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Abstract

The rodent vibrissal system remains pivotal in advancing neuroscience research, particularly for
studies of cortical plasticity, learning, decision-making, sensory encoding and sensorimotor
integration. While this model system provides notable advantages for quantifying active tactile
input, it is hindered by the labor-intensive process of curating touch events across millions of video
frames. Even with the aid of automated tools like the Janelia Whisker Tracker, millisecond-
accurate touch curation often requires >3 hours of manual review / million video frames. We
address this limitation by introducing Whisker Automatic Contact Classifier (WhACC), a python
package designed to identify touch periods from high-speed videos of head-fixed behaving rodents
with human-level performance. For our model design, we train ResNet50V2 on whisker images
and extract features. Next, we engineer features to improve performance with an emphasis on
temporal consistency. Finally, we select only the most important features and use them to train a
LightGBM classifier. Classification accuracy is assessed against three expert human curators on
over one million frames. WhACC shows pairwise touch classification agreement on 99.5% of
video frames, equal to between-human agreement. Additionally, comparison between an expert
curator and WhACC on a holdout dataset comprising nearly four million frames and 16 single-
unit electrophysiology recordings shows negligible differences in neural characterization metrics.
Finally, we offer an easy way to select and curate a subset of data to adaptively retrain WhACC.
Including this retraining step, we reduce human hours required to curate a 100 million frame
dataset from ~333 hours to ~6 hours.

Introduction

Quantitative analysis of behavior is an essential method in systems neuroscience research. High
speed video is a commonly used format for recording behavior. The resulting datasets are often
large and, if they require manual curation, the analytical time cost is large as well. One such pain
point is found within investigations using the rodent whisker system, a common model for
investigating neural representations of tactile perception and sensorimotor integration. As the
stimuli used in this field have evolved from passive whisker deflections in anesthetized rodents to
active whisker touches during behavior, new methods for quantification of these stimuli are
required. Here we address a specific and challenging problem, fully automated whisker touch
detection from videography.

Rodents are highly tactile creatures that sweep an array of whiskers forward and back during many
behaviors, including locomotion (Sofroniew and Svoboda, 2015; Grant et al., 2018), social
interaction (Rao et al., 2014) and object investigation (Cheung et al., 2019; Cheung et al., 2020;
Kim et al., 2020). When whiskers touch something, the resulting forces drive mechanotransduction
in the follicle and propagation of neural activity to higher order brain regions. The neural circuitry
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displays remarkable temporal precision (Jadhav et al., 2009; Hires et al., 2015; Bale and Maravall,
2018), so identifying the time of touch with millisecond resolution is crucial for investigations of
tactile processing. Demonstrating this importance, automated classification programs such as
Biotact (Lepora et al., 2011), Janelia Whisker Tracker (Clack et al., 2012), and related tools
(Knutsen et al., 2005; Voigts et al., 2008; Perkon et al., 2011; Towal et al., 2011; Betting et al.,
2020), have been developed to identify when, where, and how hard whiskers are touching objects
in head-fixed and freely moving as well as full-field, reduced whisker and single whisker
paradigms.

These whisker tracking methods provide faster touch classification than hand scoring, but none
achieve maximally accurate touch classification without a second stage of manual curation of
classification results. In the simple case of the Janelia Whisker Tracker applied to head-fixed,
single whisker touch classification, our second stage manual curation process requires
approximately 3 hours and 20 minutes per million video frames to complete. To alleviate this time
burden, we developed, trained and validated a hybrid convolution neural network and gradient
boosted machine model to accurately identify single-whisker touch directly from video frames in
a fully automated manner.

Design and Implementation

The overall design goal was to rapidly classify high-speed video of head-fixed object localization
in mice and accurately identify periods when a whisker was touching a presented object. The
imaging viewpoint was overhead from a single camera with the whisker pad, whisker and object
(a thin pole) backlit from a diffuse infrared light-emitting diode (Figure 1A). The resulting touch
labels from analysis can then be used to characterize electrophysiological responses of neurons to
touch (Fig 1A inset).

A full frame video is useful for determining various kinematic features of whisker motion and
deformation, such as velocity and curvature from bending. However, the most relevant information
for touch identification is found in a small window of pixels around the object. Additionally, small
images reduce data size and speeds up the training process. Therefore, video input to the model
was cropped by extraction of a 61x61 pixel window centered on the touched object across all video
frames (Figure 1A, red box). This eliminated extraneous and idiosyncratic image data (e.g., fur
or stubs of other whiskers) that could impede model performance by fitting to unreliable features.
Independently centering the object on each frame also accommodates the potential translation of
the touched object across the field of view (e.g., when the object is being presented, withdrawn, or
is vibrating).

When discriminating challenging touches, human curators often scroll forward and back between
a few frames to infer when touch onset or offset occurs by the change in whisker displacement
between frames. To provide the classifier with this temporal information, we overlaid three
consecutive grayscale frames into three color channels (cyan, magenta, and yellow), such that the
label at time ¢ had access to the image at time ¢, and lag images at time ¢-/, and #-2 (Figure 1B,
left). To improve the generality of our training set to different imaging conditions and orientations,
we augmented images with rotation, noising, brightness and magnification adjustments (Figure
1B, right). These sets of images were used as inputs to a variety of convolutional neural networks
(CNNs) (Figure 1C).
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We extracted all 2,048 available features from the penultimate layer of the best performing model
and liberally engineered additional features based on the standard deviation, smoothing, shifting
and discrete difference of different window/step sizes, resulting in 40 additional sets of 2048
features, for a total of 83,968 features (Methods). Additionally we calculated standard deviation
of each of the 41 feature sets across feature space for a total of 84,009 features (Figure 1D, left).
To reduce the computer memory demands and reduce model complexity, we iteratively selected
smaller subsets of the most informative features for touch classification using an ensemble of
LightGBM models, based on gain and split importance measures. Once further feature removal
degraded mean model performance, we had a total of 2,105 features remaining (Figure 1D, right).

