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Abstract 

Background 

With the increased number of honeybee breeding plans worldwide, records from queens with 

diversified mating strategies need to be considered. Breeding queens might be inseminated with 

drones produced by a single drone-producing queen (DPQ), or by a group of sister-DPQs. Often, only 

the dam of DPQ(s) is reported in the pedigree. Furthermore, datasets might include colony phenotypes 

from DPQs that were open mated in different locations. Using simulation, we investigated the impact 

of the mating strategy on estimates of genetic parameters and breeding values, when the DPQs were 

treated in different ways in the statistical evaluation model. We quantify the bias and standard error 

of estimates when breeding queens are mated to a single or a group of DPQs, assuming that this 

information is either known or not. We also investigated two alternative strategies to accommodate 

phenotypes of open-mated DPQs in the genetic evaluation, adding either a dummy pseudo sire in the 

pedigree, or a non-genetic effect to the statistical evaluation model to account for the origin of the 

DPQs’ mates. 

Results 

When breeding queens were inseminated with semen from drones of a single DPQ and this was 

known, estimates of genetic parameters and genetic trends were more precise. If they were 

inseminated using drones from a single or a group of DPQs, and this information was not known, 

erroneous assumptions led to considerable bias in the estimates. For colony phenotypes of open-

mated DPQs, adding a dummy pseudo sire in the pedigree for each mating location led to considerable 

overestimation of genetic variances, while correcting for the mating area by adding a non-genetic 

effect in the evaluation model gave unbiased estimates. 

Conclusions 

Knowing only the dam of the DPQ(s) in the mating may lead to erroneous assumptions on how DPQs 

were used and cause severe biases in estimates of genetic parameters and genetic trends. Therefore, 

keeping track in the pedigree of which DPQ(s), and not only which dam of DPQ(s) are used, is 

recommended. Records from DPQ colonies with queens open mated to a heterogeneous drone 

population can be integrated by adding non-genetic effects to the statistical evaluation model. 

Background 
Although mating control is essential to genetic improvement in a honeybee breeding program [1], its 

practical application is not straightforward, due to queens’ behavioral and anatomical peculiarities. 

Indeed, natural mating occurs during flight, typically at a few tens of meters high, where drones and 

young queens from several kilometers around gather together [2]. In order to control the genetic origin 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.22.541688doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.541688
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 3 

of mates in a breeding program, virgin queens and mature drones can be geographically isolated on 

mating stations, or alternatively, artificial insemination can be used. 

At mating stations used in selective breeding, usually a group of sister drone-producing queens 

(DPQs) descending from a single dam is used to produce all the drones of a mating station. This group 

is referred to as a pseudo sire (PS) and is registered in the pedigree. To ensure high mating success, 

the group is usually composed of around four to a dozen of DPQs (personal communication from the 

French royal jelly producers: GPGR, and island mating in the Beebreed dataset [3]). Virgin queens 

brought to the mating station are then mated by the drones on the mating station. We call this PS 

mating. 

The other alternative, artificial insemination, allows for greater mating control. In particular, drones 

used to mate a virgin queen can be taken from a PS composed of very few sister-DPQs or even from 

a unique DPQ (for example in [4]). In the latter case, we call it single sire (SS) mating. Compared to 

PS mating, SS mating generates more related female offspring in the colony. When properly 

accounted for in the pedigree, SS mating should enable estimations of genetic parameters and 

breeding values with lower standard errors than PS mating for which the precise origin of drones 

cannot be distinguished among the sister-DPQs and has to be probabilistically derived [5,6]. 

However, when artificial insemination is used, honeybee breeders often only record the dam of the 

DPQ(s) and provide no information about the number of sister-DPQs, even when only one DPQ is 

involved. 

In addition, selective breeding programs also commonly include open mating, in which virgin queens 

are allowed to mate in unrestricted geographic areas (for example in Italy [7]). In particular, DPQs 

are often open mated (for example in France [8]), because this reduces managing costs. If the 

contribution of DPQs to the breeding population is limited to producing drones, then their mates do 

not affect the genetic evaluation because drones are haploid individuals born from unfertilized eggs, 

and thus do not carry genes from their dam’s mate. With artificial insemination, however, these DPQs 

are often phenotyped and are used for drone production after phenotypic selection. In that case, the 

mates of DPQs affect the genetic evaluation as they are the sires of the workers of the DPQ colonies, 

and the record of the colonies are used in the genetic evaluation.  

For most traits, the phenotypes of a colony are supposed to be affected by both the queen and its 

worker group. The colony performance should therefore be partitioned into two genetic effects, a 

worker (or direct) genetic effect expressed by the worker group, and a queen (or maternal) genetic 

effect expressed by the workers’ dam, in addition to environmental effects [9,10]. Hence, instead of 

a single genetic variance, three genetic parameters need to be estimated: the variances of queen and 

worker effects, and their covariance. A reliable estimation of genetic parameters requires data and 

pedigree records from a large population of genetically well-connected apiaries. Unfortunately, most 

honeybee breeding programs use small nucleus populations of ten to a few tens of breeding queens 

[11–13,8]. In addition, queens only mate before their first egg lay, and will normally never mate 

afterwards. This adds to the difficulty of disentangling the genetic contribution of workers from that 
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of the queen to the colony’s phenotype, as different offspring worker groups from the same queen but 

a distinct sire cannot be obtained. The mode of reproduction in the honeybee thus condemns a queen 

to be evaluated with their early mate, be it a PS or SS. This is different from other livestock species, 

where females can have offspring from several known mates, but even in that case disentangling 

direct from maternal effects is still difficult [14,15].  

