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Deconstructing the contributions of
heterogeneity to combination treatment of
hormone sensitive breast cancer

Samantha Linn, Jenna A. Moore-Ott, Robyn Shuttleworth, Wenjing Zhang, Morgan
Craig and Adrianne L. Jenner

Abstract Combination therapies are fundamental to cancer treatments, including
in breast cancer the most common invasive malignancy in women. Breast cancer
treatment is determined based on molecular subtypes, and since 2016, combina-
tion palbociclib and fulvestrant has been used to treat hormone receptor-positive
breast cancer. However, the impact of heterogeneity of the tumour landscape and
tumour composition dynamics on scheduling decisions remains poorly understood.
To elucidate the contributions of variability at multiple scales to treatment outcomes
in hormone receptor-positive breast cancer, we developed a simple mathematical
model of two unique estrogen receptor positive (ER+) breast cancer cell types and
their response to combination treatment with palbociclib and fulvestrant. We used
this model to understand how the initial fraction of either cell type may impact the
fraction remaining after treatment and examined how heterogeneity in pharmacoki-
netics and pharmacodynamics result in a large distribution of outcomes. Our results
suggest that the pharmacokinetics and pharmacodynamics of fulvestrant were the
major drivers of final tumour size and composition. We then leveraged our model
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to guide therapeutic scheduling of combination palbociclib and fulvestrant, demon-
strating the use of mathematical modelling to improve our understanding of cancer
biology and treatments.

Keywords: Hormone-sensitive breast cancer, CDK4/6 inhibition, palbociclib,
fulvestrant, mathematical modelling, heterogeneity, ordinary differential equations

1 Introduction

Breast cancer is the most common invasive malignancy in women with a one in
eight chance a woman will develop breast cancer in their lifetime [21, 38]. Treatment
of breast cancer requires a multifaceted approach combining surgery, radiation,
neoadjuvant, and adjuvant treatments [7]. There are five molecular subtypes of
breast cancer, each with a different combination of cancer cells that over- or under-
express receptors of estrogen (ER+/-), progesterone (PR+/-), and HER2 (HER2+/-)
[25]. Effective treatment of these varying subtypes of breast cancer requires a deep
understanding of heterogeneity in their responses to the different treatment types;
unfortunately, there is still no completely curative treatment for any subtype.

Combination therapy (i.e., combining two or more therapeutic agents) is a cor-
nerstone of cancer therapy [19]. The major goal of combination therapy in on-
cology is to enhance the therapeutic efficacy of a single anti-cancer drug through
co-administration with a synergistic or additive drug that targets key pathways [19].
For example, metformin, an agent used to treat type 2 diabetes, was found to in-
crease the susceptibility of a p53 breast cancer cell line to therapeutic molecule
tumour necrosis factor-related apoptosis inducing ligand (TRAIL) [32]. To that end,
a combination therapy in breast cancer with recognised potential is palbociclib com-
bined with fulvestrant [17, 34], approved in early 2016 by the FDA to treat hormone
receptor-positive breast cancer [36].

Palbociclib (brand name Ibrance) is an orally available, highly selective inhibitor
of cyclin-dependent kinase 4 and 6 (CDK4 and CDK®6) [31, 33, 29]. CDK4/6 are
critical mediators of the cellular transition into the S phase and are crucial for the
initiation, growth, and survival of many cancer types [8]. As such, pharmacological
inhibitors of CDK4/6 are rapidly becoming a new standard of care for patients with
advanced hormone receptor-positive breast cancer. Palbociclib thus forces cells to
stay in the G1 phase in lieu of undergoing cell division (Figure 1). Importantly,
palbociclib does not induce apoptosis but instead halts cellular division. According
to the US National Institutes of Health (NCT0300797914), patients have historically
been on a 21-day-on, 7-day-off palbociclib schedule, though there were concerns
that the off days were the reason behind worse patient outcomes [39]. A 5-day-on,
2-day-off schedule has thus far shown better health outcomes for the treatment of
ER+ breast cancer [39, 13], though this study is still ongoing.

Fulvestrant is a novel endocrine therapy for breast cancer which binds, blocks, and
degrades the estrogen receptor, leading to complete inhibition of estrogen signaling
through the ER [20, 11]. Through extensive pre-clinical and clinical trials, fulves-
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trant has demonstrated improved clinical efficacy compared to established endocrine
agents [11]. Fulvestrant has been combined with several different classes of thera-
peutics, in particular CDK4/6 inhibitors [20]. The PALOMA-3 study investigated
fulvestrant with palbociclib or placebo in both pre- and postmenopausal patients who
had progressed on previous endocrine treatment. The trial demonstrated a substantial
increase in progression free survival from 4.6 months to 9.5 months in the placebo
compared to palbociclib arms [20]. The FLIPPER trial is a phase II study comparing
fulvestrant and palbociclib with fulvestrant and placebo in the first-line metastatic
setting, although this trial is ongoing.

While it can be challenging to fully capture the effects of heterogeneity on treat-
ment outcomes experimentally and clinically, mathematical modelling is well-placed
to provide insight into how cancer treatments are affected by multiple scales of hetero-
geneity. Previously, groups have used deterministic mathematical models to examine
the combined treatment of breast cancer using palbociclib and AZD9496 [40]. For
example, He et al. [9] used a mathematical model that captured the cell cycle and
signalling pathways in response to endocrine therapy and CDK4/6 inhibition. Their
model successfully predicted the combined effects of estrogen deprivation and pal-
bociclib and was used to explore combination scheduling. Mathematical modelling
studies can also be extended to a virtual or in silico clinical trial setting to account for
variations in patient characteristics and comprehensively explore dosing regimens in
ways that are clinically unfeasible [23, 24, 28, 1]. There are many examples of virtual
clinical trials employed in cancer therapies [12, 43, 37, 3, 10] to this end, and this
approach continues to gain traction within pharmaceutical and other applications
[41,2].
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Fig. 1 Schematic summarising the mathematical model of combination therapy on breast cancer
cells. (A) Our model consists of pharmacokinetics and pharmacodynamics (PK/PD) of two drugs
(palbociclib and fulvestrant), each with different mechanisms of action; palbociclib targets and
arrests the cell in the cell cycle and fulvestrant degrades the estrogen receptor on cells, essentially
causing cell death. To examine the impact of heterogeneity on tumour composition prior to, during,
and at the end of treatment with this combination, we considered heterogeneous tumours composed
of less aggressive and more aggressive cells. We parameterized these cells to in vitro data from two
cell lines: MCF7 and T47D. (B) Schematic overview of the mechanism of action of palbociclib on
cell cycle arrest.
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As heterogeneity can impact combination strategies aimed at CDK4/6 inhibition
at multiple levels, we developed a simple mathematical model of two unique ER+
breast cancer cell types and their response to combination treatment with palbociclib
and fulvestrant to understand how different sources of variation impact on this
therapeutic approach. We examined in situ how co-culturing of heterogeneous cell
types, specifically two commonly used breast cancer cell lines exhibiting different
degrees of aggressivity, affects their response to treatment. Using our model, we next
explored how interindividual variability in pharmacokinetics within a virtual breast
cancer patient cohort affects treatment outcomes. Lastly, we used our integrated
framework to establish how therapeutic scheduling determines treatment responses,
providing insight into effective regimens using this combination treatment.

2 Methods

2.1 Mathematical model of breast cancer co-cultures and combination
therapy

Below we detail the development of a mathematical model to capture the action of
palbociclib and fulvestrant on a heterogeneous population of breast cancer cells. To
capture and understand how intrinsic cell characteristics affect combination palbo-
ciclib and fulvestrant treatment, we considered co-cultures of MCF7 and T47D cell
lines, two commonly used breast cancer cell lines that display different sensitivities
to each drug, with T47D thought to be more aggressive (i.e., exhibit stronger/faster
growth) than MCF7. A schematic overview of our model is provided in Figure 1.

2.1.1 Palbociclib’s impact on cell growth

We first constructed a mathematical model describing the growth of a cell population
under treatment by palbociclib, a drug whose effects were assumed to inhibit the cell
cycle. To model these effects, we adopted a general inhibitory effects model given
by

EO,i : Imax,i . [P]hi
[P]hi + [1Cs0,:]"

where i = M, T specifies the effect on cell line MCF7 and T47D respectively, P is
the concentration of palbociclib at the tumour site, Ey ; denotes the baseline effect
of the drug palbociclib on cell type i, I,;4x,; represents the maximal effect of the
drug at high concentrations, h; is the Hill coefficient measuring the slope of the
inhibitory curve for cell type i, and /Csp ; represents the drug concentration eliciting
50% of the maximal inhibition. This model formulation is regularly used to capture
the effect of a drug on inhibiting a cell population [5].

