved in partitioning of RNA into
236 SG.

237 Our data also suggest that mRNA is not passively dragged along to SG but are localized there
238 dependent on acetylation status and can mediate protein localization to SG. Why acetylated
239 transcripts that are localized to SG have lower TE and are more susceptible to NAT10 KO
240 than other acetylated transcripts is an outstanding question. It might be associated to the
241 translational status of the transcripts, and possibly indicate that low TE mediate acetylation
242 of transcripts with a subsequent acetylation-dependent enhancement of translation, fitting
243 well with very recent data that ac4C promote translation⁹. Using puromycin treatment and
244 smFISH we address whether the accumulation of ac4C RNA into SG is due to the rate at
245 which mRNAs exit translation. Here, we see that while puromycin treatment increases the
246 rate of mRNA partitioning into SG it does not override the effect of NAT10 KO mediated
247 decrease in ac4C levels, in support of a model where the presence of ac4C directly affects
248 the partitioning rate of mRNA into SG upon arsenite stress. Our assessment of the ac4C-

249 binding protein NOP58 and its localization into SG also supports a model where the RNA
250 acetylation and partitioning into SG mediates protein localization, and not vice versa,
251 proposing RNA acetylation as an important factor for defining both the transcriptome and
252 proteome of SG induced by arsenite stress.
253 SGs share many protein components with neuronal granules, and mutations associated with
254 SG formation have been shown to be implicated in neurodegenerative diseases such as
255 amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy, where SG-like
256 assemblies form ¹⁸. Addressing the acetylation status of RNA could provide novel insight into
257 such diseases.

258

259 **Limitations of the study**

260 With the findings presented here we show an involvement of ac4C modification in SG
261 partitioning of RNA. Previous work has shown that particularly long mRNAs tend to be
262 localized to SG, and as the most highly acetylated transcripts are also very long it is not
263 possible from our data to clearly distinguish between the contribution of length and ac4C
264 modifications, respectively. The ac4C interacting proteome and how RNA-protein
265 interactions affect the transcriptome and proteome of SG is of high interest but outside the
266 scope of this article. We hope that our initial data on NOP58 and our findings will foster
267 further investigation of how RNA, RNA modifications and proteins play together to form SG.

268

269 **Supplementary Information**

270 Supplementary Figures 1, 2, 3 and 4.

271 Supplementary Tables 1, 2 and 3.

272

273 **Data availability**

274 RNA sequencing data from total RNA and SG have been deposited to GEO with accession
275 number GSE212380. Riboseq data are available from Arango et al., 2018 with accession
276 number GSE102113 and position of ac4C on HeLa mRNA are from Arango et al., 2022 with
277 accession number GSE162043.

278

279 **Acknowledgments**

280 We thank Ana Rebane for providing research facilities for PK during parts of the work for the
281 manuscript. We thank Beata Lukaszewska-McGreal for proteome sample preparation. We
282 thank Shalini Oberdoerffer for kindly providing the NAT10 KO and the WT HeLa cell lines.
283 The LC-MS/MS analyses of RNA were performed by the Proteomics and Modomics
284 Experimental Core (PROMEC), Norwegian University of Science and Technology (NTNU) and
285 The Central Norway Regional Health Authority. This facility is a member of the National
286 Network of Advanced Proteomics Infrastructure (NAPI), which is funded by the Research
287 Council of Norway. We acknowledge AU Health Bioimaging Core Facility for the use of
288 equipment and support of the imaging facility. Work in the author's lab is funded by the
289 Novo Nordisk Foundation, The Lundbeck Foundation, Danish Cancer Society, Independent
290 Research Fund Denmark, The Carlsberg Foundation to UAVØ, Estonian Research Council to
291 PK and the Max Planck Society to DM.

292

293 **Author contributions**

294 Designed experiments: PK, UAVØ; Performed Experiments: PK, AK, DM; Performed
295 computational analysis: AS, UAVØ; Interpreted data: PK, AS, AK, DM, UAVØ; Supervised

296 research: UAVØ; Secured funding: UAVØ; Wrote the initial draft: PK, UAVØ; wrote the final
297 manuscript: PK, UAVØ. Commented on and approved the final manuscript: All authors.

298

299

300 **Declaration of interests**

301 The authors declare no competing interests.

302

303 **Figure legends**

304 **Figure 1. ac4C enrichment in stress granules**

305 Panel a-d show confocal microscopy images of WT (a) and NAT10 KO HeLa cells (b) stained
306 for ac4C and the nucleolus marker Nucleolin and arsenite stressed WT (c) and NAT10 KO
307 HeLa cells (d) stained for ac4C and the SG marker G3BP. Arrows indicate ac4C granules
308 overlapping with nucleoli in (a-b) and SG in (c-d). In (e) the intensities of SG from (c) and (d)
309 are quantified and shown as corrected total SG fluorescence. Median (solid) and quartiles
310 (dashed), unpaired two-tailed Student's t-test. In (f) is shown the ratio between SG levels of
311 m6A, ac4C and m7G compared to their respective levels on mRNA.

312

313 **Figure 2. Purification of stress granule-associated RNA**

314 Panel a-b show volcano plots of SG compared to total RNA for WT (a) and NAT10 KO HeLa
315 cells (b) from RNA sequencing experiments done in four biological replicates. We compared
316 enriched (c) and depleted (d) transcripts with previous studies purifying SG from U2OS cells
317 ^{1,12}. We assessed translation efficiency (e) and mRNA length (f) for high-confidence SG
318 transcripts enriched >2-fold in all studies and those enriched only in HeLa cells in the
319 present study, respectively. Unpaired two-tailed Student's t-test , **** p < 0.0001.

320

321 **Figure 3. The ac4C-dependent stress granule transcriptome**

322 The overlap between acetylated transcripts in WT HeLa cells and transcripts enriched in SG
323 (53.3 per cent) is shown as a Venn diagram in panel (a). The transcript with the most ac4C
324 sites, MKI67, is shown as a schematic in panel (b), where the 5' UTR is green, the CDS with
325 the major part of ac4C sites is black and the 3' UTR is red. Panel (c) shows the transcripts
326 with more than one ac4C sites along with fold change enrichment in SG and normalized
327 average expression shown as FPKM. For the further analysis we used a cut-off of four-fold
328 enriched in SG, and comparison of TE for this set is shown in panel (d) where SG transcripts
329 are defined as having a logFC <-2, and transcripts not enriched in SG are defined as having a
330 logFC >-1. In (e) are shown 8 model transcripts used for comprehensive SG studies ¹ and
331 their change in SG localization from WT to NAT10 cells. The arrow indicates the direction of
332 the change and below each data point is shown the number of acetylation sites for each
333 transcript, respectively.

