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33 Abstract

3 Highly pathogenic avian influenza virus (HPAIV) A H5 clade 2.3.4.4 has caused
35 worldwide outbreaks in domestic poultry, occasional spillover to humans, and in-
36 creasing deaths of diverse species of wild birds since 2014. Wild bird migration
37 is currently acknowledged as an important ecological process contributing to the
38 global dispersal of HPATV H5. However, it is unclear how seasonal bird migration
39 facilitates global virus dispersal, and which avian species are exposed to HPAI H5
a0 clade 2.8.4.4 viruses and where. To shed light on ongoing global outbreaks, we
a sought to explore these questions through phylodynamic analyses based on empir-
2 ical data of bird movement tracking and virus genome sequences. First, based on
3 viral phylogeography and bird migration networks, we demonstrate that seasonal
i bird migration can explain salient features of the global dispersal of clade 2.3.4.4.
45 Second, we detect synchrony between the seasonality of bird annual cycle phases
46 and virus lineage movements. We reveal the differing vulnerable bird orders at
a7 geographical origins and destinations of HPAIV H5 lineage movements. Notably,
a8 we highlight the potential importance of relatively under-discussed Suliformes and
49 Ciconiiformes, in addition to Anseriformes and Charadriiformes, in virus lineage
50 movements. Our study provides a phylodynamic framework that links the bird
51 movement ecology and genomic epidemiology of avian influenza; it highlights the
52 importance of integrating bird behaviour and life history in avian influenza studies.
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- 1 Introduction

ss. The re-emergence of highly pathogenic avian influenza viruses (HPAIVs) subtype H5
s clade 2.3.4.4 since 2014 [1] has caused unprecedentedly large numbers of wild bird deaths
s worldwide [2]. In contrast to previous clades of the A /goose/Guangdong/1996 (Gs/GD)
v lineage, there have also been more persistent spillovers to local domestic poultry [3-7], im-
ss  pacting the poultry farming industry. Despite no onward human-to-human transmission
so to date, occurrences of zoonotic jumps to humans pose potential threats to public health
o0 [8-12]. The unique epidemiological pattern of clade 2.3.4.4 HPAIV H5 is potentially
s shaped by eco-evolutionary processes: i) the continued selection for both higher trans-
2 missibility and virulence, e.g., as observed in ducks [13, 14]; ii) the interaction between
63 the viruses and a wider range of hosts [15].

64 To shed light on the underlying eco-evolutionary processes, it is critical to understand
ss the spatial dynamics of clade 2.3.4.4 and the ecological factors that influence these pat-
s terns. Plausible ecological mechanisms for the global movement of HPAIVs include the
v live poultry trade and wild bird migration [16, 17]. Preceding the recent re-emergence
e of clade 2.3.4.4, there has been a long-term debate about whether wild bird migration
oo drives HPAIV dispersal [18, 19]. However, the re-emergence of clade 2.3.4.4 continues
70 to provide virological, epidemiological, and ecological evidence in support of the critical
7 role of migratory wild birds in HPAIV spread and evolution at a global scale. Com-
2 pared to previous clades, clade 2.3.4.4a during 2014/15 outbreaks was less pathogenic to
73 some species while being more effectively transmitted [20-22], possibly enabling infected
7 birds to migrate between continents. Subsequent phylodynamic work confirmed that the
75 introduction of clade 2.3.4.4a into Europe and North America was most likely via long-
76 distance flights of infected migratory birds [23]. During the 2016/17 outbreaks, the major
7 circulating clade 2.3.4.4b was more transmissible [24] and more virulent [14], related to
¢ multiple internal genes [14, 24] and potentially their frequent reassortments [4-6]. Later
7 phylogenetic analysis showed a clear link between the reassortments and migratory birds,
s as most reassorted gene segments were from migratory wild birds and originated at dates
s and locations that corresponded to their hosts’ migratory cycles [25]. Integrating host
&2 movement in studying HPAIV dispersal is important while challenging. One challenge
g3 is insufficient bird movement data, which causes that previous global-scale studies [23]
s cannot account for the high variation in bird behaviours across species and locations.

