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Abstract 23 

Discriminative traits are important in biodiversity and macroevolution, but extracting and representing 24 

these features from huge natural history collections using traditional methods can be challenging and 25 

time-consuming. To fully utilize the collections and their associated metadata, it is urgent now to increase 26 

the efficiency of automatic feature extraction and sample retrieval. We developed a Phenotype Encoding 27 

Network (PENet), a deep learning-based model that combines hashing methods to automatically extract 28 

and encode discriminative features into hash codes. We tested the performance of PENet on six datasets, 29 

including a newly constructed beetle dataset with six subfamilies and 6566 images, which covers more 30 

than 60% of the genera in the family Scarabaeidae. PENet showed excellent performance in feature 31 

extraction and image retrieval. Two visualization methods, t-SNE, and Grad-CAM, were used to evaluate 32 

the representation ability of the hash codes. Further, by using the hash codes generated from PENet, a 33 

phenetic distance tree was constructed based on the beetle dataset. The result indicated the hash codes 34 

could reveal the phenetic distances and relationships among categories to a certain extent. PENet 35 

provides an automatic way to extract and represent morphological discriminative features with higher 36 

efficiency, and the generated hash codes serve as a low-dimensional carrier of discriminative features 37 

and phenotypic distance information, allowing for broader applications in systematics and ecology. 38 

 39 

Keywords: deep learning, encoding, hash, discriminative features, feature-based retrieval 40 

 41 

 42 

Introduction 43 

Discriminative traits are of particular importance in biodiversity and macroevolution, as they 44 
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provide crucial information for species delimitation, systematics relationship assessment, and phenotypic 45 

evolutionary analysis (Ericson, 1997; Koehl, 1996; Wiens, 2001; Wiens & Servedio, 2000). Traditional 46 

methods to extract discriminative phenotypic traits are typically relatively subjective and rely on 47 

experiential expertise (Hawkins, 2014). Manual input is still required, even with quantitative methods 48 

available, such as morphometrics and geometric morphometrics (Ibacache et al., 2010; Rohlf & Marcus, 49 

1993). Besides extracting discriminative features, further utilizing these features to search for similar 50 

phenotypic individuals in a diverse range of natural resources can pose a big challenge for researchers, 51 

let alone non-experts. For example, searching for desired specimens with certain discriminative 52 

phenotypes in natural history museums can be challenging. 53 

Natural history collections and their associated metadata (e.g., dates, locations, climate) offer a 54 

valuable resource for researchers to undertake detailed analyses and address complex questions 55 

pertaining to ecology and evolution (Lister, 2011; Winker, 2004). However, a large percentage of 56 

specimens remain uncategorized and underutilized, hindering their full potential. To address this issue, 57 

recent efforts have focused on digitizing specimens, resulting in a vast collection of digital resources, 58 

including images, 3D scans, measurements, and more (Hedrick et al., 2020; Nelson & Ellis, 2019; Page 59 

et al., 2015). Therefore, on this basis, diversification of indexing methods can assist researchers in 60 

efficiently retrieving desired specimens from natural history collections. Feature-based searching is a 61 

promising method, particularly when combined with machine learning, whereby a database of digital 62 

features is constructed and computer algorithms are used to match these features, enabling researchers 63 

to effectively retrieve desired specimens from natural history collections (Bustos et al., 2005; Tagare et 64 

al., 1997; Vishraj et al., 2022).  65 

Recently, the rapid development of machine learning and deep learning has led to the emergence of 66 
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many effective feature extraction algorithms for biological features, enabling tasks such as species 67 

classification and feature segmentation (Christin et al., 2019; Høye et al., 2021; Xiong et al., 2021). 68 

However, the extracted feature vectors from digitized collections can be highly dimensional, which 69 

presents challenges for direct utilization in specimen retrieval. In computer science, hashing methods are 70 

commonly employed to handle complex, high-dimensional data and vectors by reducing their 71 

dimensionality to hash codes, while still preserving important information (Chi & Zhu, 2018; Knott, 72 

1975). And the hashing methods make processing and analysis more efficient, especially in tasks such as 73 

sample retrieval (Jinhui Tang et al., 2015). The hash code is composed of a certain length of 0/1 digits, 74 

for example, "11010011101011", where "1" can be regarded as representing a certain characteristic 75 

present in the image, and "0" represents their absence. As a result, combining deep learning models as 76 

feature extractors with hash codes as feature representations has the potential for faster retrieval of sample 77 

images (Luo et al., 2020). 78 

In this study, we propose an end-to-end phenotype encoding network with the backbone of the latest 79 

deep learning architecture Swin transformer (Liu et al., 2021), which can automatically extract high-80 

dimensional features from input images and convert them into hash codes. We here have applied six 81 

datasets to explore the application of hash codes in two aspects. First, we verified the ability of hash 82 

codes to retrieve specimens at a large scale in scenarios such as the natural history collections in six 83 

datasets (Beetle, Fungi, Butterfly, Flower, Bird, and Fused datasets), and demonstrated the application 84 

cases of using hash codes to retrieve specimens in simulated database. Next, to further explore the 85 

representation ability of hash codes, we demonstrate the representation ability of the hash code as a whole 86 

and each bit of the hash code using two visualization methods, respectively, indicating that hash codes 87 

are excellent carriers of features. Additionally, when converting discriminative features within the images 88 
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into hash codes, we effectively obtain the morphological distance matrix of these features. Therefore, we 89 

used the beetle dataset, which covers more than 60% of the genera in the six major subfamilies of 90 

