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Mixed-Feedback Architectures for Precise Event Timing Through
Stochastic Accumulation of Biomolecules

Sayeh Rezaee!, César Nieto?, and Abhyudai Singh?

Abstract— The timing of biochemical events is often deter-
mined by the accumulation of a protein or chemical species
to a critical threshold level. In a stochastic model, we define
event timing as the first-passage time for the level to cross the
threshold from zero or random initial conditions. This first-
passage time can be modulated by implementing feedback in
synthesis, that is, making the production rate an arbitrary
function of the current species level. We aim to find the
optimal feedback strategy that reduces the timing noise around
a given mean first-passage time. Previous results have shown
that while a no-feedback strategy (i.e., an independent constant
production rate) is optimal in the absence of degradation and
zero-molecules initial condition, a negative feedback is optimal
when the process starts at random initial conditions. We show
that when the species can be degraded and the synthesis rates
are set to depend linearly on the number of molecules, a positive
feedback strategy (the production rate increases with the level of
the molecule) minimizes timing noise. However, if no constraints
on the feedback are imposed, the optimal strategy involves a
mixed feedback approach, which consists of an initial positive
feedback followed by a sharp negative feedback (the production
rate decreases with the level) near the threshold. Finally, we
quantify the fundamental limits of timing noise reduction with
and without feedback control when time-keeping species are
subject to degradation.

I. INTRODUCTION

Precision in the timing of biochemical events within
cells is needed for high fidelity functioning despite in-
herently noisy processes occurring with low-copy number
components. Several biological processes critically depend
on timing mechanisms based on threshold-crossing of given
variables. These include, neuronal firing of action potential,
cell-cycle regulation, tissue development, biological clocks,
apoptosis, signal transduction, and gene activation [1]-[12].
This time variability can be reduced by using self-regulation
in protein synthesis rates [13]-[17]. Self-regulation strate-
gies, also known as feedback, involve adjusting the tran-
scription/translation rate based on the current protein level.
Finding an optimal feedback technique that minimizes this
timing variability in particular systems is crucial to under-
standing the mechanisms of cell timing, and uncovering the
fundamental limits of timing noise suppression.

One of the most used approaches for modeling cell timing
is based on first-passage time (FPT) statistics [18]-[25].
Different feedback regulation schemes have been explored,
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and different parameters have been optimized to minimize
the FPT variability while keeping the mean FPT constant
[13]-[17], [26]. The solution for simple systems such as
constant protein production without degradation or dilution
has already been studied. Interestingly, for this system, the
minimum timing noise is achieved if there is no feedback
[27]. Recently, we have shown that if the protein is con-
tinuously diluted, the effect of dilution can be compensated
by a feedback strategy that increases the transcription rate
as the protein level increases [28]. However, this model
has some limitations. First, it assumes that dilution is a
continuous deterministic process, but for some biochemical
systems, stochastic protein degradation may be more relevant
than dilution. Second, it assumes that the feedback strategy
is linearly dependent on the protein level. In a general
approach, the optimal feedback strategy is expected not to
grow linearly with the protein amount but to be an arbitrary
function of this number. To date, the general solution to this
problem of optimization characterizing timing accuracy is
unknown.

In this study, we address the limitations mentioned above.
Specifically, we employ a modeling framework wherein
protein levels are represented as discrete random variables.
Moreover, protein production and degradation mechanisms
are characterized as stochastic birth-death processes. The
occurrence rates of these processes depend on the protein
level, such that the degradation probability of a protein
molecule increases linearly with the protein copy number,
and the synthesis rate is an arbitrary function of this number.
Our primary objective is to investigate the feedback function
that minimizes noise in FPT around a predetermined fixed
mean.