Ei=Ep; -
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As palbociclib arrests cells in the cell cycle, the general growth inhibition model
for a population of cells of type i, i.e., C;(¢), inhibited by palbociclib is given by
dc;
d_tl = A(CHEC;,
where A(C;) is a function describing cell population growth in the absence of

treatment (see Figure 1). As in vitro tumour growth is constrained by the availability
of nutrients, space, etc., we modelled cell growth using the logistic growth law

Ci
/l(Cl) =r; (1 - ?) N

where r; is the cell line specific proportionality constant and K is the total cell
population carrying capacity in a given space. We chose logistic growth as this
provided the most accurate fit to cell count measurements, however Gompertzian
tumour growth also provided a close (but less accurate) fit to our data (Figure 10
and 11). Thus, the complete model of monoculture growth under treatment with
palbociclib is given by

dc: C; Eo: -1 [P
—=Ci-ri- (1 - —1) : (Eo,i - T [ h]
[P]" + [1s0,i]"

dt K

Typically, tumours are not homogeneous in nature and are comprised of a variety
of different cell types. We accounted for this phenotypic heterogeneity by modelling
both MCF7 and T47D cell types within a single tumour environment in co-culture.
As mentioned above, while both MCF7 and T47D are ER+, they differ in their
response to treatment. We therefore considered each to have separate parameters,
with co-culture growth rates affected by the available space in the domain. In addition,
since the effect parameters will depend on the drug being applied, we now update our
pharmacodynamic variables to be drug specific. In other words, since parameters are
cell line and drug specific, the specific combination is represented in their subscript
as:

XCELLzlrug

where drug is denoted by either p for palbociclib or f for fulvestrant and the cell
line is denoted either by M for MCF7 or T for T47D.

For simplicity, and owing to the absence of data, we did not consider switching
between tolerant and resistant types [4]. We assumed that the carrying capacity and
growth of each cell type would be affected by the presence of the other cell type in
the dish, thus modifying our logistic growth model. Therefore, to account for the
impact of variable growth between each cell type, we included cell-specific carrying
capacities in our model of cell growth (1(C;) above). Our final model describing the
change in population of two, indirectly interacting, cell types (MCF7 and T47D) is
therefore given by


https://doi.org/10.1101/2023.05.19.541369
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.19.541369; this version posted May 22, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

6 Linn et al.
dCy _ 1 Cy +Cr Eomp - Imax,mv - [P]"7
_ = -r . _— p —

dt MM Kymom + Kror 0.M! [P]hmr + [Iso prp | imer
2
dcC Cy+C Eorr -1 - [P]hre
T — CT rr 1- M T . EO v — 0,77 * fmax, TP [ ] (3)
dt Kyvom + Kror ’ [P]rp + [Iso,p | hrP

where ¢; is the volume fraction of cell type i for either type MCF7 and T47D,
respectively, in the domain, and is calculated by ¢; = C;/(Cay +Cr), with ¢ps + ¢ =
1. The global carrying capacity in the domain is given by K = Ky ¢y + Krdr,
where K; is the individual carrying capacities for each cell type, MCF7 and T47D,
respectively.

2.1.2 Modelling the effects of fulvestrant on a heterogenous tumour

As fulvestrant degrades cells, we modelled its effect on the rates of decay for both
the MCF7 and T47D cells. We updated the ordinary differential equation (ODE)
system for the effect of palbociclib (Egs. 2-3) to include a decay term for both cell
populations, d;, that was then affected by the concentration of fulvestrant (F), using
a modified version of the effect function in Eq. 1:

dCu =C r 1 Cy +Cr E Eo,pmr - Lnax,mr - [P]hMp
“tM _ o M TET ) -
dt MM Kyom + Krodr oM [P]hmr + [Iso prp | Hiner
g (Bt e - (F n
- Cyudum
[F)"ms + [ICsq pgr ]!
dCr _ oy _CmCr . _ Eorr - Inax,re - [P]"T7
dar T T Ko + Kegr ) \TOTT T TPV 4 (Isg o )P
C EO,Tf 'Imax,Tf : [F]hTf ®))
- Crdr
[F]"t/ + [ICsq 7r]"rf

where E ; was the basal effect of fulvestrant on cell type i, I,,,, . ;r Was the maximum
effect of fulvestrant, h;s the Hill coeflicient for fulvestrant and /Csg ;r was the half
effect of fulvestrant, given i represented either M or T for cell type MCF7 or T47D
respectively. Note, this modified effect function for fulvestrant is to capture that as
the fulvestrant concentration F increases, the death rate increases. To determine
the concentration of palbociclib and fulvestrant after administration, we introduced
pharmacokinetic models parameterized from clinical pharmacokinetic (PK) studies
for both drugs.
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2.1.3 Palbociclib and fulvestrant pharmacokinetic models

We used a linear two-compartment pharmacokinetic (PK) model with first-order
absorption and absorption lag to model the dynamics of orally administered palbo-
ciclib,

dM,

=0 - koM, 6
dt aivlQ ()
dM, ke + key ke

— =k My - M| —— My |—]|, 7
7 aMo 1( Ve )+ 2(VP) @)
dM, ke ke

e R VoY ) v ey 8
7 2(VP)+ I(Vc) (8)

where My, M| and M, are the palbociclib concentrations pre-absorption, in plasma,
and in peripheral tissue, respectively. Further, k, is the rate of absorption into
plasma, k,; is the rate of linear elimination, k. is the exchange rate between plasma
and tissue, and V¢ and Vp are the apparent plasma and peripheral tissue volumes,
respectively. The concentration of palbociclib at the tumour site was then calculated
by P(t) = Mi(t)/Vc in Egs. 4-5.

Based on data from 38 postmenopausal women with advanced breast cancer who
received 250 mg doses of extended-release fulvestrant (in a single 5 mL intramuscular
(IM) injection or two 2.5 mL IM injections [26]), a two-compartment PK model with
zero-order administration and linear elimination was developed. The fulvestrant PK
model is given by

dr,

7 =1In—keF1+ ko Fo — kioFy, 9
dF
d_2 = ko F2 + k12 F7, (10)
t
D
In=—— 11
n TV (11)

where F; and F, denote fulvestrant concentrations in the plasma and tissues, re-
spectively, In represents the administered dose (here taken to be an intramuscular
administration), k.; is the rate of linear elimination, k1, and k,; are transit rates be-
tween the plasma and tissue compartments, D represents the IM dose, Ty the time
for absorption, and V the volume of distribution. The concentration of fulvestrant at
the tumour site was set as F(t) = Fi(¢) in Eq. 4-5.
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2.2 Parameter estimation

2.2.1 Estimating tumour growth parameters

Cell counting was performed in breast cancer cell lines MCF7 and T47D by Vija-
yaraghavan et al. [35]. Cells were plated in six-well plates and treated with indicated
agents for 10 days. the medium was replaced every other day over the course of the
experiment. Cells were then collected and counted using BioRad TC20 Automated
Cell Counter on days 0, 3, 6 and 10 (see data in Figure 10 and 11). We estimated
parameters governing cell growth by setting all drug concentrations to zero in our
model Egs. 4-5 and fitting the proliferation rate r; and carrying capacity K; to cell
type i count data. Fitting was performed in Matlab [18] using the inbuilt non-linear
least-squares fitting function Isgnonlin. The model was solved using ode45 and
the trust-region-reflective algorithm with 1000 maximum function evaluations was
chosen.

2.2.2 Estimating drug effect parameters from cell viability assays

Cell viability measurements for MCF7 and T47D with palbociclib were measured by
Vijayaraghavan et al. [35]. For these dose-response studies, cells were plated on a 96-
well plate and treated with increasing concentrations (0.01-12 M) of palbociclib for
1,2, 4, 6, or 8 days. The medium was replaced with drug-containing medium every
other day. At completion of drug treatment, cultures were continued in drug-free
medium until day 12 after which they were stained with 0.5% crystal violet solution.
Values were normalized to those of their no treatment controls. We assumed that
after 8 days of drug exposure, the drug effects were saturated. We fit the 8-day data
(see Figure 12) and estimated the values of Eq ;», Iimax.ir, and ICsg ;» for each cell
type i in Egs. 4-5 by minimizing the least-squares error between the data and the
inhibitory growth model using Isgnonlin in Matlab [18]. We additionally estimated
the 95% confidence intervals for the parameters using the Jacobian returned from
the Isgnonlin fit. All fitted parameters and their bounds are given in Figure 12 for
both MCF7 and T47D cell lines.