Scarabaeidae, as an example to further investigate the application of hash codes generated by PENet. 91 

 92 

MATERIALS AND METHODS 93 

2.1 Datasets and data preprocess 94 

Beetle dataset This dataset contains 6566 images (Zhao et al., 2023), all of which are the dorsal 95 

views of the beetles in the family Scarabaeidae. Specifically, it consists of six subfamilies under the 96 

Scarabaeidae, including Aphodiinae (703 images), Cetoniinae (1660 images), Dynastinae (404 images), 97 

Melolonthinae (1235 images), Rutelinae (1167 images), and Scarabaeinae (1397 images). Additionally, 98 

this data set contains more than 60% of the genera (Total ~2175 genera) in these six subfamilies 99 

(https://www.catalogueoflife.org/?taxonKey=6278C). The images were collected from a variety of 100 

sources, including photographs taken in major museum collections around the world and images 101 

published in monographs and literature (Table S1). To ensure the reliability of the data, all images were 102 

confirmed at the subfamily level via taxonomists; on this basis, most images were identified at the species 103 

level. Thus, the beetle dataset was used to test the performance of the PENet model, while also being 104 

employed to explore the application of hash codes to systematics. 105 

Fungi dataset This dataset is derived from the Danish Fungi 2020 (Picek et al., 2022), which 106 

contains a total of 295,938 images and 1604 species, from which we selected 20 species as experimental 107 

data. Most of the images in this dataset are wild fungi, with complex backgrounds that contain not only 108 

fungi but also other elements. This dataset was used to test the performance of our model in handling 109 

wild data.  110 
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Butterfly dataset The Butterflies dataset is a publicly available dataset from the Web (Gerald, 111 

2022b). It consists of 75 species with 10,035 images. 112 

Flower dataset The flower dataset is a publicly available dataset for computer vision-related tasks 113 

that was released by Oxford University in 2008 (Nilsback & Zisserman, 2008). It contains a total of 102 114 

species. 115 

Bird dataset This dataset includes 400 species with a total of 62,388 images(Gerald, 2022a). It 116 

comes from the same source as the butterfly dataset, but with a larger number of species and can carry 117 

out further validation. 118 

Fused dataset To validate the performance of the PENet in dealing with more complex multielement 119 

datasets, we fuse the five datasets into a fused dataset. 120 

To ensure that the images from various sources are suitable for model training, we preprocessed the 121 

images through several steps. The images were first resized to 224×224. And during the resizing process, 122 

a solid color filling strategy was used to prevent image deformation and ensure that all images have the 123 

same length and width. Then, the datasets were divided in a ratio of 7:2:1, which means that 70% of the 124 

data is used for training, 20% for validation, and 10% for testing. This division ensures that the model is 125 

trained on a sufficiently large amount of data while also having enough data for validation and testing to 126 

assess its performance. 127 

 128 
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 129 

FIGURE 1 Illustrations of the PENet. (a) The PENet pipeline. (b) The architecture of the Swin 130 

transformer. (c) Hashing layer map feature vectors to hash codes. 131 

 132 

2.2 PENet and model training 133 

In this study, we propose a new network, called the phenotype encoding network (PENet), 134 

developed through deep learning combined with hash codes, which can represent extracted features by a 135 

series of binary numbers (Figure 1a). We chose the Swin transformer (Liu et al., 2021) as the basic 136 

backbone of the network. 137 

Currently, the Swin transformer is considered a state-of-the-art deep learning model, and its 138 

architecture is distinctive compared to those of other transformer-based models in the field of computer 139 

vision (Dosovitskiy et al., 2021; Han et al., 2023). The Swin transformer adopts a hierarchical design, 140 

similar to convolutional neural networks (CNNs), with the deepening of the network layers, the receptive 141 

field of nodes is also constantly expanding. As illustrated in figure. 1b, the Swin transformer consisted 142 

of four stages, each including a Patch Merging operation (except for the first stage, which was a linear 143 
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layer) and multiple Swin transformer blocks. The role of the Patch Merging module is to reduce the 144 

resolution of the input feature graph by downsampling at the beginning of each stage. And after each 145 

stage, the resolution becomes half, and the number of channels doubles. The Swin transformer block in 146 

each stage is mainly composed of two Window Attention modules, which adopt the Window based Multi-147 

head Self Attention (W-MSA) method and the Shifted Window based Multi-head Self Attention (SW-148 