The article consists of the following sections: First, we
review the problem and the solution in the absence of
degradation with both zero-molecule initial conditions and
a random initial protein number. Second, we consider op-
timizing the slope of a linear synthesis rate with stochastic
degradation. We use the small-noise approximation to obtain
analytic formulas that are valid for high threshold numbers.
Third, we present a solution for the low-number regime.
We analytically solve the optimization problem for two
molecules and numerically solve the master equation of the
system for five molecules, optimizing over the synthesis rates
to minimize FPT fluctuations. As a main result, mixed feed-
back emerges as optimal, wherein the synthesis rate increases
non monotonically with the protein level and sharply declines
near the threshold. Finally, we discuss the implications of
our findings for biological systems and suggest potential
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applications.

II. FORMULATING EVENT TIMING AS A FIRST-PASSAGE
TIME PROBLEM

Let x(t) € {0,1,2,...} be an integer-valued process
representing the molecular count of a certain biochemical
species at time ¢. The time evolution of x(¢) can be modeled
as a birth-death process with a constant synthesis rate £ and a
degradation rate . More specifically, synthesis events occur
according to a Poisson process with rate k. In this case, the
probability of copy numbers increasing from ¢ to ¢+ 1 in an
infinitesimal time interval (¢, ¢ + dt] is given by:

P{a(t+dt) =i + 1|a(t) = i} = kdt. (1)

The timespan each molecule lives is an independent and
identically distributed random variable that is exponentially
distributed with mean timespan 1/, and corresponds to the
following probability of degradation:

P{z(t + dt) =i — 1|a(t) = i} = ~idt. (2)

A feedback loop is implemented by allowing the produc-
tion rate k;, to vary arbitrarily with the current levels of
the species, denoted as x(t) = 4. This alters the synthesis
probability (1) to

P{x(t + dt) =i+ lz(t) =i} = kdt, i€{0,1,2,...},

3)
where the time required for transition from ¢ to ¢ + 1
molecules is exponentially distributed with mean 1/k;. This
formalism enables the realization of various feedback sce-
narios:

e A constant synthesis rate k; = k corresponds to a no-
feedback strategy.

o Negative feedback corresponds to k; decreasing with
increasing ¢, i.e., the synthesis rate declines with higher
molecular counts.

« Similarly, positive feedback corresponds to k; increas-
ing with 1.

« Nonmonotonic shapes of k; capture complex feedback
strategies that combine both negative and positive feed-
backs.

Let a positive integer X be a critical threshold level for

molecular counts that triggers an event. Then, event timing
is a random variable defined by the first-passage time (FPT)

T:=inf{t >0:2z(t) > X|z(0) = ¢y < X}, 4)

which corresponds to the first time the random process
z(t) reaches X starting from an initial condition z( at
time ¢ = 0. For a fixed X and degradation rate ~, our
goal is to determine the optimal feedback strategy k;,i €
{0,1,2,... X—1} for synthesizing molecules that minimizes
the random fluctuations in T, while ensuring a given mean
first-passage time (Fig. 1B).
III. OPTIMAL FEEDBACK STRATEGY IN THE ABSENCE OF
DEGRADATION
Having formulated the problem, we first focus on the

special case of no degradation i.e., v = 0, where molecular
counts only build up over time.

A. FPT problem with Zero-molecules initial condition

If the system starts with zero molecules with probability
one at t = 0, the first-passage time is essentially a sum
of each reaction time, which is an exponentially distributed
random variable with mean 1/k;, ¢ € {0,1,...,X — 1}.
Using the angular brackets ( ) to denote the expected-value
operation, the moments of 7' follow

X1 X1 2 x1 1
T) = il 2y — — — 5
m-X b (zk)+ Lo
which leads to the variance as below.

pang |
:ng (©)

Our goal is to find the optimal sequence k;, i €
{0,1,...,X — 1} that minimizes the variance o2 while
keeping (T') fixed. To obtain the solution, we propose that
optimal rates can be written as

o2 = (T?) —

1

. —
T

(7

with €; € R having arbitrary values. If we fix (T") from (5),
the following constraint

