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Abstract  
Single cell and spatial transcriptomics illuminate complementary features of tissues. However, 
online dissemination and exploration of integrated datasets is challenging due to the 
heterogeneity and scale of data. We introduce the WebAtlas pipeline for user-friendly sharing 
and interactive navigation of integrated datasets. WebAtlas unifies commonly used atlassing 
technologies into the cloud-optimised Zarr format and builds on Vitessce to enable remote 
data navigation. We showcase WebAtlas on the developing human lower limb to cross-query 
cell types and genes across single cell, sequencing- and imaging-based spatial transcriptomic 
data.  

Main text  
Single cell and spatial transcriptomics provide complementary tools for tissue 

atlassing. While single cell RNA-sequencing (scRNA-seq) profiles whole-transcriptomes of 
individual cells, it does not capture their spatial locations in tissues. Conversely, sequencing-
based spatial transcriptomics (ST) can profile whole transcriptomes in situ, but widely used 
technologies such Visium and Slide-Seq do not provide single cell spatial resolution. Although 
alternative imaging-based ST methods such as In Situ Sequencing and MER-FISH provide 
true single cell resolution, they are limited to targeted gene panels of around 100 to 1000 
genes1.  

Computational integration can harness the strengths of scRNA-seq and ST modalities 
to resolve cell types and impute transcriptomes of single cells in situ2. However, we lack user-
friendly software solutions to disseminate and navigate integrated single cell and spatial 
transcriptomic datasets. First, scRNA-seq and ST data objects are often saved in non-unified 
sequencing and imaging file formats that perform poorly with web technologies3–5. Second, 
existing software platforms do not readily support simultaneous browsing of multiple integrated 
data modalities3,5,6. These limitations impede usable and interpretable access to a wealth of 
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tissue atlas data for the research community, and hinder biological insights that can only be 
gained from integrated datasets. 

Here, we introduce the WebAtlas pipeline to enable online sharing and navigation of 
integrated single cell and spatial transcriptomic datasets (Fig 1A). We address the 
aforementioned challenges with two main innovations. First, we provide a new data ingestion 
pipeline to convert and unify datasets from multiple single cell and spatial technologies into 
the cloud-ready Zarr format7. Second, we provide a frontend web client based on the Vitessce 
framework8 to enable interactive exploration of single cell and spatial data through a web 
browser, where users can intuitively cross-query gene expression and cell types across 
modalities (Fig 1A). WebAtlas enhances usability, interpretability and equitable access of 
multi-modal tissue atlases, facilitating biological insight for a global audience (see Sup Note 1 
for detailed comparison to other platforms).  

 

 
 
Figure 1. Overview of WebAtlas pipeline.  

A. WebAtlas incorporates integrated scRNA-seq, imaging- and sequencing-based ST datasets for 
interactive web visualisation, enabling cross-query of cell types and gene expressions across 
modalities.  

B. WebAtlas data ingestion pipeline converts diverse data objects from integrated single cell and 
spatial technologies to the Zarr format and runs on Nextflow. The pipeline extracts shared 
genes and cell types features across modalities.  
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On WebAtlas, single cell and spatial datasets are linked by biomolecular metadata, 
such as shared cell type or gene annotations. Linkage is performed prior to WebAtlas ingestion 
using existing data integration methods like Cell2location9 and StabMap10 that map scRNA-
seq cell type references onto ST datasets and impute unobserved gene expression in the 
latter (Fig 1A). 

Our re-usable data ingestion pipeline performs the extract-transform-load steps for 
sequencing and imaging data objects generated from various single cell and spatial 
transcriptomic technologies (Fig 1B). To enable scalable and interoperable online browsing of 
tissue atlas datasets, our pipeline produces a standardised output using the Zarr file format, 
which utilises an array chunking strategy for efficient data access from the cloud. Our Zarr 
convention is closely aligned with the recently released SpatialData format11, supporting data 
standardisation efforts.  

Tabular gene expression and cell type annotation files for scRNA-seq and ST are 
converted from the commonly used AnnData format12,13 into AnnData-Zarr. The raw image 
components of ST data, including fluorescent or brightfield microscopy images along with label 
images from cell segmentation, are converted into OME-Zarr format14 to enable efficient multi-
scale visualisation. Other ST data elements, such as points (e.g. RNA spots/molecules) and 
polygons (e.g. cell masks), are also stored in Zarr according to the AnnData specification. 
Together with the authors of SpatiaData, we propose that these structures are included  in the 
community-defined next-generation file format (NGFF)15 to achieve a FAIR16 exchange of 
multi-modal tissue atlas data. 

The WebAtlas data ingestion pipeline is implemented on Nextflow and is configured 
through a simple YAML schema that defines input data files and visualisation parameters. 
Flexibility to support a diverse set of use-cases is built into the pipeline. Input datasets are 
processed independently and users can choose to process an individual dataset (e.g. Visium), 
specific components of a given dataset (e.g. cell segmentation masks but not raw images) or 
any given combination of integrated datasets (e.g. scRNA-seq and Visium or scRNA-seq and 
imaging). This modular design also supports extensions to new data modalities and formats, 
such as customised microscopy (see below). The pipeline outputs Zarr formatted datasets 
and configuration files for web visualisation.  

To visualise and cross-query integrated datasets, we use the open-source Vitessce 
tool. Vitessce provides a customisable and serverless web framework for interactive 
exploration of single cell and spatial data. However, it has not been utilised to date on fully 
integrated single cell and spatial modalities, and its configuration requires programmatic 
expertise. To coordinate Vitessce on computationally integrated datasets, the WebAtlas 
pipeline first identifies shared ontology features such as genes and cell types across all 
modalities. To simplify visualisation through Vitessce, the pipeline generates a default View 
Config JSON file, which instructs Vitessce to access pertinent data features from each 
ingested modality (Sup Methods). Each Vitessce component is bound to a specific dataset 
and all components are updated in a coordinated manner to visualise queried genes or cell 
types (Fig 2A).  