In similar experiments, Nukatsuka et al. [22] measured MCF7 cell growth under
varying fulvestrant concentrations. Measurements were calculated as means and
standard deviation of cell growth relative to that of the control for three independent
experiments. Lewis-Wambi et al. measured DNA (ug/well) from T47D cells after
treatment with fulvestrant [15]. Cells were seeded in 24-well dishes and after 24h
were treated with varying drug concentration for 7 days. At the conclusion of the
experiment, cells were harvested, and proliferation was assessed as cellular DNA
mass (in micrograms per well). We assumed this as a proxy for cell viability relative
to control. As with the palbociclib experiments from Vijayaraghavan et al. [35],
we estimated the pharmacodynamic parameters in Eq. 4-5 by minimizing the least-
squares error between the data and the inhibitory growth model using Isgnonlin in
Matlab (see Figure 12).
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2.2.3 Estimating pharmacokinetic parameters

We used a nonlinear mixed-effects model in Monolix [16] to estimate parameters
of the fulvestrant PK model in Eqgs. 9 and 11. As the data reported in Robertson et
al. [26] was pooled, we extracted the reported mean, and lower and upper bounds
to estimate interindividual variability (IIV). We then fit the model in Eq. 9 - 11 to
this data assuming lognormal distributions on parameters (Figure 13) subject to IIV
according to

pi=0;exp(n;i).  nji ~N(O,w3)

where p; is the value of a given model parameter (e.g., k.;, k12 etc.) for subject i,
6 is the population mean, and 7;; represents the deviation from the mean (i.e., IIV)
for the i-th individual. Estimated model parameters are presented in Tables 1 and 2.

The model in Egs. 6 - 8 is based on the clinical and theoretical work of Yu et
al. [42] which described data from 26 advanced breast cancer patients who received
palbociclib and letrozole on a three-weeks-on, one-week-off treatment regimen. The
model parameters were taken from Yu et al. and used to simulate patient popula-
tions. We assumed lognormal distributions on parameters subject to interindividual
variability using p; above. Parameter values for fulvestrant were taken directly from
Robertson et al. [26].

2.3 Generating heterogeneous pharmacokinetics and
pharmacodynamics

2.3.1 Pharmacokinetic parameters

We investigated palbociclib and fulvestrant individually to quantify each of their
contributions to the effects of PK II'V on tumour growth. For palbociclib, we sampled
Ve, Vp, kel ke, and k, from lognormal distributions according to the parameters
in Table 1 to produce a virtual patient population. Similarly, for fulvestrant, we
sampled Ty, V, ke1, k12, and ko1 from lognormal distributions according to the best-
fit nonlinear mixed effects model determined by our parameter fitting (see Table 2)
to generate virtual patients. In the case of each drug, by simulating the full model
(with all other components’ parameters set to their average values), we selected only
those virtual patients whose predicted trajectories were realistic (as confirmed by
visual predictive check of their concentration time courses) before accepting them
into our cohort. This left 500 virtual patients in the case of palbociclib and 438 for
fulvestrant.
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2.3.2 Pharmacodynamic parameters

To investigate the effect of heterogeneity of the pharmacodynamics of palbociclib
and fulvestrant, we generated 400 sets of parameter values by sampling Eo, 1,4, 1
and ICsg for each cell type-drug combination from the ranges established during
parameter fitting (Figure 14). As each of these four parameters is drug and cell type
specific, this gave 16 parameters to sample:

ﬁ = [EO,MP5 Imax,MP’ hMP, IC50,MP’ EO,TP’ Imax,TP, th7 ICSO,TP, o

Eo prs Lmax s> Panars ICso aa 7> Eo 17 s Lna, 77> s s ICso pr]. - (12)

Parameters were sampled from a multivariate normal distribution with mean u set
to the fitted values in Table 3 for p and standard deviation o~ determined from the
confidence intervals (CI) returned for the fitted parameters and the formula

Cl-pu
1.95
where 1.95 was chosen to return values in the 95% confidence interval. Any samples
resulting in negative parameter values were discarded. The resulting distributions of
parameters are provided in Figure 14.

3 Results

3.1 Shorter treatment cycle reduces aggressive cell viabilities as
compared to conventional schedule

We first set out to predict whether a shortened treatment cycle (i.e., 5 days on of
palbociclib with 2 days of rest, repeated for 28 days) was a viable strategy as compared
to a conventional 21 days on of palbociclib with 7 days of rest schedule. For this, we
simulated the complete model in Eqgs. 4-9 with mean values for both the palbociclib
and fulvestrant pharmacokinetic models (Table 1 and 2) and pharmacodynamic
effects model (Table 3). We considered only the case where the two cell types were
presentin equal fractions (i.e., ¢; = 0.5) with a total cell countof Cps ;+Cr; = 7X 104
cells. We called this an “average patient”. Left untreated, over the course of 28 days,
unsurprisingly both cell lines were predicted to grow to the global carrying capacity
K= KM¢M + KT¢T (see Figure 15)

We then introduced treatment to this average patient. We first simulated 125
mg of palbociclib daily for 21 days, with a period of rest for 7 days, with 125 mg
of fulvestrant on days 1 and 15, consistent with current treatment schedules [42]
(Figure 2). Our model predicted the resulting viability at the end of treatment to be
0.39 (MCF7) and 0.51 (T47D). Here, cell viability was determined by comparing, for
the same parameters, treatment outcomes to the untreated scenario, i.e., the viability
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Fig.2 Comparison of alternate protocols for combination therapy. (A) Two established protocols are
being considered for combination palbociclib and fulvestrant treatment denoted by this schematic.
(B)-(D) Tumor growth dynamics with 21 days on of palbociclib with 7 days of rest. (B) and (E)
Fulvestrant pharmacokinetic model (Egs. 9-11). (C) and (F) Palbociclib pharmacokinetic model
(Egs. 6-8). (D) Tumor response to treatment. By comparing the total number of MCF7 and T47D
cells at the end of treatment to the trial that did not receive treatment (Figure 14), we find a cell
viability of 0.39 and 0.51, respectively. (E)-(F) Tumor growth dynamics with 5 days on of palbociclib
with 2 days of rest, repeated for 28 days. (G) Tumor response to treatment. By comparing the total
number of MCF7 and T47D cells at the end of treatment to the trial that did not receive treatment
(Figure 15), we found a cell viability of 0.38 and 0.47, respectively. In Figure 16, we provide the
corresponding effects function value over time.

of each cell line was calculated by comparing the total cells at the end of treatment to
the total number of cells under no treatment. Repeating this strategy for a treatment
course of 125 mg of palbociclib for 5 days with 2 days of rest over a period of 28
days, with 125 mg of fulvestrant administered on days 1 and 15, we found viabilities
after 28 days of 0.38 (MCF7) and 0.47 (T47D), respectively (Figure 2). Notably,
this change in treatment schedule was predicted to somewhat lower the viability of
T47D, which is the more aggressive cell type.
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3.2 Initial tumour composition has little impact on treatment outcomes

Given that our model predicted a slight reduction in T47D viability under shortened
schedules for an average patient, we next interrogated how various levels of hetero-
geneity (e.g., intrinsic to the tumour population, PK, PD, and treatment scheduling)
would affect outcomes. First, we explored the effect of the initial tumor composition
and initial total cancer cell count on the outcomes of different treatment regimens
(Figure 3 and Figure 17).

To isolate the effect of the initial tumour composition, we set all model parameters
in both the palbociclib and fulvestrant pharmacokinetic models and their pharmaco-
dynamics to be their mean values (Table 1-3), as in the previous section. We then
varied the initial fraction of MCF7 cells (¢yy), i.e., the less aggressive cell type, from
0 to 1 and the total initial cell count (Cy; + C7) from 10! to 10° cells. We sampled
440 parameter values with different ¢, and Cps + Cr within these ranges.
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Fig. 3 Results for varying initial tumor composition and total initial cell count, conventional
treatment (i.e. 21 days on, 7 days off for palbociclib, Figure 2A). Initial fraction of MCF7 cell line
(¢nr) and total number of cells (Cps+Cr) are varied over 0 < ¢py < 1and 101 < Cps+Cp < 105.
(A) Viability of the MCF7 line for conventional treatment over varied ¢ and Cps + Cr. Viability
is calculated by comparing the total number of MCF7 cells with treatment compared to the total
number of MCF7 cells without treatment after 28 days; both trials have the same initial conditions
and only differ in whether treatment is administered. (B) Viability of the T47D line for conventional
treatment over varied ¢ps and Cpy + Cr. Viability for T47D is larger than that of MCF7. (C) The
final fraction of MCF7 cell line (¢ ) after the 28 days of treatment. (D) The final fraction of MCF7
cell line (¢py) after the 28 days of treatment compared to the initial fraction.
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We found that the cell viability, defined as stated earlier by comparing the total
cells at the end of treatment to the total number of cells under no treatment, and
final fraction (¢, after 28 days of treatment) over these varying initial conditions
showed decreased T47D viability for the shortened treatment (i.e., shortened vs
conventional, see Figure 3 and Figure 17). At lower initial cell counts, our model
predicted that the more aggressive T47D cells were more likely to take over at
the end of treatment (Figure 3). Our predictions show that as the initial number
of cells increased, so too did the cell viability. This implies that with more cells,
the drug combination becomes less effective. In both regimens, there appeared to
be a switching point for the initial cell fraction above which MCF7 cells can take
over (~0.75). Though T47D viability did decrease with the shortened treatment,
there was not an exceptional difference between the shortened and conventional
treatment, indicating that the dosing schedules are more dependent on other factors
of variability, i.e., pharmacokinetic and/or pharmacodynamic.