Establishing touch ground truth and error metrics

Training a supervised classifier requires a set of inputs and a corresponding set of accurately
classified labels. However, there is no independent ground truth for whether a whisker is touching
the object or not on each video frame. Instead, we used a ‘majority rule’ on the output of a panel
of three expert human curators as a proxy for ground truth to train the model (Figure 2A). To
maximize accuracy, human curators were not limited to viewing the cropped images. Instead, we
performed whisker tracing and linking from full field images with the Janelia Whisker tracker
(Clack et al., 2012). We performed a first pass automated touch estimation based on extracted
whisker curvature and estimated distance to pole. Humans then examined these estimated time
series variables to screen and correct clear obvious misclassifications. Finally, for more
challenging frames, humans inspected full, zoomed, and frame-by-frame difference images of
touch and near touch periods with a visual browser and corrected scoring until satisfied. Human
labels were applied to the test set of cropped images used for model evaluation. All three curators
agreed on 99.46% of test set frames.

Not all errors are created equal. We identified six distinct error types (Figure 2B). Four error types
(splits, ghosts, misses, and joins) were classified as ‘touch-count errors’ because they affected the
total number of touches. Touch count errors arise in four distinct ways. Misclassifying a frame in
the middle of a touch event splits the touch into two separate events. Conversely, misclassifying a
frame in the middle of a non-touch period creates a ghost touch, where no touch actually occurred.
Failing to label any frames within a touch event results in a missed touch, while labeling a non-
touch period between two touch events joins them into one. The other two errors are edge errors,
where the length of a touch is shortened (deducts) or lengthened (appends) by mislabeling the start
or end frames. These errors have different functional consequences for analysis of neural
responses. Touch count errors propagate to touch evoked firing rates and peri-stimulus time
histogram (PSTH) structure, while edge errors largely maintain touch evoked firing rate but
degrade touch evoked latency and jitter measurements.

To determine human error rate we compared single curators against the consensus frames of the
remaining two curators. Most human errors were edge errors, which occurred approximately 7
times more frequently than touch count errors (Figure 2C). During development of WhACC,
model performance was evaluated across a range of error metrics, including area under the receiver
operating characteristic curve (AUC), percent correct, touch count errors per touch (TC-error) and
edge errors per touch. Our ultimate goal was to reduce TC-error because it most strongly degrades
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important measures like the total number of touches (Cheung et al., 2019), angle at touch (Cheung
et al., 2020), and the number of spikes evoked on touch onset (Hires et al., 2015).

Selection of training, validation, and test set

Our goal was to produce a reliable whisker-pole touch classifier with expert human level
performance under a wide range of imaging conditions, all while minimizing the time burden of
curating by hand. To support the generalization of model performance, our initial training and
validation sets came from two experimentalists working on the same apparatus. In contrast, the
test set comprised imaging data collected by two other people on different apparatus, across two
labs and eight years. These datasets were used to train and select the base CNN model and the
changes to the input images data (i.e. augmentation and lag images). For our final model, WhACC,
we pooled all our data and generated new training, validation, and test sets to equally sample from
the diversity of videos. To prevent overfitting, the data was assigned to each set based on video
identity, ensuring that adjacent frames were included in only one dataset. To ensure reliable
performance on new data, WhACC was validated on an additional holdout set of 16 different
sessions of 100 trials each (~4 million frames), across different mice and different times, all of
which were curated by a single curator. These data were not used for any stage of training, early
stopping or feature selection and therefore serve as a reliable expectation of WhACC’s
performance.

The training and validation sets were selected with a bias towards more touch-informative frames.
In the majority of imaged frames, the whisker is not present within the cropped window. These
frames should be easily classified and are thought to provide mostly redundant training
information. Thus, we underweighted their presence by removing many, but not all of them. To
select more informative frames, we included all frames labeled as touch by human curation and
any frames within 80 frames of a touch, discarding the rest (80-border extraction) (Figure 3A).
This eliminated many, but not all ‘no-whisker frames’, while retaining all touch and most near-
touch frames. Including some no-whisker frames was useful to provide baseline information for
the negative class in the absence of a whisker. To increase model generalizability, we augmented
10 images for each original image. To maintain training and data storage efficiency, we used a
stricter selection criteria for selecting these frames, which we restricted to all frames within three
frames of any touch frame (Figure 3A). We hypothesized that these near-touch and touch frames
would have much greater variation and therefore augmenting them would help the model
generalize better. Overall the training set was ~676,000 frames and validation set was ~282,000
frames with a balanced set of classes (Figure 3B). The test dataset was not reduced at all and
consisted of ~780,000 frames that matched the distribution of a real dataset. In each dataset, only
the frames where the object was within reach were used.