To showcase the capabilities of WebAtlas, we applied it to a multi-modal atlas of the 
developing human lower limb that integrates scRNA-seq, Visium and In Situ Sequencing (ISS) 
technologies (Fig 2A). The scRNA-seq and Visium datasets were generated previously17. To 
complement these with imaging-based ST data, we used a custom ISS pipeline to quantify 
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the expression of 90 genes at single cell spatial resolution (see Methods). To facilitate the 
integration and comparison of different modalities, we curated ISS genes from the scRNA-seq 
atlas, focusing on cell type markers, and applied ISS to a tissue section adjacent to one of the 
Visium slices profiled in our previous study. 

To harmonise lower limb atlas modalities, we computationally integrated the scRNA-
seq reference with each ST dataset. The scRNA-seq and Visium integration, which 
deconvolves cell types in Visium data, was performed using Cell2location9,17. To integrate 
scRNA-seq and ISS, we used StabMap10 to create a joint embedding, where we annotated 
cell types and imputed full transcriptomes of ISS-resolved cells based on the scRNA-seq 
reference data (Sup Methods, Sup Fig 1). Finally, we ingested all datasets via the WebAtlas 
pipeline to convert all elements, including raw images (i.e. Hematoxylin and Eosin (H&E) 
brightfield images for Visium and fluorescent microscopy for ISS) and cell/spot label masks 
from ST, into the Zarr format, and visualised them on the web portal. 

WebAtlas enabled coordinated navigation of integrated transcriptomic datasets in the 
lower limb atlas (Fig 2A). We could readily cross-query cell types across all three modalities 
(Fig 2B). This facilitated comparison of spatial cell type locations between Visium and ISS 
datasets, where we observed consistent regional patterns for many cell types including 
chondrocyte and epithelial subtypes matching prior knowledge17 (Fig 2B, Sup Fig 2), validating 
our computational integration approach. Owing to its increased resolution, we could 
distinguish finer spatial cell type patterns in ISS than Visium, such as endothelial cells 
surrounding digits and a proximo-distal gradient of chondrocyte differentiation (Sup Fig 2). 
Beyond cell types, we could cross-query gene expression across the lower limb atlas (Fig 2C). 
Examining the scRNA-seq and ISS integration, we observed accurate imputed expression 
patterns of known marker genes that were missing from the ISS gene panel (Sup Fig 4).  

We next used WebAtlas to investigate the spatial dynamics of limb development, 
focusing on the chondroprogenitor cells from which the cartilage anlage arises. Leveraging 
the imputed transcriptomes of ISS-resolved single cells, we sought to identify genes with 
spatially variable expression patterns within chondroprogenitors (Fig 2D). This identified novel 
proximo-distal expression gradients of chondrogenesis related genes. WNT5A, which induces 
chondrogenesis18, was upregulated in distal chondroprogenitors (Fig 2E), whereas cartilage 
extracellular matrix genes such as MATN1, 3 & 419 were upregulated in proximal 
chondroprogenitors (Sup Fig 3). Importantly, we validated these expression gradients on 
adjacent Visium sections using WebAtlas (Fig 2E, Sup Fig 3). Our observations are consistent 
with the proximo-distal nature of limb maturation, with immature distal chondroprogenitors 
beginning chondrogenesis whilst more mature proximal cells actively secrete extracellular 
matrix proteins. Finally, WebAtlas also enabled us to flexibly visualise subsets of lower limb 
atlas modalities, such as scRNA-seq data paired with either ISS (Fig 2F) or Visium (Fig 2G). 
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Figure 2. The human lower limb WebAtlas.  

A. A snapshot of the WebAtlas app visualising integrated scRNA-seq, ISS and Visium datasets of 
the human lower limb at 5.5 post conception weeks (PCW5.5). The Vitessce component 
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windows show the following as numbered. (1) UMAP representation of cell types in scRNA-seq 
dataset with 6 queried cell types highlighted in colour.  (2) Spatial map of segmented single 
cells in ISS tissue section highlighting the queried cell type set. Inset shows raw microscopy 
images of DAPI and cell segmentation label masks that can be viewed on the app. (3) Visium 
tissue section with spot label masks. Inset shows raw H&E images and Visium spot label 
masks.  (4) Cell set search console to cross-query multiple cell types across scRNA-seq and 
ISS datasets. (5) Cell type search console to cross-query a single cell type across all three 
datasets including Visium. (6) Gene search console to cross-query gene expression across all 
datasets.  

B. Cell type cross-query snapshot. Selecting chondroprogenitors via the cell type search console 
simultaneously highlights their cell cluster in scRNA-seq and their spatial locations in ISS and 
Visium datasets. On Visium data, the predicted abundance of chondroprogenitors per Visium 
spot is shown.  

C. Gene expression cross-query snapshot. Selecting the chondrocyte lineage marker COL2A1 via 
the gene search console returns its expression pattern in all three modalities, plotted per cells 
or Visium spots.  

D. Diagram of analysis workflow for the identification of spatially variable gene expression in 
chondroprogenitors. 

E. App snapshots showing enrichment of WNT5A expression in distal chondroprogenitors in ISS 
and Visium datasets. White dashed lines show the outline of developing bone where 
chondroprogenitors are located. ISS shows label masks of only chondroprogenitor cells. Insets 
show close up images of distal and proximal chondroprogenitors. 

F. App snapshot showing scRNA-seq and ISS datasets only.  
G. App snapshot showing scRNA-seq and Visium datasets only.  

 
 

To demonstrate WebAtlas compatibility with other spatial technologies, we applied it 
to Xenium, MERSCOPE and Visium CytAssist datasets as well as a mouse embryonic atlas 
integrating scRNA-seq and seqFISH20 (Sup Table 2, Sup Figure 4). WebAtlas identifies key 
data elements from these diverse inputs and generates a standardised output, demonstrating 
our technology-agnostic approach. WebAtlas is also scalable to large datasets, exemplified 
here on a scRNA-seq study with over 900,000 cells and spatial datasets with over 700,000 
cells (MERSCOPE) and up to 1.1 million RNA molecules/spots (ISS) (Sup Table 2, Sup Figure 
4). We provide interactive access to all 19 datasets used in this study, including the lower limb 
atlas, via the WebAtlas portal at https://cellatlas.io/webatlas. 