8 Another challenge of studying HPAIV dispersal in wild birds is the lack of HPAIV
s prevalence data. Only a few studies document longitudinal HPAIV prevalence in wild bird
&7 populations[26]. Compared to HPAIV, low pathogenic AIV (LPAIV) has better long-term

s surveillance of infections or seroprevalence and related avian host ecology in disparate
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bird habitats, e.g., the United States Geological Survey (USGS) surveillance of birds in
Alaska [27]. While longitudinal records provide insights into the role of life history and
ecology of local bird communities in LPAIV circulation[28], their conclusions are limited
to local dynamics and cannot be easily generalized. To resolve this challenge, ideally, we
should have systematic global surveillance for HPAIV. However, this is impossible due to
resource constraints.

Instead, we could design effective surveillance strategies by identifying vulnerable
avian species and high-risk geographical regions. Recently, researchers have addressed
these questions at a higher taxonomic level to include more diverse species. For example,
Hill et al. compared the different roles of species within the Anseriformes and Charadri-
iformes in the dispersal and spillover of AIVs [29]. They concluded that wild geese and
swans are the main source species of HPAIV Hb5, while gulls spread the viruses most
rapidly. Hicks et al. found that the inter-species transmission of AIVs in North Amer-
ica is positively associated with the overlap of habitats, suggesting the importance of
local bird community diversity [30]. However, they did not use empirical bird movement
data. Furthermore, given the heterogeneous biogeographical pattern of bird migrations,
identifying geographical hotspots requires linking global and local scales.

To fill this gap, we here focus on two questions related to the contributions of birds,
locally and globally, to the spatiotemporal dynamics of HPAIV H5 viruses; specifically,
i) how does seasonal bird migration facilitate global virus dispersal and ii) which avian
species are exposed to HPAIV Hb5 and where? To explore these questions, we first il-
lustrate the global circulation history of clade 2.3.4.4 using time-scaled phylogeographic
analyses of hemagglutinin (HA) genes of HPAIVs sampled from wild birds and poultry
between 2007 and 2018. !
long-distance—virus-dispersal- There are two caveats: ﬁrst while we only included HA,

internal genes also contribute to virus evolution, e.g., via reassortment [25]; second, the

geographical bias of virus sampling has a strong impact on the virus lineage movement
routes, especially for locations under-sampled. Based on-the-estimated-routes—and in-
ferred virus dispersal history, we quantify the contribution of seasonal bird migrations to
global virus dispersal and evolution. Second, we model the monthly geographical distri-
bution of bird orders using species distribution models based on environmental factors
and bird tracking data. We evaluate the risks of bird orders being exposed to HPAIV
H5 at geographical origins and destinations of virus lineage movement by analyzing the
statistical association of local bird distributions and virus lineage migration. Our study
provides an approach that integrates bird migration ecology in HPAIV epidemiological

studies to disentangle the mechanisms of interaction between HPAIV and wild birds.


qiqiy
Cross-Out

qiqiy
Cross-Out

https://doi.org/10.1101/2023.05.22.541648
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.22.541648; this version posted May 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

» 2 Results

s 2.1 Seasonal bird migration associates with global HPAIV H5

127 dispersal

s Is the wide geographical range of HPAIV H5 clade 2.3.4.4 caused by frequent introductions
19 from one region to another, or a single introduction resulting in subsequent spread within
1o the area? The discrete-trait phylogeographical analysis of HA genes exhibits scarce virus
1 lineage movements between aggregated regions, most of which are unidirectional (Figure
132 1A). It suggests that inter-regional viral introductions over long geographical distance oc-
133 cur at low frequency and in one direction. Furthermore, the sequences are highly clustered
14 by region, implying viral persistence within each region after introduction. These pat-
135 terns qualitatively match bird migration patterns: migratory birds can fly long distances
s during their migrations, and only fly in one direction in a given season. After arriving
137 at stopover, breeding, or wintering sites, they usually stay for some time, allowing viral
138 transmission to other species or the environment.