X-1
Y e=0 (8)
=0

is required to ensure a fixed mean FPT. On the other hand,
using (6) and (8), the variance in FPT is given by

X—-1 1 X—-1 2
A=Y =2 (F )
=0 ? =0
X-1 X—-1
(1?27 5
RIS SPPLLD I
X—-1
(T)? 2
= —i-;ei 9)

The sum of squares € on the right-hand-side of (9) is
minimized only when all ¢, = 0. Therefore, the optimal
feedback strategy is to set a constant synthesis rate as:

X
ki =

ie{0,1,..., X -1} (10)
(T)
and the corresponding optimal noise in FPT
2
2 oT 1
= = = 11
OVi= =% (11)

as quantified by its coefficient of variation.

In summary, when v = 0, to reach a threshold at a
prescribed time, the optimal strategy is to have a constant
synthesis rate, and any form of feedback will amplify timing
Sfluctuations [27]. Moreover, 1/ X, the inverse of the threshold
level, is the fundamental limit to which timing noise can be
suppressed. Previous studies have extended this problem to
consider production occurring in molecular bursts, as seen
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Fig. 1: Event timing of biochemical processes triggered by the accumulation of proteins to a threshold. A. Model of protein synthesis
and degradation from gene expression. Feedback is implemented by allowing the synthesis rate k; to vary as a function of the current
protein level. The stochastic dynamics of the protein count is modeled as a birth-death process. Synthesis, wherein the number of molecules
jumps from ¢ to ¢+ 1, occurs at a rate k;. Additionally, the degradation, which is the jump from 4 to ¢ — 1, occurs at a rate ~yi. B. Example
trajectories of protein copy number over time starting from a random initial condition. The event is triggered when the level reaches a
critical threshold. Our goal is to obtain the strategy of k; that minimizes the stochastic variability in the FPT. In the optimization, we fix
the threshold X, the degradation rate +y, and the average time (1) required to reach the threshold.

in gene expression measurement in single cells [29]-[36],
that is, each synthesis event produces several molecules in
contrast to just one molecule as considered here. For this
bursty-birth process, the optimal feedback in the absence of
degradation is similar to a no-feedback strategy, where all
ki, i€ {1,..., X — 1} are exactly the same except for the
first synthesis rate kq that is lower than the rest [27], [37],
[38].

B. Random initial condition

We next extend the mentioned results to consider the
process starting with a random initial condition as follows.

P{z(0) =i} =p;, i €{0,1,...,X — 1} (12)
This assumption leads to the following mean FPT,
X-1
(T) =Y pi(T]a(0) =)

=0
X-1 X-1

RPN
=0 Jj=t
Po  Po+p1  Po+pr+p2 1

=— + +.ot——, (13)
ko kl :ZCQ kX—l (

and its corresponding (uncentered) second-order moment.

X—-1
(T%) =Y pilT?[2(0) = i), (14)
=0
where
X-1 1 2 X—-1 1
(T?2(0) = i) = E:Ef +d = 19
j=i ™7 j=i 7

To perform the optimization, one can find k¢ as a function
of k1,...,kx_1 from (13) to have a fixed (T'). Substituting
this value of kg into (14), one can then optimize over

ki,...,kx_1 to minimize (T2). We did the optimization
by simultaneously solving the equations
d(T?)
=0,7€41,...,X -1 16
G =0 ied } (16)
to find the rates ky,...,kx_1.
We illustrate the results for a threshold of X = 6

molecules. If the initial condition is zero molecules with
probability pg and one molecule with probability 1 —pg then
the optimal rates are
10— 4po
lﬁ)T> 4
— 2Po
SRy s
where all k;,i € {1,...,X — 1} are equal and kg set
higher than the rest. As anticipated, when py — 1, the result
converges to having all rates as 6/(T"). In addition, if we
consider an initial condition with equal probability in all
states, meaning p; = 1/6, i € {0,1,...,X — 1}, then the
optimal rates are

ko

ie{l,..., X — (17)

L1288 859 595
0 — <T> ) 1 — <T>7 2 — <T>7
4.24 3.08 2.29
k3—m7 1= Ty k5—m~ (13)

which corresponds to a negative feedback strategy with rates
decreasing as % increases.