Taken together, we provide an intuitive pipeline for interactive exploration of integrated 
single cell and spatial transcriptomic datasets. WebAtlas incorporates data from diverse 
atlassing technologies into easily accessible multi-modal tissue atlases, and leverages 
scalable, standardised and FAIR data formats. We demonstrate exploration of a multi-modal 
human lower limb atlas, and use WebAtlas to interpret new biological insights arising from 
computational integration of single cell and spatial data. A current limitation of WebAtlas, 
despite leveraging GPU-accelerated rendering, is the scaling of points (RNA molecules) (Sup 
Note 1). This can be addressed in the future by rasterization of point data or multi-scale point 
clouds. 

WebAtlas will facilitate the creation of rich and easily accessible human tissue atlases 
for biologists. We envision diverse use cases in the community, including anatomical and 
pathology annotation of spatial datasets, data dissemination alongside publications, and 
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centralised reference atlases all made possible by cooperation between community efforts 
such as NGFF and SpatialData, uniform data structures and reusable software. In the future, 
cloud-optimised reference datasets could be potentially hosted in central repositories, such as 
Bioimage Archive21 or Image Data Resource22 with the data served directly through external 
web apps or analysed on the fly23,24, creating a globally accessible and flexible framework for 
multimodal tissue atlases. 

Data availability 
All datasets presented on this paper, including the lower limb atlas, are publicly available for 
exploration through the WebAtlas portal at https://cellatlas.io/webatlas. 

Code availability 
All software code has been made publicly available on Github at  
https://github.com/haniffalab/webatlas-pipeline. Each software release is permanently 
archived on Zenodo at https://doi.org/10.5281/zenodo.7405818. Comprehensive 
documentation, tutorials and sample workflows are available at 
https://haniffalab.github.io/webatlas-pipeline.   
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Supplementary Note 1: The landscape of platforms for 
dissemination and navigation of tissue atlas data 
 
The integration of single cell and spatial transcriptomics has become a standard approach for 
building comprehensive tissue atlases. However, the diversity and scale of data types poses 
significant challenges to usable and interpretable access of multi-modal tissue atlases. Here, 
we provide a comparison of the WebAtlas pipeline to existing alternative platforms (Sup Table 
1) and elaborate our key advances that democratise access to complex tissue atlases.  
 

 Desktop Web 

 
Platform Features 

Loupe 
Browser 

MoBIE3 CellxGene27 Visinity5 TissUUm
aps 34 

SODB6 WebAtlas 
via Vitessce 

 Tabular data Yes Yes Yes  Yes Yes Yes Yes 

Multiscale raster 
images 

Yes Yes No Yes Yes No Yes 
 

Cell and RNA 
segmentation 

No Yes No Yes Yes No Yes 

Remote data navigation No Yes Yes Yes Yes Yes Yes 

Cloud-optimised data 
storage 

No Yes No Yes No No Yes 

Simultaneous browsing of 
scRNA-seq and ST 
modalities 

No No No No No No Yes 

Cross-query of multiple 
modalities 

No No No No No No Yes 

Supplementary Table 1: Comparison of WebAtlas with alternative platforms. 
 
Simultaneous browsing and cross-query of multiple modalities: The coordinated navigation of 
scRNA-seq and ST datasets greatly facilitates biological insights from tissue atlases. Amongst 
existing platforms, WebAtlas uniquely enables the browsing and cross-query of integrated 
scRNA-seq and ST modalities. While the MoBIE plugin supports browsing individual imaging-
based ST datasets or overlaying images from correlative microscopy, WebAtlas allows 
simultaneous browsing of integrated single cell and spatial transcriptomic datasets as well as 
their cell type and gene expression cross-query. This is enabled by 1) the WebAtlas data 
ingestion pipeline that can load datasets from most common scRNA-seq and ST technologies, 
and configure them for integrated visualisation and 2) the Vitessce framework that supports 
visualisation of multimodal single cell and spatial datasets.  
 

Vi
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Cloud-optimised data storage: WebAtlas adopts the cloud-ready Zarr format, which provides 
an agnostic approach to the underlying storage system, and employs an array chunking 
strategy. The data is stored as a collection of text files, consisting of the data divided into 
compressed chunks which can be read individually or in parallel, allowing very large datasets 
to scale more efficiently in the cloud. While TissUUmaps 3 and SODB use native AnnData 
objects for tabular data and TissUUmaps 3 uses OME.tif file format for imaging data, WebAtlas 
converts all scRNA-seq and ST data objects to Zarr. Our data standardisation is strongly 
aligned with the community-defined next-generation file format (NGFF)15 built on Zarr.  
 
Web application: WebAtlas does not require users to install specialised local software, unlike 
the Loupe Browser (10X Genomics) and the Fiji plugin MoBIE, and is easily accessible on a 
web browser. This is enabled through the adoption of the cloud-ready Zarr format and the 
Vitessce serverless web framework in the WebAtlas pipeline.  
 
Multiscale raster image visualisation: ST technologies generate complex tissue image data, 
ranging from brightfield H&E images in Visium to multi-cyclic and multi-channel fluorescent 
microscopy images in imaging-based ST methods, such as ISS. The diversity and scale (i.e. 
high resolution imaging of large tissue areas) of these image data types poses challenges to 
their online dissemination. While CellxGene and SODB platforms can serve tabular gene 
expression files, they do not support online browsing of full resolution tissue images. WebAtlas 
provides efficient multi-scale visualisation of diverse ST tissue image types via the OME-Zarr 
format and the Vitessce tool.  
 