3.3 The effects of pharmacokinetic variability are determined uniquely
through fulvestrant interindividual variability

To quantify the effects of interindividual variability in PK parameters on the out-
comes of both MCF7 and T47D cells, we simulated the standard dosing regimen of
each drug in the population of virtual patients defined by our estimated population
PK (PopPK) models (see Figure 4, Figure 18).
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Fig.4 Predicted outcomes on standard regimen in palbociclib virtual patient cohort. (A) MCF7 and
(B) T47D cell counts over the course of a standard treatment regimen with variation in palbociclib
pharmacokinetic parameters summarized in Figure 18. Colour bar: viability of T47D cells.
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For palbociclib, our results suggest that variability in the pharmacokinetic pa-
rameters has a negligible influence on tumour growth outcomes for both cell types
(Figure 4 and 19). Interestingly, examining the palbociclib parameters by classifying
patients as either responders or non-responders based on their predicted terminal
T47D cell count, we see a clear distinction in the cohort’s value for k,.;, which is
high for those with high terminal concentrations and low for those without (Figure
5).

In contrast, our results suggest that fulvestrant pharmacokinetic variability has
a significant impact on tumour growth outcomes for both cell types (Figure 6A
and Figure 6B). Distribution of fulvestrant PK parameters in the virtual patient
cohort are provided in Figure 20. We observed that virtual patients who sustained
high concentrations of fulvestrant over the treatment period has significantly and
consistently lower tumour growth as compared to virtual patients who more rapidly
cleared the drug (Figure 6C).

Given the clear relationship between terminal fulvestrant concentrations and out-
comes in our virtual patients, we defined virtual patients with “high concentration”
to be those with terminal fulvestrant concentrations above -1.4 log(uM) and those
with “low concentration” as those with concentrations below -3.97 log(uM) (Figure
7). Using a two-sided Kolmogorov-Smirnoff test to test for statistically significant
differences in distributions between these two subcohorts, we found significant dif-
ferences in all fulvestrant PK parameters between these groups. This suggests that not
only is fulvestrant the key driver of PK heterogeneity (as compared to palbociclib),
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Fig. 5 Some palbociclib PK parameters differ between responders and non-responders. Virtual
patients were classified as responders or non-responders based on the predicted terminal T47D
cell count of each virtual patient. Upon performing a two-sided Kolmogorov-Smirnov test for each
parameter between these two subcohorts, we found significant differences in (A) the elimination
rate (k¢;) and (D) the absorption rate (k) and observed no significant differences in (B) the central
volume (V) and (C) the intercompartmental clearance rate (k).
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but that differences in final tumour viability were related to higher #xg, Vp, k.;, and
ko1 values, and lower k1, values than those virtual patients who were predicted to
have strong responses to fulvestrant treatments (Figure 7).
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Fig. 6 Spaghetti plots for fulvestrant virtual patients. Predicted dynamics for 438 patients in
fulvestrant virtual patient cohort after treatment with 125 mg of fulvestrant on days 1 and 15. (A)
MCF7 cells, (B) T47D cells, and (C) fulvestrant concentrations. In all, colour bar indicates total
tumour viability.

3.4 Variability in each drug’s maximal effect drives heterogeneity in
outcomes

To next explore the effect of pharmacodynamic variability on treatment outcomes,
we fixed all model parameters to be that of an average patient (see Table 1-3) except
the pharmacodynamic parameters in Eq. 4-5 noted in p. We generated 400 parameter
sets within this range. We then examined whether we could discern a relationship
between each individual’s response to treatment and their inherent pharmacodynamic
response. For each virtual patient, the standard treatment protocol was simulated,
and the corresponding MCF7 and TD47 cell counts were recorded (Figure 8A) along
with the total number of tumour cells (Figure 8B). We observed large variance in
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Fig. 7 Fulvestrant PK parameters differ between virtual patients with high terminal fulvestrant
concentrations and those with low terminal concentrations. We classified virtual patients as “high
concentration” or “low concentration” based on the predicted terminal fulvestrant concentration of
each virtual patient (Figure 6C). Using a Kolmogorov-Smirnoft test for differences in distributions,
we found significant differences in the (A) absorption delay (zx¢), (B) central volume of distribution
(Vp), (C) rate of elimination (k.;), (D) rate of transfer from central to peripheral compartment
(k12), and (E) rate of transfer from peripheral to central compartment (k> ). In legends, “high conc”
corresponds to those virtual patients with high terminal fulvestrant concentrations, and “low conc”
to those with low terminal fulvestrant concentrations.
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counts of both cell types across the cohort, but our model did not predict tumour
eradication for any patient (Figure 21).

To examine the correlation between final number of MCF7 and T47D cells at the
end of the treatment, we next plotted the total number of MCF7 and T47D cells at
the end of treatment (Figure 8C) for each generated parameter set in our ensemble.
Our results clearly show that as the final amount of MCF7 cells decreased, there was
a corresponding increase in the final T47D cell count, and vice versa. In other words,
final MCF7 and T47D were predicted to have an inverse linear relationship when
pharmacodynamic variability was considered. We also correlated the final MCF7
and T47D cell counts with the final tumour size and found that the largest tumours
are those that are predominately made up of T47D, whereas the smallest tumours
are a mixture of both cell types.

We then examined which pharmacodynamic characteristics were the major drivers
of final tumour size. We found that Eg and /,nqx for T47D (i.e. Eg 77,045 1) WeTE
most correlated with the final tumour size (Figure 8D-E), as we predicted that small
values of either parameter would correspond to large tumour sizes relative to the
average (Figure 22). All other parameters were not found to contribute significantly
to the final tumour size.
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Fig. 8 Virtual cohort investigation into the effect of pharmacodynamics on combination treatment.
400 virtual patients were generated with varying pharmacodynamic parameters (see p). A 5-day-
on, 2-day-off paclbociclib regimen combined with two fulvestrant dosages was considered. (A)
Cell counts for MCF7 and T47D cells over time plotted as mean and standard deviation of patient
cohort. (B) Individual patient trajectories for total cell count Cps + Cr. (C) A scatter plot of the
final number of each cell type after treatment, coloured by the corresponding total number of cells
after treatment. (D)-(E) Waterfall plots for patient specific Ey s and I, 7 against the total
cells relative to the cohort average. Color bar corresponds to the value of each patient’s parameter
normalised to a range between 0 and 1.
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3.5 Examining the long-term effect of variation on the combination
protocol

Finally, with our understanding of the effects of cell-intrinsic, pharmacokinetic, and
pharmacodynamic variability on combination palbociclib and fulvestrant therapy,
we explored alternative treatment regimens to study whether we could improve upon
the conventional and investigational schedules using virtual clinical trials of three
different dosing regimens. On the current standard-of-care 3-weeks-on/1-week-off
dosing schedule of palbociclib, numerous patients have been reported to develop
grade 3 or higher degree of neutropenia [13]. This adverse event could result in dose
reduction or treatment discontinuation [13]. Further, it has been hypothesized that
the one week off-drug in the conventional combination schedule could potentially
lead to an increase in the retinoblastoma tumor suppressor protein (Rb) [13].

We therefore explored alternative schedules with the aim of reducing the time
off-drug (as compared to the conventional regimen), with limited dose intensity, to
minimize off-target effects (Regimen 1). Additionally, clinical reports suggest that
fulvestrant is mostly likely to cause acute liver injury [6, 27]. To reduce the risk
of hepatotoxicity, we virtually reduce the dose level of fulvestrant and test the ef-
fectiveness of this dual-agent combination therapy in Regimens 2 and 3. Thus, we
compared the following three schedules:

Regimen 1: 125 mg of oral palbociclib administered once daily for 5 consecutive
days, followed by 2 days off, plus 500 mg of intramuscular (IM) fulvestrant admin-
istered every 14 days for the first 3 injections and then every 28 days.

Regimen 2: 125 mg of oral palbociclib administered once daily for 5 consecutive
days, followed by 2 days off, plus 250 mg IM of fulvestrant administered every 7
days for the first 5 injections and then every 14 days.

Regimen 3: 500 mg of oral palbociclib administered once daily for 5 consecutive
days, followed by 2 days off, plus 250 mg IM of fulvestrant administered every 7
days for the first 5 injections and then every 14 days.