130 To test quantitatively whether seasonal bird migration is a key predictor of HPATV H5
1o dispersal, we fit a generalized linear model (GLM) parameterization of the discrete phylo-
11 geography using a Bayesian model selection procedure [31, 32]. Concurrently, we consider
12 seasonal bird migration, live poultry trade and poultry population size as covariates of
3 the diffusion rates between regions. To incorporate the potential seasonal difference in
e viral dispersal, we model a time-heterogeneous phylogenetic history [33] with three sea-
115 sons based on bird annual cycle in North Hemisphere: non-migration (mid-November to
s mid-February, mid-May to mid-September), spring migration (mid-Feburary to mid-May)
17 and fall migration (mid-September to mid-November). Figure 1B shows the posterior es-
s timates of the inclusion probabilities and conditional effect sizes (on a log scale) of the
1o covariates. It reveals that seasonal bird migration is the dominant driver of the global
10 virus lineage movements of HPAIV H5. This is shown in both the log conditional effect
151 size of the seasonal bird migration (mean: ~ 1.96; 95% highest probability density inter-
152 val, HPDI: 0.88-4.56) and the statistical support for its inclusion (posterior probability
153 > 0.999 and Bayes factor > 16565).

154 In contrast, poultry population size and the live poultry trade are not associated with
155 the inter-region dispersal of HPAIV H5 (Figure 1B) in this analysis. It is also evident in
156 both the effect size and the statistical support, e.g, the log conditional effect size of live
157 poultry trade (mean: ~0.44, HPDI: 0.12-0.84) and the statistical support for its inclusion
158 (posterior probability: ~0.31 and Bayes factor: 5). To maintain genetic diversity in our

159 data set, we did not down-sample the sequences, which leaves considerable heterogeneity


https://doi.org/10.1101/2023.05.22.541648
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.22.541648; this version posted May 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

187

188

189

190

191

192

193

194

made available under aCC-BY-NC-ND 4.0 International license.

in sample sizes among locations. Therefore, we included the sample size as a predictor
in the model to raise the credibility that the inclusion of other predictors is not due to
sampling bias. Based on these results, we used subsequent analyses to understand the
importance of different bird species at order taxonomy level in the global dispersal and
local emergence of HPAIV H5 clade 2.3.4.4.

2.2 Vulnerable migratory bird orders at origin and destination

regions of HPAIV H5 virus lineage movement

We identified 20 virus dispersal routes (Bayes factor >3) between the aggregated regions
in the Northern Hemisphere (Figure 2A) using the previous phylogeography analyses.
Seasonality is reflected in northward and southward virus lineage movements. Further-
more, it overlaps well with the bird migration seasonality. Most virus lineage movements
(14 of 20) show a single temporal peak (Figure S5, 2A). The peaks of the northward
routes overlap with spring bird migration and/or wintering period (upper rows of Fig-
ure 2A, Figure S5.1). Only one route (Japan-Korea to USA-Canada) overlaps with the
summer breeding period. Most southward virus lineage movements peak during the Fall
bird migration period, although some peaks continue in November when birds might still
be migrating along some routes (lower half of Figure 2A, Figure S5.2). Only one route
(Europe to Qinghai) overlaps with the wintering period. In summary, in the North-
ern Hemisphere, virus lineage movements from south to north occur mainly during the
wintering period and spring bird migration, while southward virus lineage movements
occur mainly during the fall migration period when birds fly to the south. This as-
sociation of seasonality in bird migration and HPAIV H5 lineage movement suggests
that bird migration is a mechanism of HPAIV H5 global dispersal. It also implies that
breeding grounds are potential genetic pools of HPAIV H5 diversity for southward virus
lineage movements associated with bird migration; wintering grounds play a similar role
for the northward viral lineage movements. Additionally, the results show more virus
lineage movements during the fall migration (Southward Markov Jump counts: 310498
per month, September-November) than the spring migration (Northward Markov Jump
counts: 257503 per month, March-May). Virus lineage movements also have higher
relative frequency during the fall migration (shown in the higher peak in Figure 2). In-
terestingly, birds also migrate in a larger abundance in the fall than during spring, as the
population size becomes larger after breeding.