Cell and RNA segmentation visualisation: The analysis of imaging-based ST data can 
segment single cells and RNA molecules/spots in tissues. While SODB is limited to visualising 
segmented single cells as points, WebAtlas uses OME-Zarr and Vitessce for multi-scale 
visualisation of cell segmentation label masks that can depict complex cell shapes and cell-
cell contacts at high resolution in situ. WebAtlas also visualises RNA molecules as points 
embedded in AnnData.  
 
Limitations: We observed that while many millions of RNA molecules can be ingested into the 
WebAtlas Pipeline and that the WebAtlas App can visualise 1.1 million RNA molecules on the 
lower limb ISS dataset and 6.5 million molecules downsampled from a Xenium dataset (see 
examples on the WebAtlas portal) , the responsiveness of the WebAtlas app is dramatically 
reduced when we render over 10 million molecules on Xenium and MERSCOPE datasets (not 
shown). Sitting underneath Vitessce is a visualisation framework called deck.gl 
(https://deck.gl/), that leverages the WebGL 2.0 standard 
(https://registry.khronos.org/webgl/specs/latest/2.0/) to access GPUs on the client device. 
This significantly improves the performance of visual exploration of large datasets in the web 
browser. However, despite the GPU-accelerated rendering in Vitessce, there is still eventually 
a limit to the number of points that can be rendered in the web browser, and the user 
experience will vary depending on the specification of the client device.  

To overcome this scalability limitation, it is necessary to change the architecture of how 
point data is visualised. Possible future scalability improvements include the rasterization of 
point data so that point data can be rendered efficiently as multi-scale NGFF images. Whilst 
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offering a visual representation of the data, this solution would be at the expense of the user 
being able to interact with the molecule data through the web interface. Alternatively, multi-
scale point clouds would provide a sequence of progressively more downsampled copies of 
the point data. Using a similar concept to the multi-scale pyramidal image formats, the app 
would then only load the appropriate point resolution and region that corresponded to the area 
of interest in the sample that the user requested to view. 
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Supplementary Table 2: Datasets visualised on WebAtlas 
 

Dataset and 
Reference 

Technology Cells/Visium 
spots 

Image Size 
(pixels) 

Genes Molecules 

Human Lower 
Limb17 

scRNA-seq 125,955 N/A 26,509 N/A 

12,903 after 
multimodal 
intersection 

Human Lower 
Limb  

(this study) 

ISS 65,080 26,525 x 47,831  90 1,164,802 
(loaded on 

WebAtlas for 
the individual 
ISS dataset) 

26,522 after 
imputation 

12,903 after 
multimodal 
intersection 

Human Lower 
Limb17 

Visium* 1,279 15,040 x 26,680 13,730 N/A 

12,903 after 
multimodal 
intersection 

Human Breast 
Cancer  

Visium CytAssist 4,992 19,505 x 21,571 18,085 N/A 

Human Breast 
Cancer25 

Xenium 167,782 35,416 x 25,779 313 43,664,540 (not 
loaded) 

Human Brain 
Tumour 

Xenium** 40,887 39,794 x 23,900 319 13,324,742 
(not loaded) 

Human Breast 
Cancer 

MERSCOPE 710,073 110,485 x 
94,805 

500 490,398,542 
(not loaded) 

Foetal Immune26 scRNA-seq 911,873 N/A 33,538 N/A 

SeqFISH Mouse 
embryo20 

SeqFISH 19,451 N/A 351 4,396,076 
(not loaded) 

29,452 after 
imputation 

SeqFISH Mouse 
embryo20 

scRNA-seq 16909 N/A 29,452 N/A 

 
Legend on next page 
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Supplementary Table 2. Datasets visualised on WebAtlas in this study and their specifications. 
All datasets can be publicly accessed on the WebAtlas portal.  
*The lower limb study profiled multiple donors and anatomical regions across 8 Visium chips (i.e. 
capture areas). One Visium chip with a PCW5.5 section was used for the integrated lower limb 
WebAtlas. The rest of the samples can be accessed as individual datasets in our portal. 
**Two additional human brain Xenium datasets can be accessed in our portal including healthy brain 
and Alzheimer’s disease tissue sections. 
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Supplementary Figure 1 

 
 

Legend on next page 
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Supplementary Figure 1. Integration of human lower limb scRNA-seq and ISS datasets.  
A) StabMap corrected UMAP displaying cells from scRNA-seq reference and ISS dataset. 
B) StabMap corrected UMAP displaying reference cell type annotations on the scRNA-seq dataset and 
the transferred cell type annotations on ISS dataset.  
C) Spatial map of annotated cell types in the lower limb ISS dataset shows expected regional patterns, 
validating StabMap computational integration.  Panel 1; overview of the whole limb section displaying 
7 out of 60 cell types . Panel 2; developing fifth digit consisting of chondroprogenitors (ChondroProg) 
and proliferating chondrocytes (ProlifChon). Inset 3; posterior aspect of the developing zeugopod, 
showing basal cells (AER-Basal) of the developing skin and mesenchymal progenitors (Mes1). Inset 4; 
limb-trunk junction with chondroprogenitors and proliferating chondrocytes. Inset 5; developing tarsal 
region showing mesenchymal condensate (MesCond), chondroprogenitors and proliferating 
chondrocytes. Inset 6; developing tibia consisting of mesenchymal condensate, chondroprogenitors 
and proliferating chondrocytes. Inset 7; Developing muscle of the stylopod, consisting of PAX3- 
expressing myoprogenitors (PAX3+MyoProg) and MYL3-expressing myocytes (MYL3+MyoC).  
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Supplementary Figure 2 

 
 