Simulations of Regimen 1 suggest that this schedule leads to the competitive exclu-
sion of aggressive T47D cells. Selective killing of the therapy sensitive cells removes
competitive restriction of MCF7 cells (Figure 9A). The troughs of the fluctuating
total cell loads come down to 3x107, while the peaks still reach a high level (Fig-
ure 9B). In contrast, by reducing the dose of fulvestrant, Regimen 2 did not lead
to competitive exclusion of the T47D cells (Figure 9C), but resulted in an overall
significant decrease in the total number tumour cells (Figure 9D). We further found
that Regimen 3 did not lead to competitive exclusion of the T47D cells (Figure 9E),
and our model predictions suggest that the total number of cancer cells from both
lines would continue to decrease (Figure 9F).

Overall, we found that increasing the dose level of palbociclib within accept-
able toxicity levels could achieve a lower level of total cancer cell load. Impor-
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Fig. 9 Investigating long-term dynamics of Regimens 1, 2, and 3. (A), (C), and (E) cancer cell
ratios after treatment with Regimens 1, 2, and 3. Blue lines: ratio of cancer cell line MCF7 given
by Cpr/(Cpr + Cr); red lines: ratio of cancer cell T47D given by Cr/(Cas + Cr). (B), (D), and
(F) comparison of the total cell load of both cell lines after treatment with the three regimens. B)
Regimen 1; D) Regimen 2; F) Regimen 3.

tantly, based on our simulations of our 3 dosing regimens, it is possible that higher
doses/concentrations of fulvestrant could cause competitive exclusion of the T47D
cell line. As a result, the relative strength of the less-aggressive MCF7 cells may in
fact inhibit the efficacy of the palbociclib-fulvestrant combination therapy.

4 Discussion

Heterogeneity is a key factor in cancer therapeutic planning, particularly when con-
sidering combination therapies that may have overlapping and interacting factors
driving treatment responses. The interest in establishing different treatment regi-
mens for palbociclib plus fulvestrant for the treatment of hormone-sensitive breast
cancers gives rise to a number of questions relating to optimal scheduling. These
include the various scales of heterogeneity and their impact on combination palbo-
ciclib and fulvestrant, i.e., cell-intrinsic, pharmacokinetic, and pharmacodynamic.
Understanding the contributions of each of these elements to tumour responses helps
to establish new, and perhaps more potent and less toxic, therapeutic regimens. In
this work, we used a simple model of interacting cells to quantify these contributions
to help guide preclinical studies of palbociclib plus fulvestrant.

Considering a tumour composed of lesser and more aggressive cells (i.e., MCF7
and T47D cell lines), each type sensitive to a different degree to each drug, we
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predicted the overall tumour cell population and composition after treatment under
variable initial fractions. Our predictions showed that the initial cell fractions have
little impact on the final tumour composition after treatment on either the shortened
(i.e., 5 days on of palbociclib with 2 days of rest, repeated for 28 days) or conventional
21 days on of palbociclib with 7 days of rest schedule. This is encouraging, in the
sense that it suggests that it is primarily PK/PD variability controlling outcomes and
these can be more easily modulated to provide better results.

When considering both PK and PD heterogeneity through the generation of virtual
patients, we found that palbociclib PK variability alone had little impact on outcomes,
whereas the PKs of fulvestrant (as a cytotoxic agent) was strongly determinate of
final tumour compositions. This is perhaps expected, as palbociclib acts to freeze
the cell cycle rather than induce apoptosis. Our results further show that palbociclib
and fulvestrant are truly synergistic when given in combination, with each being
less effective on its own. Lastly, we used our investigations of the impact of various
scales of heterogeneity to propose three alternative regimens to conventional and
shortened. These regimens were designed to account for the undesired side-effects
of each drug through dose fractionation. Our model predictions suggest that it is
possible that fulvestrant could cause competitive exclusion of the MCF7 (or less
aggressive) cells composing the tumours in our study. Indeed, our results showed
that the more aggressive T47D cells act to inhibit the efficacy of the palbociclib-
fulvestrant combination therapy, acting similarly to drug tolerant cells despite us
not considering resistance in our study. Moreover, within acceptable toxicity levels,
increasing the dose level of palbociclib could achieve better outcomes with respect
to final tumour size.

In our model, we implemented a logistic growth function to model tumour growth.
While Gompertzian tumour growth returned a similar Akaike information criterion
(AIC) and was able to capture the data (Figure 11), we do not anticipate a large
difference in our predictions between the two growth models. This is largely due to
the fact both exhibit sigmodal style growth to a carrying capacity.

There are limitations to our approach.The lack of robust clinical data measuring
this combination therapy presents a limitation in the reliability of our predictions.
Given this is an exploratory study focused primarily on the effects of different
sources of heterogeneity, we believe our results support further experiments into
combination therapy that may be used in the future to validate our model predictions.
Our parameterisation could be further validated with in vivo experiments. Future
work could also look to refine the number of parameters in the model and introduce
simpler terms to model the effect of the drugs on the cancer cell population or
simplify the cancer growth function.

Though we considered heterogeneity in tumour composition, we did not include
the mammary stem cell cascade [14, 30], nor does our model include the actions
of the immune system. We opted for the simpler model studied herein to provide
a straight-forward initial (more in vitro-focused) conceptualization of the impact of
the many scales of heterogeneity affecting treatment outcomes under combination
palbociclib and fulvestrant; future studies will include key in vivo factors impacting
therapies. As seen in Fig. S3A, there is a loss of fidelity in the MCF7 fits for
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high fulvestrant concentrations. This is a byproduct of the standard nonlinear effects
function (Eq. 1) used herein. As can be seen in the data, after an initial plateau
beginning around 1072 M, there is a second dip in the observed viability around
1uM. Unfortunately, our effects function is unable to capture this second decrease,
resulting in a higher predicted maximal effect than what is suggested in the data. To
confirm the asymptotic behaviour of MCF7 cells under treatment with fulvestrant,
it would be necessary to have more viability data above 1uM. Nonetheless, as our
maximal effect is potentially slightly higher than in the data, our predictions are
more conservative with respect to the overall treatment response to fulvestrant. We
also did not consider the ways in which each degree of heterogeneity interacts with
one another, opting instead to study each individually. This can be incorporated in
subsequent iterations of our work.

Our study provides a roadmap for the continued study of CDK4/6 inhibitors and
combination therapies in anti-cancer treatments more broadly. Despite using a simple
model of tumour growth, our model’s predictions showed important perhaps unex-
pected behaviours, including how competition between less and more aggressive
cells in a heterogeneous tumour impacts treatment scheduling. Ultimately, this work
demonstrates the importance of merging mathematical modelling within preclinical
studies to improve drug development considerations.
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Table 1 Estimated parameter values for the palbociclib population pharmacokinetic model.

Fixed effects

Parameter Units Mean Variance
kq 1/hour 0.617 0.484
ket | F L/hour 48 0.0451
ke F L/hour 4.49 0.61
Vc/F L 1520 0.0185
Vp|F L 2780 -

Table 2 Estimated parameter values for the fulvestrant population pharmacokinetic model.

Fixed effects
Parameter Units Mean
Tro hour 6.74
\% L 5.61
kel 1/hour 0.284
ki 1/hour 15.2
ko1 1/hour 3.01

Standard deviation of the random effects

WTKO - 0.276
wy - 0.554
Wiel - 0.0311
W12 - 0.0263
W21 - 0.068

Correlations
PTKO-V - 0.976
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Table 3 Table of fitting parameter values. Values in this table were obtained in fits in Figure 10
and Figure 11.