Which migratory bird orders might be exposed to HPAIV H5 at the origin or desti-
nation regions of virus lineage movements? To explore this question, we examined the

synchrony of bird order distribution and virus lineage movements. The result shows that
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15 8 bird orders (out of 9) at origin or destination regions are correlated with 12 virus lin-
s eage movement routes (out of 20) (Table S4, Figure 2A). Notably, the distribution of
w7 Suliformes, e.g., cormorants, during a year in Europe (r = 0.996, 95% confidence inter-
s vals, CI: [-0.566, 0.566], p < 0.001) and Qinghai (r = 0.899, CI: [-0.566, 0.566], p < 0.002)
199 synchronizes with virus lineage movements from Europe to Qinghai, suggesting that Suli-
200 formes might be associated with HPAIV H5 spread from Europe to Qinghai. However,
20 due to the possible under-sampling of viruses in northern and central Eurasia, we can-
22 not conclude that virus lineage movements occur directly from Europe to Qinghai. In
203 addition, Suliformes, along with Charadriiformes, Ciconiiformes, and Anseriformes, are
20¢  associated with multiple (>2) virus lineage movements. Three routes of virus lineage

205 movement are related to the distribution of multiple (>2) bird orders:

206 e The virus lineage movement from Qinghai to Europe is associated with the Charadri-
207 iformes distribution in Qinghai (r = —0.820,p < 0.005), and the distribution of
208 Suliformes (r = 0.924,p < 0.001) and Passeriformes (r = 0.878,p < 0.002) in
209 Europe.

210 e The virus lineage movement from South China to South East Asia synchronizes with
211 the Charadriiformes distribution in South China (r = 0.803, p < 0.005), and the
212 distribution of Suliformes (r = 0.912, p < 0.002) and Falconiformes (r = 0.890,p <
213 0.002) in South East Asia.

214 e The virus lineage movement from Europe to Africa is related to the Ciconiiformes
215 distribution in Europe (r = 0.813, p < 0.005), and the distribution of Charadri-
216 iformes (r = 0.886, p < 0.002) and Anseriformes in Africa (r = 0.905, p < 0.002).

217 Despite the possible geographical sampling bias, our results suggest integrating host dis-
218 tribution inference and phylogeographic analysis might be able to retrospectively identify

219 important bird species and geographical regions in avian influenza transmission.

= 3 Discussion

21 Here, we report a phylodynamic analysis linking spatial ecology of avian hosts and HPAIV
22 Hb5 virus lineage movements. Our results support previous findings on the important
23 role of bird migration in the dissemination of HPAIV H5 clade 2.3.4.4 [23]. We found
24 that the seasonal wild bird migration network is associated with the global diffusion
»s and evolutionary dynamics of HPAIV H5. A previous study found that the 2014/2015
26 outbreaks of HPAIV H5 in Europe and North America were likely introduced by wild

27 bird migration [23] by comparing the inferred ancestral host-type and location traits of
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the viral genome sequences [23]. Our study advances this finding by directly integrating
the bird migration trajectory network into the virus phylogeographic reconstruction. In
addition, we found that inter-regional live poultry trade is not associated with the global
HPAIV H5 dispersal, consistent with previous studies [16, 23]. The same previous study
found that the international poultry trade’s direction is opposite to the global spread
direction of HPAIV H5 clade 2.3.4.4 [23]. Another previous study demonstrated large-
scale HON1 transmission dynamics are structured according to different bird flyways and
driven by the Anatidae family, while the Phasianidae family, largely representing poultry,
is an evolutionary sink [16].