In the next section, we describe the optimization problem
in the presence of protein degradation assuming a linear
synthesis rate and a low-noise limit with a large threshold X.
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Fig. 2: Stochasticity in FPT for linear protein synthesis rates and spontaneous protein degradation with rate . The noise of FPT is minimized
using an optimal feedback strength o. A. Protein accumulation for different feedback strategies left: o« = —2~, center: o« = =y, right: o = 5. Top:
FPT histogram. Bottom: Some illustrative trajectories of protein level x as a function of time. B. The noise in FPT (measured by its coefficient of variation
C'Vr is plotted as a function of o . The analytical expression (25) is compared with C'V;r values obtained by performing stochastic simulations (the line
width shows the 95% confidence interval from 10,000 simulation replicas). The parameter values used for this graph are v = 1, ko such that (T') ~ 1,

2(0) =0, and X = 100.

IV. OPTIMAL RATES FOR LINEAR SELF-REGULATION AT
LOW-NOISE REGIME

In this section, we consider the accumulation of biomolec-
ular materials starting from 2(0) = 0 with probability 1
and the degradation of molecules with rate . To simplify
the feedback strategy, we assume a linear synthesis rate
k; = ko+«i. Here, kg is the basal rate of protein production,
and the slope « is called the feedback strength. In this case,
positive feedback is implemented when o > 0, and negative
feedback occurs when o < 0.

As a consequence of this linear stochastic formulation,
the time evolution of the statistical moments of x(¢) can be
obtained precisely by using the moment dynamics formalism.

d{z™)

T = (o +a@) o+ D) =™

+yx[(z - 1™ —a™]),

for m € {1,2,...} [39]-[41]. Setting m = 1, the dynamics
of the average copy number (z) is described by the following
first-order system.

19)

% = ko + a(z) — y(x) (20a)
— (z(t)) = M_ (20b)

e
In the limit of small fluctuations, the mean FPT (T') can be
approximated by the time ¢ at which (x(t)) = X yielding

(T) ~ | Fite %] I .
v -«
Considering this linear feedback, while keeping (T) con-
stant, we aim to find the optimal « that minimizes the
noise in 7. To fix (T) in the low-noise limit, we adjust kq
according to «, from (21), as follows.

(=X
= ol (M) _1°

2n

ko (22)

The variance in molecular counts is obtained analogously

using m = 2 in (19),

d(z?)
dt

= (ko 4+ o)) + 2ko(x) + 20(x?) — 2y(x?) + v(x).
(23)

In this low-noise regime, the variance in FPT can be approx-
imated as [42]

0 =

(@?) — (z)?

d<z>)2

dt
and is inversely related to the slope at which the mean
trajectory () approaches the threshold [42]. Hence, when
this slope is flatter, the noise of threshold-hitting times is
amplified. Plugging the solutions of (23) into (24) and using
(20a)-(22), we obtain the following analytical expression for
the coefficient of variation of 7.

(24)

lim

t—(T) (

)

2
or

()2
_ 4sin®[(y — a)(T}/2)(e7~ D) — a)
(7~ )P X(T)2 |

C'V% =

(25)

In the absence of degradation and assuming to have no
feedback (y — 0 and a@ — 0), the formulas (21) and (25)
reduce to the following exact forms

X
ko’
respectively, which are consistent with (10) and (11).