Cell line Variable  Description Units Fit Bounds
Upper Lower
rym Growth rate 1/day 0.6083 0.5390 0.6776
kar Carrying capacity cells 7.61 x 10° 3.98 x10° 11 x10°
Eo mp Palbo. initial no-drug effect - 98.9 96.1 101.7
Iax.mr  Palbo. max inhibition - 0.879 0.86 0.9
MCF7 hpgr Palbo. hill coefficient - 1.65 1.38 1.91
1Cso,pp  Palbo. half-effect uM 0.67 0.61 0.73
Eo pr Fulv. initial no-drug effect - 96.3 95.4 97.2
Lyax.pmr  Fulv.max inhibition - 0.81 0.81 0.82
hpgr Fulv. hill coefficient - 1.85 1.75 1.95
ICsy psr  Fulv. half-effect uM 4.4x 107 43x10™* 4.5x107*
rr Growth rate 1/day 0.6726 0.6512 0.6941
kr Carrying capacity cells 5.27 x 10° 4.6x10° 5.9x10°
Eo rr Palbo. initial no-drug effect - 96.2 87.5 96.2
LIax,rp  Palbo. max inhibition - 0.95 0.79 1.11
T47D hrp Palbo. hill coefficient - 1.02 0.53 1.52
I1Cso,1p Palbo. half-effect uM 1.13 0.64 1.62
Eyrr Fulv. initial no-drug effect - 100 82.5 117.5
Lyax rr  Fulv.max inhibition - 0.84 0.74 0.95
hry Fulv. hill coefficient - 1.85 0.2 1.32
ICso7s  Fulv. half-effect uM 1.2x10™ -1x10™ 2x107*
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Fig. 10 Fit of logistic growth to cell count measurements for MCF7 and T47D from Vijayaraghavan
et al [35]. A logistic growth curve was fit to the cell count measurements to obtain a cell growth
rate r; (MCF7 and T47D) and a cell carrying capacity K; (MCF7 and T47D). The fit is given as
a solid line with a shaded 95% confidence interval. The data is represented as solid points. The
resulting parameter values for the fits are given in Table 3.
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Fig. 11 Comparative analysis of model selection to MCF7 and T47D cell count data. We compared
the least-squares fit for (A,D) exponential growth, (B,E) logistic growth and (C,F) Gompertzian
growth. We calculated the corrected Akaike Information Criterion (AIC) for each figure which
returned: (A) 134.3, (B) 131.1, (C) 134.5, (D) 131.7, (E) 116.5, and (F) 115.0. We also considered
the confidence intervals plotted for each model fit. Given that the Gompertzian growth has wider
confidence intervals compared to logistic growth, we concluded that logistic growth was a good
model choice for tumour growth.
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Fig. 12 Fit of drug effect parameters to cell viability measurements for fulvestrant and palbociclib
on MCF7 and T47D. Cell viability measurements for (A) Fulvestrant on MCF7 cells [22] and (B)
Fulvestrant on T47D cells [15]. Cell viability measurements for (C) palbocicblib on MCF7 and (B)
T47D by Vijayaraghavan et al. [35]. The resulting parameter fits are in Table 3. In (A) the inset
zooms in on the confidence intervals surrounding the data fit.
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Fig. 13 Fulvestrant pharmacokinetic parameter estimation fits. Population pharmacokinetic data
from Robertson et al. [26] was pooled to extract the mean, and lower and upper bounds of the
data. We then estimated PK parameters from Eqs. 6-8 in the Main Text to these data assuming
lognormal distributions on parameters subject to II'V using a standard nonlinear mixed effects model
in Monolix[16].
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Fig. 14 Virtual patient parameter values for investigation varying the drug effect parameters.
Parameters relating the effect of fulvestrant and palbociclib on MCF7 and T47D were sampling
from normal distributions as described in the methods to obtain 400 unique parameter combinations
corresponding to 400 virtual patients.
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Fig. 15 Tumor growth dynamics under no treatment. The total number of MCF7 and T47D
cells, Cps and Cr respectively, were simulated in the absence of palbociclib and fulvestrant, i.e.,
F=P=0.
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Fig. 16 The effect function corresponding to the simulation in Figure 2. The effect function Eq.
1 for fulvestrant and palbociclib for the two dosage protocols considered in Figure 2: (A), (C)
palbociclib 5 days on and 2 days off and (B), (D) palbociclib 21 days on 7 days off.
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Fig. 17 Results for varying initial tumor composition and total initial cell count, shortened treatment
(i.e. 5 days on and 2 days off for palbociclib, Figure 2A). Initial fraction of MCF7 cell line (¢ps)
and total number of cells (Cps + Cr) are varied over 0 < ¢ps < 1 and 101 < Cps + Cr < 105.
(A) Viability of the MCF7 line for shortened treatment over varied ¢y and Cps + Cr. Viability
is calculated by comparing the total number of MCF7 cells with treatment compared to the total
number of MCF7 cells without treatment after 28 days; both trials have the same initial conditions
and only differ in whether treatment is administered. The overall viability of MCF7 is less for the
shortened treatment, compared to the conventional treatment. (B) Viability of the T47D line for
shortened treatment over varied ¢ps and Cps + Cr. The overall viability of T47D is less for the
shortened treatment, compared to the conventional treatment. (C) The final fraction of MCF7 cell
line (¢ps) after the 28 days of treatment. (D) The final fraction of MCF7 cell line (¢ps) after the
28 days of treatment compared to the initial fraction. At lower initial total cell numbers, T47D has
a greater propensity to overtake the cancer tumor and take up a greater fraction of the total tumor.
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Fig. 18 Distributions of palbociclib virtual patient parameters. Pharmacokinetic parameter distri-
butions for (A) the elimination rate, (B) the central volume, (C) the intercompartmental clearance
rate, and (D) the absorption rate of palbociclib constructed from 500 virtual patients sampled as
described in the Methods. Experimental data suggests negligible variation in the parameter VP. This
parameter is thus taken to be constant, hence the lack of distribution. The virtual patient population
randomly generated to produce these distributions is maintained in the generation of Figure 5 in

the Main Text.
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Fig. 19 Palbociclib pharmacokinetic model sensitivity analysis. Parameter sensitivity of the pal-
bociclib pharmacokinetic parameters: (A) k.1, (B) V¢, (C) ke, and (D) k. Curves convey changes
in cell counts resulting from varying each parameter uniformly within three standard deviations of
its mean according (Table 1). Numerical values on the axes correspond to the fractional deviation
of an end-of-treatment cell count from its mean scaled by the fractional deviation of one standard
deviation of a parameter from that parameter mean. Qualitatively, the distribution of a parameter
non-negligibly influences final cell count if the curves above have coordinate values far from zero
and close to one. Thus, our results show that all the parameter distributions have a negligible
influence on the final cell counts.
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Fig. 20 Distributions of fulvestrant virtual patient parameters. Pharmacokinetic parameter distri-
butions for fulvestrant parameters (A) absorption delay (7o), (B) central volume of distribution
(Vp), (C) rate of elimination (k.;), and (D)-(E) rates of transit between central to peripheral com-
partments (kj2 and ky;). Distributions describe the 438 virtual patients in the fulvestrant virtual
patient cohort, generated as described in the Methods (Main Text).
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Fig. 21 Results of simulating the virtual cohort with varying pharmacodynamics. The first show
rows the mean and standard deviation for the 400 virtual patient cohort simulated with varying
effect parameters (Figure 12). The second row is the corresponding individual patient trajectories.
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Fig. 22 esults of simulating the virtual cohort with varying pharmacodynamics. Each column
corresponds to a virtual patient where the patients are ordered by the number of cells (left: T47D
and right: MCF7) at the end of the treatment. The rows correspond to the parameter value where
the column is the normalised value for that parameter. The colour bar corresponds to the value of
the parameter normalised between 0 and 1.

Supplementary analysis of the two cell-line model dynamics

To understand the dynamics of the system of ODEs used in our study, we carried out
a linear steady state analysis to determine long-term stability of a simplified version
of the system. We took the full model in Eq. 2-3 and considered only the effects on
MCF7 and T47D cells of palbociclib:

dCM C 1 CM + CT EO,MP : Imax,Mp : [P]hMP
= r . _— . a—
dt MM Kyvom + Kror O T Pl & [1Cs0,mp | ime
dCM -C 1 CM + CT EO,MP . Imax,MP : [P]hMP
a MM Kyvom + Kror O T Pl & [1Cs0,mp )P
where
CM CT
= " d = —.
2 Cy+Cr and g1 Cu+Cr

We assumed both cell lines share the same carrying capacity due to them co-
existing in the same spatial location and hence feeling the same spatial limitations,
that is K = Kp; = Kr. For convenience for this analysis, we also assume that all
pharmacodynamic parameters are equivalent for the two cell types, i.e., Iso pyr =
Iso,rp = ICsp, and hpsp = hyrp = h, and Lygx.mr = Lnax, 7 = Imax, and Ey
Eo.mr = Eo rr, etc. For convenience, we denote ry Eg = FygandrrEg = Fr.

The model has three isolated equilibrium points

(Ch»Cr) =(0,0), (Cy,Cr) =(0,K), (Cp,Cp) = (K,0),

and a line containing infinite number of equilibrium points:
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Cy+Cr—-K=0
Linear stability analysis shows that (C},, C}) = (0, 0) has two positive eigenvalues:
Aot = [ICE = (Inax — DP"| 77K > 0 and Agp = [ICL) — (Inax — DP"] FuK > 0,
with corresponding eigenvectors

vor = [1,01", w2 = [0, 1]".