MSA) method, respectively. And these two methods can reduce the computational complexity and take 149 

into account the association between windows. 150 

In PENet, the Swin transformer is used to perform feature extraction on the input images. 151 

Specifically, we adjust the input dimension of the model to 224×224×3, where 224×224 is the length and 152 

width of the input image, and three is the number of channels. First, each input image was divided into 153 

56×56 patches, where each patch is 4×4, ensuring that there is no intersection between patches. Second, 154 

embedding was performed on each patch to encode it into a 96-dimensional vector. These generated 155 

vectors were subjected to linear treatment and then successively input into Swin transformer blocks for 156 

feature extraction. Third, the extracted features were passed through the global average pooling layer to 157 

generate a 768×1-dimensional vector containing the high-dimensional features of the input image. 158 

Finally, we added a hash layer at the end of the Swin transformer to map the extracted feature vectors to 159 

hash codes of variable length, and the length of hash codes can be set. In summary, the PENet is an end-160 

to-end model that takes images as input and produces binary hash codes as output. 161 

During model training, adaptive moment estimation with weight decay (AdamW) was selected as 162 

the optimizer (Loshchilov & Hutter, 2019), and the loss function proposed by Liu et al. was selected (Liu 163 

et al., 2016). The central concept of this loss function is to encourage similar images to have similar hash 164 

codes and dissimilar images to have different hash codes. Based on this loss function, the model is trained 165 
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by randomly selecting pairs of images as input. If two images have similar features, their hash codes 166 

keep close to each other; otherwise, they are pushed far away. This approach ensures that the model can 167 

learn the similarities and differences between different data, and accurately map high-dimensional 168 

features to the hash codes. 169 

 170 

2.3 Validation of the extraction capability of the Swin transformer 171 

In computer vision models, accuracy in classification tasks is an intuitive measure of their feature 172 

extraction capabilities. The formula for accuracy is as follows: 173 

Accuracy =
Number of correct predictions
Total number of predictions

 174 

Therefore, to evaluate the feature extraction ability of the Swin transformer, we tested its classification 175 

accuracy on two datasets with significantly different categories: beetle dataset (6 categories) and bird 176 

dataset (400 categories). In this case, the parameters were optimized in the training set and the accuracy 177 

was calculated in the validation set. We also compared its performance with the two most representative 178 

convolutional neural networks, AlexNet (Krizhevsky et al., 2017) and ResNet (He et al., 2016). During 179 

the training process, all three models were trained with the same configuration. To further improve the 180 

speed of model convergence, we loaded weights that were pre-trained on ImageNet and trained for 50 181 

epochs with a batch size of 64. And we use data augmentation strategies including random rotation, 182 

random flipping, and random center cropping in the training process. Additionally, the confusion matrix 183 

is a commonly used tool for evaluating the performance of classification models (Sokolova & Lapalme, 184 

2009), as it provides insight into the model's classification performance across different categories. 185 

Therefore, we performed a confusion matrix analysis on the test set that had not been involved in the 186 

training process, to further clarify the ability of different models to differentiate each category in the 187 
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dataset. 188 

 189 

2.4 Fast retrieval of specimen images 190 

To demonstrate the ability of hash codes to retrieve specimens, we tested six datasets (Beetle, Fungi, 191 

Butterfly, Flower, Bird, and Fused dataset) using hash codes generated by PENet. The training set was 192 

used to adjust the model weight parameters, while the test set and the validation set were used to evaluate 193 

the performance of the model. We did this by computing the Hamming distance between the test set hash 194 

codes and the validation set hash codes. Here, the Hamming distance indicated the number of different 195 

characters in the corresponding positions of two equal strings, that is, the number of different bits in the 196 

two hash codes (Bookstein et al., 2002). The Hamming distance between two hash codes, x and y, is 197 

denoted as:  198 

𝐷𝐷(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑖𝑖 ⊕ 𝑦𝑦𝑖𝑖 199 

In this formula, i = 0, 1, ..., n - 1, x and y are hash codes, n is the length of the hash code, and ⊕ denotes 200 

the exclusive or (XOR) operation.  201 

To further evaluate the model's retrieval capability, we used the mean Average Precision (mAP) as 202 

a metric, which measures the quality of retrieval results and the accuracy of ranking (Luo et al., 2020). 203 

The mAP is calculated as the average of the average precision of each query over all queries, which is 204 

calculated as: 205 

𝑚𝑚𝑚𝑚𝑚𝑚 =
∑ 𝐴𝐴𝐴𝐴(𝑞𝑞)𝑄𝑄
𝑞𝑞=1

𝑄𝑄
 206 

where Q is the number of queries, and the Average Precision is calculated as: 207 