Model selection and evaluation

To assess the feasibility of automated contact curation, we trained and tested four different fully
unfrozen base models: ResNet50V2 (He et al., 2016), Inception-v3 (Szegedy et al., 2016),
MobileNetV3-Large, and MobileNetV3-Small (Howard et al., 2019). We selected these four
models because they are relatively lightweight, are pre-trained on ImageNet, and have a well-
established proven track record in addressing a wide range of problems across various domains.
For each base model we either used the original images or a set of augmented images combined
with the original images. Finally, for each combination of these, we compared models trained with
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original images versus images where the three color channels contained frames from times t, t-1
and t-2 (Figure 1B, left). We refer to these as lag images, because they contain frames that lag
behind the timepoint we are predicting. Out of the resulting 16 unique models evaluated in Table
1 and 2, we discuss 12 in detail, focusing on the ones that showed the greatest improvement with
each sequential step. The remaining four models trained on lag images with no augmentation were
excluded from the discussion as they did not perform as well as augmented images alone, but still
showed improvement over original images. TC-error and AUC were moderately correlated (r = -
0.52), consequently there were cases where the model with the highest AUC was not the same as
the model with the lowest TC-error. Due to WhACC’s intended use case, all models were selected
based solely on TC-error to emphasize temporal consistency.

Training each model using single time point images without augmentation showed poor results
overall. The best model, Inception-v3 achieving a TC-error of 1.521 and an AUC of 0.820 (Table
1). Adding augmented images to the training data decreased TC-error in all base models except
Inception-v3. ResNet50V2 performed best for this variation, with a TC-error 1.464 and an AUC
of 0.964 (Table 1). Finally using the same set of augmented and original images, we changed the
input images to contain frames from previous time points in the color channels. Incorporating this
temporal information decreased TC-error for the deeper models, Inception-v3 and ResNet50V2.
Interestingly, for both MobileNetV3 models, adding temporal information via lag images
decreased performance measured by TC-error, but increased performance measured by AUC. The
increased TC-error could be due to the depthwise separable convolution architecture that makes
MobileNet so efficient. The best performing model again was ResNet50V2, with a TC-error of
0.402 and corresponding AUC of 0.981. Despite having a better AUC of 0.989, Inception-v3 had
a slightly worse TC-error of 0.512 (Table 1). Therefore we selected ResNet50V2 as the best model
for our purposes.

While TC-error is the most important measure, edge errors per touch can also negatively impact
analysis of neural data. Edge errors per touch were slightly negatively correlated with TC-error (r
=-0.11). Examining image modification approaches revealed that on average, augmentation with
lag images showed the best performance for TC-error, but the worst performance for edge count
errors; this suggests that there is some tradeoff between these two types of errors (Table 1).

The above results showed that our overall approach to automated touch classification was feasible,
but needed improvements to match expert human level performance. In order to improve the
overall performance, we implemented a two-stage hybrid model. The first stage of the model
involved extracting 2048 features from the penultimate layer of the best performing model, which
was ResNet50V2 trained on augmentation and lag images. These features were then inputted into
a LightGBM classifier (Ke et al., 2017). We chose to use LightGBM due to its excellent
performance across a range of classification and regression problems, as well as its fast and
lightweight nature. Preliminary results showed a noticeable increase in overall performance,
reducing TC-errors to 0.307 (Table 1), however, in order to achieve expert level performance, we
sought insights from human curators to gain further understanding of how to improve the system
based on temporal information.

So far, our approach to touch classification was limited to integrating temporal information over
three frames. However, expert human curators are able to integrate information over longer periods
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of time. A curator can intuitively infer times of high touch probability to bias their choice, since
touches occur in clusters. They can also bias their confidence of a touch frame based on previously
identified touch frames, since touches most often occur in segments of many frames in a row. For
example, if the last 20 frames were identified as touch frames, the likelihood of the next frame
being a touch frame is much higher than a randomly sampled frame. Moreover, curators can
distinguish onset and offset touch frames by identifying sudden changes in features like whisker
speed and whisker bending. They do this by comparing them to earlier frames that act as a visual
baseline for this change. Currently, our model does not have access to these features, so we
engineered features to capture more of them.

Building off the original 2,048 extracting features, we engineered features which improved model
performance (Figure 3C). How we engineered features was informed by the strategies of expert
curators outlined above. They included forward and back shifts of up to 5 frames, rolling means
and rolling standard deviation of windows ranging from 3 to 61 frames, and discrete differences
of frames ranging from -50 to 50 frames apart (Methods). Frame shifting and small window rolling
mean operations should inform the current frame based on features of surrounding frames (Figure
4B, 4C). Larger window rolling mean and larger window rolling standard deviation should contain
information of regions of high touch probability or clusters of touches (Figure 4C, 4D). Smaller
window rolling standard deviation and discrete difference can reveal sudden changes in features
which can help identify onset and offset times (Figure 4D, 4E). Finally, by taking the standard
deviation across feature space, we get a measure of dispersal unique to each feature set, each of
which can inform touch properties in their own way (Figure 4F).

Combined with the original features we now had a total of 84,009 features. To reduce model
complexity and memory demands, we reduced the total number of features using recursive feature
elimination (Methods). Our original training data could not fit into memory with all the features,
so we divided data into 10 training and validation sets and fit 10 light GBM classifier models for
each feature selection step. Because of how we split our data, performance metrics are not directly
comparable to previous figures (Methods). First, each model was trained with the original 2,048
features. Next we trained each model on the full set of 84,009 features. Adding engineered features
reduced error by over 50% (Figure 4G). For the full feature set model, most features had
embedded feature importance of 0 for all 10 models (i.e. not a single model used these features),
so we eliminated all these features for the next iteration, leaving 28,913 remaining. We continued
to reduce features by selecting features that passed a threshold until there was a negative impact
on mean performance of the 10 models. In total, we isolated 2,105 high value features. The mean
performance of the models trained on this selection was indistinguishable from those trained on
the full feature set (Figure 4G).