 Legend on next page 
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Supplementary Figure 2. Spatial locations of cell types in ISS and Visium datasets.  
Panels show WebAtlas app snapshots of select cell types across different limb regions. ISS panels 
show the spatial maps of cell types annotated by StabMap computational integration and Visium panels 
show spatial cell type maps deconvolved by Cell2location computational integration. 
A,B) Chondroprogenitors and the more differentiated resting chondrocytes are mapped to the 
developing digits on both modalities. Chondroprogenitors are more abundant in the distal (indicated 
with red arrow) than the proximal parts (white arrow) of the digits, whereas resting chondrocytes show 
the inverse pattern, as more clearly distinguished by ISS data.  
C) The fine spatial localisation of venous-endothelial cells to interdigital areas (red arrows) is more 
clearly resolved in ISS than Visium data. 
D) Dermal fibroblasts are mapped to the developing skin in both modalities.  
E, F) MYL3+ myocytes and  embryonic myoblasts (MyoB1) are mapped to the developing muscle in 
both modalities.  
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Supplementary Figure 3 
 

 
Supplementary Figure 3. Imputation of unobserved gene expression and spatially variable gene 
expression analysis in the human lower limb. 
A) WebAtlas app snapshots showing spatial expression of SOX9 (chondrocyte lineage marker) and 
MYLPF (muscle marker) imputed in ISS versus observed in Visium. The imputed gene expression 
patterns of both markers are consistent with the known spatial patterns of their respective cell types 
and the observed expression in Visium.  
B) Scatter plot of mean imputed expression and scHOT observed test statistic for spatial differential 
expression for each imputed gene in the ChondroProg cell type in human lower limb. Top ranked genes 
are labelled. 
C) App snapshots showing enrichment of MATN4  expression in proximal chondroprogenitors in ISS 
and Visium datasets. White dashed lines show the outline of developing bone where 
chondroprogenitors are located. ISS shows label masks of only chondroprogenitor cells. Insets show 
close up images of distal and proximal chondroprogenitors. 
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Supplementary Figure 4 

 
 
Supplementary Figure 4. Different ST technologies on WebAtlas. 
WebAtlas app snapshots of (A) Xenium Human Breast Cancer, (B) Xenium Human Brain Cancer 
(Glioblastoma), (C) MERSCOPE FFPE Breast Cancer, (D) Visium CytAssist Human Breast Cancer, 
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and (E) integrated scRNA-seq and seqFISH mouse embryo datasets. For each panel, the Vitessce 
component windows show the following as numbered. (1) Spatial map of segmented single cells or 
Visium spots coloured according to annotated cell types or cell/spot transcriptomic clusters. (2) UMAP 
representation of cell types or cell/spot transcriptomes. (3) Spatial layer console to toggle and adjust 
raster images, label masks and molecules. (4) Gene search console. (5) Cell type or cell/spot cluster 
search console. Inset panels show raw fluorescent or brightfield microscopy images, including DAPI for 
Xenium, DAPI and cell boundary staining for MERSCOPE, and H&E images for Visium CytAssist, as 
well as cell segmentation label images. The Xenium inset also shows RNA molecules.  
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Supplementary Methods 
 
Lower limb single cell RNA-seq and Visium data 
 
We used 10X scRNA-seq and Visium data previously generated and analysed by Zhang et al. 
1. The scRNA-seq dataset spans the embryonic limb from PCW5 to PCW9, and consists of 
125,955 cells that were annotated to 60 cell types. The Visium data spans PCW5 to PCW8 
across 8 capture areas/chips. The whole scRNA-seq and Visium datasets were integrated 
using Cell2location, and subsequently used in this study. In the integrated lower limb 
WebAtlas, we visualise the whole scRNA-seq dataset along with one Visium capture chip from 
a PCW5.5 donor that matches our ISS dataset. 

The tabular gene expression and cell type annotation tables were originally formatted 
as AnnData, including the cell abundance estimates in the Visium dataset generated by 
Cell2location analysis. The H&E images of Visium data were formatted as raw tiff files and 
loaded from 10X SpaceRanger files.  
 
Lower Limb ISS data generation 
 
Sample acquisition and ethics 
The lower limb of a PCW5.5 human embryo was obtained from an elective termination with 
informed consent under REC 96/085 (East of England - Cambridge Central Research Ethics 
Committee). The limb was embedded in optimal cutting temperature medium (OCT) and 
frozen at -80°C on an isopentane-dry ice slurry. Cryosections were cut at a thickness of 10 
μm using a Leica CM1950 cryostat and placed onto SuperFrost Plus slides (VWR). 
 
Customised In situ sequencing pipeline 
In situ sequencing was performed using the 10X Genomics CARTANA HS Library Preparation 
Kit (1110-02, following protocol D025) and In Situ Sequencing Kit (3110-02, following protocol 
D100), which comprise a commercialised version of HybISS2. 

A limb section was fixed in 3.7% formaldehyde (Merck 252549) in PBS for 30 minutes, 
washed twice in PBS for 1 minute each, permeabilized in 0.1 M HCl (Fisher 10325710) for 5 
minutes, and washed twice again in PBS, all at room temperature. Following dehydration in 
70% and 100% ethanol for 2 minutes each, a 9 mm diameter (50 μl volume) SecureSeal 
hybridisation chamber (Grace Bio-Labs GBL621505-20EA) was adhered to the slide and used 
to hold subsequent reaction mixtures. Following rehydration in buffer WB3, probe hybridisation 
in buffer RM1 was conducted for 16 hours at 37°C. The 90-plex probe panel included 5 padlock 
probes per gene, the sequences of which are proprietary (10X Genomics CARTANA). The 
section was washed with PBS-T (PBS with 0.05% Tween-20) twice, then with buffer WB4 for 
30 minutes at 37°C, and thrice again with PBS-T. Probe ligation in RM2 was conducted for 2 
hours at 37°C and the section washed thrice with PBS-T, then rolling circle amplification in 
RM3 was conducted for 18 hours at 30°C. Following PBS-T washes, all rolling circle products 
(RCPs) were hybridised with LM (Cy5 labelling mix with DAPI) for 30 minutes at room 
temperature, the section was washed with PBS-T and dehydrated with 70% and 100% 
ethanol. The hybridisation chamber was removed and the slide mounted with SlowFade Gold 
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Antifade Mountant (Thermo S36937). Imaging of Cy5-labelled RCPs at this stage acted as a 
QC step to confirm RCP (‘anchor’) generation and served to identify spots during decoding. 
Imaging was conducted using a Perkin Elmer Opera Phenix Plus High-Content Screening 
System in confocal mode with 1 μm z-step size, using a 63X (NA 1.15, 0.097 μm/pixel) water-
immersion objective and 7% overlap between adjacent tiles. Channels: DAPI (excitation 375 
nm, emission 435-480 nm), Atto 425 (ex. 425 nm, em. 463-501 nm), Alexa Fluor 488 (ex. 488 
nm, em. 500-550 nm), Cy3 (ex. 561 nm, em. 570-630 nm), Cy5 (ex. 640 nm, em. 650-760 
nm). 