334

335 **Figure 4. smFISH analysis of AHNAK and GAPDH mRNA localization to SG**

336 We used smFISH to further substantiate our findings using the core SG transcript AHNAK
337 and the control transcript GAPDH. In (a) is shown GAPDH localization and in (b) AHNAK
338 localization upon arsenite stress and puromycin treatment. Arrows indicate AHNAK
339 granules, formed in cytoplasm in response to arsenite stress w/o puromycin treatment. Red
340 is smFISH probe and blue is DAPI. Scale bar, 50 μ m. Number and intensity of smFISH signal
341 in individual SGs is quantified from 60 cells for AHNAK in panel (c). Each circle represents a
342 single SG. Unpaired two-tailed Student's t-test, *** p < 0.0001. Total SG fluorescence per
343 cell, calculated from smFISH signal for AHNAK of individual SGs (c), is shown in panel (d).

344

345 **Figure 5. NOP58 localization to SG is dependent on ac4C**

346 Panel a shows proteins identified to bind preferentially to ac4C modified RNA
347 oligonucleotides as well as those binding regardless of acetylation status and preferentially
348 to unacetylated RNA oligonucleotides. (b) The change in SG enrichment from WT to NAT10
349 KO HeLa cells for the SG model transcripts is shown as a function of interaction propensity
350 with NOP58 predicted by Catrapid. The size of the datapoints show the number of
351 acetylation sites on each transcript. (c) Dose-dependent interaction of NOP58 to acetylated
352 RNA oligonucleotides validated by western blot (upper panel) and quantified as compared
353 to 100 per cent input (lower panel). (d) RIP-qPCR of NOP58 interaction with the SG core
354 transcript AHNAK as well as for MKI67 in WT HeLa cells. Immunostaining of NOP58 and
355 G3BP for unstressed cells are shown in panel (e) and for arsenite stressed cells shown in
356 panel (f). Arrows indicate NOP58 granules overlapping with nucleoli in (e) and SG in (f).
357 NOP58 containing SG are not indicated in NAT10 KO HeLa cells in (f) as they are not visible.
358 Scale bar, 10 μ m. Panel (g-h) show quantification of NOP58 Mean Fluorescence Intensity
359 (MFI) in nucleoli of unstressed (g) and arsenite stressed cells (h). In (i) is shown
360 quantification of MFI of SG in arsenite stressed WT and NAT10 KO HeLa cells. Unpaired two-
361 tailed Student's t-test, *** p<0.0001.

362

363

364 **Materials and Methods**

365 ***Tissue culture***

366 If not stated otherwise, HeLa cells were grown in Dulbecco's Modified Eagle's medium
367 (DMEM; Gibco, #41966-029) supplemented with 10% Fetal Bovine Serum (FBS; Gibco) and
368 1% Penicillin/Streptomycin (P/S; Gibco) at 37°C with 5% CO₂ until 90% confluence. Cells
369 were collected by trypsinization with 0.05% Trypsin-EDTA (Gibco). When needed, the
370 purification of SG cores was performed as per ¹. Briefly, 90% confluent HeLa cells were
371 subjected to oxidative stress by 1 hr treatment with 0.5 mM NaAsO₂ followed by lysis in SG
372 lysis buffer (50 mM Tris-HCl pH 7.4, 100 mM KOAc, 2 mM MgOAc, 0.5 mM DTT, 50 mg/mL
373 Heparin, 0.5% NP40, 1 mM PMSF, 1:100 PI cocktail, Superase-in (1 U/ml) (Thermo)) and
374 fractionation through centrifugation. Stress granule core enriched fraction was then
375 incubated at 4°C overnight with anti-G3BP1 antibody (#61559, CellSignal). Anti-G3BP1
376 antibody-bound SG cores were collected through the incubation with Protein G Dynabeads
377 (Invitrogen) with consecutive SG RNA elution from the Dynabeads by Proteinase K
378 (Invitrogen) treatment. Total or SG RNA purification was performed using TRIzol (Invitrogen)
379 according to manufacturer's instructions and RNA preparation quality analyzed with 2100
380 Bioanalyzer (Agilent).

381

382 ***Immunofluorescence staining (IF), RNA FISH and confocal microscopy***

383 HeLa cells were grown on a coverslip and, with 90% confluence reached, were, when
384 needed, subjected to oxidative stress by incubation with 0.5 mM NaAsO₂ with or without
385 the presence of 10 µg/ml puromycin for either 30 min or 60 min. Cells were fixed with 4%
386 paraformaldehyde in PBS. For IF experiments, permeabilisation and blocking were done
387 with 0.1% Triton-X100 and 0.01% Triton-X100/1% FBS in PBS respectively. Primary

388 antibodies (rabbit anti-ac4C, #ab252215, Abcam; rabbit anti-NOP58, #14409-1-AP,
389 Proteintech; mouse anti-NCL, #87792, CellSignal; mouse anti-G3BP, #ab56574, Abcam) were
390 diluted 1:50 in blocking solution and incubated with the samples for 1 hr at RT.
391 Subsequently the samples were incubated with secondary antibodies (anti-rabbit
392 AlexaFluor488 conjugated and anti-mouse AlexaFluor647 conjugated) at 1:50 dilutions for
393 1 hr at RT.
394 RNA FISH experiments were performed according to Stellaris RNA FISH protocol for
395 adherent cells (<https://www.biosearchtech.com/support/resources/stellaris-protocols>).
396 After fixation with 4% PFA cells were permeabilized by incubation in 70% EtOH for at least 1
397 hr at 4°C followed by incubation in Stellaris Wash Buffer A (Biasearch Tech) for 5 min at RT.
398 Hybridization step occurred in a parafilm-sealed humidity chamber with cells incubated in
399 125 nM RNA FISH probes (Supplementary Table 3)-containing Stellaris Hybridization Buffer
400 (Biasearch Tech) for 16 hrs at 37°C in the dark. After hybridization the samples were washed
401 twice with Stellaris Wash Buffer A (Biasearch Tech) for 30 min at 37°C in the dark. Additional
402 washing step with Stellaris Wash Buffer B (Biasearch Tech) was performed for 5 min at RT
403 before mounting the samples on the glass slides.
404 Samples were mounted on glass slides using SlowFade Gold Antifade Mountant with DAPI
405 (Invitrogen). Confocal images were captured by a Zeiss LSM 800 Airyscan laser scanning
406 microscope or Olympus FV1200MPE multiphoton laser scanning microscope. Zen 2010 or
407 Olympus Fluoview FV1000 acquisition software, respectively, and ImageJ (Fiji) were used for
408 imaging and analysis.
409
410 ***RNA sequencing and data analysis***

411 Total RNA and SG RNA was sequenced with BGI DNBSEQ sequencing technology (BGI). For
412 total RNA samples were depleted for rRNA and library generated with random hexamers.

413 For SG, we did not deplete rRNA to maintain the complete picture of SG composition, and
414 generated libraries with random hexamers.

415 Coverage of the sequenced libraries was ~50 million reads (Q20% > 97.2).

416

417 *Quality control*

418 Quality control of all of the fastq files were performed with the help of multiqc ¹⁹.

419 Percentage of uniquely mapped reads was in the range of ~91-95%, with ~3-7% of multi-
420 mapped reads.

421

422 *Alignment of reads*

423 Alignment of all the paired end reads with the human genome assembly hg19 was
424 performed using STAR (version 2.7.3a) ²⁰, Samtools view (version 1.3.1) ^{20,21} command was
425 used to convert bam files to sam files. Further, quantification of the aligned transcripts from
426 the reference hg19 was performed with the help of htseq-count ²² using intersection strict
427 as a mode and stranded yes as the parameters.