Fig. 3 illustrates the effect of feedback strength o on
CVZ2, while keeping (T) constant by adjusting kg according
to (22). The analytical approximation of CV? given by
(25) matches well with the exact values from stochastic
simulations, especially at low noise levels. As predicted, the
discrepancy increases with higher noise. Moreover, CVZ2 is a
concave function of o with a global minimum. The optimal

1

OV =+ (26)
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Fig. 3: Stochastic variability in the FPTs monotonically increases with species degradation rate. A. Illustrative examples of accumulation processes
changing with degradation rate « and the feedback strength o maintaining (7) = 1. Top: FPT histogram. Bottom: Some illustrative trajectories of the
protein level x as a function of time. B. Same as A. but with v = 2.5. C. Noise in FPT measured by the squared coefficient of variation C’V% versus
~ keeping (T) fixed. Green represents the noise without feedback (av = 0) and red represents the optimal linear feedback oz = a* defined in (28)). The
noise is calculated from the analytical expression (25), (0) = 0, X = 100. Error bars represent the 95% confidence intervals of the simulation results

using bootstrapping methods of 2000 replicas.

a, denoted by o* which minimizes CV} is obtained by
solving the equation:

d 2
ACVE) _y, (27)
da
Our analysis approximated the a* as
Ayl — . 28
() )

This optimal solution implies positive feedback a* > 0
and depends on the dimensionless factor v(T"), which is the
mean FPT normalized by the average protein lifespan 1/7.
Fig. 3 compares the changes in C'V.? with  for no feedback
(o = 0 in green) and optimal feedback (v = a* in red) with
a* as given by (28). As v — 0, we see that o — 0 and
both lines converge to CV2 = 1/(X), the fundamental lower
bound of timing noise. For a fixed mean (7T'), the timing noise
increases with ~y, but more slowly for @ = a* (red) than for
a = 0 (green).

V. OPTIMAL FEEDBACK STRATEGY FOR ARBITRARY
SYNTHESIS RATES

We now relax the assumption of a linear form to allow the
synthesis rate to vary without restriction. Given the analytical
intractability of this problem, we focus primarily our analysis
on low threshold levels and zero initial conditions to get an
idea of the optimal form of k;. We first consider a threshold
of X = 2 molecules where the optimization problem has an
exact analytical solution.

A. Threshold of two molecules

The simplest system that includes protein degradation is
presented in Fig. 4A consisting of the synthesizing of two
molecules with life-span with mean 1/+. In this case, X = 2.
Hence, we have to solve to two rates kg and kq that will
minimize (T'2) for a fixed (7). To find the probability density

function (pdf) of the first-passage time 1" we can write the
Chemical Master Equation (CME) [43]-[46]

dPy(t
;t( ) _ —koPo(t) + vPr(t) (29a)
dPy(t
% = koPo(t) — vPi(t) — ki Pi(t), (29b)
that describes the time evolution of the probabilities
P;(t) :=P{x(t) =i}, i € {0,1}. (30)

Solving the linear dynamical system (29a) with initial con-
ditions Py(0) = 1 and P;(0) = 0 gives the pdf of T" which
is defined as fr(t) = ki Pi(t). Using the obtained pdf, we
find the following first- and second-order moments of 7"

*° ko + k
(1) = / tp(dt = L0 (31a)
0 kok1
(T?) = / 2 fr(t)dt
0
2 ko)? + (2 ko)ky + k?
_ ((y + ko) +(272+ 0)k1 + 1).(31b)
K2k
From (31a), a fixed (T") can be achieved by choosing:
Y+ k
ko= ———. 32
"R 2

The optimization is performed on k; that minimizes (72).
The solution of this optimization reveals the optimal synthe-
sis strategy to be

e — & 1+ /1T
o=k = —-"r——

; (33)
(T)
and the corresponding minimal FPT noise is
2
CVi=1 (34)