The equilibrium (C},, C7) = (0, K) has eigenvalues:
11 = [Imax = DP" = ICE | 77K <0 and 215 =0,

with corresponding eigenvectors

oir = (0,117, vip = [-1,1]7.
Lastly, the equilibrium (C},, C}) = (K, 0) has two eigenvalues

21=0 and A = [(Lnax — DP" = ICL] < 07y K <0,

with corresponding eignenvectors

vy = [-11]7, v =[1,0]".
The line of infinite equilibria Cps + Cr — K = 0 has two eigenvalues
A1 =0, and A = [(Inax — DP" = ICH] (K=Cat) P +71Cr [(Inax — DP" = ICH] < 0,
with corresponding eigenvectors

| (K= Cr) (P (hnax = 1) = ICY)Fm

CTfT(Ph(Imax - 1) - IC?())

o =[-111", » :

Flow along non-zero eigenvalues is much faster than flow along zero eigenval-
ues. Therefore, in the fast timescale, cell trajectories are repelled from equilibrium
(C3s» CF) = (0,0) and quickly converge to the neighbourhood of the eigenvector as-
sociated with zero eigenvalue. Moreover, the eigenvector associated with zero eigen-
value v1p = vp; = v; = [—1, 1]7 collides with the equilibrium line Cp; + C7 — K =0,
which is the slow manifold. Therefore, in the slow timescales, the flow on the slow
manifold has no movement. It implies that the cancer population will eventually
converge to the carrying capacity K, but have a different proportion depending on
their initial fraction. A simulated vector field under the assumption Kp; = K7 = K
is shown in Figure 23.
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Fig. 23 Simulated vector field. Three equilibriums (0, 0), (0, K), and (K, 0) are denoted in red
circles. The line with infinite equilibriums, Cps+Cr—K = 0, is plotted in red line. Their eigenvector
corresponding to the negative eigenvalues (i.e., 411, 422, and ;) are denoted by the green line.
The eigenvector corresponding to the zero eigenvalue is represented in pink line and collapse with
the equilibrium line, Cps + C7 — K = 0. As a result, the vector field in the blue arrow line points
toward the red equilibrium line. Moreover, there is no movement in the red line.

References

1. Alfonso, S., Jenner, A.L., Craig, M.: Translational approaches to treating dynami-
cal diseases through in silico clinical trials. Chaos: An Interdisciplinary Journal of
Nonlinear Science 30(12), 123128-123128 (2020). DOI 10.1063/5.0019556. URL
http://aip.scitation.org/doi/10.1063/5.0019556

2. Bradshaw, E.L., Spilker, M.E., Zang, R., Bansal, L., He, H., Jones, R.D.O., Le, K., Penney,
M., Schuck, E., Topp, B., Tsai, A., Xu, C., Nijsen, M.J.M.A., Chan, J.R.: Applications of
quantitative systems pharmacology in model-informed drug discovery: Perspective on impact
and opportunities. CPT: Pharmacometrics & Systems Pharmacology 8(11), 777-791 (2019).
DOI 10.1002/psp4.12463

3. Cardinal, O., Burlot, C., Fu, Y., Crosley, P., Hitt, M., Craig, M., Jenner, A.L.: Establishing
combination pac-1 and trail regimens for treating ovarian cancer based on patient-specific
pharmacokinetic profiles using in silico clinical trials. Computational and Systems Oncology
2,e1035 (2022). DOI 10.1101/2022.03.29.486309

4. Craig, M., Kaveh, K., Woosley, A., Brown, A.S., Goldman, D., Eton, E., Mehta, R.M.,
Dhawan, A., Arai, K., Rahman, M.M., Chen, S., Nowak, M.A., Goldman, A.: Cooperative
adaptation to therapy (cat) confers resistance in heterogeneous non-small cell lung cancer.
PLOS Computational Biology 15(8), 1-19 (2019). DOI 10.1371/journal.pcbi.1007278. URL
https://doi.org/10.1371/journal.pcbi. 1007278

5. Crosley, P., Farkkila, A., Jenner, A.L., Burlot, C., Cardinal, O., Potts, K.G., Agopsowicz,
K., Pihlajoki, M., Heikinheimo, M., Craig, M., Fu, Y., Hitt, M.M.: Procaspase-activating
compound-1 synergizes with trail to induce apoptosis in established granulosa cell tumor
cell line (KGN) and explanted patient granulosa cell tumor cells in vitro. International Jour-
nal of Molecular Sciences 22(9), 4699-4699 (2021). DOI 10.3390/ijms22094699. URL
https://www.mdpi.com/1422-0067/22/9/4699

6. of Diabetes, N.I., Digestive, Diseases, K.: Livertox: Clinical and research information on drug-
induced liver injury [internet] (2018). URL https://www.ncbi.nlm.nih.gov/books/NBK 548072/

7. Fisusi, F.A., Akala, E.O.: Drug combinations in breast cancer therapy. Pharmaceutical Nan-
otechnology 7(1), 3-23 (2019). DOI 10.2174/2211738507666190122111224


https://doi.org/10.1101/2023.05.19.541369
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.19.541369; this version posted May 22, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Combination treatment of hormone sensitive breast cancer 33

8. Goel, S., Bergholz, J.S., Zhao, J.J.: Targeting CDK4 and CDKG6 in cancer. Nature Reviews
Cancer 22(6), 356-372 (2022). DOI 10.1038/s41568-022-00456-3

9. He, W.,, Demas, D.M., Conde, I.P., Shajahan-Haq, A.N., Baumann, W.T.: Mathematical mod-
elling of breast cancer cells in response to endocrine therapy and CDK4/6 inhibition. Journal
of The Royal Society Interface 17(169) (2020). DOI 10.1098/rsif.2020.0339

10. Jenner, A.L., Cassidy, T., Belaid, K., Bourgeois-Daigneault, M.C., Craig, M.: In silico trials
predict that combination strategies for enhancing vesicular stomatitis oncolytic virus are deter-
mined by tumor aggressivity. Journal for InmunoTherapy of Cancer 9(2), e001387-e001387
(2021). DOI 10.1136/jitc-2020-001387. URL https://jitc.bmj.com/lookup/doi/10.1136/jitc-
2020-001387

11. Johnston, S., Cheung, K.: Fulvestrant - a novel endocrine therapy for breast cancer. Current
Medicinal Chemistry 17(10), 902-914 (2010). DOI 10.2174/092986710790820633

12. Kim, E., Rebecca, V.W., Smalley, K.S.M., Anderson, A.R.A.: Phase I trials in melanoma:
A framework to translate preclinical findings to the clinic. European Journal of Cancer 67,
213-222 (2016). DOI 10.1016/j.ejca.2016.07.024

13. Krishnamurthy, J., Luo, J., Suresh, R., Ademuyiwa, F., Rigden, C., Rearden, T., Clifton, K.,
Weilbaecher, K., Frith, A., Roshal, A., Tandra, P.K., Cherian, M., Summa, T., Haas, B., Thomas,
S., Hernandez-Aya, L., Bergqvist, M., Peterson, L., Ma, C.X.: A phase ii trial of an alternative
schedule of palbociclib and embedded serum tk1 analysis. npj Breast Cancer 8(1) (2022).
DOI 10.1038/s41523-022-00399-w

14. Le Sauteur-Robitaille, J., Yu, Z.S., Craig, M.: Impact of estrogen population pharmacokinet-
ics on a gsp model of mammary stem cell differentiation into myoepithelial cells. AIMS
Mathematics 6(10), 10861-10880 (2021). DOI 10.3934/math.2021631

15. Lewis-Wambi, J.S., Kim, H., Curpan, R., Grigg, R., Sarker, M.A., Jordan, V.C.: The selective
estrogen receptor modulator bazedoxifene inhibits hormone-independent breast cancer cell
growth and down-regulates estrogen receptor « and cyclin d1. Molecular pharmacology
80(4), 610-620 (2011)

16. Lixoft SAS, a.S.P.c.: Monolix (2021)

17. Masuda, N., Inoue, K., Nakamura, R., Rai, Y., Mukai, H., Ohno, S., Hara, F., Mori, Y.,
Hashigaki, S., Muramatsu, Y., Nagasawa, T., Umeyama, Y., Huang, X., Iwata, H.: Palbociclib
in combination with fulvestrant in patients with hormone receptor-positive, human epidermal
growth factor receptor 2-negative advanced breast cancer: Paloma-3 subgroup analysis of
japanese patients. International Journal of Clinical Oncology 24(3), 262-273 (2018). DOI
10.1007/s10147-018-1359-3

18. Mathworks: Matlab 2022a (2022)

19. Mokhtari, R.B., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., Yeger,
H.: Combination therapy in combating cancer. Oncotarget 8(23), 38022-38043 (2017). DOI
10.18632/oncotarget. 16723

20. Nathan, M.R., Schmid, P.: A review of fulvestrant in breast cancer. Oncology and Therapy
5(1), 17-29 (2017). DOI 10.1007/s40487-017-0046-2