Using the selected 2,105 features, we trained a final LightGBM classifier using Optuna (Akiba et
al., 2019), to optimize the hyperparameters over 100 Optuna trials (Methods). The final model,
which we named WhACC, performed much better than any of the CNN models alone (Figure
3C). To compare WhACC with expert curators, we compared all consensus frames of two curators
against either the other curator or against WhACC. We did this for each combination of two
curators for a total of three comparisons. This method of comparison reveals the human error rate
and establishes a realistic performance ceiling. Overal, WhACC made fewer TC-errors on
average. For each type of touch count errors, WhACC either had similar or less variability
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compared to the human error rates (Figure 5A). WhACC made more edge errors per touch on
average, specifically because of more deduct errors. For both types of edge errors WhACC showed
less variability compared to expert curators (Figure 5B). On average WhACC performs as well as
a human curator or slightly better when evaluating on TC-errors, but has a slight bias towards
shortening the length of touches (Figure SC). Finally, WhACC shows a nearly identical but
slightly larger mean percent correct frames compared to expert curators (Figure 5D).

We've demonstrated that WhACC performs comparably to an expert curator. However, given the
variability of video data between labs, experimental apparatuses, experimenters, and over time, we
need to ensure its effectiveness on future datasets (e.g., data drift). To account for these differences
we developed a retraining system. First, we automatically sample video frames based on user-
defined time when the pole is within reach. Using the tracked object position data, frames are
automatically sampled equally based on the object's location in each video. Next, we curate this
small subset using the included GUI. Finally we retrain the LightGBM model with the newly
curated data combined with the original training data. This approach enables us to quickly adapt
WhACC to new datasets, without the need to retrain the ResNet50V2 model or repeat the time-
intensive feature selection step. We then evaluated our retraining procedure using a holdout dataset
with 16 different recording sessions of 100 videos each for a total of ~4 million frames.

We validated our retraining procedure by comparing WhACC before retraining, after retraining
with 100 frames per session (.03% of the data), and after retraining with 1000 frames per session
(.3% of the data). Curating 1,000 frames takes between two and four minutes, while curating an
entire session would take between three and five hours of focused work. Before retraining,
WhACC performed well on 11 sessions (Figure 6A, top row) but poorly on the other 5 (Figure
6A, bottom row). Retraining with 100 frames per session led to a large reduction in TC-errors for
the 5 poor performing sessions, while the 1000-frame model yielded an additional incremental
reduction for some high-error sessions (Figure 6B). Both WhACC retrained models and the
human curator identified the same seven sessions corresponding to touch-responsive neurons. The
1000-frame model generated more spikes per touch for three of the seven touch neurons compared
to human curated data (Figure 6C). WhACC peak responses tended to be 1 to 2 ms earlier than
the human curator's due to the increased number of deduct errors (Figure 6D). Finally we found
the signal window size of the 1000-frame model matched that of the human curator for five neurons
but was slightly larger for the other two (Figure 6E). Taken together, we have shown the utility
of WhACC as a high-speed video touch classification system that allows for reliable, consistent
and accurate predictions that can be updated to adapt to new datasets.

Discussion

Summary of WhACC

The present study describes a novel approach to classify whisker touch frames from high-speed
video using a 2-stage hybrid model implemented in a Python package named WhACC. WhACC
was trained based on majority labels established by three expert curators and evaluated on a custom
measure which penalized error classes which would be most detrimental to our downstream
electrophysiology analysis. We integrated some temporal information into ResNet50V2 by
layering different frames in color channels and trained the model using augmented images and
dropout to increase generalizability. To further optimize performance, we extracted, engineered,
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and selected features from ResNet50V2. These features were fed into a LightGBM classifier, and
the hyperparameters were optimized through OPTUNA. To account for data drift (e.g., changing
imaging conditions over time), we developed and empirically validated a retraining system using
a small number of sample frames. Our findings demonstrate that WhACC is an effective and
reliable tool for whisker touch classification that can save time compared to manual curation.

Potential limitations

WhACC achieves human expert-level performance on our data but there are several conditions
where its performance is uncertain. First, because the ResNet50V2 model was trained on frames
from 1,000 frames per second (fps) video, WhACC may not be as effective for other frame rates
because the lag images are constructed from differently sized time-steps. Second, WhACC may
struggle when multiple whiskers are in the frame simultaneously, as it was trained to classify
touches from single whisker videos. Third, our model was only trained on images where the object
was a small round pole so how well it generalizes to other contact objects is not known. Finally,
we must consider video clarity and contrast because this impacts human curation, whisker tracing
in the Janelia whisker tracker, and WhACC.

Videos with different frame rates

Preliminary tests using low fps video in our lab show promise for accurately identifying touches.
Even so, an option for improvement could be to modify lower fps videos using a frame
interpolation model to generate intermediate frames to match our training data at 1,000 fps. On the
contrary, generating features from a low fps video and then interpolating those features afterward
may not work as intended, because some of the features likely depend on the frame rate of the lag
images (e.g., a velocity related feature derived from the distance of the whiskers in different color
channels). Another alternative could be to downsample the original training data and retrain
WhACC from scratch.

Multi-whisker video and alternative contact objects

Despite training on single-whisker videos, WhACC's ResNet50V2 stage likely captures general
features useful for predicting touches in multi-whisker video. We believe that the existing
retraining procedure should work well, provided that the training data contains images with multi-
whisker touches. For different contact objects, our frame extraction method should work without
issue because it is based on a template image defined by the user. While it's unclear how well
WhACC will perform on contact objects of different shapes or sizes post-retraining, we believe it
should generalize well for at least a subset of possible objects, given our use of augmented training
images and poles of varying diameters and optical zooms. Finally, we expect WhACC to perform
well in freely moving rodents touching static objects from different directions, because we trained
on rotated images, although we have not tested this.

Why is retraining required?