24 (T + 21+ (T

Fig. 4B illustrates the FPT distribution with rates chosen
as (33) and illustrates its shape with increasing . Note that
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Fig. 4: Optimal protein synthesis strategy for a threshold of two molecules considering a degradation rate . A. Schematic diagram
where, starting from zero proteins with the objective of reaching two molecules, we optimize the rates k1 and ko such that we minimize
the variability in the FPT T for fixed (7). B. The optimized FPT distribution fr(¢) with miminial timing noise for different degradation
rates . The optimal strategy corresponds to both rates being k1 and ko equal and given by (33). C. Optimal timing variability as given
by (34) as a function of +. Here, (I') = 1 and x(0) = 0 with probability one.

in the absence of degradation v = 0, (34) reduces to CV? =
1/X = 1/2. For small values of 7(T) < 1, the noise level
can be approximated by C'V2 ~ 1/2+~(T') /4. Furthermore,
CV2 is a monotonically increasing function of v(T"), with
CVZ2 — 1 at the limit v — oo (Fig. 4C). Recall that the CV
of an exponential distribution is one, and this can be seen in
the shape of fr(¢) in Fig. 4B with v — oc.

B. Threshold of five molecules

In our analysis, so far, we have found optimal strategies
for some simplified cases. We derived the solution for protein
accumulation without degradation, the low-noise solution for
a high threshold, and the exact solution for a threshold of two
molecules. However, we do not expect a simple analytical
solution for the general case of protein accumulation with
degradation and an arbitrary threshold. In this section, we
resort to numerical methods to obtain the solution for the
optimal form of k; in a system with accumulation of five
protein molecules, this is, X = 5.

To tackle this problem, we propose the general master
equation:

d]j;t(t> = —koPo(t) +Pi(t)
dP;(t)
- ki1 Pi—1(t)
— (ki + i) Pi(t) + (i 4+ 1) Py (t)
(35)
dPXT_tl(t) = kx_2Px_»(t)
—(kx—1+7(X = 1)) Px_1(t)

%t(t) = kx_1Px_1(t),

which can be used to obtain the probability vector P(t) =
[Po(t), Pi(t),---,Px_1(t), Px(t)]! at any time ¢. Each ele-

ment P, (t) represents the probability of having x molecules
at time t. In a more general notation, the system can be
described by the matrix A such as:

dP(t)

Cdt
which, given the initial conditions P,(t = 0) = d, 0, with
d;,; being the Kronecker delta distribution, can be solved
using matrix exponential methods:

= AP(t), (36)

—

P(t) = exp(At)P(t = 0). (37)

The moments of the FPT distribution can be estimated
from the FPT pdf fr(t) which, using (35), follows:
dPx(t)

Jr(t) = g kx_1Px_1(t).

We numerically solve the moments from the FPT distri-
bution (38) and using brute-force search we find the set of
k; that minimizes the CV? for a fixed (T) with a level
of accuracy of 0.01 on both variables. We considered three
cases: no feedback (constant synthesis rates); linear feedback
as in Section 4; and unconstrained feedback, where any
arbitrary set of k; is allowed.

Fig. 5 presents and contrasts these three different cases
for v € {0,1,2} with the normalized time, such that the
mean FPT follows (T') = 1. In the case without feedback
(Fig. 5A), the constant rate is simply set by (7). In the
particular case of v = 0, these rates are given by (10).
When the feedback is constrained to follow a linear function
of the protein levels, we observe that the optimal slope
is positive (positive feedback). Moreover, the slope of this
relationship increases with ~, which is consistent with our
earlier approximate analytical analysis. In Fig. S5C, where the
rates are unconstrained, the optimal feedback involves first
increasing the rates with protein numbers. These rates reach
a maximum just before the threshold. Finally, the synthesis
of the last molecule to reach the threshold can be done at a
much lower rate. This implies that the optimal strategy here
is mixed, positive feedback at the beginning and negative
feedback close to threshold. A comparison of the three cases

(38)


https://doi.org/10.1101/2023.05.22.541681
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.22.541681; this version posted May 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A. No Feedback B. Linear Feedback