𝐴𝐴𝐴𝐴 =
∑ 𝑃𝑃(𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ⋅ 𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)

𝑁𝑁
 208 

where: 𝑛𝑛 is the total number of retrieved items, 𝑃𝑃(𝑘𝑘) is the precision at rank 𝑘𝑘, 𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) is an indicator 209 
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function that is 1 if the item at rank 𝑘𝑘 is relevant, and 0 otherwise, 𝑁𝑁 is the total number of relevant 210 

items in the dataset.  211 

Specifically, for each dataset, every hash code generated from the test set served as a query. During 212 

the retrieval, the query hash code was compared with every hash code in the validation set, and the 213 

Hamming distance was calculated for each comparison. The images in the validation set were then sorted 214 

according to their distance from the query, with the most similar images appearing at the top of the 215 

ranking. The mean average precision (mAP) was then calculated based on the sorted results. The size of 216 

the test set is equivalent to the number of queries. To achieve optimal performance for various hash-code 217 

lengths, we trained PENet each time the hash-code length was modified. The training was carried out for 218 

45 epochs, and we saved the model parameters that achieved the best performance for each hash code 219 

length.  220 

To further demonstrate the effectiveness of hash codes in retrieval and storage, we first selected 221 

1000 images from the fused dataset that were not used in the training process to serve as a simulated 222 

database and converted them into hash codes via the PENet. Next, we selected one untrained image from 223 

each of the five datasets (Beetle, Fungi, Butterfly, Flower, and Bird datasets) and converted them into 224 

hash codes. Finally, the hash code generated in the previous step was used as a query to retrieve the 225 

simulated database and return the five most similar images among them. 226 

 227 

2.5 Verification and visualization of hash codes representation capability 228 

To demonstrate the overall representation capability of the hash codes, we applied the t-distribution 229 

stochastic neighbor embedding algorithm (t-SNE) to visualize the generated hash codes, which is 230 

currently a more general method for downscaling and visualization in the field of machine learning 231 
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(Laurens & Hinton, 2008). The t-SNE algorithm is a non-linear dimensionality reduction method that 232 

can reduce high-dimensional data points to two or three dimensions while preserving the original data 233 

structure. We have chosen to use 64-bit hash codes for t-SNE visualization, with each hash code 234 

representing a 64-dimensional feature vector. For datasets other than the beetle dataset, that contain more 235 

categories, we randomly select 10 categories as samples. 236 

The feature extraction process in deep learning has long been considered to have relatively low 237 

interpretability. As a result, some methods have emerged to attempt to visualize the extracted features, 238 

among which the gradient-weighted class activation mapping (Grad-CAM) algorithm are more 239 

commonly used (Selvaraju et al., 2020). Grad-CAM generates heatmaps by calculating feature map 240 

gradients and weighting them with average pooling, it can help to understand which features are utilized 241 

by the network. Here, a total of 30 species of beetles in six subfamilies are selected from the beetle 242 

dataset as test data for illustration. We used PENet to convert these beetle images into 64-bit hash codes 243 

and generated heatmaps using the Grad-CAM algorithm to display each bit of the hash code features. 244 

 245 

2.6 Constructing phenetic distance tree based on hash codes 246 

As the hash codes contain the discriminative features extracted by the model and the distance of 247 

morphological differences among different categories, the generated hash codes from different taxa could 248 

form a morphological distance matrix. Here, we selected two species from each subfamily of the beetle 249 

dataset to generate 64-bit hash codes using PENet (Table S2). Based on these hash codes, we constructed 250 

a phenetic distance tree, with one species of Staphylinidae selected as the outgroup. The hash code of the 251 

outgroup was also generated using PENet. These selected species did not participate in the PENet training 252 

process to avoid overfitting. We used Nona (Goloboff, 1993) run via Winclada (Nixon, 1999) to perform 253 
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heuristic searches to find the most parsimonious trees (MPT). MPTs were found with a heuristic search 254 

using the commands “hold1000000”, “mult*1000”, “hold/10”, “mult*max*”. 255 

 256 

Result 257 

3.1 Identification performance 258 

3.1.1 Beetle dataset 259 

After 50 rounds of training, all three models, namely AlexNet, ResNet, and Swin transformer, 260 

gradually converged, with respective training times of 101, 123, and 126 minutes (Figure S1). On the 261 

validation set of the beetle dataset, their highest accuracy was 90.58%, 94.98%, and 97.8%, respectively 262 

(Figure 2a). The confusion matrix analysis revealed that the Swin transformer outperformed the other 263 

two models in the performance of each subfamily, with accuracy above 95% for every subfamily (Figure 264 

2b). However, the other two models mainly had prediction errors concentrated in the subfamilies 265 

Dynastinae, Melolonthinae, and Rutelinae. In particular, their prediction accuracy for the subfamily 266 