Following imaging, the slide was de-coverslipped vertically in PBS (gently, with minimal 
agitation such that the coverslip ‘fell’ off to prevent damage to the tissue). The section was 
dehydrated with 70% and 100% ethanol, and a new hybridisation chamber secured to the 
slide. The previous cycle was stripped using 100% formamide (Thermo AM9342), which was 
applied fresh each minute for 5 minutes, then washed with PBS-T. Barcode labelling was 
conducted using two rounds of hybridisation, first an adapter probe pool (AP mixes AP1-AP6, 
in subsequent cycles), then a sequencing pool (SP mix with DAPI, customised with Atto 425 
in place of Alexa Fluor 750), each for 1 hour at 37°C with PBS-T washes in between and after. 
The section was dehydrated, the chamber removed, and the slide mounted and imaged as 
previously. This was repeated another five times to generate the full dataset of 7 cycles 
(anchor and 6 barcode bits). 

 
 
Lower limb ISS image data processing 
 
1. Image pre-processing  
We used proprietary software provided by Perkin Elmer for the initial processing of raw ISS 
image data. This entailed illumination correction, maximum Z intensity projection and stitching, 
resulting in the generation of an ome.tiff file per imaging cycle that encompasses all the 
channels (DAPI, Atto425, Alexa Fluor 488, Cy3 and Cy5). 
 
2. Image registration 
We used the Microaligner package for a two-step registration process of ISS imaging cycles3,4. 
The first step is Affine feature-based registration, where the DAPI channel in the first ISS cycle 
serves as the reference image and the subsequent cycles are registered to this reference. We 
begin by detecting image features in the DAPI channels using the FAST feature point finder 
algorithm in OpenCV package5, which identifies image areas with significant intensity 
changes. Next, the DAISY feature descriptor algorithm extracts histograms of oriented 
gradients for each identified feature point. The extracted feature points are then matched using 
the FLANN-based KNN matcher algorithm across cycles, which determines the 
correspondence between the features of the reference and moving images. The matches are 
filtered based on the default distance threshold between neighbouring features, and the 
resulting matched feature coordinates are aligned using the RANSAC algorithm in OpenCV to 
compute the affine transformation. The process is applied to tiled images with tile size of 6000 
by 6000 pixels to optimise the alignment and reduce memory usage. For each tile, a 
transformation matrix is derived after applying the DoG function with predefined kernel sizes, 
which is eventually unified by employing the matmul function in Python.  
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The second step is non-linear optical flow-based registration that relies on the 
Farneback method (calcOpticalFlowFarneback) in OpenCV that identifies pixels with the 
highest similarity within a given window, with fine tuned parameters - pyr_scale=0.5, levels=3, 
winsize=51, iterations=3, poly_n=1, poly_sigma=1.7, 
flags=OPTFLOW_FARNEBACK_GAUSSIAN. For each pixel, the method computes a 2D 
vector that characterises the movement of the pixel from one image to the other. This is applied 
to tiled images with a tile size of 1000 by 1000 pixels with an overlap of 100 pixels between 
adjacent tiles. 

 
3. ISS barcode decoding with PoSTcode  
To decode individual RNA transcripts from cyclic ISS images, we used the PoSTcode barcode 
decoding algorithm3 and customised image preprocessing. To improve the accuracy of 
downstream spot-calling and quality of intensity-based decoding, we first applied the white hat 
filter with the kernel size of 5 pixels to filter out noise from all coding channels. Subsequently, 
the transcript detection was performed exclusively on the anchor channel using the ‘locate’ 
method in TrackPy6 with percentile equal 90, spot size equals 5 and separation equals 4. One 
intensity profile for each transcript was extracted from the registered image generated in the 
last step. This intensity profile is of shape 4x6 representing the intensity extracted from 4 
channels per cycle and from all the 6 cycles. Yet, to improve decoding outcome, we expanded 
the searching range of the maximum intensity to +/- 2 pixels across coding channels. The 
decoding step in PoSTcode takes this 4x6 matrix and the codebook from CARTANA as input 
and returns prediction of gene type for each transcript with a confidence value. Only transcripts 
with a value higher than 0.97 were kept and saved as a .csv file for downstream processing. 
 
4. Single cell segmentation 
To segment single cells from the registered image stack, we applied the cell segmentation in 
CellPose7 using the pretrained `cyto2` model on DAPI channel with the cell size of 70 pixels 
in diameter. To mimic the cytoplasm boundary, expansion of 10 pixels is applied and the 
expanded cell segmentation was used to generate the cell by gene expression matrix. Due to 
the large memory requirements, we adopted a strategy of dividing the whole images into 
smaller tiles and performed the segmentation on each of the tiles individually. Following this, 
we stitched the tiles back together to reconstruct the complete image without compromising 
much segmentation accuracy. There were in total 117,788 cells detected. 
 
5. Anndata object generation 
The decoded 1,164,802 spots were assigned to the 117,788 cells using the STRtree8. Out of 
the 117,788 cells, only 66,675 cells were kept after filtering out cells with less than 4 
transcripts. The output is saved as an AnnData object. 
 