We determined that the reason WhACC failed on five sessions prior to retraining was due to very
poor performance on whisker out-of-frame images, which was unexpected given that these frames
should be easy to classify. However, as soon as the whisker came into view, WhACC performed
well. This result could be attributed to two main factors. First, it could be due to the variability of
what ‘baseline’ whisker out-of-frame images look like across sessions, including changes in focus,
contrast and even debris on the pole and whisker. Second, relatively few whisker out-of-frame
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images were included in our augmented training data, which most likely hindered WhACC’s
ability to generalize to these frames. In addition, we noticed that WhACC performed slightly worse
on far distance touches, when only the tip of the whisker touched the pole. We suspect this is due
to limited training data for these scenarios and because of a low signal to noise of the visibility of
the thin tapered end of the whisker.

Final considerations and related work

TC-error measures temporal consistency of predictions by penalizing changes in total touch count,
rather than only misclassified individual frames. After training with lag and augmentation images
and median smoothing, we show that TC-errors decreased for Inception-v3 and ResNet50V2
compared to models trained on only augmented images. The reverse was true for both MobileNet
models. This might be related to their depthwise separable convolution architecture which first
uses depthwise convolution on each color channel separately and then uses pointwise convolution
on the results from the depthwise convolution (Chollet, 2017). This method is an efficient way to
independently map spatial and color channel information (Guo et al., 2019), but when we added
temporal information into the color channels, it could not effectively learn correlations between
channels and spatial information. Despite this result, 3D CNNs which use a modified form of
depthwise separable convolution have proven to be useful in efficiently capturing temporal
information in video data (Xie et al., 2018). Lastly, it is worth noting that for the models where lag
images did improve performance, the initialized model weights pre-trained on ImageNet were
sufficient for doing so.

We selected the CNN model based on its capability to generalize to visually distinct test data and
prioritized temporal consistency by evaluating on TC-error. However, all CNN models
occasionally displayed inconsistent classification for adjacent frames identified by expert curators
as nearly identical, highlighting a lack of temporal consistency. To some degree this is expected
because the CNN models have no or very little temporal information. On the other hand, because
these frames are nearly identical to the human eye, this failure is more indicative of a lack of
overall generalizability and is largely independent of time. These observations highlight the utility
of temporal consistency in building models that can generalize well to a variety of scenarios. With
the high temporal resolution of our video, we can see that subtle differences between frames can
have a major impact on the model's predictions. While the factors that impact model performance
are complex and varied, evaluating the temporal consistency of non-temporal models may help
reveal vulnerabilities to alterations in input data caused by noise or adversarial attacks.

Using LightGBM as the second stage of WhACC grants us the flexibility to integrate new features
to improve the overall performance. For example, the Janelia whisker tracker extracts many useful
features like whisker follicle angle, angular velocity, approximate distance to pole and whisker
curvature. These and other useful features could be directly combined with our extracted features
to improve overall performance. Alternatively, we could train a separate model on these additional
features and fuse those predictions with WhACC. For example, tracking data is highly reliable at
defining non-touch periods when the whisker is not near the pole and WhACC excels at classifying
touch and near-touch frames.

CNNs and other deep learning models have been combined with gradient boosting machines to
achieve excellent results across multiple domains. These hybrid models have been used for image
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classification (Ismail and Islam Mondal, 2022; Sugiharti et al., 2022), as well as time series data,
including stock price forecasting (Liu et al., 2020), ultra-short-term wind power prediction (Ju et
al., 2019), acoustic scene classification (Fonseca et al., 2017), and sleep stage classification
(Chambon et al., 2018). Techniques for combining these models include using a CNN as a feature
extractor and then feeding these features into a gradient-boosted machine model, which is similar
to the process we employed here. Another option is to use a late-fusion approach, where models
are trained in parallel and predictions are combined either by averaging or by using an additional
classifier to generate the final predictions. CNNs and gradient-boosted machines have even been
integrated into a unified framework (Thongsuwan et al., 2021).

A study related to our work (Bober-Irizar et al., 2019) identified precise temporal events in video
data and also leveraged a gradient boosted machine but otherwise approached the problem
differently. They use a late fusion approach where we use model stacking. Most importantly, they
integrate temporal information using an LSTM, but we use feature engineering and allow
LightGBM to capture temporal relationships. To our knowledge, no other study has combined a
CNN to extract spatial features from video frames and then used feature engineering combined
with a gradient-boosted machine to capture temporal information, to identify precise temporal
events in video. In conclusion, WhACC is an efficient and adaptable classification software that
can greatly reduce human curations hours across different laboratories which use a similar
experimental design. Our package and full walkthrough can be found at
https://github.com/hireslab/whacc.

Materials and Methods

Data selection and preprocessing

The original training data consisted of grayscale MP4 video from eight mice across eight different
behavioral sessions, with two sessions each from four different scientists. The videos were
collected using three different experimental rigs and across two different laboratories. We created
a Google Colab compatible interface to select a template image of the pole. Using this interface
we selected a template image of the pole (default 61X61 pixels). Any template size can be used to
match the specific object. Using this template image we match and extract each frame in an entire
session using OpenCV (Bradski, 2000). All data are stored in HS files using the HSpy package
(Collette et al., 2020).

For each CNN model, training and validation videos were split based on the segments created from
the 80-border extraction method in Figure 3A and described above. Test data consisted of a set
from another laboratory. We reasoned that if the CNN model could perform well on these visually
different images of the same whisker task, then the extracted features would be general features of
the task and not overfit to the specific video conditions.