Dynastinae was relatively poor, with AlexNet at 78% and ResNet at 90%, compared to the accuracy of 267 

other subfamilies. 268 

 269 
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 270 

FIGURE 2 Comparison of the classification performance of AlexNet, ResNet, and Swin transformer. (a) 271 

The highest accuracy of the three models on the validation set. (b-d) Confusion matrix analysis of the 272 

three models on the beetle dataset. 273 

 274 

3.1.2 Bird dataset 275 

On the bird dataset, AlexNet, ResNet, and Swin transformer also converged, with training times of 276 

218, 487, and 478 minutes, respectively. The relatively simple network structure of AlexNet led to a 277 

shorter training time but a lower accuracy of only 88.5%, compared to ResNet's 96.05% and Swin 278 

transformer's 98.6% (Figure 2a). In confusion matrix analysis, Swin transformer still performs the best, 279 

with only 25 mispredicted samples out of 2000 (Figure S4). Therefore, on these two datasets, Swin 280 

transformer outperforms the other two models in both accuracy and confusion matrix analysis. 281 

 282 

3.2 Retrieval capability of hash codes 283 
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Figure 3 presents the validation results for hash codes of varying lengths on six datasets, as evaluated 284 

by mAP. The highest mAP value on the beetle dataset occurs with a hash code length of 48, reaching 285 

98.2%. For different datasets, the mAP values of hash codes retrieval are somewhat different. For the 286 

Fungi, Butterfly, Flower, Bird, and Fused datasets, the highest mAP values are achieved with hash code 287 

lengths of 128, reaching 88.9%, 99%, 95.4%, 97.6%, and 94.8%, respectively (Figure. 3a-e). Among 288 

them, we observed that the highest mAP value for the Fungi dataset with the complex backgrounds was 289 

88.9%, indicating suggesting that the background of the dataset can have an impact on the retrieval 290 

accuracy of hash codes to some extent. Although the mAP value of the Fungi dataset is relatively low, its 291 

impact on the mAP value of the Fused dataset is weakened because mAP takes into account the average 292 

precision of all categories. 293 

 294 

 295 

FIGURE 3 Histograms obtained under different hash code bits with their corresponding mAPs. a-e 296 

correspond to the beetle, fungi, butterfly, flower, and bird datasets, respectively, and f is fused from these 297 

five datasets. The number of categories in each dataset is parentheses after each heading. 298 

 299 

Across all datasets, the mAP values exhibit a plateau pattern where they gradually increase as the 300 
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length of hash codes increases, and then reach a stable level. This suggests that the length of the required 301 

hash code does not increase infinitely as the number of categories increases. In the six datasets analyzed 302 

in this study, it was found that once the hash code length exceeded 64 bits, the changes in mAP values 303 

became negligible. Therefore, in the simulated database scenario, we use 64-bit hash codes as a 304 

demonstration. 305 

In the demonstration of the simulated database, after retrieving data from a simulated database using 306 

hash codes, the top five results all correspond to the same category as the hash code used for the retrieval 307 

(Figure S6). Since none of the images was involved in training, and no additional label information was 308 

provided during the retrieval process, this demonstrates that PENet extracted discriminative features 309 

between different categories. Even if we don’t have knowledge about the query image, the hash code can 310 

match individuals in the database with similar morphological features to the query image. Therefore, we 311 

can quickly retrieve the specimens based on morphological features once we generate a library of 312 

corresponding hash codes from existing digitized specimens. In this way, using hash codes for 313 

retrieval significantly improves efficiency and reduces storage space requirements. Taking the simulated 314 

database we built as an example, even if all the images are compressed to approximately 220×220 pixels, 315 

the storage space required for their images is still approximately 8000 times what is required for the hash 316 

codes. 317 

 318 

3.3 Visualization of hash codes 319 

After reducing the dimensionality of the hash code, which contains 64 feature values, using t-SNE, 320 

we can observe that groups of categories with similar features are still effectively clustered together 321 

(Figure S5a-e). This indicates that the hash codes carry sufficient discriminative features and provide a 322 
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good representation of them, even on a bird dataset containing 400 categories, where intraclass and 323 

interclass distances are well distinguished. Furthermore, the visualization of discriminative features 324 

corresponding to each bit of the hash code also supports this view. For the 30 selected species, 64 325 

heatmaps were generated for each, one of these species was displayed in Figure 4, and the rest of the 326 

results are detailed in supporting information. Here, the areas with the highest intensities in the heatmaps 327 

of status 1 in each bit of hash code cover the features extracted from the PENet, Status 0 means that these 328 

samples do not contain the features extracted in these hash code bits. After studying these heatmaps, it is 329 

further indicated that some bits of hash codes pointing to the real discriminative features which have 330 

been used in traditional ways, for example, bit 1: legs, bit 16: the shape of the prothorax, bit 39: the center 331 

of the body, and bit 44: the end of the abdomen. 332 

 333 

FIGURE 4 A 64-bit hash code is generated from a specimen by the PENet, where each bit 334 

corresponds to some features. The arrangement order of each bit in the hash code is from left to 335 

right, then from top to bottom. 336 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.21.541653doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.21.541653
http://creativecommons.org/licenses/by-nc-nd/4.0/