428

429 *Quantification, differential analysis and annotation*

430 For analysis of RNA expression, readcounts from input samples were used applying a CPM
431 cutoff of 1 or above in all four biological replicates to discriminate expressed genes for the
432 entire dataset. Genes were normalized using the TMM algorithm ²³ and calcNormFactor of
433 edgeR ²⁴. We next used the relationship function voom ²⁵ from the limma (Smyth, n.d.)
434 package to establish the mean variance relationship and generate weights for each

435 observation. The lmFit function of limma was used to transform the RNA-Seq data before
436 linear modeling and find differentially expressed (DE) genes.

437

438 ***In vitro transcription of ac4C modified RNA***

439 T7 promoter containing double stranded DNA (Supplementary Table 3) was used as a
440 template for in vitro transcription with HighYield T7 mRNA Synthesis Kit (ac4CTP) (Jena
441 Bioscience).

442 DNA template variant 1: sense strand 5'
443 GTACGGTAATACGACTCACTATAGGGATTGTGCGTGAGATGCACATTCTGACCGGTGTCTCTTCTTGAC
444 CGGGCCATCCCACATCCGCCGACGC 3' and antisense strand 5'
445 GGCCGCGTCGGCGGATGTGGATGGCCCGGTCAAGAAAGAGACACCGGTCAAGGAATGTGCATCTCACGCAC
446 AATCCCTATAGTGAGTCGTATTACC 3'. DNA template variant 2: sense strand 5'
447 GTACGGTAATACGACTCACTATAGGGAGTGGTCTACACACATGACAGAAATGGGCAGGTCCGTAATCGGTT
448 GCAGAGCGGTTACCGATCTCATCGC 3' and antisense strand 5'
449 GGCCGCGATGAGATCGTAACCGCTCTGCAACCGATTACGGACCTGCCATTCTGCATGTGTAGACC
450 ACTCCCTATAGTGAGTCGTATTACC 3'. DNA template variant 3: sense strand 5'
451 GTACGGTAATACGACTCACTATAGGGCTTATCTAGTGCATCCGCCGAAATTACCTGTTGCACGACCACGCT
452 CTGCCGCCTCTCAGACTCCTAACGC 3' and antisense strand 5'
453 GGCCGCGTTAGGAGTCTGAGAGGCGGCAGAGCGTGGTGTGCAACAGGTAATTCCGGCGATGCACTAGAT
454 AAGCCCTATAGTGAGTCGTATTACC 3'. Either CTP or ac4CTP substrates were used to obtain the
455 certain level of acetylated cytidines within RNA. Purified RNA was subjected for 3' end
456 biotinylation with Pierce™ RNA 3' End Biotinylation Kit (Thermo) resulting in 76 nt long RNA
457 of the following sequences: Variant 1: 5'
458 GGCCGGUCGGCGGAUGUGGGAUGGGCCGGUCAAGAAAGAGACACCGGUCAGGAUGUGCAUCUCACGCAC
459 AAUC-C(biotine) 3' with either 0% or 100% of Cs acetylated. Variant 2: 5'

460 GGCCGCGAUGAGAUCGGUAACCGCUCUGCAACCGAUUACGGACCUGCCCCAUUCUGUCAUGUGUGUAGACC
461 ACUC-C(biotine) 3' with either 0% or 100% of Cs acetylated. Variant 3: 5'
462 GGCCGCGUUAGGGAGUCUGAGAGGCGGAGAGCGUGGUCGUGCAACAGGUAAUUUCGGCGGAUGCACUAGAU
463 AAGC-C(biotine) 3' with either 0% or 100% of Cs acetylated.

464

465 ***Purification of ac4C binding proteins***

466 50 μ L of Neutravidine SpeedBeads (Sigma) beads per reaction were equilibrated in buffer A
467 (20 mM Tris-HCl pH 7.4, 1M NaCl, 1 mM PMSF, PI cocktail, Superase-in (1 U/ml) (Thermo), 1
468 mM EDTA) followed by addition of 50 pmol of biotinylated model RNA with or without
469 acetylated Cs. After the incubation on rotator at RT for 1 h the beads were washed three
470 times and resuspended in buffer B (20 mM Tris (pH 7.4), 50 mM NaCl, 2 mM MgCl₂, 0.1%
471 TweenTM-20). During the incubation step the HeLa total cell lysate was prepared by lysing
472 freshly collected HeLa cells in RIPA buffer (Sigma) (1 ml per 15 cm plate) supplemented with
473 1: 100 protease inhibitor cocktail (Sigma) and 1 mM PMSF on ice for 15 min followed by
474 sonication and another 15 min on ice. Cell debris was removed by centrifugation at 4 °C for
475 10 min at \geq 10000 g. Protein concentration was determined by Bradford assay. 100 μ g of
476 HeLa lysate per reaction was mixed with 1x buffer B, 15% glycerol and RNase-free H₂O with
477 consecutive addition on RNA-beads mix and incubation at 4°C for 60 min with rotation. The
478 beads were washed three times with Wash buffer (20 mM Tris (pH 7.4), 10 mM NaCl, 0.1%
479 TweenTM-20, 1 mM PMSF, 1:100 PI cocktail) and RNA-bound proteins eluted in 28 μ L of
480 elution buffer (1 mM biotin in Wash Buffer and 2 μ L RNase) by incubation shaking at 37°C
481 for 30 min. Eluted proteins were subsequently analyzed by PAGE, Western Blot and MS.

482

483 ***Proteomics Sample Preparation and LC-MS/MS Instrument Settings***

484 Samples were delivered in 1x PBS, 0.01% SDS, the pH was adjusted to 8.5 by adding a final
485 concentration of 100 mM Tris, followed by denaturing at 95°C for 10 minutes at 1000 rpm. 4
486 µg protein of each sample was further processed. Reduction of cysteines was carried out by
487 adding 1.1 µl of 0.1 M tris(2-carboxyethyl)phosphine at 37°C for 30 minutes at 800rpm,
488 alkylation of cysteines similarly by adding 2.5 µl of 0.2 M 2-chloroacetamide. Samples were
489 digested by trypsin (enzyme-protein ratio 1:40) at 37°C overnight, desalted and
490 reconstituted in 2% formic acid and 5% acetonitrile in water prior to injection to nano-LC-
491 MS. For each sample, 1 and 3 µg protein were injected. LC-MS/MS was carried out by
492 nanoflow reverse phase liquid chromatography (Dionex Ultimate 3000, Thermo Scientific,
493 Waltham, MA) coupled online to a Q-Exactive HF Orbitrap mass spectrometer (Thermo
494 Scientific, Waltham, MA), as reported previously ²⁶. Raw MS data were processed with
495 MaxQuant software v1.6.10.43 ²⁷, runs from the same samples were combined and
496 searched against the human UniProtKB with 75,074 entries, released in 05/2020.