For each of these datasets we selected a subset using 3-border extraction, made ten copies of these
data, and then augmented each frame independently prior to training. Examples of fully augmented
images are displayed in Figure 1B. Using keras from tensorflow, images were randomly
augmented using all of the following augmentations; full rotation, shifting in any direction up to
10%, symmetrically zooming in or out up to 25%, changes in brightness ranging from 20% to
120% of the initial value. Additionally, we used the imgaug (Jung, 2017) python package to modify
images with additive gaussian noise, where scale was set to three. These parameters were selected
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based on trial and error to ensure frames were still interpretable to a human curator. For lag images
we simply stacked images from the previous two time points into the different color channels.

Training CNNs

Each CNN model was initialized using the weights pre-trained on ImageNet using Tensorflow
(Abadi et al., 2016). Input images are fed into the network using a batch generator and
automatically normalized from -1 to 1 and resized to 96X96 pixels to match pre-trained CNN
model formats. Multiple levels of unfreezing were tested but only fully unfrozen models are
presented here, as they performed best. We used RMSprop as the optimization algorithm and
binary cross-entropy as the loss function. Various batch sizes and learning rates were also tested
but final models were trained using a batch size of 200 with a learning rate of 10°. We trained
with a dropout rate of 50% to improve generalizability of the model. We performed early stopping
based on the validation loss with a patience of 15 epochs. For all models, training was stopped by
early stopping. The model epoch with the best validation loss was saved and later compared against
other CNN models evaluated on test data. ResNet50V2 with lag images training on augmented
data was selected as the feature extractor model based on the test set having the lowest TC-error.

Feature engineering selection

As depicted in Figure 4, we applied various transformations to the 2048 features extracted from
the penultimate layer of ResNet50V2. These included the following. Shifting by -5, -4, -3, -2, -1,
1,2,3,4,5. Rolling mean and rolling standard deviations centered at time of time = 0 with window
sizes of 3, 7, 11, 15, 21, 41, 61. Discrete difference between time = 0 and relative step sizes -50, -
20, -10, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 10, 20, 50. With the original features this was a total of 41
sets of 2048 features. Lastly, we took each one of those sets and calculated the standard deviation
across feature space to generate 41 additional features for a total of 41*2048+41 or 84,009 features.

For feature selection we split all available data into training (70%) and validation (30%) sets and
then split both of those into 10 equal sets. This was necessary because our full dataset with 84,009
features could not fit into memory on our local machine with 128GB of RAM. Using an ensemble
of 10 models also helped reduce the risk of selecting poor predictors due to chance. We split data
based on frame index (as opposed to segment or video), to ensure variance was equally distributed
across the different splits. Equal variance among these splits meant that important and reliable
features should have approximately the same importance across models. This helped us to
confidently eliminate features with moderate importance in a few models with little to no
importance in the other models.

Data consisted of features generated from lag images without any augmentation from the original
dataset (80-border extraction). Augmented images were not included in any LightGBM models
because preliminary tests showed decreased performance when trained on augmented images. Due
to the nature of our feature engineering operations, some data were undefined at the edges (e.g.,
smoothing with a window of 61, the last 30 frames are undefined). Because of this, we dropped
any time points that contained undefined values prior to training, so that features with undefined
regions were not eliminated due to underrepresentation. As mentioned in the main text, models
were trained with the original 2,048 features then with the full 84,009 features for comparison. We
evaluated model performance using mean AUC of validation sets. Across the ten models trained
on the full feature set, only 28,913 features were used at all, so we eliminated the others. We
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continued to eliminate features based on threshold of gain and split importance. This process was
done through trial and error and was carried out by exploring distributions of feature importance
and defining thresholds to eliminate weak predictors. Naturally, some feature elimination steps
decreased performance and so the actual selection process resulted in many offshoots not shown
in Figure 4G. If eliminating features reduced performance, we simply came up with a more
conservative elimination step and tried again. We continued this process until we could no longer
maintain the same level of performance when reducing features. Once finished, we selected 2,105
features which we proceeded to use to train the LightGBm classifier.

The LightGBM models used for feature selection were trained with the following hyperparameters.
The number of leaves in the decision tree was set to 31, and the maximum number of iterations
was set to 5000 but all models trained were halted before reaching this limit. The AUC was used
as the evaluation metric, and early stopping was applied after 40 rounds. The histogram pool size
was set to 16,384, and the maximum bin value was set to 255. The learning rate was set to 0.1, and
the maximum depth of the tree was unlimited. The minimum number of data points allowed in a
leaf was set to 20, and both the bagging fraction and feature fraction were set to 1. The minimum
data points allowed in a bin was set to 3.

Preprocessing and training

After ResNet50V2 was selected as our feature extractor model, we created different training
(263,009 frames), validation (73,909 frames), and test (114,051 frames) sets by randomly assigned
data from single videos. Training and validation sets were trimmed using 80-border extraction but
the test set included all frames to mimic the distribution of actual data. These data were used to
train the final WhACC model and for the later retraining process. Just like the feature selection
step, features were generated from lag images without augmentation. The test set created at this
step was used for Figure 3C to compare WhACC to the CNN models. Because there is some data
from each of the eight sessions, this included some data used to train the CNN models. This means
that in Figure 3C the performance is inflated for the CNN model but not for WhACC. We made
this choice to emphasize WhACC’s true performance against the CNN models. Also note, the
feature extractor CNN was selected based on the original test set described in the data selection
and preprocessing section summarized in Figure 3B and Table 1.

