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23 Abstract

24 Discriminative traits are important in biodiversity and macroevolution, but extracting and representing

25 these features from huge natural history collections using traditional methods can be challenging and

26  time-consuming. To fully utilize the collections and their associated metadata, it is urgent now to increase

27  the efficiency of automatic feature extraction and sample retrieval. We developed a Phenotype Encoding

28  Network (PENet), a deep learning-based model that combines hashing methods to automatically extract

29 and encode discriminative features into hash codes. We tested the performance of PENet on six datasets,

30  including a newly constructed beetle dataset with six subfamilies and 6566 images, which covers more

31 than 60% of the genera in the family Scarabaeidae. PENet showed excellent performance in feature

32 extraction and image retrieval. Two visualization methods, t-SNE, and Grad-CAM, were used to evaluate

33 the representation ability of the hash codes. Further, by using the hash codes generated from PENet, a

34 phenetic distance tree was constructed based on the beetle dataset. The result indicated the hash codes

35  could reveal the phenetic distances and relationships among categories to a certain extent. PENet

36 provides an automatic way to extract and represent morphological discriminative features with higher

37 efficiency, and the generated hash codes serve as a low-dimensional carrier of discriminative features

38  and phenotypic distance information, allowing for broader applications in systematics and ecology.

39

40 Keywords: deep learning, encoding, hash, discriminative features, feature-based retrieval

41

42

43 Introduction

44 Discriminative traits are of particular importance in biodiversity and macroevolution, as they
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45 provide crucial information for species delimitation, systematics relationship assessment, and phenotypic

46 evolutionary analysis (Ericson, 1997; Koehl, 1996; Wiens, 2001; Wiens & Servedio, 2000). Traditional

a7 methods to extract discriminative phenotypic traits are typically relatively subjective and rely on

43 experiential expertise (Hawkins, 2014). Manual input is still required, even with quantitative methods

49  available, such as morphometrics and geometric morphometrics (Ibacache et al., 2010; Rohlf & Marcus,

50 1993). Besides extracting discriminative features, further utilizing these features to search for similar

51 phenotypic individuals in a diverse range of natural resources can pose a big challenge for researchers,

52 let alone non-experts. For example, searching for desired specimens with certain discriminative

53 phenotypes in natural history museums can be challenging.

54 Natural history collections and their associated metadata (e.g., dates, locations, climate) offer a

55  valuable resource for researchers to undertake detailed analyses and address complex questions

56 pertaining to ecology and evolution (Lister, 2011; Winker, 2004). However, a large percentage of

57 specimens remain uncategorized and underutilized, hindering their full potential. To address this issue,

58 recent efforts have focused on digitizing specimens, resulting in a vast collection of digital resources,

59 including images, 3D scans, measurements, and more (Hedrick et al., 2020; Nelson & Ellis, 2019; Page

60 et al., 2015). Therefore, on this basis, diversification of indexing methods can assist researchers in

61 efficiently retrieving desired specimens from natural history collections. Feature-based searching is a

62 promising method, particularly when combined with machine learning, whereby a database of digital

63 features is constructed and computer algorithms are used to match these features, enabling researchers

64 to effectively retrieve desired specimens from natural history collections (Bustos et al., 2005; Tagare et

65  al., 1997; Vishraj et al., 2022).

66 Recently, the rapid development of machine learning and deep learning has led to the emergence of
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67  many effective feature extraction algorithms for biological features, enabling tasks such as species

68 classification and feature segmentation (Christin et al., 2019; Haye et al., 2021; Xiong et al., 2021).

69 However, the extracted feature vectors from digitized collections can be highly dimensional, which

70 presents challenges for direct utilization in specimen retrieval. In computer science, hashing methods are

71 commonly employed to handle complex, high-dimensional data and vectors by reducing their

72  dimensionality to hash codes, while still preserving important information (Chi & Zhu, 2018; Knott,

73 1975). And the hashing methods make processing and analysis more efficient, especially in tasks such as

74 sample retrieval (Jinhui Tang et al., 2015). The hash code is composed of a certain length of 0/1 digits,

75 for example, "11010011101011", where "1" can be regarded as representing a certain characteristic

76  present in the image, and "0" represents their absence. As a result, combining deep learning models as

77 feature extractors with hash codes as feature representations has the potential for faster retrieval of sample

78  images (Luo et al., 2020).

