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Abstract1

. Some participants consistently show large, and others
small activations in Electroencephalography (EEG) and
other neuroimaging studies. Similarly, decoding accura-
cies in Brain-Computer-Interface (BCI) vary between sub-
jects, in extreme cases labelled ”BCI-Illiteracy”.

Here, we investigate whether a switch of task within
an event-related design could be sufficient to alleviate
low performance. We compare event-related-potentials
(ERP) component amplitudes, as well as offline bal-
anced decoding-accuracy based on deep convolutional
networks, between seven event-related tasks. ERP ef-
fect amplitudes and decoding accuracies were correlated
within all tasks, but not between any pairwise tasks. Fur-
ther, 39/40 subjects had above average performance in at
least one task.

Two cautious conclusions can be drawn, with the ap-
propriate limitations of power (n=40) and the caveats of
interpreting null-findings: 1) The lack of effect amplitude
correlations shows that between-subject variability can-
not be purely explained by a task-agnostic effects like
skull thickness. 2) The lack of decoding accuracy corre-
lations shows promise for ERP-based BCIs: replacing the
task could be an effective way to combat ”BCI-Illiteracy”.
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Introduction
It can often be observed that some participants show large
and others small effects in EEG and other neuroimaging stud-
ies. Many explanations seem possible, e.g. in EEG there
could be task-agnostic factors like skull thickness, known
to strongly influence source localization (Antonakakis et al.,
2020), varying electrode-skin impedances due to physiolog-
ical different skin thereby introducing systematically more
noise per subject, or idiosyncratic cortical excitability differ-
ences, influencing amplitudes of ERPs (Stephani, Hodapp,
Jamshidi Idaji, Villringer, & Nikulin, 2021) - but there could
as well be task-dependent factors, like anatomical variations
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resulting in detrimental dipole orientation, lacking attention or
task comprehension, or task-dependent subject ability varia-
tions. The former, task-agnostic factors, should result in simi-
lar activation between tasks for any one individual, that is, task
activations should show pairwise correlations.

ccA similar observation can be made not only for such en-
coding analyses, where brain activity is predicted by inde-
pendent tasks-manipulations, but also for decoding analyses,
where independent task-manipulations are predicted by brain
activity2. Indeed, analogous to the between-subject variabil-
ity in ERP amplitudes, studies of decoding models in Brain-
Computer-Interfaces (BCI) show, that not every BCI can be
used by any person. Around 20% of users cannot use a par-
ticular BCI at all (Allison & Neuper, 2010), often referred to as
BCI-Illiteracy (Vidaurre & Blankertz, 2010; Dickhaus, Sannelli,
Müller, Curio, & Blankertz, 2009) (but see (Thompson, 2019)
on the term illiteracy). To date, we still do not know what fac-
tors cause between-subject variability in ERP amplitudes, nor
why BCI-Illiteracy exists and how it can be alleviated.

To investigate the impact of varying task and stimulation, we
estimated component amplitudes and decoding accuracies of
40 subjects, each performing seven different ERP tasks using
the ERP-core dataset (Kappenman, Farrens, Zhang, Stewart,
& Luck, 2020). While encoding and decoding analyses were
clearly correlated within a task, we did not find any correla-
tion between tasks. We conclude that changing the ERP task,
could alleviate BCI Illiteracy. All our results are robust to within
or cross-subject training, and by using robust correlations, ro-
bust to outlier subjects.

We conclude that between-subject variability cannot be ex-
plained by a task-agnostic effect, and that switching tasks
within a BCI-type could provide the necessary performance
boost to allow anyone to use a BCI-system.

Methods
We used the ERP-core dataset (Kappenman et al., 2020),
comprising six different ERP paradigms, which evoke seven
different ERP components (N170, MMN, N2pc, N400, P300,

2A simplified explanation of encoding vs. decoding models goes
as follows: encoding models use f (expDesign) = brain, whereas
decoding models use g(brain) = expDesign. f is typically a
difference-operator or a linear regression, whereas g is typically
some kind of 2-class classifier. Note that g cannot simply be inverted
to receive f (Haufe et al., 2014)
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LRP and ERN3). For simplicity, we refer to them as seven
tasks. For a detailed description see the ERP-core paper
(Kappenman et al., 2020).

For the encoding analyses, we used the preprocessed
data from ERP-core, and the extraction procedure of the
component peak activity as provided in https://osf.io/
p3bqd/ (Kappenman et al., 2020). The only manual step we
performed was the final subtraction of the per-condition com-
ponent peak-estimates, resulting in a singular effect estimate
per subject, per task.