30 4 309

O kg 1 kg

X 251 . 25 1 .
¢ [ %
Ezof .k 201 Ky
2 154 - ks 15| E kg
o - K -k ‘
S 10 10 1
3 ad
v 5 5 ’_l—

0- 0

0 1 2.0 0 1 2.0

Degradation rate, y

C. Unconstrained Feedback D.

30

; 0.5
1 kg |
25 .
=k I - 0.4
201 m k; = S
* — 0.3
15 .k I |I ©
=< | W E.
101 ,—II FII 8‘ —eo— No Feedback
5 4 0.1 Linear Feedback
—8— Unconstrained Feedback
0- 0.0 = T T T T T
0 1.0 2.0 00 05 1.0 15 20 25

Degradation Rate, y

Fig. 5: A mixture of positive and negative feedback leads to the lowest optimal noise in FPT when protein degradation is
considered. Optimal synthesis rates {kg, k7, ..., k1 } for the threshold of five molecules starting with no molecules. A. Optimal rates
considering a constant rate for all protein levels. (Inset: a diagram explaining the process of accumulation and degradation). B. In the case
of linear feedback, the optimal synthesis rate increases with the protein level, consistent with our low noise limit analysis in Section IV.
C. Considering unconstrained feedback, where any arbitrary set of k; is allowed, results in a nonmonotonic form with first increasing
synthesis rates, and then sudden decrease just before threshold. In the absence of degradation (7 = 0), the optimal synthesis rate is
ki = X/(T) regardless of the feedback strategy considered, as explained in Section III-A. D. Increasing the degradation rate -y , the
accuracy of the timer decreases since the noise C'Vi# in timing increases. A comparison of optimal noise in FPT for the three strategies.

For this plot, (T') =1 and z(0) = 0 with probability one.

in Fig. 4D shows the additional noise suppression achieved
as we relax the constraints on the synthesis rate.

VI. CONCLUSIONS

Accumulation of gene product levels is a key mechanism
of biological timekeeping underlying diverse processes. For
example, bacteriophages (viruses of bacterial cells) make
proteins such as holin, that slowly build up in the host cell
membrane, and the cell is lysed open upon holin’s attaining
a threshold level [47]-[49]. Experimental evidence points
to viruses lysing cells around an optimal time to maximize
fitness [50], thus motivating the problem we have considered.
Timing of cell-cycle events, such as start of DNA replication
and mitotic division into daughters is also strongly influenced
by species levels reaching thresholds [S1]-[57].

We reviewed previous results that when proteins are
long-lived, the optimal accumulation strategy is to have a
constant synthesis rate that minimizes noise in timing for
a given fixed mean FPT [27]. In contrast, random initial
conditions shift the strategy to negative feedback regulation
with synthesis rates decreasing with increasing molecule
counts. With protein degradation and forcing the feedback
synthesis rate to have a linear form, we show that the optimal
slope of the synthesis rate is positive and monotonically
increases with v (Fig 2). As one would expect, the accuracy
of timing deteriorates with shortening protein half-lives, and
in the limit of a highly unstable protein one cannot do better
than timing approaching an exponentially-distributed random
variable with CVpr — 1 (Fig. 3).

Finally, we study numerically the global optimal synthesis
strategy for a five-molecule accumulation. With increasing
the degradation rate, we found a pattern in the dependence
of optimal synthesis rates on protein levels. The optimal
strategy consists of increasing the rate with protein levels
until the last molecule synthesis. The accumulation rate of
the final molecule should occur at a relatively low rate
(Fig. 5). As part of the future work, we plan to use some

of our intuition gained for small thresholds to build an
analytical theory for any arbitrary threshold. Future work
on this topic could also explore other sources of variability,
such as noise from cell-cycle dependent factors [58], [59].
Moreover, it would be interesting to investigate how protein
interactions with decoys, which can buffer protein copy
number fluctuations [60], [61], affect timing variations.
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