79 In this study, we propose an end-to-end phenotype encoding network with the backbone of the latest

80 deep learning architecture Swin transformer (Liu et al., 2021), which can automatically extract high-

81 dimensional features from input images and convert them into hash codes. We here have applied six

82 datasets to explore the application of hash codes in two aspects. First, we verified the ability of hash

83 codes to retrieve specimens at a large scale in scenarios such as the natural history collections in six

84 datasets (Beetle, Fungi, Butterfly, Flower, Bird, and Fused datasets), and demonstrated the application

85 cases of using hash codes to retrieve specimens in simulated database. Next, to further explore the

86  representation ability of hash codes, we demonstrate the representation ability of the hash code as a whole

87 and each bit of the hash code using two visualization methods, respectively, indicating that hash codes

88 are excellent carriers of features. Additionally, when converting discriminative features within the images
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89  into hash codes, we effectively obtain the morphological distance matrix of these features. Therefore, we

90  wused the beetle dataset, which covers more than 60% of the genera in the six major subfamilies of

91 Scarabaeidae, as an example to further investigate the application of hash codes generated by PENet.

92

93 MATERIALS AND METHODS

94 2.1 Datasets and data preprocess

95 Beetle dataset This dataset contains 6566 images (Zhao et al., 2023), all of which are the dorsal

96  views of the beetles in the family Scarabaeidae. Specifically, it consists of six subfamilies under the

97 Scarabaeidae, including Aphodiinae (703 images), Cetoniinae (1660 images), Dynastinae (404 images),

98  Melolonthinae (1235 images), Rutelinae (1167 images), and Scarabaeinae (1397 images). Additionally,

99  this data set contains more than 60% of the genera (Total ~2175 genera) in these six subfamilies

100 (https://www.catalogueoflife.org/?taxonKey=6278C). The images were collected from a variety of

101 sources, including photographs taken in major museum collections around the world and images

102 published in monographs and literature (Table S1). To ensure the reliability of the data, all images were

103  confirmed at the subfamily level via taxonomists; on this basis, most images were identified at the species

104  level. Thus, the beetle dataset was used to test the performance of the PENet model, while also being

105 employed to explore the application of hash codes to systematics.

106 Fungi dataset This dataset is derived from the Danish Fungi 2020 (Picek et al., 2022), which

107  contains a total of 295,938 images and 1604 species, from which we selected 20 species as experimental

108  data. Most of the images in this dataset are wild fungi, with complex backgrounds that contain not only

109 fungi but also other elements. This dataset was used to test the performance of our model in handling

110  wild data.


https://doi.org/10.1101/2023.05.21.541653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.21.541653; this version posted May 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

111 Butterfly dataset The Butterflies dataset is a publicly available dataset from the Web (Gerald,

112 2022b). It consists of 75 species with 10,035 images.

113 Flower dataset The flower dataset is a publicly available dataset for computer vision-related tasks

114 that was released by Oxford University in 2008 (Nilsback & Zisserman, 2008). It contains a total of 102

115 species.

116 Bird dataset This dataset includes 400 species with a total of 62,388 images(Gerald, 2022a). It

117  comes from the same source as the butterfly dataset, but with a larger number of species and can carry

118 out further validation.

119 Fused dataset To validate the performance of the PENet in dealing with more complex multielement

120 datasets, we fuse the five datasets into a fused dataset.

121 To ensure that the images from various sources are suitable for model training, we preprocessed the

122  images through several steps. The images were first resized to 224x224. And during the resizing process,

123 a solid color filling strategy was used to prevent image deformation and ensure that all images have the

124 same length and width. Then, the datasets were divided in a ratio of 7:2:1, which means that 70% of the

125 data is used for training, 20% for validation, and 10% for testing. This division ensures that the model is

126  trained on a sufficiently large amount of data while also having enough data for validation and testing to

127  assess its performance.

128
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(a) Phenotype Encoding Network (PENet)
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130  FIGURE 1 Illustrations of the PENet. (a) The PENet pipeline. (b) The architecture of the Swin

131 transformer. (c) Hashing layer map feature vectors to hash codes.

132

133 2.2 PENet and model training

134 In this study, we propose a new network, called the phenotype encoding network (PENet),

135 developed through deep learning combined with hash codes, which can represent extracted features by a

136 series of binary numbers (Figure 1a). We chose the Swin transformer (Liu et al., 2021) as the basic

137 backbone of the network.