Recently, Du et al. [16] explored the effect of data structure on the estimates of genetic parameters in 

simulated unselected honeybee populations. Among other parameters, they varied the proportion of 

missing phenotypes, as well as the proportion of controlled and uncontrolled mated queens, with 

drones always originating from the closed nucleus population. They demonstrated the importance of 

the proportion of controlled mating for the accuracy of estimates of genetic parameters and obtained 

unbiased estimates as long as at least 20% of the colonies were recorded. However, they did not 

explore the impact of SS vs PS mating, and the consequences of erroneous assumptions when the true 

mating strategy is unknown, nor how to model the effect of open mating of DPQ with phenotypic 

records. 

With the increased number of honeybee breeding plans worldwide, records from queens with more 

diversified mating strategies often need to be considered in genetic analyses. Here we investigate the 

impact of the mating strategy and the sire modeling on the bias and standard error of genetic parameter 

estimates and breeding values, using simulation. We focus on datasets with colony phenotypes from 

both inseminated breeding queens and open-mated DPQs. First, for inseminated breeding queens, we 

quantify the reduction in the standard error of estimated genetic parameters when the sire was a single 

DPQ (SS mating) compared to a group of DPQs (PS mating). Second, with the same simulation 

datasets but assuming that only the dams of DPQ(s) were known in the sire pedigree, we explored 

how assuming that drones came either from a PS or a SS impacted the genetic evaluation. Lastly, we 

investigated two alternative strategies to accommodate phenotypic records of open-mated DPQs in 

the genetic evaluation: either by adding dummy PS in the pedigree, or by adding a non-genetic effect 

to the evaluation model to account for the origin of the mates of the DPQs. 

Methods 

To assess the impact of the mating strategy and the sire modeling on the estimation of genetic 

parameters and breeding values, we used two simulation sets (Table 1).  

In both simulation sets, we simulated controlled mating of breeding queens (BQs) (except for initial 

BQs, from first to third generation, which were open mated) and open mating of DPQs. For all 

scenarios, 200 replicates were run. 
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Table 1: Simulation and estimation scenarios 

Simulation scenarios Estimation scenarios 

Simulation 

set 

Mating strategy Sire modeling 

Open Controlled Controlled mating Open mating 

I 

Homogeneous 

open mating 

drone 

population 

SSs 

SSp 

One unique PSP 

Dummy SSP per dam of 

DPQ 

Dummy SSP per mating 

PSP 

PSS 

SSp 

Dummy SSP per dam of 

DPQ 

Dummy SSP per mating 

PSP 

II 

Heterogeneous 

open mating 

drone 

population 

SSs SSp 

One unique PSP, and 

DPQ phenotype  

excluded 

One PSP per drone 

subpopulation 

One unique PSP, and 

drone subpopulations 

accounted for by an 

environmental fixed 

effect 

One unique PSP, and 

drone subpopulations 

accounted for by an 

environmental 

random effect 
DPQ: drone-producing queen. 

Controlled mating strategy: SSS, PSS: single sire, pseudo sire mating strategy.  

Sire pedigree modeling: SSP, PSP: single sire, pseudo sire in the pedigree. 

Simulation set I: Sire modeling for controlled mating of breeding queens 

In simulation set I, we explored the impact of the sire modeling of controlled mating. In the 

simulation, we considered two controlled mating strategies for BQs. The first strategy was SSS, (the 

subscript refers to simulation) where a single DPQ was randomly chosen among three sister-DPQs to 

produce all the drones mating a single BQ. The second strategy was PSS, where the three sister-DPQs 

formed a PS jointly producing the drones mating a single BQ, with random contribution of each sister 

to the drone pool. In both strategies, the contribution of each group of sister-DPQs to the total drone 
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pool mating all BQs was balanced. All generations of DPQs were open mated to a homogeneous 

drone population descending from the base population of BQs. 

 

Figure 1: Sire modeling scenarios for controlled mating 

In the first set of simulations, either single sire mating (all drones mating a queen are produced by a single drone-producing 

queen, DPQ) or pseudo sire mating (all drones mating a queen are produced by a group of three sister DPQs) was used. 

The dam of DPQ(s) was always correctly identified. Irrespective of the true (simulated) mating strategy used, four 

hypothetical scenarios were used to derive the sire pedigree, to simulate different ways of handling uncertainty in the true 

mating strategy used. First, in the single sire in the pedigree modeling (SSP), individual DPQ were identified exactly as 

they were used for mating when single sire mating was the controlled mating strategy in the simulation (SSS); 

alternatively, one of the three sister DPQs making up the pseudo sire was randomly identified in the pedigree when pseudo 

sire mating was used in the simulation (PSS). Second, in the ‘dummy SSP per dam of DPQ’ scenario, a unique dummy 

DPQ was identified for all queens mating with drones from the same dam of DPQs. Third, in the ‘dummy SSP per mating’ 

scenario, one dummy DPQ was identified in the pedigree for each mating. Lastly, in the pseudo sire in the pedigree 

modeling (PSP), a pseudo sire made of three sister DPQs was identified in the pedigree. 