 337 

3.4 Phenetic distance tree based on hash codes 338 

We utilized PENet to convert 13 additional images of non-trained beetles into hash codes 339 

(Table S2). The hash codes of images belonging to the same category exhibited a similar pattern, 340 

whereas those of different categories showed some distinctions. For image that falls outside of the 341 

known categories (Staphylinidae), which can be considered out-of-distribution, its hash code differ 342 

from those of the known categories. To further investigate the value of hash codes in systematics, 343 

we constructed a phenetic distance tree. The maximum parsimony analysis of the 64 hash codes 344 

yields two most parsimonious trees (tree length=100 steps, CI=0.55, RI=0.72). “Morphological 345 

characters” (Hash codes) were optimized with parsimony on the first of the two most parsimonious 346 

trees (Figure 5), showing only “unambiguous” changes. Black circles indicate “nonhomoplasious” 347 

changes, and white circles indicate changes in “homoplasious characters”. The number above the 348 

branch represents “hash code” numbers, below branch are “hash code” status (0 or 1). 349 

From the topological structure of the phenetic tree constructed by hash codes, it is shown that 350 

there are two basic lineages within the family of Scarabaeidae: coprophagous lineage (Scarabaeinae 351 

+Aphodiinae) and phytophagous lineage (Cetoniinae+Melolonthinae+Rutelinae+Dynastine), 352 

within phytophagous lineage Melolonthinae, Rutelinae, and Dynastine are cluster together, and the 353 

Dynastine and Rutelinae are sister groups. The topological structure of the phenetic tree constructed 354 

by hash codes similar to the phylogenetic trees revealed from molecular and morphological data, 355 

indicating that the hash codes contain additional distance information (Figure 5). 356 
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 357 

FIGURE 5 (a) Phenetic distance tree based on hash codes. Two species were selected for each subfamily 358 

with a hash code length of 64. The family Staphylinidae was selected as outgroup. (b) The simplified 359 

relationships among six subfamilies revealed by existing phylogenetic trees (Ahrens et al., 2014; Lu et 360 

al., 2023; Meinecke, 1975). 361 

 362 

Discussion 363 

The implementation of automated and efficient discriminative feature extraction, along with 364 

mathematical encoding of extracted features, will further accelerate the development of research 365 

that relies on the dependence of morphological features. Here, we developed a novel deep learning 366 

model called PENet, which can rapidly extract discriminative features and represent them efficiently 367 

using hash codes. Our study has shown that the hash codes generated by PENet are an efficient 368 

carrier of the extracted discriminative features, as they encode these features as sequences. This 369 

encoding enables fast retrieval performance and facilitates comparisons and matches with minimal 370 

computational resources. In addition, we have also explored the potential application of hash codes 371 

in systematics and discovered their potential for further applications. 372 
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The Swin transformer, as the feature extractor of PENet, outperforms traditional convolutional 373 

neural networks in its ability to extract discriminative features. This can be seen in the confusion 374 

matrix analysis of the beetle dataset, where the Swin transformer performs well on each subfamily 375 

(Figure. 2d). In contrast, AlexNet and ResNet show imbalanced performance on each subfamily, 376 

with the main prediction errors occurring in Dynastinae and Melolonthinae. For Dynastinae, which 377 

had the smallest number of images, the imbalanced data distribution may have been a contributing 378 

factor to the poor performance of the AlexNet and ResNet models. For Melolonthinae, as the largest 379 

subfamily with numerous species (~630 genera), there may be more extensive variations in the 380 

morphological features of its species, which could have impacted the performance of the models. 381 

Unlike AlexNet and ResNet, the Swin transformer excels in handling data imbalance and complex 382 

feature data. This may be attributed to its unique architecture, which segments images into small 383 

tokens to extract features and incorporates self-attention mechanisms to capture the 384 

interdependencies between different tokens, allowing for more effective feature extraction and 385 

weighting (Liu et al., 2021; Vaswani et al., 2017). Furthermore, some studies have shown that, unlike 386 

convolutional neural networks which focus on extracting texture information from images, 387 

transformer-based models place greater emphasis on extracting shape information from the global 388 

image (Baker et al., 2018; Tuli et al., 2021). Therefore, on the whole, Swin transformer has greater 389 

potential for extracting discriminative features, and it also endows PENet with improved 390 

performance. 391 

The hash codes generated by PENet serve as carriers of the features extracted from the images 392 

and have been shown to possess strong representational power. The results of retrieval tests 393 

conducted on six datasets demonstrate that these hash codes are effective in representing 394 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.21.541653doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.21.541653
http://creativecommons.org/licenses/by-nc-nd/4.0/