138 Currently, the Swin transformer is considered a state-of-the-art deep learning model, and its

139  architecture is distinctive compared to those of other transformer-based models in the field of computer

140  vision (Dosovitskiy et al., 2021; Han et al., 2023). The Swin transformer adopts a hierarchical design,

141 similar to convolutional neural networks (CNNs), with the deepening of the network layers, the receptive

142 field of nodes is also constantly expanding. As illustrated in figure. 1b, the Swin transformer consisted

143 of four stages, each including a Patch Merging operation (except for the first stage, which was a linear
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144 layer) and multiple Swin transformer blocks. The role of the Patch Merging module is to reduce the

145  resolution of the input feature graph by downsampling at the beginning of each stage. And after each

146 stage, the resolution becomes half, and the number of channels doubles. The Swin transformer block in

147 each stage is mainly composed of two Window Attention modules, which adopt the Window based Multi-

148 head Self Attention (W-MSA) method and the Shifted Window based Multi-head Self Attention (SW-

149  MSA) method, respectively. And these two methods can reduce the computational complexity and take

150 into account the association between windows.

151 In PENet, the Swin transformer is used to perform feature extraction on the input images.

152 Specifically, we adjust the input dimension of the model to 224x224x3_ where 224x224 is the length and

153  width of the input image, and three is the number of channels. First, each input image was divided into

154 56x56 patches, where each patch is 4x4, ensuring that there is no intersection between patches. Second,

155 embedding was performed on each patch to encode it into a 96-dimensional vector. These generated

156  vectors were subjected to linear treatment and then successively input into Swin transformer blocks for

157 feature extraction. Third, the extracted features were passed through the global average pooling layer to

158 generate a 768x1-dimensional vector containing the high-dimensional features of the input image.

159 Finally, we added a hash layer at the end of the Swin transformer to map the extracted feature vectors to

160 hash codes of variable length, and the length of hash codes can be set. In summary, the PENet is an end-

161 to-end model that takes images as input and produces binary hash codes as output.

162 During model training, adaptive moment estimation with weight decay (AdamW) was selected as

163  the optimizer (Loshchilov & Hutter, 2019), and the loss function proposed by Liu et al. was selected (Liu

164 et al., 2016). The central concept of this loss function is to encourage similar images to have similar hash

165 codes and dissimilar images to have different hash codes. Based on this loss function, the model is trained
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166 by randomly selecting pairs of images as input. If two images have similar features, their hash codes

167  keep close to each other; otherwise, they are pushed far away. This approach ensures that the model can

168  learn the similarities and differences between different data, and accurately map high-dimensional

169 features to the hash codes.

170

171 2.3 Validation of the extraction capability of the Swin transformer

172 In computer vision models, accuracy in classification tasks is an intuitive measure of their feature

173 extraction capabilities. The formula for accuracy is as follows:

Number of correct predictions

174 Accuracy =

Total number of predictions

175 Therefore, to evaluate the feature extraction ability of the Swin transformer, we tested its classification

176  accuracy on two datasets with significantly different categories: beetle dataset (6 categories) and bird

177 dataset (400 categories). In this case, the parameters were optimized in the training set and the accuracy

178  was calculated in the validation set. We also compared its performance with the two most representative

179  convolutional neural networks, AlexNet (Krizhevsky et al., 2017) and ResNet (He et al., 2016). During

180  the training process, all three models were trained with the same configuration. To further improve the

181 speed of model convergence, we loaded weights that were pre-trained on ImageNet and trained for 50

182 epochs with a batch size of 64. And we use data augmentation strategies including random rotation,

183 random flipping, and random center cropping in the training process. Additionally, the confusion matrix

184 is a commonly used tool for evaluating the performance of classification models (Sokolova & Lapalme,

185  2009), as it provides insight into the model's classification performance across different categories.

186  Therefore, we performed a confusion matrix analysis on the test set that had not been involved in the

187 training process, to further clarify the ability of different models to differentiate each category in the
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188  dataset.

189

190 2.4 Fast retrieval of specimen images

191 To demonstrate the ability of hash codes to retrieve specimens, we tested six datasets (Beetle, Fungi,
192  Butterfly, Flower, Bird, and Fused dataset) using hash codes generated by PENet. The training set was
193 used to adjust the model weight parameters, while the test set and the validation set were used to evaluate
194 the performance of the model. We did this by computing the Hamming distance between the test set hash
195  codes and the validation set hash codes. Here, the Hamming distance indicated the number of different
196 characters in the corresponding positions of two equal strings, that is, the number of different bits in the
197  two hash codes (Bookstein et al., 2002). The Hamming distance between two hash codes, x and vy, is
198  denoted as:

199 DY) =) %

200 In this formula, i =0, 1, ...,n - 1, x and y are hash codes, n is the length of the hash code, and @ denotes
201 the exclusive or (XOR) operation.