In the estimation, the dam of DPQ(s) that mated BQs was always correctly identified, but four 

different sire-modeling scenarios were considered to study the consequences of lack of knowledge of 

whether one or more DPQs were used (Table 1, Fig. 1). First, in case of SSP (where the subscript 

refers to the way the sire is included in the pedigree), individual DPQs were identified in the pedigree 

exactly as they were used for mating when SSS was the controlled mating strategy in the simulation; 

alternatively, one of the three sister-DPQs making up the pseudo sire was randomly identified in the 

pedigree when pseudo sire mating was used in the simulation (PSS). Second, in the ‘dummy SSP per 

dam of DPQ’ scenario, one single DPQ was identified for all queens mated with drones from the 

same dam of DPQs. Third, in the ‘dummy SSP per mating’ scenario, a different dummy DPQ was 

identified in the pedigree for each mating. Lastly, in the PSP scenario, a pseudo sire made up of three 

sister-DPQs was identified in the pedigree. 
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For all four scenarios, the contribution of open mating drones to the colony phenotypes of initial BQs 

and all DPQs was modeled by genetic effects through the pedigree. One single wild group of a 

hundred non-inbred and unrelated DPQs (an open mating PSP), descending from the base population, 

was supposed to produce all open mating drones and was uniquely identified in the pedigree files. 

The open mating PSP was modeled as a group of individuals, and as such had coefficients in the 

relationship matrix divided by the number of DPQs it was supposed to be composed of (see 

Additional file 1 for more details). 

Simulation set II: Sire modeling for open mating of drone-producing queens 

In simulation set II, we explored the impact of the modeling of the sire of workers of open mated 

queens. In this simulation set, we only considered SSS mating for BQs, while DPQs were mated to a 

heterogeneous open mating drone population (in contrast to the homogeneous population in 

simulation set I). This drone population consisted of two distinct subpopulations with a mean genetic 

level differing by 3 units, corresponding to approximately one genetic standard deviation of queen 

effects. Drones from each subpopulation were randomly mated to one half of the DPQ sister-groups.  

In the estimation, we appropriately assumed only SSP for BQs, except for initial BQs. For DPQs, we 

considered four scenarios to model the effect of the subpopulations of drones mating them. 

First, we eliminated colony phenotypes of DPQs from the performance file altogether, even though 

selection took place. Second, we accounted for the effect of the drone subpopulations by identifying 

two dummy open mating PSP in the pedigree as mates of open mated queens: one for each drone 

subpopulation mating the DPQs. Finally, in the last two scenarios, we accounted for the effect of the 

drone subpopulations by adding either a fixed or random non-genetic effect in the statistical model 

describing phenotypes. For the initial BQs in all four scenarios, and also DPQs in the last two 

scenarios, we identified a unique open mating PSP as mate (as in simulation set I, see Additional file 

1). 

Simulation: genetic inheritance, phenotype modeling, and population structure  

For both simulation sets I and II, phenotypes of colonies and breeding values of individual queens, 

drones and worker groups were stochastically simulated [17] based on an infinitesimal model adapted 

to the honeybee, following Kistler et al. [18].  

After the generation of founders, each year, wintering mortality was modeled by randomly 

eliminating 25% of all BQs and DPQs. Phenotypes were obtained after wintering, within the first 

year of birth for BQs and within their second year for DPQs. All phenotypes were obtained before 

selection and reproduction. The resulting generation interval was 1.5 years (one year on the maternal 

path and two years on the paternal path, Table 2). We simulated ten generations of within-maternal 

family selection based on phenotypes (one replacement queen per maternal sister-group). On the 

paternal path, two-thirds of the dam of DPQs were selected each year based on their mean DPQ 

phenotypes (across-family selection). Three DPQs were then randomly chosen per selected dam 
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family to mate with BQs. Each selected BQ produced 24 BQs and 20 DPQs. After wintering losses, 

BQ families consisted on average of 18 queens, and DPQ families of 15 queens, which were 

candidates for selection. Each queen mated with 8 drones, equally contributing to the genetic effect 

of the worker groups. All colonies performing a same year were affected by a year effect, drawn from 

a normal distribution centered on zero and with a variance equal to 2/3 of the residual variance. 

Table 2: Input parameters for the simulations 

Genetic  

parameter set 

σ²e σ²year Generation 

interval  

(years) 

Nb of  

maternal 

families 

Avg nb of 

BQs per  

family 

Avg nb of  

DPQs per 

family 

Number 

of drones 

mating a 

queen Setup  

number 

σ²W σ²Q rWQ Dam Sire 

1 10 

10 

0 

30 20 1 2 24 18 15 8 
2 20 

3 10 
-0.5 

4 20 
σ²: variance of either worker (W), queen (Q) or residual (e) effects in the base population. The only environmental fixed 

effect was a year effect with variance σ²year. 
rWQ: genetic correlation between worker and queen effects.  
BQs: breeding queens, DPQs: drone-producing queens. 

Simulation: genetic parameter sets 

For both simulation sets I and II, four sets of genetic parameters were simulated, following Kistler et 

al. [18] (Table 2). In scenarios one and three, the variances of worker and queen effects were both 

equal to a third of the residual variance. In setups two and four, the variance of worker effects was 

doubled. The genetic correlation between worker and queen effects (rWQ) was either null or -0.5. 

These values represent typical estimates for honeybee production and behavioral traits [19,20,11,21]. 