497

498 ***Validation of ac4C binding proteins and western blot***

499 The eluate was subjected to SDS PAGE on Novex Tris-Glycine 4-20% (Invitrogen) gel followed
500 by either silver staining with Pierce Silver Stain Kit (Thermo) or Western blotting against
501 anti-NOP58 (#ab236724, Abcam) and anti-GAPDH (#5174s, CellSignal) antibodies. Western
502 blot was developed using Pierce ECL Western Blotting Substrate (Thermo) and imaged with
503 Amersham Imager 600 (GE Healthcare).

504

505 ***Size-exclusion chromatography of total RNA***

506 Total RNA was fractionated into tRNA, 18S rRNA and 28S rRNA using two dimensions of size-
507 exclusion chromatography (SEC) carried out on an Agilent HP1200 HPLC system with UV

508 detector and fraction collector. The 1st SEC dimension was performed using a Bio SEC-5 1000
509 Å, 5 µm, 7.8 x 300 mm column (Agilent Technologies, Foster City, CA) and isocratic elution
510 with 100 mM ammonium acetate (pH 7.0) at 500 µl/min for 40 min at 60°C, collecting three
511 fractions containing 28S rRNA, 18S rRNA, and RNAs below 200 nt ('small RNAs'),
512 respectively. The fractions were lyophilized and the small RNA fraction was reconstituted in
513 20 µl of water and subjected to a 2nd dimension of SEC using an AdvanceBio SEC 120 Å, 1.9
514 µm, 4.6 x 300 mm column (Agilent Technologies, Foster City, CA) and isocratic elution with
515 100 mM ammonium acetate (pH 7.0) run at 150 µl/min for 40 min at 40°C.

516

517 ***Analysis of isolated RNA species using LC-MS/MS***

518 RNA was hydrolyzed to ribonucleosides by 20 U benzonase (Santa Cruz Biotech) and 0.2 U
519 nuclease P1 (Sigma-Aldrich, Saint-Louis, MO) in 10 mM ammonium acetate pH 6.0 and 1
520 mM magnesium chloride at 40 °C for 1 hour, then added ammonium bicarbonate to 50 mM,
521 0.002 U phosphodiesterase I and 0.1 U alkaline phosphatase (Sigma-Aldrich, Saint-Louis,
522 MO) and incubated further at 37 °C for 1 hour. The hydrolysates were added 3 volumes of
523 acetonitrile and centrifuged (16,000 g, 30 min, 4 °C). The supernatants were lyophilized and
524 dissolved in 50 µl water for LC-MS/MS analysis of modified and unmodified ribonucleosides.
525 Chromatographic separation was performed using an Agilent 1290 Infinity II UHPLC system
526 with an ZORBAX RRHD Eclipse Plus C18 150 x 2.1 mm ID (1.8 µm) column protected with an
527 ZORBAX RRHD Eclipse Plus C18 5 x 2.1 mm ID (1.8 µm) guard column (Agilent Technologies,
528 Foster City, CA). The mobile phase consisted of water and methanol (both added 0.1%
529 formic acid) run at 0.23 ml/min, for modifications starting with 5% methanol for 0.5 min
530 followed by a 2.5 min gradient of 5-15 % methanol, a 3 min gradient of 15-95% methanol
531 and 4 min re-equilibration with 5% methanol. A portion of each sample was diluted for the

532 analysis of unmodified ribonucleosides which was chromatographed isocratically with 20%
533 methanol. Mass spectrometric detection was performed using an Agilent 6495 Triple
534 Quadrupole system with electrospray ionization, monitoring the mass transitions 268.1-
535 136.1 (A), 284.1-152.1 (G), 244.1-112.1 (C), 245.1-113.1 (U), 286.1-154.1 (ac⁴C), 282.1-150.1
536 (m⁶A) and 298.1-166.1 (m⁷G) in positive ionization mode.

537

538 ***NOP58 binding RNA immunoprecipitation***

539 40 µl of Protein G Dynabeads (Invitrogen) in IP buffer (150 mM NaCl, 10 mM Tris-HCl, pH
540 7.5, 0.1% IGEPAL CA-630, 1 mM PMSF, 1:100 PI cocktail, Superase-in (1 U/ml) (Thermo) in
541 nuclease free H₂O) were tumbled with 5 µg anti-NOP58 antibody (#14409-1-AP,
542 Proteintech) or 5 µg anti-IgG antibody (#30000-0-AP, Proteintech) at 4°C for at least 6 hrs.
543 Upon freshly prepared (in RIPA (Sigma) buffer) HeLa cell lysate addition, lysate-antibody-
544 beads mixture in IP buffer was incubated ON at 4°C with gentle rotation in a final volume of
545 0.8 mL in protein low-binding tubes. For elution, the beads were resuspended in 1x
546 Proteinase K buffer (100 mM Tris-HCl pH 7.5, 150 mM NaCl, 12.5 mM EDTA, 2% SDS and 120
547 µg/ml Proteinase K (Invitrogen)) and incubated 1 hr with continuous shaking (1200 rpm) at
548 37°C. Magnetic separation rack was applied to collect the supernatant. TRIzol/chloroform
549 treatment was applied to supernatant with consecutive centrifugation at >13500 rpm for 15
550 min at 4°C. Upper phase was collected and 700 µl of RLT buffer and 1400 µl of 100% ethanol
551 were added and mixed thoroughly. The mixture was transferred to an RNeasy MiniElute
552 spin column (QIAGEN) and centrifuged at >12000 rpm at 4°C for 1 min. This step was
553 repeated until all sample was loaded to the column. The spin column membrane was
554 washed with 500 µl of RPE buffer once, then 500 µl of 80% ethanol once and centrifuged at
555 full speed for 5 min at 4°C remove the residual ethanol. RNA was eluted with 14 µl ultrapure

556 H₂O. RNA concentration was measured using the Qubit RNA HS Assay Kit as per the
557 manufacturer's instructions

558

559 ***qPCR and RNA purification***

560 To validate stress granule enriched transcripts from previously purified SG RNA by qPCR,
561 cDNA was synthesized with RevertAid First Strand cDNA Synthesis Kit (Thermo) according to
562 manufacturer's protocol. Platinum™ SYBR™ Green qPCR SuperMix-UDG (Thermo) and the
563 following primers were used for qPCR:

564 AHNAK FW 5' TCTTCAGCTCCTGCAGCTCT 3' AHNAK RV 5' CTCCATCTTCCGACTTCAGC 3'

565 MKI67 FW 5' AGCCCCAACAAAAGAAAGT 3' MKI67 RV 5' TTTGTGCCTTCACTTCCACA 3'

566

567 ***Statistics***

568 All statistics are done using unpaired two-tailed Student's T-test.

569

570 **References**

571 1. Khong, A., Matheny, T., Jain, S., Mitchell, S.F., Wheeler, J.R., and Parker, R. (2017). The
572 Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress
573 Granules. *Molecular cell* **68**, 808-820.e5. 10.1016/j.molcel.2017.10.015.