202 To further evaluate the model's retrieval capability, we used the mean Average Precision (mAP) as
203  a metric, which measures the quality of retrieval results and the accuracy of ranking (Luo et al., 2020).
204  The mAP is calculated as the average of the average precision of each query over all queries, which is

205 calculated as:

p_ La=1AP@

206
Q

207 where Q is the number of queries, and the Average Precision is calculated as:

k=1 P (k) - rel(k)
N

208 AP =

209  where: n is the total number of retrieved items, P(k) is the precision atrank k, rel(k) is an indicator
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210 function that is 1 if the item at rank k is relevant, and 0 otherwise, N is the total number of relevant

211 items in the dataset.

212 Specifically, for each dataset, every hash code generated from the test set served as a query. During

213 the retrieval, the query hash code was compared with every hash code in the validation set, and the

214 Hamming distance was calculated for each comparison. The images in the validation set were then sorted

215 according to their distance from the query, with the most similar images appearing at the top of the

216 ranking. The mean average precision (mAP) was then calculated based on the sorted results. The size of

217  the test set is equivalent to the number of queries. To achieve optimal performance for various hash-code

218  lengths, we trained PENet each time the hash-code length was modified. The training was carried out for

219 45 epochs, and we saved the model parameters that achieved the best performance for each hash code

220  length.

221 To further demonstrate the effectiveness of hash codes in retrieval and storage, we first selected

222 1000 images from the fused dataset that were not used in the training process to serve as a simulated

223  database and converted them into hash codes via the PENet. Next, we selected one untrained image from

224 each of the five datasets (Beetle, Fungi, Butterfly, Flower, and Bird datasets) and converted them into

225  hash codes. Finally, the hash code generated in the previous step was used as a query to retrieve the

226 simulated database and return the five most similar images among them.

227

228 2.5 Verification and visualization of hash codes representation capability

229 To demonstrate the overall representation capability of the hash codes, we applied the t-distribution

230 stochastic neighbor embedding algorithm (t-SNE) to visualize the generated hash codes, which is

231 currently a more general method for downscaling and visualization in the field of machine learning
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232 (Laurens & Hinton, 2008). The t-SNE algorithm is a non-linear dimensionality reduction method that

233  can reduce high-dimensional data points to two or three dimensions while preserving the original data

234 structure. We have chosen to use 64-bit hash codes for t-SNE visualization, with each hash code

235 representing a 64-dimensional feature vector. For datasets other than the beetle dataset, that contain more

236  categories, we randomly select 10 categories as samples.

237 The feature extraction process in deep learning has long been considered to have relatively low

238  interpretability. As a result, some methods have emerged to attempt to visualize the extracted features,

239  among which the gradient-weighted class activation mapping (Grad-CAM) algorithm are more

240  commonly used (Selvaraju et al., 2020). Grad-CAM generates heatmaps by calculating feature map

241 gradients and weighting them with average pooling, it can help to understand which features are utilized

242 by the network. Here, a total of 30 species of beetles in six subfamilies are selected from the beetle

243  dataset as test data for illustration. We used PENet to convert these beetle images into 64-bit hash codes

244 and generated heatmaps using the Grad-CAM algorithm to display each bit of the hash code features.

245

246 2.6 Constructing phenetic distance tree based on hash codes

247 As the hash codes contain the discriminative features extracted by the model and the distance of

248 morphological differences among different categories, the generated hash codes from different taxa could

249 form a morphological distance matrix. Here, we selected two species from each subfamily of the beetle

250 dataset to generate 64-bit hash codes using PENet (Table S2). Based on these hash codes, we constructed

251 a phenetic distance tree, with one species of Staphylinidae selected as the outgroup. The hash code of the

252  outgroup was also generated using PENet. These selected species did not participate in the PENet training

253 process to avoid overfitting. We used Nona (Goloboff, 1993) run via Winclada (Nixon, 1999) to perform
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254 heuristic searches to find the most parsimonious trees (MPT). MPTs were found with a heuristic search

255 using the commands “hold1000000”, “mult*1000”, “hold/10”, “mult*max*”.

256

257 Result

258 3.1 Identification performance

259 3.1.1 Beetle dataset

260 After 50 rounds of training, all three models, namely AlexNet, ResNet, and Swin transformer,

261 gradually converged, with respective training times of 101, 123, and 126 minutes (Figure S1). On the

262 validation set of the beetle dataset, their highest accuracy was 90.58%, 94.98%, and 97.8%, respectively

263 (Figure 2a). The confusion matrix analysis revealed that the Swin transformer outperformed the other

264  two models in the performance of each subfamily, with accuracy above 95% for every subfamily (Figure

265 2b). However, the other two models mainly had prediction errors concentrated in the subfamilies

266  Dynastinae, Melolonthinae, and Rutelinae. In particular, their prediction accuracy for the subfamily

267 Dynastinae was relatively poor, with AlexNet at 78% and ResNet at 90%, compared to the accuracy of

268 other subfamilies.