Genetic evaluation: mixed model with queen and worker effects 

Pedigree and colony records were used for a single retrospective estimation of genetic parameters 

and breeding values. The vector of phenotypes y was described using a linear mixed model with 

worker and queen effects [9,10]: 

y = Xb + Zwaw + Zqaq + e, 

where b is the vector of fixed year effects with a corresponding incidence matrix X, aw the vector of 

worker effects with incidence matrix Zw, aq the vector of queen effects with incidence matrix Zq, and 

e the vector of residuals. Breeding values and genetic parameters were estimated using the additive 

genetic relationships matrix according to Brascamp & Bijma [6,22,23]. 

For simulation set II, an additional fixed or random effect was added for the subpopulation of the 

open mating drones for the relevant scenarios.  
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Genetic parameters were used to obtain BLUP estimated breeding values (EBVs) [24]. The true 

genetic trend was calculated as the regression coefficient of true breeding values (BVs) of BQs over 

years, from the fifth generation of the breeding program (when the selection nucleus became closed) 

to the last tenth generation of selection. The estimated genetic trend was derived similarly based on 

EBVs instead of BVs. 

Starting values used for the AIReML algorithm [25] are shown in Additional file 2: Table S1. 

Results 

In all scenarios, at least 99% of the 200 replicates converged, except for simulation set II with equal 

variance for worker and queen effects, rWQ = -0.5, and a random non-genetic effect for the open 

mating drone subpopulation, for which 24% of the replicates failed to converge (see Additional file 

2: Table S3 and Table S4).  

Results across estimation scenarios 

Across all scenarios, no strong biases were observed when the male mate pedigree of BQs was known 

and properly modeled, and when the effect of drone subpopulations in open mating was accounted 

for by an environmental effect. In other pedigree modeling scenarios however, the errors on genetic 

variance components could be large, while errors on σ̂e
2 were almost always small. Part of these large 

errors resulted from under or overestimated variances being compensated by over or underestimated 

covariances. In addition, there was a tendency to jointly under-(and over-)estimate σ²W and σ²Q, 

particularly for a rWQ of -0.5.  Furthermore, within a scenario, the errors on estimated genetic 

parameters or genetic trends were similar across genetic parameter sets (Except for expected 

differences, e.g., doubling σ²W reduced the relative errors on σ̂W
2 ). Lastly, errors on r̂WQ were smaller 

for rWQ = -0.5 than for rWQ = 0. 

Simulation set I: sire modeling for controlled mating of breeding queens 

Simulate SS or PS controlled mating and estimate genetic parameters accordingly 

When the mating of BQs was correctly modeled in the pedigree, no strong biases on (co)variance 

estimates were observed. However, across scenarios, we still observed a trend to a small 

underestimation of the variance of queen effects (-2%, Table 3) and a larger one for the genetic trend 

(Fig. 3) on queen effects (-9% of the true genetic trend, see Additional file 2: Table S2). 
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Table 3: Errors on genetic parameter estimates when male mates for controlled mating are 

correctly modeled in the pedigree 

Simulation Errors on estimated genetic parameters 

Controlled 

mating  

strategy 

𝛔̂𝐖
𝟐  𝛔̂𝐐

𝟐  𝐫̂𝐖𝐐 

Relative 

bias (%) 

Relative 

SE (%) 

Strong  

deviates 

% 

Relative 

bias (%) 

Relative 

SE (%) 

Strong  

deviates 

% 

Bias 

(%) 

SE (%) 

Genetic parameter set 1 (σ²W = 10, σ²Q = 10, rWQ=0) 

SSS -0.81 18.46 27 -3.45 17.50 27 0.011 0.152 

PSS 0.20 20.79 37 -2.21 19.55 30 0.013 0.165 

Genetic parameter set 1 (σ²W = 20, σ²Q = 10, rWQ=0) 

SSS -2.33 13.16 12 -3.56 17.32 30 0.017 0.130 

PSS -0.31 17.42 26 -2.89 20.42 35 0.011 0.167 

Genetic parameter set 1 (σ²W = 20, σ²Q = 10, rWQ=0) 

SSS 0.45 18.57 26 0.26 15.84 18 -0.017 0.099 

PSS -1.01 26.13 45 -4.07 17.00 27 0.008 0.121 

Genetic parameter set 1 (σ²W = 20, σ²Q = 10, rWQ=-0.5) 

SSS -0.67 14.38 14 -0.53 18.79 30 -0.002 0.092 

PSS -0.38 19.75 34 -3.47 20.68 38 0.012 0.117 

σ²W, σ²Q, rWQ: genetic variances and correlation for worker and queen effect. Estimates are denoted by ’^’; strong 

deviates differ by more than 20% from the true values. The relative bias was calculated as( 
1

𝑛𝑟𝑒𝑝
∑ (

σ̂A
2 −σA

2

σA
2 )

𝑛𝑟𝑒𝑝

1 ). The 

relative standard error was the standard deviation across replicates of the relative difference between estimates and the 

true value. 
Controlled mating strategy: SSS, PSS: single sire, pseudo sire mating strategy. 

Across the four genetic parameter sets, about 28% of genetic variance estimates deviated by over 

20% from their true values (Table 3). With σ²W = σ²Q, in genetic parameter sets 1 and 3, the relative 

standard error on σ̂W
2  was larger (21%) than on σ̂Q

2  (17%). However, doubling σ²W, in genetic 

parameter sets 2 and 4, decreased the relative standard error of σ̂W
2  (16%), while that of σ̂Q

2  increased 

slightly (19%).  