574 2. Glauninger, H., Wong Hickernell, C.J., Bard, J.A.M., and Drummond, D.A. (2022).
575 Stressful steps: Progress and challenges in understanding stress-induced mRNA
576 condensation and accumulation in stress granules. *Molecular cell*.
577 10.1016/j.molcel.2022.05.014.

578 3. Gilbert, W. V., Bell, T.A., and Schaening, C. (2016). Messenger RNA modifications: Form,
579 distribution, and function. *Science*. 10.1126/science.aad8711.

580 4. Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H.,
581 and He, C. (2015). N(6)-methyladenosine Modulates Messenger RNA Translation
582 Efficiency. *Cell* **161**, 1388–1399. 10.1016/j.cell.2015.05.014.

583 5. Fu, Y., and Zhuang, X. (2020). m(6)A-binding YTHDF proteins promote stress granule
584 formation. *Nature chemical biology* **16**, 955–963. 10.1038/s41589-020-0524-y.

585 6. Khong, A., Matheny, T., Huynh, T.N., Babl, V., and Parker, R. (2022). Limited effects of
586 m(6)A modification on mRNA partitioning into stress granules. *Nature communications*
587 **13**, 3735. 10.1038/s41467-022-31358-5.

588 7. Sas-Chen, A., Thomas, J.M., Matzov, D., Taoka, M., Nance, K.D., Nir, R., Bryson, K.M.,
589 Shachar, R., Liman, G.L.S., Burkhardt, B.W., et al. (2020). Dynamic RNA acetylation
590 revealed by quantitative cross-evolutionary mapping. *Nature* **583**, 638–643.
591 10.1038/s41586-020-2418-2.

592 8. Arango, D., Sturgill, D., Alhusaini, N., Dillman, A.A., Sweet, T.J., Hanson, G., Hosogane,
593 M., Sinclair, W.R., Nanan, K.K., Mandler, M.D., et al. (2018). Acetylation of Cytidine in
594 mRNA Promotes Translation Efficiency. *Cell*. 10.1016/j.cell.2018.10.030.

595 9. Arango, D., Sturgill, D., Yang, R., Kanai, T., Bauer, P., Roy, J., Wang, Z., Hosogane, M.,
596 Schiffers, S., and Oberdoerffer, S. (2022). Direct epitranscriptomic regulation of
597 mammalian translation initiation through N4-acetylcytidine. *Molecular cell*.
598 10.1016/j.molcel.2022.05.016.

599 10. Bortolin-Cavaillé, M.-L., Quillien, A., Thalalla Gamage, S., Thomas, J.M., Sas-Chen, A.,
600 Sharma, S., Plisson-Chastang, C., Vandel, L., Blader, P., Lafontaine, D.L.J., et al. (2022).
601 Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution.
602 *Nucleic acids research* **50**, 6284–6299. 10.1093/nar/gkac404.

603 11. Larrieu, D., Viré, E., Robson, S., Breusegem, S.Y., Kouzarides, T., and Jackson, S.P. (2018).
604 Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by
605 rebalancing the Transportin-1 nuclear import pathway. *Science signaling* **11**.
606 10.1126/scisignal.aar5401.

607 12. Matheny, T., Van Treeck, B., Huynh, T.N., and Parker, R. (2021). RNA partitioning into
608 stress granules is based on the summation of multiple interactions. *RNA* (New York,
609 N.Y.) 27, 174–189. 10.1261/rna.078204.120.

610 13. Weinberg, D.E., Shah, P., Eichhorn, S.W., Hussmann, J.A., Plotkin, J.B., and Bartel, D.P.
611 (2016). Improved Ribosome-Footprint and mRNA Measurements Provide Insights into
612 Dynamics and Regulation of Yeast Translation. *Cell reports* 14, 1787–1799.
613 10.1016/j.celrep.2016.01.043.

614 14. Khong, A., and Parker, R. (2018). mRNP architecture in translating and stress conditions
615 reveals an ordered pathway of mRNP compaction. *J Cell Biol* 217, 4124–4140.
616 10.1083/jcb.201806183.

617 15. Livi, C.M., Klus, P., Delli Ponti, R., and Tartaglia, G.G. (2016). catRAPID signature:
618 identification of ribonucleoproteins and RNA-binding regions. *Bioinformatics* (Oxford,
619 England) 32, 773–775. 10.1093/bioinformatics/btv629.

620 16. Marmor-Kollet, H., Siany, A., Kedersha, N., Knafo, N., Rivkin, N., Danino, Y.M., Moens,
621 T.G., Olander, T., Sheban, D., Cohen, N., et al. (2020). Spatiotemporal Proteomic Analysis
622 of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links
623 to ALS Pathogenesis. *Molecular cell* 80, 876-891.e6. 10.1016/j.molcel.2020.10.032.

624 17. Namkoong, S., Ho, A., Woo, Y.M., Kwak, H., and Lee, J.H. (2018). Systematic
625 Characterization of Stress-Induced RNA Granulation. *Molecular cell* 70, 175-187.e8.
626 10.1016/j.molcel.2018.02.025.

627 18. Dubinski, A., and Vande Velde, C. (2021). Altered stress granule disassembly: links to
628 neurodegenerative disease? *Trends in neurosciences* 44, 765–766.
629 10.1016/j.tins.2021.08.001.