21. Nuiez, C., Capelo, J.L., Igrejas, G., Alfonso, A., Botana, L.M., Lodeiro, C.: An overview of
the effective combination therapies for the treatment of breast cancer. Biomaterials 97, 34-50
(2016). DOI 10.1016/j.biomaterials.2016.04.027

22. Nukatsuka, M., Saito, H., Noguchi, S., Takechi, T.: Estrogen down-regulator fulvestrant po-
tentiates antitumor activity of fluoropyrimidine in estrogen-responsive MCF-7 human breast
cancer cells. In Vivo 33(5), 1439-1445 (2019). DOI 10.21873/invivo.11622

23. Pappalardo, F., Russo, G., Tshinanu, F.M., Viceconti, M.: In silico clinical trials: con-
cepts and early adoptions. Briefings in Bioinformatics 20(5), 1699-1708 (2019). DOI
10.1093/bib/bby043

24. Polasek, T.M., Rostami-Hodjegan, A.: Virtual twins: Understanding the data required for
model-informed precision dosing. Clinical Pharmacology & Therapeutics 107(4), 742-745
(2020). DOI 10.1002/cpt.1778

25. Pujani, M., Jain, H., Chauhan, V., Agarwal, C., Singh, K., Singh, M.: Evaluation of tumor
infiltrating lymphocytes in breast carcinoma and their correlation with molecular subtypes,
tumor grade and stage. Breast Disease 39(2), 61-69 (2020). DOI 10.3233/bd-200442


https://doi.org/10.1101/2023.05.19.541369
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.19.541369; this version posted May 22, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

34 Linn et al.

26. Robertson, J.F.R., Harrison, M.P.: Equivalent single-dose pharmacokinetics of two different
dosing methods of prolonged-release fulvestrant ("faslodex’) in postmenopausal women with
advanced breast cancer. Cancer Chemotherapy and Pharmacology 52(4), 346-348 (2003).
DOI 10.1007/s00280-003-0643-7

27. Schlotman, A., Stater, A., Schuler, K., Heideman, J., Abramson, V.: Grade 3 hepatotoxicity
following fulvestrant, palbociclib, and erdafitinib therapy in a patient with ER-positive/PR-
negative/HER2-negative metastatic breast cancer: A case report. Case Reports in Oncology
13(1), 304-308 (2020). DOI 10.1159/000506442

28. Scott, J.: Phase i trialist. The Lancet Oncology 13(3) (2012). DOI 10.1016/s1470-
2045(12)70098-0

29. Serra, F., Lapidari, P., Quaquarini, E., Tagliaferri, B., Sottotetti, F., Palumbo, R.: Palbociclib in
metastatic breast cancer: current evidence and real-life data. Drugs in Context 8, 1-16 (2019).
DOI 10.7573/dic.212579

30. Tharmapalan, P., Mahendralingam, M., Berman, H.K., Khokha, R.: Mammary stem cells and
progenitors: targeting the roots of breast cancer for prevention. The EMBO Journal 38(14)
(2019). DOI 10.15252/embj.2018100852

31. Traina, T., Cadoo, K., Gucalp, A.: Palbociclib: an evidence-based review of its potential
in the treatment of breast cancer. Breast Cancer: Targets and Therapy (2014). DOI
10.2147/bctt.S46725

32. Truong Do, M., Gyun Kim, H., Ho Choi, J., Gwang Jeong, H.: Metformin induces microRNA-
34a to downregulate the Sirt1/Pgc-1a@/Nrf2 pathway, leading to increased susceptibility of
wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radical Biology
and Medicine 74, 21-34 (2014). DOI 10.1016/j.freeradbiomed.2014.06.010

33. Turner, N.C., Ro, J., André, F., Loi, S., Verma, S., Iwata, H., Harbeck, N., Loibl, S.,
Huang Bartlett, C., Zhang, K., Giorgetti, C., Randolph, S., Koehler, M., Cristofanilli, M.:
Palbociclib in hormone-receptor-positive advanced breast cancer. New England Journal of
Medicine 373(3), 209-219 (2015). DOI 10.1056/NEJMoal505270

34. Verma, S., Bartlett, C.H., Schnell, P., DeMichele, A.M., Loi, S., Ro, J., Colleoni, M., Iwata,
H., Harbeck, N., Cristofanilli, M., Zhang, K., Thiele, A., Turner, N.C., Rugo, H.S.: Palboci-
clib in combination with fulvestrant in women with hormone receptor-positive/HER2-negative
advanced metastatic breast cancer: Detailed safety analysis from a multicenter, randomized,
placebo-controlled, phase iii study (paloma-3). Oncologist 21(10), 1165-1175 (2016). DOI
10.1634/theoncologist.2016-0097. URL https://www.ncbi.nlm.nih.gov/pubmed/27368881.
Verma, Sunil Bartlett, Cynthia Huang Schnell, Patrick DeMichele, Angela M Loi, Sherene
Ro, Jungsil Colleoni, Marco Iwata, Hiroji Harbeck, Nadia Cristofanilli, Massimo Zhang, Ke
Thiele, Alexandra Turner, Nicholas C Rugo, Hope S eng P30 CA060553/CA/NCI NIH HHS/
Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial England 2016/07/03
Oncologist. 2016 Oct;21(10):1165-1175. doi: 10.1634/theoncologist.2016-0097. Epub 2016
Jul 1.

35. Vijayaraghavan, S., Karakas, C., Doostan, 1., Chen, X., Bui, T., Yi, M., Raghavendra, A.S.,
Zhao, Y., Bashour, S.I., Ibrahim, N.K., Karuturi, M., Wang, J., Winkler, J.D., Amaravadi, R.K.,
Hunt, K.K., Tripathy, D., Keyomarsi, K.: CDK4/6 and autophagy inhibitors synergistically in-
duce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nature Communications
8(1) (2017). DOI 10.1038/ncomms 15916

36. Walker, A.J., Wedam, S., Amiri-Kordestani, L., Bloomquist, E., Tang, S., Sridhara, R., Chen,
W., Palmby, T.R., Fourie Zirkelbach, J., Fu, W., Liu, Q., Tilley, A., Kim, G., Kluetz, P.G.,
McKee, A.E., Pazdur, R.: Fda approval of palbociclib in combination with fulvestrant for
the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer. Clinical
Cancer Research 22(20), 4968-4972 (2016). DOI 10.1158/1078-0432.Ccr-16-0493

37. Wang, H., Sové, R.J., Jafarnejad, M., Rahmeh, S., Jaffee, E.M., Stearns, V., Torres, E.T.R.,
Connolly, R.M., Popel, A.S.: Conducting a virtual clinical trial in HER2-negative breast
cancer using a quantitative systems pharmacology model with an epigenetic modulator and
immune checkpoint inhibitors. Frontiers in Bioengineering and Biotechnology 8 (2020).
DOI 10.3389/fbioe.2020.00141


https://doi.org/10.1101/2023.05.19.541369
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.19.541369; this version posted May 22, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Combination treatment of hormone sensitive breast cancer 35

38. Warner, E.: Breast-cancer screening. New England Journal of Medicine 365(11), 1025-1032
(2011). DOI 10.1056/NEJMcp1101540

39. Washington University School of Medicine and Pfizer: Alternative dosing schedule of palbo-
ciclib in metastatic hormone receptor positive breast cancer (2017)

40. Wei, H.C.: Mathematical modeling of er-positive breast cancer treatment with AZD9496 and
palbociclib. AIMS Mathematics 5(4), 3446-3455 (2020). DOI 10.3934/math.2020223

41. Xiong, W., Friese-Hamim, M., Johne, A., Stroh, C., Klevesath, M., Falchook, G.S., Hong,
D.S., Girard, P., El Bawab, S.: Translational pharmacokinetic-pharmacodynamic modeling of
preclinical and clinical data of the oral met inhibitor tepotinib to determine the recommended
phase II dose. CPT: Pharmacometrics & Systems Pharmacology 10(5), 428-440 (2021).
DOI 10.1002/psp4.12602

42. Yu, Y., Sun, W., Liu, Y., Wang, D.: Pharmacodynamic modeling of CDK4/6 inhibition-related
biomarkers and the characterization of the relationship between biomarker response and
progression-free survival in patients with advanced breast cancer. The Journal of Clinical
Pharmacology 62(3), 376-384 (2021). DOI 10.1002/jcph.1971

43. Zahid, M.U., Mohamed, A.S.R., Caudell, J.J., Harrison, L.B., Fuller, C.D., Moros, E.G.,
Enderling, H.: Dynamics-adapted radiotherapy dose (dard) for head and neck cancer ra-
diotherapy dose personalization. Journal of Personalized Medicine 11(11) (2021). DOI
10.3390/jpm11111124


https://doi.org/10.1101/2023.05.19.541369
http://creativecommons.org/licenses/by-nd/4.0/