Historically, Anseriformes have been the focus of wild bird hosts when studying host-
pathogen interaction in AIV studies. However, many other understudied orders have
been affected by clade 2.3.4.4 recently [15, 34]. Interaction of different avian orders
might contribute to virus dispersal and local persistence [29]. A previous study showed
that host origins of HPAIV H5 reassorted genes include Anseriformes, other groups of
wild birds, and domestic poultry [25].

Caveats. A limitation of our results is that the undersampling of viruses in some
areas hugely impacted the inferred phylogeography. For example, we cannot conclude
if the inferred viral lineage movement from Europe to Qinghai or Japan-Korea occurs
directly or if geographically-proximate areas, e.g., central Eurasia, are middle stops of
the movement, due to under-sampling in central Furasia. Despite including sampling
size in the phylogeographical analysis, we cannot adjust the geographical sampling biases
due to the unknown magnitude of infections at locations. Fortunately, the sampling
efforts in some historically under-sampled and no-sampled areas are growing, e.g., in
Australia [35]. In the future, given more extensive and evenly-sampled spatial data, our
methods could be utilized to understand the role of wild birds in virus dispersal.

Despite using empirical bird movement data, our analyses include limited species
diversity and dispersal area. Therefore, we did not include the migration volume of
birds in the migration network (Figure 1). Currently, bird migration is summarized as a
binary network. In the future, integrating comprehensive bird movement models [36, 37|
would provide a more detailed understanding of the mechanism of how bird migration
contributes to AIV dispersal. Another caveat is that we only considered the HA gene
when inferring AIV diffusion and evolution. HA is a key gene in influenza viruses, as
it is the receptor-binding and membrane fusion glycoprotein of influenza virus and the
target for infectivity-neutralizing antibodies [38]. However, the reassortment events of all
internal genes are also important in the dispersal and evolution of HPATV H5 [25].

Our results also show high spatial and temporal heterogeneity in the association

strength between specific bird orders and virus lineage movements. Despite the low
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relative frequency of virus lineage movements during summer breeding and wintering,
they may serve as a gene pool for following virus lineage movement during the migration.
A previous study emphasizes the important role of the breeding period in interspecies
virus transmission in North America [30]. Previous surveillance also shows that LPAI
prevalence in waterfowls is higher during the wintering period of Eurasian migratory
birds in Africa [39]. Additionally, our results highlight the importance of Suliformes and
Ciconiiformes in HPAIV H5 dispersal, which are understudied compared to Anseriformes
and Charadriiformes.

We did not account for possible interspecies transmission among individuals of mul-
tiple bird orders. This is a possible reason for associations between some bird orders
and virus dispersal routes where there is no direct bird migration between the origin and
destination location. For example, the spring migration of Suliformes and Falconiformes
overlaps with virus lineage movements from Japan-Korea to Europe. While birds might
not directly fly between the two regions, various species stop between Japan and Europe
during migration. Interspecies transmission at the stop-over sites might lead to the virus
lineage movements (Figure 2D). However, the under-sampling of the viruses and lack of
bird tracking data might also contribute to the observed pattern.

Another limitation is that we did not account for variation in movement behaviour
within each bird order. Due to limited data, bird order is the most accurate taxonomy
level we can study reliably. Finally, we included virus samples from domestic poultry
when inferring virus diffusion. Therefore, some patterns in the results could reflect virus
transmission between domestic poultry and spillover from wild birds to poultry rather
than bird migratory patterns.

In conclusion, allocating more resources for global surveillance of avian influenza
viruses in wild birds would enhance our ability to tackle the challenges of more viru-
lent and transmissible HPAIV H5 spreading in wild birds. To achieve this goal, it is
critical to understand “where and in which bird species surveillance is most needed and
could have the greatest impact” [17]. Given sufficient data in the future, our framework
could help conservation and public health policy-making in designing monitoring and
surveillance strategies. More collaboration is needed between ornithologists, movement
ecologists, bird conservation experts, avian influenza epidemiologists, disease ecologists
and virologists on many aspects, including collaborative data collection/surveillance of
ATV and data sharing. For example, if studies were to simultaneously obtain the move-
ment tracking of bird populations and their serology and virology surveillance data, then
they could link the bird movement directly with the virus transmission and dispersal. In
addition, we need more AIV samples from water bodies to better understand environmen-

tal transmission. With such data, we would be able to understand the viral transmission
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at local scales and therefore develop disease models for bird conservation and potential

zoonotic threats.