269
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271 FIGURE 2 Comparison of the classification performance of AlexNet, ResNet, and Swin transformer. (a)

272  The highest accuracy of the three models on the validation set. (b-d) Confusion matrix analysis of the

273 three models on the beetle dataset.

274

275 3.1.2 Bird dataset

276 On the bird dataset, AlexNet, ResNet, and Swin transformer also converged, with training times of

277 218, 487, and 478 minutes, respectively. The relatively simple network structure of AlexNet led to a

278 shorter training time but a lower accuracy of only 88.5%, compared to ResNet's 96.05% and Swin

279 transformer's 98.6% (Figure 2a). In confusion matrix analysis, Swin transformer still performs the best,

280 with only 25 mispredicted samples out of 2000 (Figure S4). Therefore, on these two datasets, Swin

281  transformer outperforms the other two models in both accuracy and confusion matrix analysis.

282

283 3.2 Retrieval capability of hash codes
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284 Figure 3 presents the validation results for hash codes of varying lengths on six datasets, as evaluated

285 by mAP. The highest mAP value on the beetle dataset occurs with a hash code length of 48, reaching

286 98.2%. For different datasets, the mAP values of hash codes retrieval are somewhat different. For the

287 Fungi, Butterfly, Flower, Bird, and Fused datasets, the highest mAP values are achieved with hash code

288  lengths of 128, reaching 88.9%, 99%, 95.4%, 97.6%, and 94.8%, respectively (Figure. 3a-e). Among

289  them, we observed that the highest mAP value for the Fungi dataset with the complex backgrounds was

290 88.9%, indicating suggesting that the background of the dataset can have an impact on the retrieval

291 accuracy of hash codes to some extent. Although the mAP value of the Fungi dataset is relatively low, its

292  impact on the mAP value of the Fused dataset is weakened because mAP takes into account the average

293  precision of all categories.

(a) Beetle dataset (6 categories) (b) Fungi dataset (20 categories) (c) Butterfly dataset (75 categories)
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296  FIGURE 3 Histograms obtained under different hash code bits with their corresponding mAPs. a-e

297 correspond to the beetle, fungi, butterfly, flower, and bird datasets, respectively, and f'is fused from these

298 five datasets. The number of categories in each dataset is parentheses after each heading.

299

300 Across all datasets, the mAP values exhibit a plateau pattern where they gradually increase as the
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301 length of hash codes increases, and then reach a stable level. This suggests that the length of the required

302  hash code does not increase infinitely as the number of categories increases. In the six datasets analyzed

303 in this study, it was found that once the hash code length exceeded 64 bits, the changes in mAP values

304 became negligible. Therefore, in the simulated database scenario, we use 64-bit hash codes as a

305 demonstration.

306 In the demonstration of the simulated database, after retrieving data from a simulated database using

307  hash codes, the top five results all correspond to the same category as the hash code used for the retrieval

308 (Figure S6). Since none of the images was involved in training, and no additional label information was

309 provided during the retrieval process, this demonstrates that PENet extracted discriminative features

310 between different categories. Even if we don’t have knowledge about the query image, the hash code can

311  match individuals in the database with similar morphological features to the query image. Therefore, we

312  can quickly retrieve the specimens based on morphological features once we generate a library of

313  corresponding hash codes from existing digitized specimens. In this way, using hash codes for

314  retrieval significantly improves efficiency and reduces storage space requirements. Taking the simulated

315 database we built as an example, even if all the images are compressed to approximately 220x220 pixels,

316 the storage space required for their images is still approximately 8000 times what is required for the hash

317 codes.

318

319 3.3 Visualization of hash codes

320 After reducing the dimensionality of the hash code, which contains 64 feature values, using t-SNE,

321 we can observe that groups of categories with similar features are still effectively clustered together

322 (Figure S5a-¢). This indicates that the hash codes carry sufficient discriminative features and provide a
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323  good representation of them, even on a bird dataset containing 400 categories, where intraclass and
324 interclass distances are well distinguished. Furthermore, the visualization of discriminative features
325 corresponding to each bit of the hash code also supports this view. For the 30 selected species, 64
326 heatmaps were generated for each, one of these species was displayed in Figure 4, and the rest of the
327 results are detailed in supporting information. Here, the areas with the highest intensities in the heatmaps
328 of status 1 in each bit of hash code cover the features extracted from the PENet, Status 0 means that these
329 samples do not contain the features extracted in these hash code bits. After studying these heatmaps, it is
330 further indicated that some bits of hash codes pointing to the real discriminative features which have
331  been used in traditional ways, for example, bit 1: legs, bit 16: the shape of the prothorax, bit 39: the center

332  of'the body, and bit 44: the end of the abdomen.