Initial attempts to train our model showed great performance but we observed edge effects for
input data within a few frames of the last frame in a video. We discovered this was due to the
model relying on features which were unavailable for those timepoints due to how they were
engineered. To remedy this, we created an index matrix (100 by 2,105) of all the possible data
points which could contain undefined values for each feature at each timepoint. Next, we created
a duplicate of each dataset. For each timepoint in these duplicates, we randomly selected from the
100 possible timepoints which contained undefined values and added undefined values to these
relevant features to act as a mask. These altered datasets simulate what features look like for the
first and last 50 frames of a video where undefined values are possible. Final datasets for the
LightGBM portion of WhACC were composed of these altered datasets combined with their
unaltered counterparts. This process is carried out by default when retraining WhACC on sample
data as well.
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To optimize the performance of the LightGBM classifier for the WhACC, we used early stopping
with a custom callback that evaluated TC-errors and AUC. If the validation data failed to improve
for either of these metrics for 500 rounds, training was halted, and the model with the best TC-
error was selected. The number of iterations was set to 10,000 but all models were halted before
reaching this limit. To determine the optimal hyperparameters, we used Optuna, a hyperparameter
optimization framework. Optuna settings included L1 and L2 regularization values between
1*107-5 and 10. The number of leaves in the decision tree ranged from 2 to 256, and the suggested
fraction of features to use per tree ranged from 0.4 to 1.0. The suggested fraction of data points to
use for each bagging sample ranged from 0.4 to 1.0, and the suggested frequency of bagging ranged
from 1 to 7. Finally, the suggested minimum number of data points allowed in a leaf was set to
range from 5 to 100.

Retraining procedure

To make WhACC more reliable and generalize across variability of new datasets, we designed and
tested a retraining process using a small subset of data. We tested different methods for sampling
data, including using a few full length videos and a few frames across many different videos. The
latter was more effective. For the retraining procedure we used the object tracking location to select
trials equally spaced along the horizontal coordinates of the video. Then we selected a starting
frame where the pole was available in all videos. We sampled 10 frames from either 10 or 100
videos for a total of either 100 or 1000 frames from each session respectively. Once data was
selected, we used a GUI to curate the subset and saved our sample data. We then load the original
training and validation data and split the new sample data derived from each session into each. We
split sample data into 70/30 training and validation sets, and apply a weight of two to new data to
bias the model slightly. Next we duplicate each dataset and add undefined values as described in
the preprocessing and training section. Then we retrain just the LightGBM stage of WhACC using
the preselected hyperparameters or by using Optuna to select them again. Finally, we evaluate each
model's validation TC-error and AUC to help select a final model.

We evaluated WhACC before and after retraining using a holdout dataset of 16 sessions.

Each session was composed of 100 videos and each video had 3,000 frames. Accounting for pole
available times, we tested a total of ~4 million frames which were not used in any stage of
developing WhACC. This dataset was curated by only one expert curator, so the human error rate
is not known. We compared WhACC before retraining, WhACC after retraining on an additional
100 frames from each session (1,600 total) and WhACC after training on an additional 1000 from
each session (16,000 total). We constructed PSTHs by taking the mean spikes response across all
touch onsets times for either each model and the expert curator. For the expert curator 95%
confidence interval are included (1.96* standard error).

Touch neurons were identified using PSTH traces smoothed with a window of 5ms. Using a
baseline period from -100 to -20 ms from touch onset, we subtracted the signal from the baseline
and divided it by the SD of the baseline to get a Z-scored trace. Any neuron with points outside of
2 SD from the baseline for four or more continuous time points from touch onset to 100 ms after
was considered a touch neuron. If a touch signal was bipolar (i.e. positively and negatively
modulated at different times following touch), only the significant times directly following touch
onset were considered the signal window. If two significant regions were separated by some points
below two standard deviations, then the signal window was considered to be all the time points
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from the beginning of the first significant region to the end of the last significant region. Spikes
per touch were calculated by taking the integral of the significant region of the unsmoothed
baseline subtracted PSTH. We then took the absolute value of this number.

Evaluating performance

We created a class to determine touch count and edge errors and determine their lengths. As
explained in the main text, we utilized TC-errors to help us select a model that performed more
similarly to human curators, specifically in terms of the types of errors that were deemed
acceptable. We determined human error rate by comparing consensus frames between two curators
against the predictions of the remaining curator, for each combination of the three curators. This
method allowed for a fair comparison between WhACC and each curator. For all models we
median smoothed predictions with a five ms window because we found this uniformly increased
performance across models. Median smoothing primarily helped to eliminate noisy predictions
found near touch onset and offset events.
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Figure 1 — Flow diagram of WhACC video pre-processing and design implementation

A) Sample touch frame from high-speed (1000 fps) video and extracted object-centered window
for CNN input (red box) and corresponding spike train from a touch responsive neuron (inset) B)
Three consecutive extracted frames combined into three color channels (left) and example
augmented images (right). C) Representation of ResNet50V2 model used to extract features. D)
Demonstrative sample of features extracted from ResNet50V2 (left), representation of feature
engineering (center) and feature selection (right) for final WhACC model. E) Final WhACC model
was trained using LightGBM with Optuna to achieve the best performance.
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Figure 2 — Touch frame scoring and variation in human curation

A) Example of disparity between three human curators. Majority touch (dark blue), majority non-
touch (light blue) were used for training models. Consensus frames (green) were used when
evaluating curator versus paired consensus in C. B) Example of scored touch array (human
majority) and the corresponding edge errors (deduct and append), and touch count errors (split,
ghost, miss and join). C) Individual and mean error rate for each human curator compared against
the consensus of the other two curators for touch count errors (left) and edge errors (right).
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Figure 3 — Data selection and model performance

(A) Data selected for un-augmented (green) and augmented images (blue) using all frames within
80 or 3 frames from majority scored touch frames respectively. (B) Composition of training,
validation and test datasets used to train each CNN (C) Performance of four CNN models across
three different image modification approaches and the final WhACC model on separate test set
described in methods.
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Figure 4 — Feature engineering and selection