4 Materials and Methods

4.1 Wild bird movement tracking and distribution modeling

To assemble the global wild bird observation data, we accessed the worldwide bird track-
ing data from Movebank in 2021. This dataset amassed from 53 studies across the world
[40-119]. The Movebank study ID, name, principal investigator, and contact person are
listed in Table S6. The dataset is collected by various research groups, and by various
sensors, including Global Position System (GPS), Argos, bird ring, radio transmitter,
solar geo-locator, and natural mark. It covers over 3542 individual birds (class: Ave),
including 10 orders and 95 species (Table S1). For further modelling the migration of the
wild birds belonging to different orders, we excluded the observation data on Movebank of
Cuculiformes, Caprimulgiformes, Strigiformes, Columbiformes, Phoenicopteriformes, Pi-
ciformes, Sphenisciformes, and Procellariiformes, given their paucity and geographically
restricted distribution. Additionally, we accessed GPS tracking data of 193 individuals,
including 5 orders and 12 Species between 2006 and 2019 in China from a previous study
([120]). Accordingly, we combined the data from China with those on Movebank (Table
S6) and finalized a bird observation dataset consisting of 10 orders and 96 species.

To model the wild bird distribution throughout a year, we developed a model frame-
work based on the species distribution model (SDM). The response variable of the model
is bird occurrence (1: presence; 0: pseudo-absence). The independent variables are 20
well-studied environmental predictors, including local topography, weather conditions,
and time of the season. Table S2 lists the environmental data and the source. We divide
the globe into 1-km resolution geographical cells for each month. For each cell, the value
of the dependent variable is 1 if there is any observation of an individual in the target
order in that month in the bird tracking data, otherwise 0. Furthermore, to infer the
probability of bird occurrence between 0 and 1 for each cell, we trained a XGBoost bi-
nary classification model [121] for each bird order, respectively. The method is adapted
from a previous bird migration model [122]. We used true presence and pseudo-absence
data (marked as 1 and 0 respectively). We fitted the distribution of birds which manifest
as true-presence data and pseudo-absence data. We randomly divided 67% of the data
as the training set and the other 33% as the test set. The model finally outputs the
probability of the distribution of migratory birds in each month across years (Dataset 6).

The accuracy was evaluated by the area under the curve (AUC) in a test set of the ten
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orders: Pelecaniformes (0.97), Gruiformes (0.97), Passeriformes (0.97), Suliformes (0.98),
Ciconiiformes (0.92), Falconiformes (0.98), Charadriiformes (0.94), Anseriformes (0.90),
Accipitriformes (0.90). The modelled wild bird distribution (Dataset 6) was applied in the
subsequent analysis to identify key bird orders associated with the global viral dispersal

(section 4.3) and local virus emergence.

4.2 Viral sequence data and time-scaled phylogeny of HPAIVs

To infer the phylogeny of avian influenza HPAIV H5 viruses, we accessed sequences of
HA genes, NA genes and six internal gene segments from GISAID (Global Initiative on
Sharing All Influenza Data [123-125]). Using the sequences, we estimated a maximum
likelihood phylogeny (Figure S3) for each gene segment, respectively, under a GTR+~y
nucleotide substitution model, with the randomly selected strains as representatives, by
FastTree v2.1.4 [126]. Genotypes of internal gene segments (Figure S3) were defined by
clustering pattern with background sequences in a previous study [127]. On the phylogeny,
the viruses with internal genes from wild birds, e.g. clade 2.3.2.1 and clade 2.3.4.4, showed
wider geographical spread [1, 23|, compared to poultry viruses, e.g. clade 2.3.4.1 and clade
2.2, despite the high similarity of their HA genes. This demonstrates the importance
of gene reassortment in the evolution and transmission of HPAIVs. In this project, we
focused on clade 2.3.4.4 and clade 2.3.2.1. Next, we inferred their time-scaled phylogenies
of HA genes. Before the inference, to test for the presence of phylogenetic temporal
structure, we generated a scatter-plot of root-to-tip genetic divergence against sampling
date by TempEst v1.5 [128]. Strong phylogenetic temporal structure was detected in
the phylogeny of each clade (Figure S7). The final datasets (Dataset 2) were i) 1163
HA sequences of clade 2.3.2.1 ii) 1844 HA sequences of clade 2.3.4.4. The spatial and
temporal distribution of the sequences is shown in Figure S4.