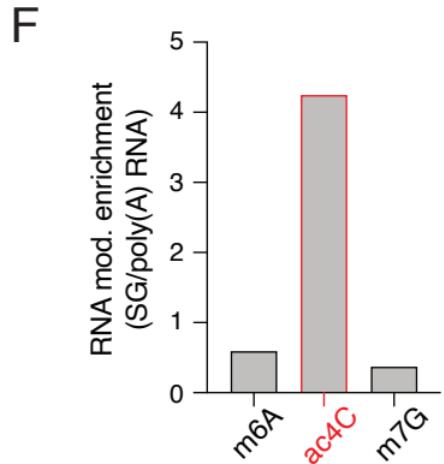
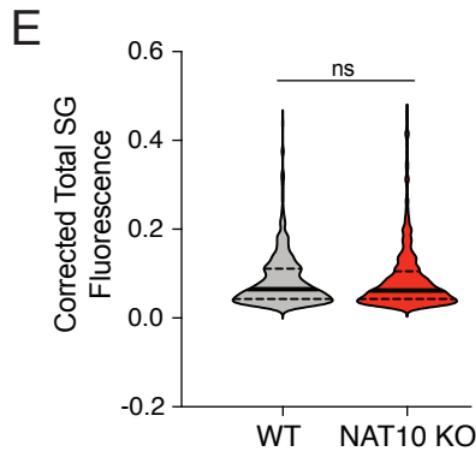
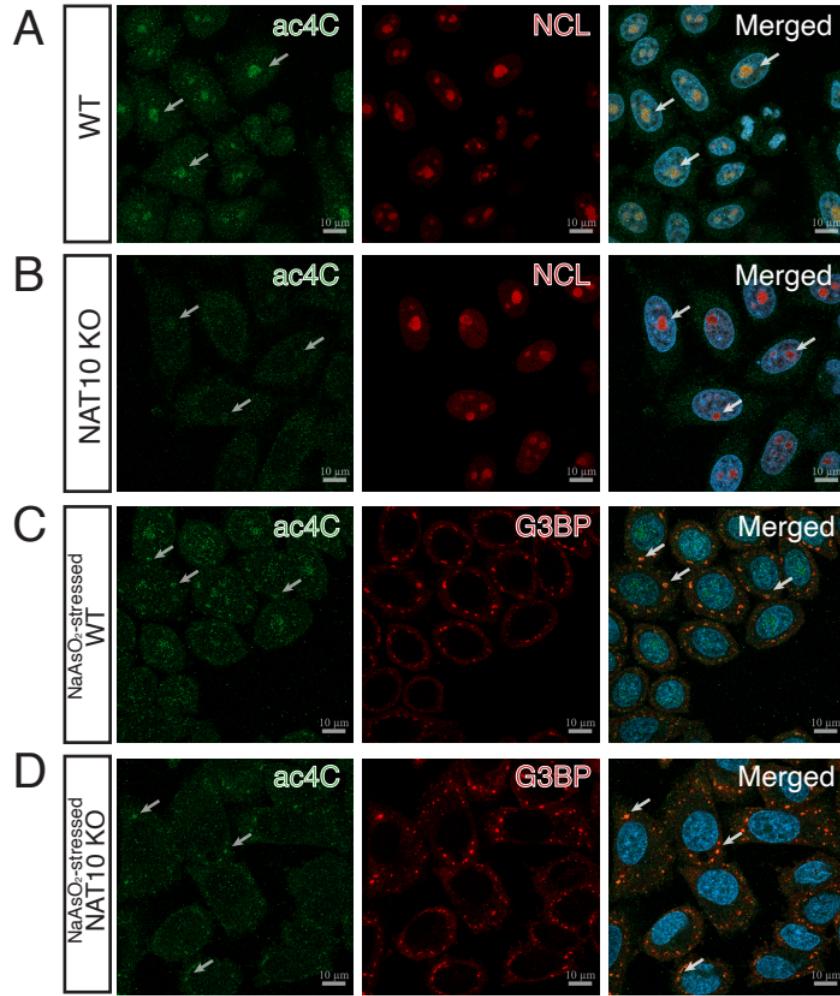
630 19. Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis
631 results for multiple tools and samples in a single report. *Bioinformatics* (Oxford,
632 England) 32, 3047–3048. 10.1093/bioinformatics/btw354.

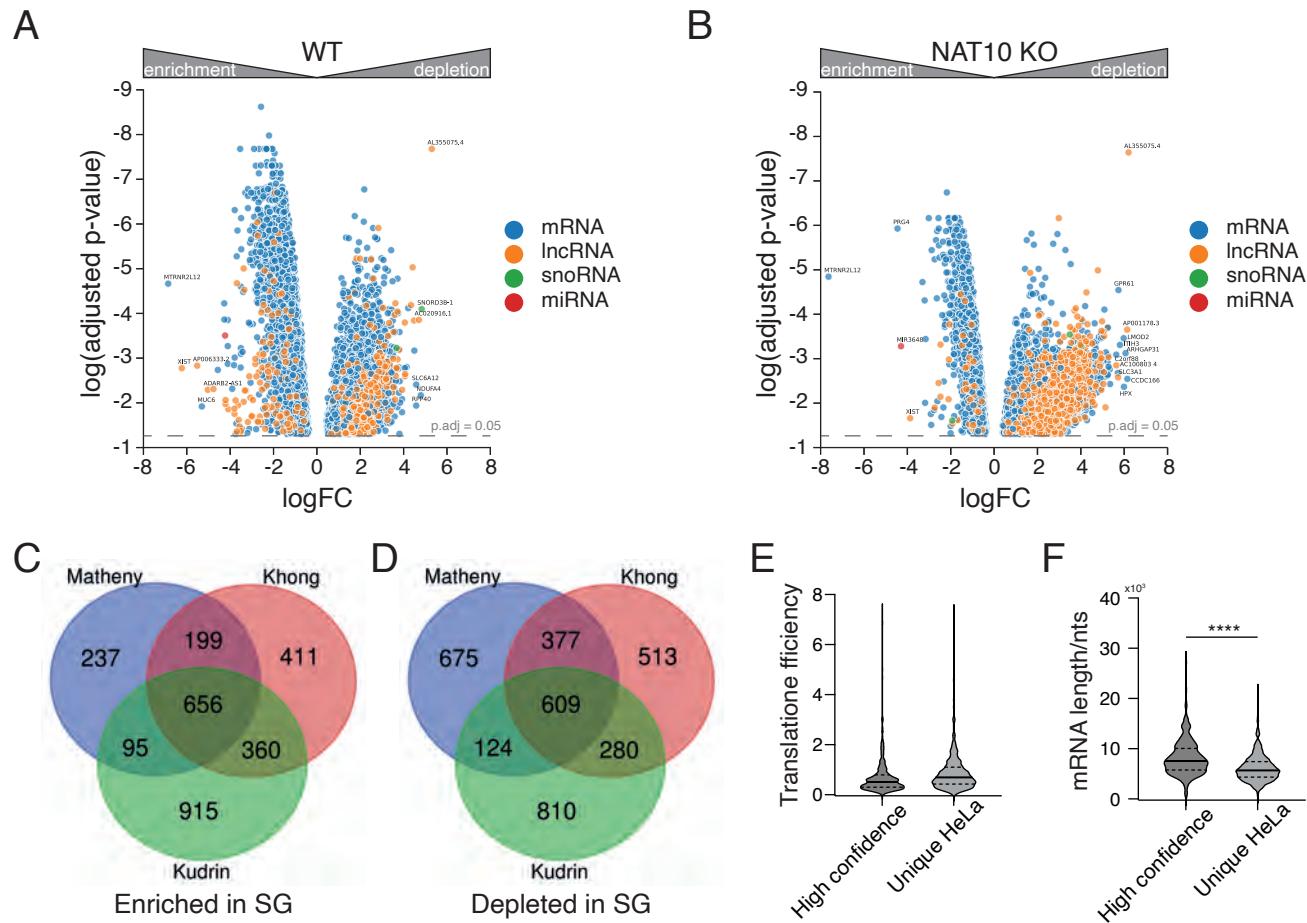
633 20. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
634 M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*
635 (Oxford, England) 29, 15–21. 10.1093/bioinformatics/bts635.

636 21. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
637 G., and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools.
638 *Bioinformatics* (Oxford, England) 25, 2078–2079. 10.1093/bioinformatics/btp352.

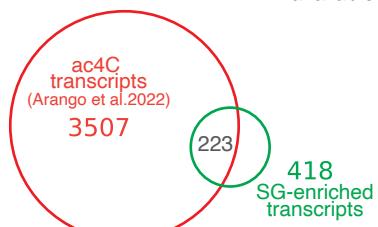
639 22. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with
640 high-throughput sequencing data. *Bioinformatics* (Oxford, England) 31, 166–169.
641 10.1093/bioinformatics/btu638.