A) The original 2048 features extracted from the penultimate layer of Resnet 50 V2, (zoom)
enlarged for detail (white box). Additional features generated by (B) shifting, (C) smoothing, (D)
taking the rolling standard deviation, and (E) taking the discrete difference for each of the original
2048 features. F) Standard deviation of the original and 40 additional engineered feature sets across
feature space (columns). G) Model performance across feature engineering and reduction.
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Figure 5 — WhACC shows expert human level performance
(A) Human vs WhACC touch count error rate for each error type (top) and in total (bottom), error
bars indicate 95% CI. (B) Same as A for edge errors. (C) Difference in error rate for human versus
WhACC. Negative values indicate WhACC outperforming human curators on average. (D)
Percent correct for individual and mean performance of human curators versus WhACC.
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Figure 6 — Retraining WhACC on a small sample of data can account for differences in
datasets

A) Touch aligned PSTHs curated by WhACC before retraining (yellow), after retraining on 100
frames (orange), and 1000 frames (red) from each session compared against an expert curator
(black, shaded regions represents 95% CI). (Top row) Examples of high accuracy without
retraining and (bottom row) high accuracy following retraining. PSTHs are ordered by ascending
TC-errors before retraining. B) Touch count error rate from a holdout dataset consisting of 16
different sessions before and after retraining. Gray outlines indicate sessions from the top row in
A and black outlines indicate those from the top row in A. C) Comparison of spike evoked touch
count across human and retrained WhACC, n=7 touch responsive neurons. D) Difference in peak
touch response times between retrained WhACC models and human curators E) Same as D for the
width of touch response windows.
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Images Base model name  TC-error Edge errors AUC Accuracy Sensitivity Specificity Precision
Lag Aug per touch
MobileNetV3-Small 7.901 1.236 0.762 0.775 0.485 0.818 0.282
No No MobileNetV3-Large 5.558 1.184 0.741 0.808 0.413 0.867 0.314
Inception-v3 1.521 0.088 0.820 0.881 0.130 0.992 0.696
ResNet50V2 4.462 1.156 0.879 0.810 0.831 0.807 0.388
MobileNetV3-Small 2.214 0.096 0.623 0.870 0.125 0.980 0.478
Yes No MobileNetV3-Large 5.094 1.506 0.896 0.887 0.763 0.906 0.544
Inception-v3 1.757 1.509 0.979 0.945 0.685 0.983 0.859
ResNet50V2 1.464 1.465 0.964 0.956 0.833 0.975 0.829
MobileNetV3-Small 1.387 0.506 0.937 0.898 0.242 0.995 0.870
No Yes MobileNetV3-Large 1.135 0.142 0.811 0.875 0.061 0.995 0.637
Inception-v3 1.718 1.259 0.967 0.922 0.460 0.990 0.871
ResNet50V2 0.424 1.409 0.980 0.965 0.848 0.982 0.877
MobileNetV3-Small 1.645 1.446 0.984 0.956 0.959 0.956 0.761
Yes Yes MobileNetV3-Large 1.326 1.225 0.984 0.963 0.893 0.973 0.829
Inception-v3 0.512 1.281 0.989 0.981 0.930 0.988 0.920
ResNet50Vv2 0.402 1.131 0.981 0.977 0.930 0.984 0.894
Yes ves  lesNets0V2+ 0.307 1214 0.986 0.978 0.927 0.986 0.906
LightGBM

Table 1 — Performance metrics across models after median smoothing

Performance metrics across all tested model variants prior to any feature engineering. Bold text indicates
the best performance for that metric across each image modification approach, yellow highlighted text
indicates the best performance for that metric across all model variants. ‘Lag’ and ‘Aug’ indicate that lag
and augmented images were included in training these models, respectively. All metrics were calculated
after median smoothing predictions with a window of five. These results are from the test set outlined in
Figure 3B, that consists of visually different data from another laboratory.
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Images Base model name TC-error Edge errors AUC Accuracy Sensitivity Specificity
Lag Aug per touch
MobileNetV3-Small 25.907 1.447 0.747 0.755 0.497 0.793
MobileNetV3-Large 17.153 1.190 0.727 0.793 0.421 0.848
No No Inception-v3 3.238 0.280 0.791 0.880 0.126 0.991
ResNet50V2 18.941 1.182 0.866 0.792 0.813 0.789
MobileNetV3-Small 8.292 0.182 0.618 0.857 0.128 0.964
Yes No MobileNetV3-Large 21.908 1.463 0.868 0.848 0.741 0.864
Inception-v3 8.860 1.598 0.957 0.932 0.661 0.972
ResNet50V2 7.992 1.371 0.950 0.941 0.809 0.960
MobileNetV3-Small 3.565 0.884 0.921 0.897 0.255 0.992
No Yes MobileNetV3-Large 1.743 0.239 0.803 0.875 0.064 0.995
Inception-v3 6.504 1.197 0.947 0.921 0.478 0.986
ResNet50V2 1.987 1.468 0.976 0.962 0.848 0.979
MobileNetV3-Small 7.585 1.321 0.979 0.943 0.948 0.942
Yes Yes MobileNetV3-Large 7.226 1.089 0.975 0.947 0.870 0.959
Inception-v3 3.254 1.261 0.983 0.974 0.905 0.984
ResNet50V2 2.575 1.166 0.977 0.971 0.925 0.978
ResNet50V2 +
Yes Yes LightGBM 1.513 1.229 0.983 0.976 0.919 0.984

Table 2 — Performance metrics across models without median smoothing
Same as Table 1 but without median smoothing.
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