7
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Anomala hirsutoides

333 1 1 0 1 1 0 0 1

334  FIGURE 4 A 64-bit hash code is generated from a specimen by the PENet, where each bit

335  corresponds to some features. The arrangement order of each bit in the hash code is from left to

336  right, then from top to bottom.
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337

338 3.4 Phenetic distance tree based on hash codes

339 We utilized PENet to convert 13 additional images of non-trained beetles into hash codes

340  (Table S2). The hash codes of images belonging to the same category exhibited a similar pattern,

341  whereas those of different categories showed some distinctions. For image that falls outside of the

342  known categories (Staphylinidae), which can be considered out-of-distribution, its hash code differ

343  from those of the known categories. To further investigate the value of hash codes in systematics,

344  we constructed a phenetic distance tree. The maximum parsimony analysis of the 64 hash codes

345  yields two most parsimonious trees (tree length=100 steps, CI=0.55, RI=0.72). “Morphological

346  characters” (Hash codes) were optimized with parsimony on the first of the two most parsimonious

347  trees (Figure 5), showing only “unambiguous” changes. Black circles indicate “nonhomoplasious”

348  changes, and white circles indicate changes in “homoplasious characters”. The number above the

349  branch represents “hash code” numbers, below branch are “hash code” status (0 or 1).

350 From the topological structure of the phenetic tree constructed by hash codes, it is shown that

351  there are two basic lineages within the family of Scarabaeidae: coprophagous lineage (Scarabaeinae

352  +Aphodiinae) and phytophagous lineage (Cetoniinact+Melolonthinae+Rutelinae+Dynastine),

353  within phytophagous lineage Melolonthinae, Rutelinae, and Dynastine are cluster together, and the

354  Dynastine and Rutelinae are sister groups. The topological structure of the phenetic tree constructed

355 by hash codes similar to the phylogenetic trees revealed from molecular and morphological data,

356  indicating that the hash codes contain additional distance information (Figure 5).
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358  FIGURE 5 (a) Phenetic distance tree based on hash codes. Two species were selected for each subfamily

359 with a hash code length of 64. The family Staphylinidae was selected as outgroup. (b) The simplified

360  relationships among six subfamilies revealed by existing phylogenetic trees (Ahrens et al., 2014; Lu et

361 al., 2023; Meinecke, 1975).

362

363 Discussion

364 The implementation of automated and efficient discriminative feature extraction, along with

365  mathematical encoding of extracted features, will further accelerate the development of research

366 that relies on the dependence of morphological features. Here, we developed a novel deep learning

367  model called PENet, which can rapidly extract discriminative features and represent them efficiently

368  using hash codes. Our study has shown that the hash codes generated by PENet are an efficient

369  carrier of the extracted discriminative features, as they encode these features as sequences. This

370  encoding enables fast retrieval performance and facilitates comparisons and matches with minimal

371  computational resources. In addition, we have also explored the potential application of hash codes

372  in systematics and discovered their potential for further applications.
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373 The Swin transformer, as the feature extractor of PENet, outperforms traditional convolutional

374 neural networks in its ability to extract discriminative features. This can be seen in the confusion

375  matrix analysis of the beetle dataset, where the Swin transformer performs well on each subfamily

376 (Figure. 2d). In contrast, AlexNet and ResNet show imbalanced performance on each subfamily,

377  with the main prediction errors occurring in Dynastinae and Melolonthinae. For Dynastinae, which

378  had the smallest number of images, the imbalanced data distribution may have been a contributing

379 factor to the poor performance of the AlexNet and ResNet models. For Melolonthinae, as the largest

380  subfamily with numerous species (~630 genera), there may be more extensive variations in the

381  morphological features of its species, which could have impacted the performance of the models.