Compared to PSS, for SSS the relative standard error of σ̂W
2  and σ̂Q

2  across all genetic parameter sets 

was reduced in average by 23% and 11%, respectively (Table 3). It also reduced the standard error of 

the estimated rWQ by 17% on average. 

Simulate SS or PS controlled mating but estimate genetic parameters with incorrect sire modeling 

alternatives 
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We report results for parameter set 1 only, as results for other sets are similar. When the dam of DPQs 

was known, but not if DPQ(s) were used as SS or PS, strong biases could occur in the estimated 

variance(s), the estimated rWQ, or both. Depending on scenarios, the relative bias for genetic variances 

ranged from -40% to +18%, and the bias for rWQ, from -0.19 up to +0.32 (see Table 4 and Additional 

file 2: Table S3 and Table S4). Likewise for the estimated genetic trend (see Fig. 3 and see Additional 

file 2: Table S2), wrong mating assumptions led to substantial over or underestimations of the genetic 

trend on worker and queen effects (from -16% to +33% for BVW and -59% to +44% for BVQ). 

 Table 4: Errors on genetic parameter estimates for parameter set 1 when sires for controlled 

mating are not correctly modeled in the pedigree 

Sire pedigree modeling 

for controlled mating 
𝛔̂𝐖

𝟐  𝛔̂𝐐
𝟐  𝐫̂𝐖𝐐 

Relative 

bias 

(%) 

Relative 

SE (%) 

Strong 

deviates 

% 

Relative 

bias 

(%) 

Relative 

SE (%) 

Strong 

deviates 

% 

Bias SE 

Controlled mating strategy: SSS 

Dummy SSP per dam of DPQ -27.03 14.85 66 -6.67 17.25 28 0.248 0.174 

Dummy SSP per mating 15.08 25.38 48 2.68 20.06 32 -0.111 0.168 

PSP 6.58 23.88 44 16.15 21.80 42 0.069 0.169 

Controlled mating strategy: PSP 

SSP -26.90 14.08 68 -22.71 14.93 60 0.062 0.166 

Dummy SSP per dam of DPQ -32.27 12.82 84 -22.46 15.59 59 0.194 0.176 

Dummy SSP per mating 3.67 22.25 38 -14.02 17.32 44 -0.139 0.18 

σ²W, σ²Q, rWQ: genetic variances and correlation for worker and queen effect. Estimates are denoted by ’^’; strong 

deviates differ by more than 20% from the true values. The relative bias was calculated as( 
1

𝑛𝑟𝑒𝑝
∑ (

σ̂A
2 −σA

2

σA
2 )

𝑛𝑟𝑒𝑝

1 ). The 

relative standard error was the standard deviation across replicates of the relative difference between estimates and the 

true value. 

SSS, PSS: single sire, pseudo sire mating strategy; SSP, PSP: single sire, pseudo sire in the pedigree modeling. 
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Figure 2: Errors on genetic parameter estimates for sire modeling scenarios for controlled mating and 

parameter set 1 

Black diamond-shaped points indicate the relative bias on genetic variances, black lines the regression lines of relative 

errors of variance estimates of worker effects on that of queen effects. 

Figure 3: Genetic trends for worker and queen effects for sire modeling scenarios for controlled mating and 

parameter set 1 

From left to right, the results were obtained for i) sire pedigree modeling scenarios with single sire; ii) a dummy single 

sire per paternal granddam; iii) a dummy single sire for each mating; iv) a pseudo sire.  
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Simulation set II: sire modeling for open mating of drone-producing queens 

In simulation set II, DPQs were mated to a heterogeneous open mating drone population, simulating 

two distinct subpopulations that differed in their genetic level.  

Table 5: Errors on genetic parameter estimates for parameter set 1 for sire modeling scenarios 

for open mating 

𝛔̂𝐖
𝟐    𝛔̂𝐐

𝟐    𝐫̂𝐖𝐐  

Relative 

bias (%) 

Relative 

SE (%) 

Strong 

deviates 

% 

Relative 

bias (%) 

Relative 

SE (%) 

Strong 

deviates 

% 

Bias SE 

Modeling one unique open PSP and DPQ phenotypes excluded 

-3.02 23.09 40 1.04 21.74 34 -0.021 0.195 

Modeling one open PSP per drone subpopulation 

64.45 22.34 98 21.03 20.75 54 -0.245 0.110 

Modeling one unique PSP and drone subpopulations accounted for by an 

environmental fixed effect 

-3.04 19.39 34 0.83 18.37 24 0.003 0.146 

Modeling one unique PSP and drone subpopulations accounted for by an 

environmental random effect 

-2.49 18.91 33 1.24 17.84 23 -0.003 0.137 

σ²W, σ²Q, rWQ: genetic variances and correlation for worker and queen effect. σ²e: residual variance. Estimates are 

denoted by ’^’; strong deviates differ by more than 20% from the true values. The relative bias was calculated 

as( 
1

𝑛𝑟𝑒𝑝
∑ (

σ̂A
2 −σA

2

σA
2 )

𝑛𝑟𝑒𝑝

1 ). The relative standard error was the standard deviation across replicates of the relative 

difference between estimates and the true value. 
The controlled mating strategy was single sire mating (SSS). 