642 23. Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential
643 expression analysis of RNA-seq data. *Genome biology* 11, R25. 10.1186/gb-2010-11-3-
644 r25.

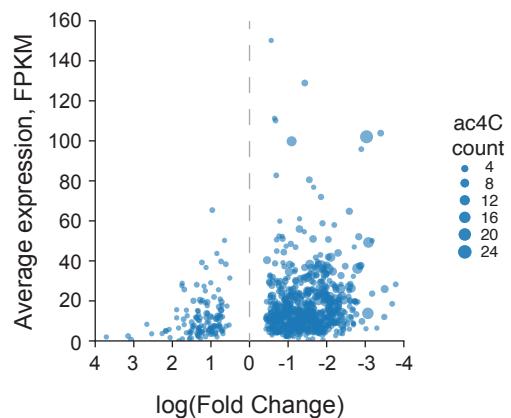



645 24. Oshlack, A., Robinson, M.D., and Young, M.D. (2010). From RNA-seq reads to differential
646 expression results. *Genome biology* **11**, 220. 10.1186/gb-2010-11-12-220.


647 25. Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). voom: Precision weights unlock
648 linear model analysis tools for RNA-seq read counts. *Genome biology* **15**, R29.
649 10.1186/gb-2014-15-2-r29.

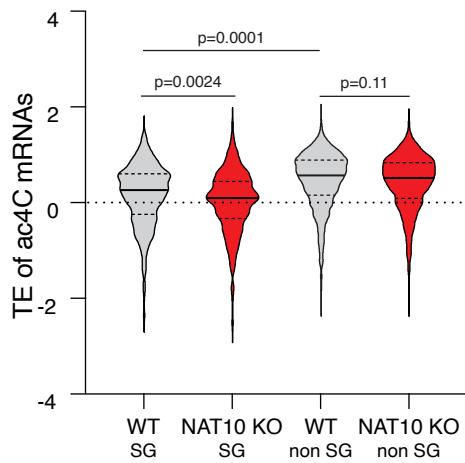
650 26. Gielisch, I., and Meierhofer, D. (2015). Metabolome and proteome profiling of complex I
651 deficiency induced by rotenone. *Journal of proteome research* **14**, 224–235.
652 10.1021/pr500894v.

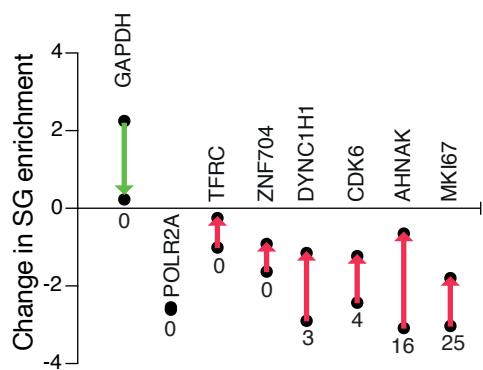

653 27. Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates,
654 individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
655 *Nature biotechnology* **26**, 1367–1372. 10.1038/nbt.1511.