382  Unlike AlexNet and ResNet, the Swin transformer excels in handling data imbalance and complex

383  feature data. This may be attributed to its unique architecture, which segments images into small

384  tokens to extract features and incorporates self-attention mechanisms to capture the

385  interdependencies between different tokens, allowing for more effective feature extraction and

386  weighting (Liuetal., 2021; Vaswani et al., 2017). Furthermore, some studies have shown that, unlike

387  convolutional neural networks which focus on extracting texture information from images,

388  transformer-based models place greater emphasis on extracting shape information from the global

389 image (Baker et al., 2018; Tuli et al., 2021). Therefore, on the whole, Swin transformer has greater

390  potential for extracting discriminative features, and it also endows PENet with improved

391  performance.

392 The hash codes generated by PENet serve as carriers of the features extracted from the images

393  and have been shown to possess strong representational power. The results of retrieval tests

394  conducted on six datasets demonstrate that these hash codes are effective in representing
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395  discriminative information and enabling the retrieval of similar categories, even when the

396  dimensionality of the data has been reduced. Furthermore, among the retrieval results of the same

397  category based on the hash codes, the images that rank higher are more similar to the query image

398  in terms of their features (Figure S6).

399 Natural history collections serve as a critical resource for studying the morphological traits of

400  various species, and the digitization of these collections has significantly improved research in these

401  fields (Lister, 2011; Page et al., 2015). Furthermore, with the application of machine learning and

402  deep learning technologies, the utilization of these collections has been further optimized, leading

403  toremarkable results in tasks such as rapid specimen identification (Younis et al., 2018), collections

404  label information extraction (Owen et al., 2020), and functional traits measurement (Weeks et al.,

405  2023). However, it is still challenging to quickly obtain specimens with similar morphology from

406  large natural history collections. Our newly proposed deep learning model, PENet, can help address

407  this issue. By using PENet to extract the morphological features of digital specimen images and

408  converting these features into hash codes, we can quickly retrieve specimens with similar

409  morphological characteristics. This approach also proves beneficial in cases where the taxonomic

410  information of the specimens in question is uncertain. As hash codes are merely binary encodings,

411  they do not add significant storage costs to digital collections. Furthermore, under ideal conditions,

412  multiple natural history museums can share a set of hash codes as data accumulate.

413 Furthermore, the application of PENet is not limited to just natural history collections, but is

414  suitable for any scenario that requires large-scale matching of morphological information, such as

415  biodiversity monitoring. With the increasing deployment of infrared cameras in the wild, a vast

416  amount of new data is generated every day (Burton et al., 2015). Relying solely on manual labor to
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417  search for target species in such a massive dataset can be challenging(Schneider et al., 2019). To

418  address this, PENet can be used to train for target species, transforming all images into hash codes

419  with feature information when searching for the target species. By comparing these hash codes with

420  the target species' hash codes, retrieval can be achieved in large-scale monitoring data. Additionally,

421  with the aid of the corresponding algorithms, multiple ecological factors such as biodiversity and

422  abundance can be obtained, promoting relevant ecological research.

423 In addition to enabling fast specimen retrieval, hash codes also have the potential to be further

424 applied in systematics. Unlike most existing species classification models, PENet takes into account

425  the distance relationship between different categories during the training process of generating hash

426  codes. Therefore, the hash codes not only represent the extracted discriminative features but also

427  carry distance information between different categories. Tests conducted on six subfamilies of the

428  Scarabaeidae demonstrated that hash codes can be used to generate a phenetic distance tree. When

429  compared with the existing phylogenetic tree, the phenetic distance tree showed some similarities

430  in the division of certain major branches: two basic lineages, sister group relationship between

431  Rutelinae and Dynastine (Ahrens et al., 2014; Lu et al., 2023; Mckenna et al., 2015). And the

432  position of Cetoniinae is similar to some morphological-based phylogenetic results, which further

433  indicate that the hash codes could reveal the phenetic distances and relationships among categories

434 toacertain extent (Howden, 1982; Meinecke, 1975). However, our experiment was only preliminary

435  as we only used the dorsal view, which was not sufficient to cover all features of the test species. In

436  future research, we will continue to supplement the dataset and use methods such as multi-angle

437  photography and microscopic photography to obtain comprehensive morphological information and

438  further validate the ability of the hash codes.
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439 There are still some issues to consider to better implement PENet in practice. Since the length

440  of the hash code and the specificity of the training data affect the achieved retrieval performance,

441  the optimal hash code length should be determined according to the actual needs of different fields

442  and the training data should be carefully selected to minimize the influence of the hash code length

443 on the performance of the PENet. Additionally, although the features extracted by PENet are similar

444  tothose perceived by experts to a large extent, additional confirmation should be required to confirm

445  whether the extracted features match the phenotypic information to be studied.