discriminative information and enabling the retrieval of similar categories, even when the 395 

dimensionality of the data has been reduced. Furthermore, among the retrieval results of the same 396 

category based on the hash codes, the images that rank higher are more similar to the query image 397 

in terms of their features (Figure S6). 398 

Natural history collections serve as a critical resource for studying the morphological traits of 399 

various species, and the digitization of these collections has significantly improved research in these 400 

fields (Lister, 2011; Page et al., 2015). Furthermore, with the application of machine learning and 401 

deep learning technologies, the utilization of these collections has been further optimized, leading 402 

to remarkable results in tasks such as rapid specimen identification (Younis et al., 2018), collections 403 

label information extraction (Owen et al., 2020), and functional traits measurement (Weeks et al., 404 

2023). However, it is still challenging to quickly obtain specimens with similar morphology from 405 

large natural history collections. Our newly proposed deep learning model, PENet, can help address 406 

this issue. By using PENet to extract the morphological features of digital specimen images and 407 

converting these features into hash codes, we can quickly retrieve specimens with similar 408 

morphological characteristics. This approach also proves beneficial in cases where the taxonomic 409 

information of the specimens in question is uncertain. As hash codes are merely binary encodings, 410 

they do not add significant storage costs to digital collections. Furthermore, under ideal conditions, 411 

multiple natural history museums can share a set of hash codes as data accumulate. 412 

Furthermore, the application of PENet is not limited to just natural history collections, but is 413 

suitable for any scenario that requires large-scale matching of morphological information, such as 414 

biodiversity monitoring. With the increasing deployment of infrared cameras in the wild, a vast 415 

amount of new data is generated every day (Burton et al., 2015). Relying solely on manual labor to 416 
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search for target species in such a massive dataset can be challenging(Schneider et al., 2019). To 417 

address this, PENet can be used to train for target species, transforming all images into hash codes 418 

with feature information when searching for the target species. By comparing these hash codes with 419 

the target species' hash codes, retrieval can be achieved in large-scale monitoring data. Additionally, 420 

with the aid of the corresponding algorithms, multiple ecological factors such as biodiversity and 421 

abundance can be obtained, promoting relevant ecological research. 422 

In addition to enabling fast specimen retrieval, hash codes also have the potential to be further 423 

applied in systematics. Unlike most existing species classification models, PENet takes into account 424 

the distance relationship between different categories during the training process of generating hash 425 

codes. Therefore, the hash codes not only represent the extracted discriminative features but also 426 

carry distance information between different categories. Tests conducted on six subfamilies of the 427 

Scarabaeidae demonstrated that hash codes can be used to generate a phenetic distance tree. When 428 

compared with the existing phylogenetic tree, the phenetic distance tree showed some similarities 429 

in the division of certain major branches: two basic lineages, sister group relationship between 430 

Rutelinae and Dynastine (Ahrens et al., 2014; Lu et al., 2023; Mckenna et al., 2015). And the 431 

position of Cetoniinae is similar to some morphological-based phylogenetic results, which further 432 

indicate that the hash codes could reveal the phenetic distances and relationships among categories 433 

to a certain extent (Howden, 1982; Meinecke, 1975). However, our experiment was only preliminary 434 

as we only used the dorsal view, which was not sufficient to cover all features of the test species. In 435 

future research, we will continue to supplement the dataset and use methods such as multi-angle 436 

photography and microscopic photography to obtain comprehensive morphological information and 437 

further validate the ability of the hash codes. 438 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.21.541653doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.21.541653
http://creativecommons.org/licenses/by-nc-nd/4.0/


There are still some issues to consider to better implement PENet in practice. Since the length 439 

of the hash code and the specificity of the training data affect the achieved retrieval performance, 440 

the optimal hash code length should be determined according to the actual needs of different fields 441 

and the training data should be carefully selected to minimize the influence of the hash code length 442 

on the performance of the PENet. Additionally, although the features extracted by PENet are similar 443 

to those perceived by experts to a large extent, additional confirmation should be required to confirm 444 

whether the extracted features match the phenotypic information to be studied. 445 

 446 

Conclusion 447 

Overall, our newly developed end-to-end PENet model demonstrates excellent performance in 448 

feature extraction and fast retrieval, with the potential for broader applications in systematics. Hash 449 

codes carry both discriminative features and phenetic distance information while maintaining a low-450 

dimensional representation, allowing efficient morphological information retrieval with a minimal 451 

storage cost. PENet provides an effective solution for the fast retrieval of natural history collections. 452 

Furthermore, it can be further applied to explore morphological features, supporting research on 453 

macro-morphological evolution and mimicry. In future research, we will continue to explore the 454 

extended applications of hash codes and consider unsupervised training methods that rely solely on 455 

morphological distance information to train PENet, further increasing its scope of applications.  456 
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SUPPLEMENTARY TABLE 1 Sources of the datasets. 634 