Time-resolved HA phylogenies were estimated using the Markov chain Monte Carlo
(MCMC) approach implemented in BEAST v1.10.4 [129] with the BEAGLE library
[130]. We used an uncorrelated lognormal (UCLN) relaxed molecular clock model [131],
the SRDO06 nucleotide substitution model [132] and the Gaussian Markov random field
(GMRF) Bayesian Skyride coalescent tree prior [133]. For each dataset, MCMC chains
were run for 300 million (clade 2.3.2.1) and 400 million (clade 2.3.4.4) generations with
burn-in of 10%, sampling every 10,000 steps. Convergence of MCMC chains was checked
with Tracer v1.7 [134]. A set of 1000 trees for each clade was subsampled from the MCMC

chain and used as an empirical tree distribution for the subsequent analysis.
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w 4.3 Discrete trait phylogeography of HPAIVs and counts of

370 virus lineage migration

sn Based on empirical phylogenies, we used a non-reversible discrete-state continuous time
w2 Markov chain (CTMC) model and a Bayesian stochastic search variable selection (BSSVS)
ws approach [31] to infer the viral diffusion among locations: i) the most probable locations
s of the ancestral nodes in the phylogeny and ii) the history and rates of lineage movement
ws among locations [31]. Sampled countries were divided into 10 locations: Africa, Central
s Asia, Europe, Japan-Korea, North China, South China, Qinghai, Russia, Southeast Asia
s and USA-Canada. This regional categorization was done according to the major wild bird
ss  breeding areas. Furthermore, to estimate the viral gene flows between locations, we used
w a robust counting approach [135, 136] to count virus lineage migration events. The basic
;0 idea is to count the expected number of lineage movements (Markove jumps) between
31 the locations along the phylogeny branches, as applied in previous studies [137-141]. For
;2 each location, the frequency distribution throughout a year of the Markov jumps from
;3 or to the place is summarized. Using this method, we summarized monthly frequency
s8¢ distribution of the virus lineage migration for each pathway (Figure S5, Dataset 4). This
;s was used for further analysis below.

386 To target the key bird orders for each location, we explored the association of wild
se7 - bird distribution across a year and the virus diffusion. The monthly wild bird distribution
;s probability at each location (Dataset 5) is generated based on the location’s geographical
30 coordinates on the modelled bird distribution probability raster map (Dataset 6). We
s0 calculated the correlation between the virus lineage migration and the bird probability
s distribution at origin and destination regions, respectively, with time lags from -7 to 7.
32 To account for multiple comparisons of 9 bird orders, we use p value < 0.00556(= 0.05/9)
53 to define the statistical significance in the correlations. When bird distribution at the
s0¢  origin leads to the virus lineage movements positively or negatively, we consider the bird
s order distribution at the origin to be correlated with the virus lineage movements (Table
26 S4.1, Figure 2A). When bird distribution at the sink is positively associated with the
37 virus lineage movement, we consider the bird order distribution at the sink is correlated

18 with the virus lineage movement (Table S4.2; Figure 2A).