Exclusion of the DPQ records from the genetic evaluation brought no strong biases in the estimated 

genetic parameters (see Table 5 and Additional file 2: Table S5), even though selection was 

performed on these colony phenotypes. Nonetheless, across genetic parameter sets, this record’s 

exclusion increased the standard error of estimated genetic variances (16%), the genetic correlation 

(30%) and the residual variance (32%), when compared to the scenario including these records and 

correcting for the drone subpopulations by adding a fixed effect in the evaluation model (see Fig. 4A, 

Additional file 2: Table S5). Furthermore, exclusion of the DPQ records also led to an 

underestimation of the genetic trend for queen effects (from -18% to -62%, depending on the genetic 

parameter set, see Fig. 4B and Additional file 2: Table S6). 
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Figure 4: Errors on estimated genetic parameters (A) and breeding values (B), for parameter set 1 and for sire 

modeling scenarios for open mating 

Black diamond-shaped points indicate the relative bias on genetic variances, black lines the regression lines of relative 

errors of variance estimates of worker effects onto that of queen effects. 

Accounting for the open mating of DPQ by modeling a different open mating PS for each drone 

subpopulation led to a strong overestimation of the variance of worker effects, as well as, to a lesser 

extent, that of queen effects. With an equal variance for worker and queen effects, bias was around 

+72% for σ̂²W and +26% for σ̂²Q, and was halved in scenarios with a doubled variance of worker 

effects. These overestimated variances were accompanied by an underestimation of the genetic 

correlation between worker and queen effects of around -0.16 across genetic parameter sets (see Fig. 

3A and see Additional file 2: Table S5). In terms of genetic trend, it was overestimated for worker 

effects (+13% across genetic parameter sets, see Additional file 2: Table S6), while it was 

underestimated for queen effects by a similar amount as for the scenario with exclusion of the DPQ 

records from the genetic evaluation. 

Finally, the results indicated that the best strategy to account for the open mating drone 

subpopulations was to add a fixed or random effect in the evaluation model, leading to no or weak 

biases and the smallest standard errors of genetic parameter and genetic trend estimates. Differences 

between these two approaches were generally very small, except for the genetic parameter set with 
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equal variance for worker and queen effects and negative rWQ. In that case, considering the 

heterogeneity of the mating of DPQs by a random non-genetic effect impeded convergence in 

approximately a quarter of the repetitions. When converging, the estimates were very similar to those 

of the fixed effect model (Fig. 3A). 

Discussion 
Here we investigated the impact of the sire modeling on estimates of genetic parameters and genetic 

trends. First, we studied the controlled mating of BQs, in which we explored the relevance of knowing 

how the three sister-DPQs of each known dam of DPQs had been used (as SS or PS). Second, we 

studied the open mating of phenotyped DPQs, accounting for the subpopulations of drones mating 

these queens in three ways: first, by excluding the DPQ phenotypes; second, through genetic effects 

by assuming a separate open mating PS for each drone subpopulation; last, by adding an 

environmental (fixed or random) effect in the evaluation model for each drone subpopulation. 

We chose not to vary the number of drones (e.g. from 8 to 16) mating each queen nor the number of 

selected DPQ per DPQ dam (e.g. from 3 to 8), as preliminary trials showed they impacted only 

marginally results. Aiming at understanding the impact of erroneous assumptions, we simulated only 

systematic errors affecting all matings. In real datasets of course, a combination of erroneous and 

correct assumptions is likely, leading to less extreme results. 

Sire modeling for controlled mating of breeding queen 

In breeding plans using isolated mating stations, on each station a dam of DPQs will usually be 

represented by a group of sister-DPQs. However, in case of instrumental insemination, it is common 

to use a same dam of DPQs in multiple ways, such as by collecting sperm from a single DPQ or from 

a few sister-DPQs. Often, however, apart from the dam of DPQs, the usage of DPQs is not recorded. 

Our results show the importance of knowing as precisely as possible how DPQs of a particular dam 

were used. If the DPQs were used jointly, as a PS, this should be recorded, as well as the number of 

sisters composing the group. So far, which DPQs exactly composed the group is not considered in 

the theory [6], as the sisters making up a PS are supposed unselected, random progeny of their dam. 

However, knowing this information could be useful when phenotypes of DPQs are used in the 

breeding value estimation. If DPQs were selected inside a sister-group to form a PS, considering them 

as random progeny could create biased estimates. 

Most accurate estimates when single sire mating appropriately modeled in the pedigree 

Knowing whether SS mating was used is important because the true pedigree relationships between 

DPQs and descendants are known in that situation, and don’t have to be probabilistically accounted. 

In addition, the phenotypic information of the single DPQ is better utilized in the variance component 

and breeding value estimation, further reducing the standard errors of estimates. This gain in precision 

was notable (Table 3), even though some theoretical flaws existed in the way SS mating was 

considered in the derivation of the relationship matrix (as noted by Manual Du, personal 

communication). In fact, for SS mating, we simply used the general formulas of [6], in particular we 

supposed that the probability of two female offspring to come from a same DPQ (p2) followed a 
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Poisson distribution, so that p2 ≈
1

𝐷
+

1

𝑆
 , with S the number of sister-DPQs contributing the D drones 

mating with a queen. When supposing SS mating in the estimation, S equaled 1, leading to p2>1.   

Considerable errors when uncertainty in DPQ use in controlled mating 

Apart from the loss in precision when SS would erroneously not be assumed, uncertainty in the exact 

way DPQs were used for mating, and subsequent incorrect assumptions in the genetic evaluation, led 

to strong biases in both estimated genetic parameters and genetic trends (Table 4).  