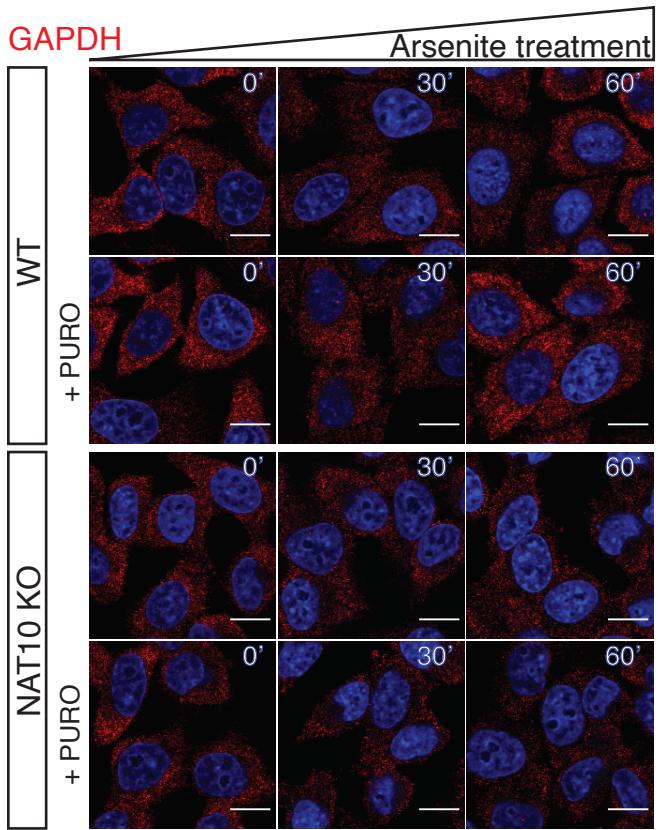
656

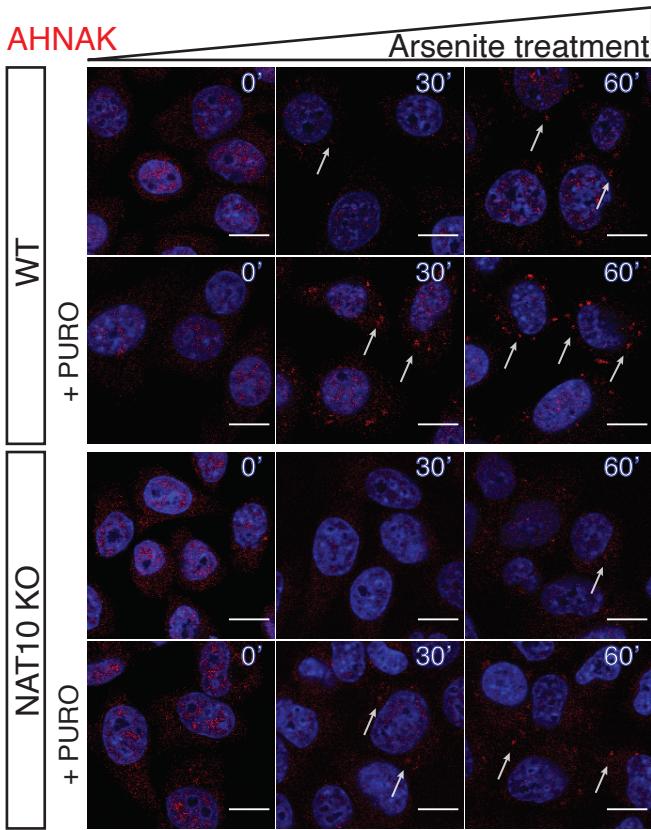


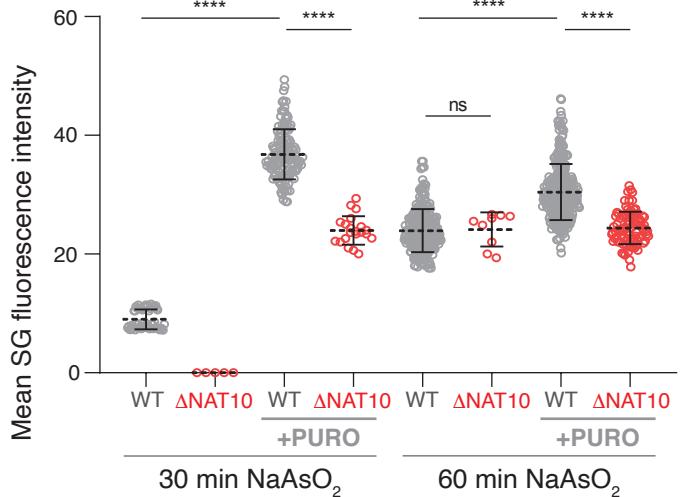
A

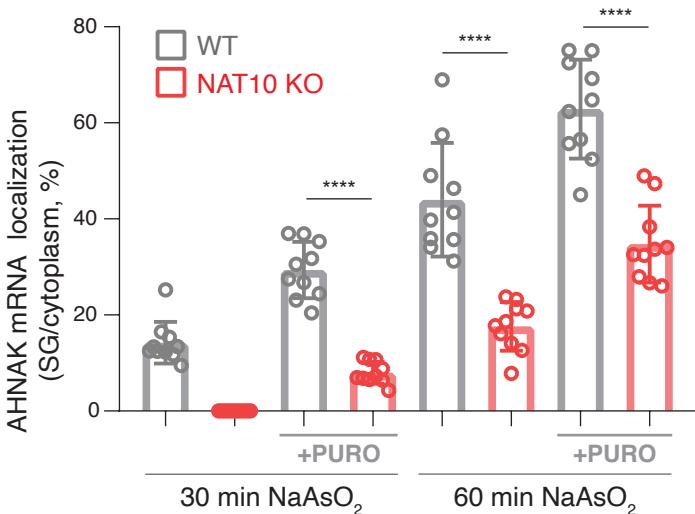

n(ac4C) > 1

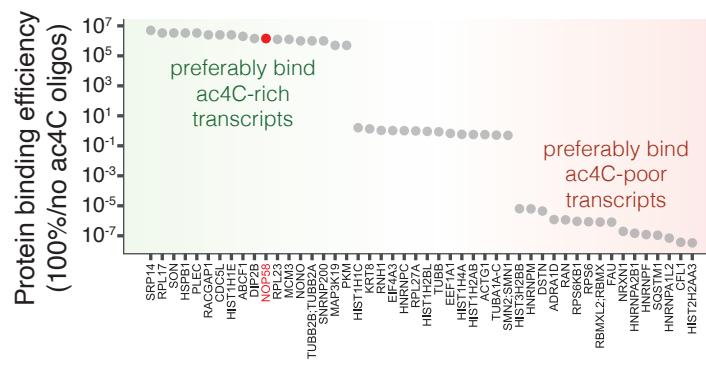
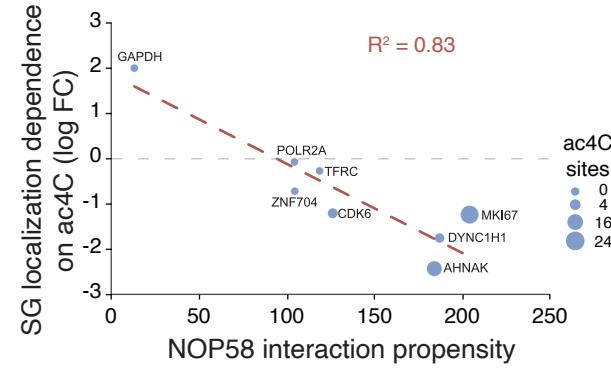
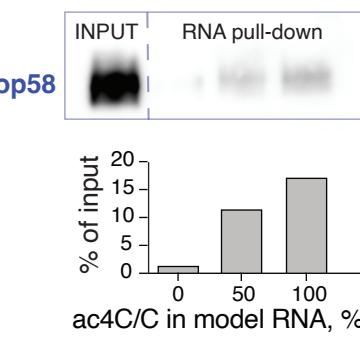
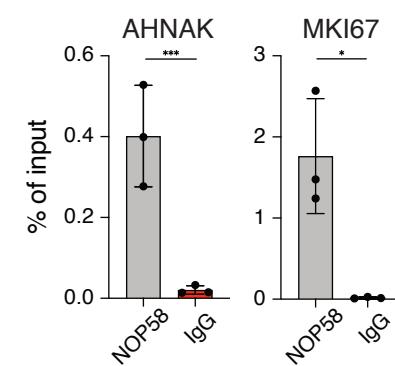
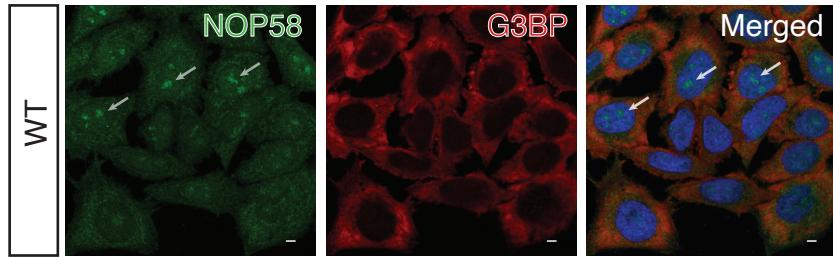
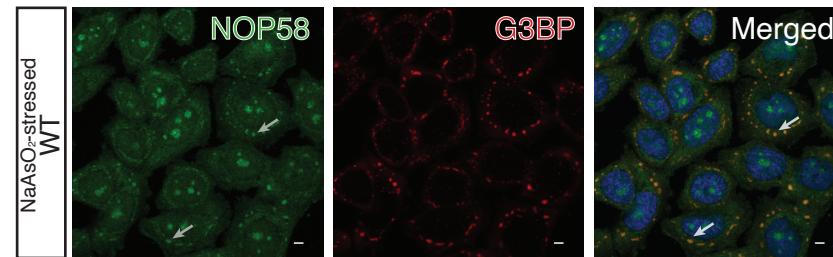
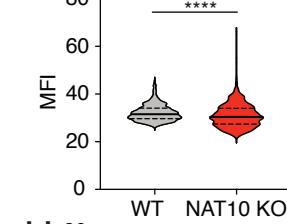
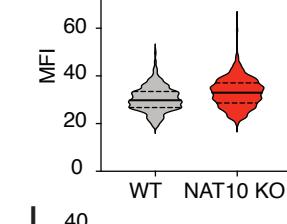
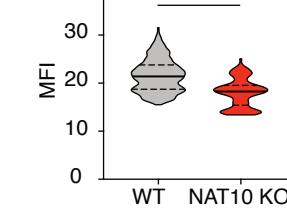

B


D


E


A


B

C

D

A**B****C****D****E****F****G****H****I**