For the decoding analyses, we used a custom pipeline
(see below) starting with the raw ERP-core data, but applied
similar steps as in ERP-core. We first downsampled to 250
Hz, re-referenced as described in the ERP-core paper, and fi-
nally bandpass filtered between 0.5 and 40 Hz. We only briefly
mention here, that less preprocessing (only downsampling
and drift-correction) as well as heavy preprocessing (addi-
tional AMICA (Palmer, Makeig, Kreutz-Delgado, & Rao, 2008),
ICLabel (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019),
autoreject (Jas, Engemann, Bekhti, Raimondo, & Gramfort,
2017)), to our surprise, did not show any noticeable effect
on the resulting classifier accuracies. As a classifier, we
used a four-layered Deep Convolutional Net as proposed by
Schirrmeister et al. (Schirrmeister et al., 2017a) and imple-
mented via Braindecode (Schirrmeister et al., 2017b). All
task were 2-class problems reflecting their typical difference-
waves. We used ADAM with a cross entropy loss function for
optimization. We performed minimal hyperparameter tuning
on the N170 task to identify useful learning rate parameters
for a cosine annealing without restarts (Loshchilov & Hutter,
2017). We report balanced accuracies throughout this paper.
We used stratified shuffled splits to separate training and val-
idation data and tested both within- and across-subject train-
ing splits. While we found on average lower accuracies in
the leave-one-subject-out regime, the between-task correla-
tion patterns reported here were identical.

Finally, to compensate for potential outliers in any of the
many correlation analyses, we used robust correlation co-
efficients using the percentage bend correlation estimator
(Wilcox, 2012) as implemented in the WRS2 R package.

Results
We analyzed encoding and decoding performance in the
same subjects in seven different tasks. The encoding per-
formance is in their task-specific typical µV-ranges (Figure
1)(Kappenman et al., 2020). We further observe typical de-
coding accuracies for a single subject/task between 50% and
99%, and per task averages of 60% (MMN) up to 90% (ERN).
We further observed significant robust correlations between
encoding and decoding analysis in all tasks with on average
of 0.42 (range: 0.29 - 0.58, uncorrected two-sided p-values
0.04 to < 0.001).

But our main analysis regards the correlation between tasks

3LRP and ERN are extracted from the same trial at different tim-
ings.

Figure 1: Decoding accuracies and ERP component ampli-
tudes are correlated in all tasks.

within encoding and within decoding scores. As depicted in
Figure 2, even without correcting for multiple comparisons,
we only observed a single significant pair-wise correlation be-
tween the N170 and the LRP, and only in the encoding data
(ρ = 0.42, p=0.006, the respective decoding correlation n.s.
with p = 0.051). The bulk of correlations were not significant
(mean ρ:0.03 / 0.08 for encoding and decoding). This is a
null-finding and has to be interpreted cautiously.

This already hints at the fact that not any subject performs
generally good or bad in all tasks. And indeed, with the ex-
ception from two subjects (Figure 3), all other subjects show
above average decoding accuracy in at least two tasks. That
being said, there are also task-agnostic effects at play, given
that some subjects do show an overall better task perfor-
mance (regression line in Figure 3).

Discussion
We did not find significant correlations for neither encoding nor
decoding performance across tasks.

We do have limitations on the amount of data we have,
raising the question, whether our observed lack of correlation
is due to sampling error in encoding/decoding performance.
Overall, the influence of sampling errors should be weaker for
correlations between tasks where the overall decoding accu-

Figure 2: Robust correlation matrix of decoding accura-
cies and ERP component amplitudes. Only one correlation
(LRP/N170, Encoding) is significant (no multiple comparisons
correction). Compared to Figure 1, where we show within-
task, between-type correlations, this figure shows the within-
type, between tasks correlations.
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Figure 3: Ratio of per-subject decoding accuracy compared
to task-specific mean decoding accuracy. Subjects sorted by
overall mean accuracy.

racies are high. But this is not the case for e.g. our top-3
tasks ERN, LRP and N400. Consequently, interpreting this
null-finding not as pure lack of power, but indeed as an exclu-
sion of strong correlations, this provides at least two conse-
quences, for 1) explaining between-subjects variability and 2)
addressing BCI-Illiteracy:

1) The lack of effect amplitude correlations shows that
between-subject variability cannot fully be explained by task-
agnostic effects like skull thickness. While to some extent a
task-unspecific effect exists, task-specific effects are stronger
at play here. Dipole orientation is a strong contender, which
would predict that lower performance should correlate with
less stereotypical topographies.

2) The lack of decoding accuracy correlations shows
promise for ERP-based BCIs: replacing the task could be
an effective way to combat ”BCI-Illiteracy”. 95% of subjects
showed above average decoding performance in at least two
of the seven tasks. Thus, calibrating the BCI by providing dif-
ferent tasks might be an effective way to make BCIs avail-
able to a broader population. One caveat needs to be high-
lighted here: The tasks and accuracies reported here are from
standard cognitive tasks, not BCI-environments. Thus, button
presses were available for decoding.

Further, this finding is interesting to the broader field of bio-
metric identification using EEG (Sabeti, Boostani, & Moradi,
2020). In (EEG-based) biometric identification, EEG features
that are unique to a subject are helpful.

Taken everything together, we see two effects at play
here. A task-unspecific effect that makes some subjects
high-performers and others BCI-Illiterate, but also strong task-
dependent effects that might just allow everyone to use a BCI.
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