The observed biases can be synthetized as follows. In one set of scenarios, the genetic relationship 

between BQs’ offspring and DPQs were overestimated. This occurred when a dummy SSP per dam 

of DPQs was assumed (when the mating strategy was PSP but also SSP). In these scenarios, genetic 

variances were strongly underestimated, while the genetic correlation was strongly overestimated 

(Fig. 2). Similarly, when SSP was assumed while the actual mating strategy was PSS, also resulting 

in overestimated genetic relationships between BQs’ offspring and DPQs, led to strongly 

underestimated variances but affected the genetic correlation much less. In a second set of scenarios, 

the genetic relationship between BQs’ offspring and DPQs were underestimated. This occurred when 

a dummy SSP per mating was assumed (whatever the mating strategy). In these scenarios, genetic 

variance estimates were only moderately biased, but their standard error however became larger, 

while the genetic correlation was underestimated. Similarly, when PSP was assumed while the mating 

strategy was SSS, also underestimating the genetic relationship between BQs’ offspring and DPQs, 

led to moderately overestimated variances with larger standard errors, however affecting the genetic 

correlation only moderately. 

Most accurate estimates for an unknown controlled mating strategy 

Not knowing if single sires or pseudo sires were used, modeling a PSP gave the greatest probabilities 

to get estimates of genetic parameters that do not strongly deviate from their true values (Table 4). 

Indeed, If the true mating of BQs is unknown, an assumption has to be made on the way DPQs were 

used in the matings (either as PSP or SSP). The most robust approach for estimating genetic parameters 

was to assume that DPQs were used jointly (PSP) to produce the drones that mated a BQ. This gave 

the most accurate estimates when of course PSS mating was used in the simulation, but also generally 

when SSS was used, compared to other erroneous assumptions (see Additional file 2: Table S3 and 

Table S4). 

However, assuming PSP when the true mating strategy was unknown was not robust for genetic trend 

estimation. All assumptions other than SSP for SSS and PSP for PSS led to strong errors in the predicted 

BVs of either worker or queen effects, or both (Fig. 3 and see Additional file 2: Table S2). Still, when 

the goal is to minimize the sum of absolute relative errors of the two genetic trends, identifying a 

dummy SSP per dam of DPQs was the most robust strategy. 

Sire modeling for open mating of drone-producing queens 

The best strategy to account for a heterogeneous open mating drone population mating phenotyped 

DPQs, was to add a non-genetic effect in the evaluation model (Table 5). For open mating, where the 
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drones in each open mating subpopulation have different mean breeding values, excluding the DPQ 

records from the analysis did not lead to strong biases in the estimated genetic parameters, even 

though these phenotypes had been used for selection. This held true even if the selection intensity of 

DPQs was strongly increased (selecting three times less DPQs, data not shown).  

Adding a dummy open PSP in the pedigree for each of the two drone subpopulations led to 

overestimated genetic variances. This suggests that the difference of one genetic SD between the two 

subpopulations ended up in the genetic variance estimate. The difference between the two 

subpopulations, and consequently between the worker groups they generated, resulted in two sets of 

DPQ colonies with a systematically different trait value in the data. A difference of one genetic SD 

between single individuals in the base generation is not unlikely and should not lead to inflated genetic 

parameter estimates. However, the dummy PS represented a group of 100 individuals, so that the SD 

of its mean value is much smaller than one genetic SD, as reflected by the small coefficient for the 

PS on the diagonal of the relationship matrix. Hence, a clear difference between the two PS can only 

be explained by a large genetic variation in the base generation, resulting in overestimation of the 

genetic variance. 

It appeared that including a non-genetic effect to account for the two subpopulations of drones 

avoided the biases. Using either a fixed or a random non-genetic effect in the evaluation model 

brought very similar results. However, we modeled a simplistic situation in which all colonies tested 

in a year were affected by the same identified environmental effect. Differences between a modeling 

by fixed or random effects might appear if statistical confounding between the mean genetic effect of 

open mating drones in an apiary and environmental effects of this apiary exist, in a design where the 

genetic connectedness between apiaries is limited. 

To assess if increasing the genetic variability of open mating drones had an effect on estimated genetic 

parameters and trends, we increased the (co)variance of worker and queen effects four-fold to 

generate the BVs of drones, maintaining the difference in the mean genetic value of the two drone 

subpopulations. However, results (not shown) were very similar to those presented. 

Effect of the breeding nucleus size and genetic correlation between worker and queen 

effects on estimated genetic parameters and trends  

Results (apart from standard errors) of breeding nucleus size on estimated genetic parameters and 

trends were very similar. To test the need of considering various breeding nucleus sizes, all 

simulations of the genetic parameter set 1 were repeated using 12 and 36 maternal families. Results 

were very similar in terms of mean estimated (co)variances, with the expected difference of lower (or 

higher) standard errors of estimates for bigger (or smaller) nucleus size scenarios. These differences 

were close to what could be approximated from results obtained with N=24 maternal families by 

considering the standard errors as proportional to 
1

√𝑁
.  

In addition, these realized standard errors of estimates (calculated from estimated (co)variances over 

replicates) were in good accordance with mean predicted standard errors by AIReML (see Additional 

file 2: Table S7). 
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Last, the standard error of estimated rWQ was lower in genetic parameter sets with a negative rWQ than 

in those with a null rWQ. This was consistent with findings in simulated honeybee datasets [16], and 

is also in agreement with theoretical predictions [26]. For given genetic variances for worker and 

queen effects, a negative rWQ also lowers the phenotypic variance, leading to higher heritabilities for 

the worker and for the queen effect. Another reason for this observation is that we forced the estimated 

rWQ to be within the parameter space of [-1; 1], resulting in smaller errors for true values nearer to the 

bounds. 