w 4.4 Animal mobility networks and their contribution to HPAIV
400 phylogeography

s The bird migration network (Figure 1C, D) was summarised by searching publicly avail-

w2 able migration data on Movebank. An edge between two locations in the network exists if
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any migration tracking record shows bird migration. The location-wise live poultry trade
values (Dataset 1) were summed up from country-wise import and export of the live
poultry recorded on United Nations Comtrade Database (comtrade.un.org/data/). We
accessed the total net weight and trade value from 1996 to 2016 of live poultry, including
fowls of the species Gallus domesticus, ducks, geese, turkeys and guinea fowls. Since
there are no accessible data of the within-country poultry trade in China, we adapted
the inferred poultry trade accessibility between provinces of China from a previous study
[142]. Based on the ratio of the inferred accessibility and the empirical trade value be-
tween Hong Kong SAR and the mainland of China, we scaled all the accessibility to the
trade value flows among Qinghai, North China and South China.

With the summarized seasonal-varying bird migration network, we statistically quan-
tified the contribution of wild bird migration to avian influenza virus dispersal. We
applied the generalized linear model (GLM) extended Bayesian phylogeography inference
[32] with the 1000 empirical trees as the input. The 11 categorized locations in the pre-
vious discrete trait phylogeography were still used. The epoch model [33] was used to
model the time heterogeneity of the contribution. To explain the contribution of the bird
migration and the respective seasonal migration, we also separated the network of spring
migration and that of the fall as two predictors for comparison (Figure S6). For each
clade and each predictor group, MCMC chains were run for 100 million generations with
burn-in of 10%, sampling every 10,000 steps. Similarly, we assessed the convergence of
the chains in Tracer v1.7 [134].
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Figure 1: (A) Maximum clade credibility (MCC) time-scaled phylogeny of clade 2.3.4.4 with
branches annotated with the inferred location. (B) Contributions of predictors to worldwide
diffusion of H5N1 clade 2.3.2.1 and clade 2.3.4.4 inferred from HA genes by GLM-extended
Bayesian phylogeographic inference with heterogeneous evolutionary processes through time.
Predictors in the model included bird migration network during (C) Northern Hemisphere
fall season and (D) Northern Hemisphere spring season, where directed non-weighted edges
represent the occurrence of bird migration based on empirical data, and (E) live poultry trade
network, where directed weighted edges represent poultry trade value. NChina/NC: North
China; SChina/SC: South China; SEA: South-East Asia; CA: Central Asia; QH: Qinghai; MO:
Mongolia; WA: Western Asia.
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Figure 2: (A) Probability density distribution of the virus lineage migration throughout the
year, between locations summarized from the discrete trait phylogeography of HPAIV H5 clade
2.3.4.4 and the Markov jump counts (Section 4.3). X axis: Virus lineage migration dates in a
year; labels on Y axis: origin region - destination region of the virus lineage migration. The
width of the violins represents the virus lineage migration probability density. Boxes around bird
photos show the statistically significant correlation of virus lineage movements and bird order
distribution at origin, destination or both regions. Bird species photos were obtained from the
Macaulay Library at the Cornell Lab of Ornithology (macaulaylibrary.org). The entries of the
photos are listed in Table S5. Non-breeding (blue), migration (yellow) and breeding (red) bird
annual cycle phases in general are shown in the south-north migration direction and in the north-
south migration direction. (B) Schematic diagram of cross-correlation analyses of virus lineage
movement between two locations (O: origin, D: destination) and the bird distribution probability
at each location. (C) Time scale of virus lineage movement, bird migration and local virus
transmission, including inter-species, inter-individual and environmental transmissions. The
grey arrows indicate the increase or decrease of the local bird population and the virus lineage
movement influx. (D) Local transmission of AIV includes inter-individual transmission within
a population, inter-species transmission within a bird community and potential environmental
transmission.
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« ¢ Data Availability Statement
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os information for Movebank bird tracking data. We also provide accession ID for GI-
os  SAID virus genomic data. All code scripts for analyzing data are provided. All data
o7 and scripts are available as a public project https://doi.org/10.17605/0SF.I0/7A2UK
ws on Open Science Framework and GitHub Repository https://github.com/kikiyang/
ooo HPAI_Bird_world.
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