 
Lower limb ISS and scRNA-seq data integration and analysis  
 
1. Generating reference embeddings for scRNA-seq and ISS 
For the scRNA-seq data, we used the principal components from the previous study as the 
target reference embedding for mosaic integration. For the ISS data, we selected cells with at 
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least 5 detected transcripts in at least 3 genes. We then calculated additional spatially-
informed features beyond per-cell expression counts by calculating the gene counts from 
among the nearest 25 transcripts detected from the centroid of each ISS-resolved cell. These 
new features were concatenated among the per-cell expression counts and converted to log-
counts. We calculated 30 principal components and treated this as the reference embedding 
for ISS. 
 
2. Mosaic integration using StabMap 
Using the scRNA-seq and ISS reference embeddings, we jointly mapped these data onto each 
other using StabMap, which included a rescaling of embedding values according to L1 norm. 
Then to ensure no residual modality-specific effect, we performed horizontal data integration 
using Harmony. This resulted in a joint corrected StabMap lower-dimensional embedding for 
all cells. 
 
3. Imputation and Cell type classification 
We used the joint embedding for all cells to perform point imputation and cell type 
classification. For point imputation, for each ISS-resolved cell, we calculated the mean 
logcount gene expression across the five nearest euclidean distance scRNA-seq resolved 
cells within the corrected lower-dimensional embedding. For cell type classification, we used 
the K-nearest neighbours algorithm, with K = 5, and selected the majority class for each ISS-
resolved cell, with ties broken by the classes nearest to the ISS-resolved cell. To denoise 
individual cell classifications, we reassigned cell type labels of each ISS-resolved cell to the 
majority class of the ISS-resolved cell’s 30 most proximate cells in euclidean distance.  
 
4. Spatially variable gene expression analysis 
We next performed spatially variable gene expression analysis on the imputed and cell type 
classified ISS data. We downsampled to 1,000 cells within ChondroProg, randomly sampled 
across the entire ISS spatial coordinates. We then used scHOT9 to measure departure from 
homogenous expression across space via weighted means for each cell, with weights 
proportional to euclidean distances in space spanning 5% of the nearest cells. The scHOT 
observed test statistics were used to rank imputed genes according to departure from 
homogenous spatial expression, and the top 20 imputed genes were identified as spatially 
differentially expressed.  
 
 
WebAtlas data ingestion 
 
The WebAtlas data ingestion pipeline requires the user to provide a YAML file that defines 
input datasets. Each dataset can be composed of tabular data and/or images. Currently 
supported dataset types are AnnData object (e.g. HDF5 files of tabular gene expression from 
scRNA-seq and ST), Visium SpaceRanger output (up to version 1.2.0), Xenium output (up to 
version 1.3), MERSCOPE output (version 2022.5.26), molecules CSV/TSV file (e.g. RNA 
spots from customised ISS), and any raster images including raw microscopy and cell/spot 
label masks supported by bioformats2raw. The ingestion of different scRNA-seq and ST 
modalities is detailed below.  
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The user must specify the paths or URLs for each dataset and their corresponding 
types, along with visualisation options for Vitessce, including the final URL hosting the data. 
We provide various template YAML files for different modalities on our Github repository (see 
Code availability section).  

The pipeline converts tabular AnnData to Zarr format via the canonical write_zarr 
function within the ScanPy package10. Raster images are converted to OME-Zarr using the 
bioformats2raw tool using default parameters.  

The pipeline outputs data objects converted to Zarr and a View Config JSON file, 
which configures the WebAtlas web application (see below). To visualise datasets on the 
web app, the user needs to ensure that the Zarr data objects and the View Config file are 
accessible, which can be accomplished through local hosting or by placing the files onto 
cloud-based services such as AWS S3 bucket or Google cloud (see Vitessce guidance at 
http://vitessce.io/docs/data-hosting/). 
 
1. scRNA-seq data 
We ingest scRNA-seq datasets in the AnnData format and convert them to AnnData-Zarr. 
 
2. Visium data 
We can ingest raw Visium and Visium CytAssist datasets from the SpaceRanger output 
directories. We convert tabular spot by gene expression files to AnnData-Zarr and H&E raster 
images to OME-Zarr. To visualise Visium spots to be overlaid on the H&E images, we generate 
label images of Visium spots based on the spatial information included in the SpaceRanger 
output files defining each spot's centre coordinates and diameter. For Visium datasets that 
have been integrated with scRNA-seq by Cell2location, we can ingest Cell2location output 
AnnData objects that list the deconvolved cell type abundances per Visium spot. To visualise 
deconvolved cell types on Visium data, which are formatted as continuous cell abundance 
numbers per Visium spot, further preprocessing is required and is described in the integrated 
modality visualisation section below.  
 
3. Custom ISS data 
Our ISS image analysis pipeline generates 1) tabular cell by gene expression files that are 
loaded as AnnData-Zarr and 2) raster images of raw microscopy data and segmentation label 
masks that are loaded as OME-Zarr. Additionally, if available, segmented RNA 
spots/molecules can be loaded as embedded in the AnnData format. 
 
4. Xenium data 
We used 4 Xenium datasets provided by 10X Genomics, including a human breast tumour11 
(Xenium file format version 1.0.1) and human brain tissue including glioblastoma tumours 
(Xenium file format version 1.3.0) (provided in 
https://www.10xgenomics.com/resources/datasets/xenium-human-brain-preview-data-1-
standard). The tabular cell by gene expression input files, available as 10x-Genomics-
formatted HDF5 files, are ingested and converted to AnnData-Zarr using a dedicated loading 
function in ScanPy. Raster microscopy images are ingested to OME-Zarr. The cell 
segmentation masks are formatted as polygons in the Xenium file format, and are converted 
to label images in OME-Zarr format. Additional information provided by Xenium technology, 
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such as cell centroid coordinates and default clustering labels, are loaded using additional 
scripts in the pipeline.  
 