446

447 Conclusion

448 Overall, our newly developed end-to-end PENet model demonstrates excellent performance in

449  feature extraction and fast retrieval, with the potential for broader applications in systematics. Hash

450  codes carry both discriminative features and phenetic distance information while maintaining a low-

451  dimensional representation, allowing efficient morphological information retrieval with a minimal

452  storage cost. PENet provides an effective solution for the fast retrieval of natural history collections.

453  Furthermore, it can be further applied to explore morphological features, supporting research on

454 macro-morphological evolution and mimicry. In future research, we will continue to explore the

455  extended applications of hash codes and consider unsupervised training methods that rely solely on

456  morphological distance information to train PENet, further increasing its scope of applications.
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US.A)
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K. Morimoto, N. Hayashi. The Coleoptera of Japan in Color Vol. I
(Hoikusha Publishing Co., Ltd. Tokyo; 1986).
S. -I. Ueno, Y. Kubosawa, M. Sato. The Coleoptera of Japan in Color Vol. II
(Hoikusha Publishing Co., Ltd. Tokyo; 1985).

Beetle dataset Y. Kurosawa, S. Hisamatsu, H. Sasaji. The Coleoptera of Japan in Color
Vol. III (Hoikusha Publishing Co., Ltd. Tokyo; 1985).
M. Hayashi, K. Morimoto, S. Kimoto. The Coleoptera of Japan in Color
Vol. IV (Hoikusha Publishing Co., Ltd. Tokyo; 1984).
K. Sakai, S. Nagai. The Cetoniine Beetles of the World (Mushi-Sha, Tokyo;
1998).
Arnett R.H., Jr., M. C. Thomas, P. E. Skelley, J. H. Frank American Beetles,
Volume II: Polyphaga: Scarabacoidea through Curculionoidea (CRC Press,
Florida; 2002).
Website:
Beetles (Coleoptera) and coleopterists
(http://www.zin.ru/Animalia/Coleoptera/eng/index.html)

Fungi dataset https://sites.google.com/ view/danish-fungi-dataset

Butterfly dataset https://www.kaggle.com/datasets/gpiosenka/butterfly-images40-species
Bird dataset https://www.kaggle.com/datasets/gpiosenka/100-bird-species
Flower dataset https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

635

636 ~ SUPPLEMENTARY TABLE 2 The species used to build the phenetic tree and the corresponding
637  hash codes. Among them, Ataenius australasiae and Phaeaphodius kiulungensis belong to the
638  subfamily Aphodiinae, Euselates moupinensis and Glycyphana stemma belong to the subfamily
639  Cetoniinae, Allomyrina dichotoma and Eupatorus gracilicornis belong to the subfamily Dynastinae,
640  FEotrichia titanis and Holotrichia ovata belong to the subfamily Melolonthinae, Anomala coxalis
641  and Anomala ebenina belong to the subfamily Rutelinae, Microcopris propinquus and Onitis

642  intermedius belong to the subfamily Scarabaeinae.

Species Hash codes
Outgroup 1011100010111000011111101000000010001101110001010010010000010000
Ataenius Australasia 1111100011110010011101101111011110101101110111010010010000010000
Phaeaphodius kiulungensis ~ 1111100011110010011101101111011110011101110111010011010000010000
Euselates moupinensis 1011100111011000000110001010001010011001101000111110100010011010
Glycyphana stemma 1011100111011000001101101000001010011000101000011110100010011010
Allomyrina dichotoma 1010111111111100010101111100011110100010100001000111100001011001

Eupatorus gracilicornis 1100011111111000010100001100010110100011110001000111100001011001
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SUPPLEMENTARY FIGURE 1 Classification accuracy of AlexNet, ResNet, and

Swin transformer in the validation set of beetles and birds.
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649  SUPPLEMENTARY FIGURE 2 Confusion matrix analysis of AlexNet on the bird

650  dataset.
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653  SUPPLEMENTARY FIGURE 3 Confusion matrix analysis of ResNet on the bird

654  dataset.
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657 SUPPLEMENTARY FIGURE 4 Confusion matrix analysis of Swin transformer on
658  the bird dataset.
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661 SUPPLEMENTARY FIGURE 5 Scatter plots of 64-bit hash codes as feature data
662  after performing t-SNE dimensionality reduction, where (a-e) are obtained by
663  randomly drawing 10 classes from the corresponding dataset.
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666 SUPPLEMENTARY FIGURE 6 Retrieval results with hash codes as indexes. For

665

667  each data set, one image is randomly selected and used as an index to retrieve the top
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668  five images with the highest similarity to it in the simulated database.
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