Conclusion 
When breeding queens are mated to drones produced by a single DPQ, as sometimes happens with 

artificial insemination, and this mating strategy is appropriately modeled, estimates of genetic 

parameters and genetic trends are more precise as compared to situations where queens are mated to 

drones produced by a group of sister-DPQs. However, if breeders only record which dam of DPQ(s) 

is used, but not which particular DPQ or group of sister-DPQs, erroneous assumptions can lead to 

strong biases in the estimates. When the true mating strategy is unknown, assuming drones come 

from a group of sister-DPQs leads to the greatest probabilities to get estimates of genetic parameters 

that do not strongly deviate from their true values. However, strong biases in the estimated genetic 

trend of queen effects are observed. Moreover, if the DPQs are open mated to a heterogeneous drone 

population and their phenotypes are used in the genetic analysis, then we recommend adding a non-

genetic effect for drone origin in the evaluation model.  

List of abbreviations 

BQ: Breeding queen (a selected queen on the dam path) 

BLUP: Best linear unbiased predictor 

BV: Breeding value 

DPQ: Drone-producing queen 

EBV: Estimated breeding value 

PS: Pseudo sire (a dummy individual representing a group of DPQ used in a mating) 

SS: Single sire (a unique DPQ used in a mating) 
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Additional files 

Additional file 1 

Format: Word 

Title: Implementation of open mating pseudo sires in the estimation of genetic parameters and 

breeding values. 

Additional file 2 Table S1 

Format: Word 

Title: AIReML starting parameter values and convergence criteria. 

The table gives the initial values to estimate (co)variances σ²W, σ²Q, σ²e and σWQ respectively for 

worker, queen and residual effects, and the covariance between worker and queen effects. The true 

values for genetic variances σ²W and σ²Q were respectively 10 and 20, and for the covariance, 

respectively 0, -5 or approximately -7, depending on the genetic parameter set. The true σ²e was 

always equal to 30. 

Additional file 2 Table S2 

Format: Word 

Title: True and estimated genetic trends for all genetic parameter sets and sire modeling scenarios for 

controlled mating.  

Description: σ²W, rWQ: genetic variance of worker effects and genetic correlation between worker 

and queen effect.  

The genetic trends (true and estimate) were calculated as the linear regression coefficients of true 

breeding values (BV) and estimated breeding values (EBV) for worker (W) and queen (Q) effects 

over breeding years (after the fifth year of the breeding program, when the nucleus became closed). 
SSS, PSS: single sire, pseudo sire mating strategy; SSP, PSP: single sire, pseudo sire in the pedigree 

modeling. 

Additional file 2 Table S3 

Format: Word 

Title: Errors on estimates for genetic parameter sets with a null rWQ and all sire modeling scenarios 

for controlled mating. 

Description: σ²W, σ²Q, rWQ: genetic variances and correlation for worker and queen effect. σ²e: 

residual variance. Estimates are denoted by ’^’; strong deviates differ by more than 20% from the 

true values.  

SSS, PSS: single sire, pseudo sire mating strategy; SSP, PSP: single sire, pseudo sire in the pedigree 

modeling. 
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Additional file 2 Table S4 

Format: Word 

Title: Errors on estimates for genetic parameter sets with a negative rWQ and all sire modeling 

scenarios for controlled mating. 

Description: σ²W, σ²Q, rWQ: genetic variances and correlation for worker and queen effect. σ²e: 

residual variance. Estimates are denoted by ’^’; strong deviates differ by more than 20% from the 

true values.  

SSS, PSS: single sire, pseudo sire mating strategy; SSP, PSP: single sire, pseudo sire in the pedigree 

modeling. 

Additional file 2 Table S5 

Format: Word 

Title: Errors on estimates for all genetic parameter sets and sire modeling scenarios for open mating. 

Description: σ²W, σ²Q, rWQ: genetic variances and correlation for worker and queen effect. σ²e: 

residual variance. Estimates are denoted by ’^’; strong deviates differ by more than 20% from the 

true values.  

The controlled mating strategy was single sire mating (SSS).  

Additional file 2 Table S6 

Format: Word 

Title: True and estimated genetic trends for all genetic parameter sets and sire modeling scenarios for 

open mating. 

Description: σ²W, rWQ: genetic variance of worker effects and genetic correlation between worker 

and queen effect.  

The genetic trends (true and estimate) were calculated as the linear regression coefficients of true 

breeding values (BV) and estimated breeding values (EBV) for worker (W) and queen (Q) effects 

over breeding years (from the fifth year of the breeding program, when the nucleus became closed). 

The controlled mating strategy was single sire mating (SSS). 

Additional file 2 Table S7 

Format: Word 

Title: AIReML predicted and realized standard errors (SE) of genetic (co)variances.  

Description: Predicted SE: mean prediction (by the inverse averaged information matrix) of the SE 

of genetic (co)variance estimates over repetitions. Realized SE: SD over repetitions of the error on 

the variance estimates of worker (σ̂²W) and queen (σ̂²Q) effects, as well as the covariance (σ̂WQ). 
SSS, PSS: single sire, pseudo sire mating strategy; SSP, PSP: single sire, pseudo sire in the pedigree 

modeling. 
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