5. MERSCOPE data 
We used a human breast cancer MERSCOPE FFPE dataset released by Vizgen (Human 
Immuno-oncology Data Release from https://vizgen.com/data-release-program/).  The 
MERSCOPE data format stores metadata in separate files, necessitating the development of 
specialised loading functions to construct the AnnData object as well as to generate labelled 
images. We use the pandas package to load the multiple CSV files from the MERSCOPE 
output. We load the cell by gene matrix filtering out blank control barcodes which we identify 
by being prefixed with "Blank". We load cell metadata and along with the expression matrix 
we build an AnnData object. To be able to map cells to labelled images we transform the cell 
centroid micron coordinates included in each cell metadata with a transformation matrix 
provided by MERSCOPE to obtain pixel coordinates. In a similar manner, we obtain 
segmentation pixel coordinates from a cell boundaries HDF5 file and the micron to pixel 
transformation matrix. We use these segmentations to generate labelled images in tiff format, 
where each segmentation is assigned the corresponding cell ID. As for the raw image, we aim 
to obtain a single multipage tiff image that will then get converted to OME Zarr. MERSCOPE 
outputs each channel as a different tiff file and thus we first concatenate them into a single file 
through the pyvips12 package and set all necessary OME metadata that is then used by 
bioformats2raw when performing the conversion to Zarr. 
 
WebAtlas visualisation via Vitessce 
 
The WebAtlas Data ingestion pipeline creates a Vitessce View Config JSON file to facilitate 
data visualisation, outlining pertinent information such as input datasets, specifications of each 
data type, embeddings to be represented, component layout within the app, and the 
transformed dataset's behaviour in Vitessce. The View Config file conforms to the guidelines 
outlined in the Vitessce documentation (http://vitessce.io/docs/view-config-json/).  
 
 
WebAtlas visualisation of integrated modalities 
 
To facilitate the integrated visualisation of gene expression and cell types in the scRNA-
seq/ISS/Visium datasets, it is necessary to preprocess all the data.  

Firstly, we manipulate the expression matrices of all data modalities to facilitate the 
visualisation of deconvolved cell type abundances in Visium. In the Visium data, we 
concatenate the cell type abundance predictions from Cell2location into the spot by gene 
expression matrix and identify which features are cell type predictions using a boolean column 
labelled "is_celltype". The genes from the original spot by gene part of the matrix are then 
labelled as "is_gene." This manipulation allows for the display of continuous cell type 
predictions generated by Cell2location, rather than showing only a single cell type prediction 
per Visium spot. Along with this, we expand the expression matrices of the corresponding 
scRNA-seq and ISS data to accommodate the “is_celltype” and "is_gene" columns and enable 
simultaneous searching across all modalities through the “featureList” component in Vitessce. 
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This expansion involves translating the original categorical cell type values in the scRNA-seq 
and ISS label encoding into a one-hot encoding matrix. This is done by representing each 
label as a binary vector with a value of 1 in the corresponding category and 0s elsewhere. The 
axes between all the modalities are intersected, and the objects are sliced to contain only 
these values. We also ensure that each observation (cell/spot) of each modality has a unique 
identifier - as an integer - across all modalities by adding offsets to different datasets cell/spot 
IDs. This is done because an overlap can cause incorrect visualisation in Vitessce. The 
intersected AnnData objects then get written into AnnData-Zarr. 

Secondly, in the View Config file, an appropriate coordination value is assigned for the 
type of observation for all three modalities, which may be cells or spots depending on the 
sequencing method used. The feature type and their corresponding values, which might be 
gene expression or cell type abundance, is also defined. These coordination values are used 
by Vitessce when the web application is rendered, and are leveraged to achieve the integrated 
visualisation. Users can utilise the cell type or gene lists to search across the chosen ontology 
and visualise the expression of selected features across all modalities, allowing visualisation 
of gene expression or cell type abundance across both spatial profiles and embedding spaces 
such as UMAP or t-SNE. This is also true when visualising hierarchical observations such as 
cell type or any other shared ontology. Additionally, we coordinate other properties such as 
the colour map range and zoom values, that can be controlled separately by dataset or in a 
unified manner, to emphasise or compare between modalities.  
 We manually create a Vitessce View Config file to enable the loading of gene and cell 
type subsets of the concatenated matrices through specific coordination values. Within the 
View Config file we include each modality as a separate dataset object. For each modality we 
define three observation-by-feature matrices. The first observation-by-feature matrix points to 
the concatenated genes and cell types matrix within the AnnData-Zarr. We set the 
"featureType" coordination value of this matrix as "combined". This first matrix must be 
included so the software can access the full matrix. The second and third observation-by-
feature matrices point to the same concatenated matrix but are filtered through the 
"featureFilterPath" option. We filter the matrices by pointing this "featureFilterPath" to the 
column within the AnnData object's feature axis that contains the boolean values that indicates 
whether that feature is a gene or a cell type. We respectively specify the "featureType" 
coordination value to "gene" in one observation-by-feature matrix and "celltype" in the other. 
These filtered matrices allow us to then set controls that load only one subset of the 
concatenated matrix at a time. For the datasets' image data we set the "featureType" 
coordination value as "combined". We then use the three "featureType" values, "combined", 
"gene" and "celltype", in the coordination space of the View Config. We refer to the "combined" 
value within the layout definition for the scatterplot and spatial components. Distinctly, we 
define two feature list components and refer one to the "gene" "featureType" and the other to 
"celltype". Thus, each list displays only the values that correspond to each feature type, and 
selecting a feature loads the respective column from the concatenated matrices which are 
visualised on the scatterplot and spatial components. The feature list components can load 
the complete set of features from any of the datasets as they contain the same data from the 
intersection step. For future visualisations that are similar, such View Config files can be used 
as a template to generate relevant configurations and examples of these are provided in the 
WebAtlas Github repo.  
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