Datasets  Sources 
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Beetle dataset 

Natural History Museums: IZAS (Institute of Zoology, Chinese Academy 
of Sciences), NMPC (National Museum, Prague, Czech Republic), MNHN 
(Museum National d’Histoire Naturelle, Paris, France), NHML (The 
Natural History Museum, London, U.K.), USNM (United States National 
Museum of Natural History, Smithsonian Institution, Washington, D.C., 
U.S.A.) 
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S. -I. Ueno, Y. Kubosawa, M. Sato. The Coleoptera of Japan in Color Vol. II 
(Hoikusha Publishing Co., Ltd. Tokyo; 1985). 
Y. Kurosawa, S. Hisamatsu, H. Sasaji. The Coleoptera of Japan in Color 
Vol. III (Hoikusha Publishing Co., Ltd. Tokyo; 1985). 
M. Hayashi, K. Morimoto, S. Kimoto. The Coleoptera of Japan in Color 
Vol. IV (Hoikusha Publishing Co., Ltd. Tokyo; 1984). 
K. Sakai, S. Nagai. The Cetoniine Beetles of the World (Mushi-Sha, Tokyo; 
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Arnett R.H., Jr., M. C. Thomas, P. E. Skelley, J. H. Frank American Beetles, 
Volume II: Polyphaga: Scarabaeoidea through Curculionoidea (CRC Press, 
Florida; 2002). 
Website： 
Beetles (Coleoptera) and coleopterists 
(http://www.zin.ru/Animalia/Coleoptera/eng/index.html) 

Fungi dataset https://sites.google.com/ view/danish-fungi-dataset 
Butterfly dataset https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species 

Bird dataset https://www.kaggle.com/datasets/gpiosenka/100-bird-species 
Flower dataset https://www.robots.ox.ac.uk/~vgg/data/flowers/102/ 

 635 

SUPPLEMENTARY TABLE 2 The species used to build the phenetic tree and the corresponding 636 
hash codes. Among them, Ataenius australasiae and Phaeaphodius kiulungensis belong to the 637 
subfamily Aphodiinae, Euselates moupinensis and Glycyphana stemma belong to the subfamily 638 
Cetoniinae, Allomyrina dichotoma and Eupatorus gracilicornis belong to the subfamily Dynastinae, 639 
Eotrichia titanis and Holotrichia ovata belong to the subfamily Melolonthinae, Anomala coxalis 640 
and Anomala ebenina belong to the subfamily Rutelinae, Microcopris propinquus and Onitis 641 
intermedius belong to the subfamily Scarabaeinae. 642 

Species Hash codes 
Outgroup 1011100010111000011111101000000010001101110001010010010000010000 
Ataenius Australasia 1111100011110010011101101111011110101101110111010010010000010000 
Phaeaphodius kiulungensis 1111100011110010011101101111011110011101110111010011010000010000 
Euselates moupinensis 1011100111011000000110001010001010011001101000111110100010011010 
Glycyphana stemma 1011100111011000001101101000001010011000101000011110100010011010 
Allomyrina dichotoma 1010111111111100010101111100011110100010100001000111100001011001 
Eupatorus gracilicornis 1100011111111000010100001100010110100011110001000111100001011001 
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Eotrichia titanis 1000001111001110101110111000010000101111010000010011100000010111 
Holotrichia ovata 1000001111011110000110111000010000101111010000010011100000010111 
Anomala coxalis  1100001111111000111100001000000110000011110001011100010011001001 
Anomala ebenina  1100001111111000111100001000000110000011110001011100010011001001 
Microcopris propinquus 1111100011110011011101101001000110001101011001010010010000010000 
Onitis intermedius 1111100011110111011101101001000110001101011001010010010000010000 

 643 

 644 

SUPPLEMENTARY FIGURE 1 Classification accuracy of AlexNet, ResNet, and 645 

Swin transformer in the validation set of beetles and birds. 646 

 647 
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 648 

SUPPLEMENTARY FIGURE 2 Confusion matrix analysis of AlexNet on the bird 649 

dataset. 650 

 651 
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 652 

SUPPLEMENTARY FIGURE 3 Confusion matrix analysis of ResNet on the bird 653 

dataset. 654 
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 656 

SUPPLEMENTARY FIGURE 4 Confusion matrix analysis of Swin transformer on 657 

the bird dataset. 658 
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 660 

SUPPLEMENTARY FIGURE 5 Scatter plots of 64-bit hash codes as feature data 661 

after performing t-SNE dimensionality reduction, where (a-e) are obtained by 662 

randomly drawing 10 classes from the corresponding dataset. 663 

 664 

 665 

SUPPLEMENTARY FIGURE 6 Retrieval results with hash codes as indexes. For 666 

each data set, one image is randomly selected and used as an index to retrieve the top 667 
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five images with the highest similarity to it in the simulated database. 668 
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