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Abstract

Single cell and spatial transcriptomics illuminate complementary features of tissues. However,
online dissemination and exploration of integrated datasets is challenging due to the
heterogeneity and scale of data. We introduce the WebAtlas pipeline for user-friendly sharing
and interactive navigation of integrated datasets. WebAtlas unifies commonly used atlassing
technologies into the cloud-optimised Zarr format and builds on Vitessce to enable remote
data navigation. We showcase WebAtlas on the developing human lower limb to cross-query
cell types and genes across single cell, sequencing- and imaging-based spatial transcriptomic
data.

Main text

Single cell and spatial transcriptomics provide complementary tools for tissue
atlassing. While single cell RNA-sequencing (scRNA-seq) profiles whole-transcriptomes of
individual cells, it does not capture their spatial locations in tissues. Conversely, sequencing-
based spatial transcriptomics (ST) can profile whole transcriptomes in situ, but widely used
technologies such Visium and Slide-Seq do not provide single cell spatial resolution. Although
alternative imaging-based ST methods such as In Situ Sequencing and MER-FISH provide
true single cell resolution, they are limited to targeted gene panels of around 100 to 1000
genes'.

Computational integration can harness the strengths of scRNA-seq and ST modalities
to resolve cell types and impute transcriptomes of single cells in situ?. However, we lack user-
friendly software solutions to disseminate and navigate integrated single cell and spatial
transcriptomic datasets. First, scRNA-seq and ST data objects are often saved in non-unified
sequencing and imaging file formats that perform poorly with web technologies®®. Second,
existing software platforms do not readily support simultaneous browsing of multiple integrated
data modalities®>®. These limitations impede usable and interpretable access to a wealth of
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tissue atlas data for the research community, and hinder biological insights that can only be
gained from integrated datasets.

Here, we introduce the WebAtlas pipeline to enable online sharing and navigation of
integrated single cell and spatial transcriptomic datasets (Fig 1A). We address the
aforementioned challenges with two main innovations. First, we provide a new data ingestion
pipeline to convert and unify datasets from multiple single cell and spatial technologies into
the cloud-ready Zarr format’. Second, we provide a frontend web client based on the Vitessce
framework® to enable interactive exploration of single cell and spatial data through a web
browser, where users can intuitively cross-query gene expression and cell types across
modalities (Fig 1A). WebAtlas enhances usability, interpretability and equitable access of
multi-modal tissue atlases, facilitating biological insight for a global audience (see Sup Note 1
for detailed comparison to other platforms).
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Figure 1. Overview of WebAtlas pipeline.

A. WebAltlas incorporates integrated scRNA-seq, imaging- and sequencing-based ST datasets for
interactive web visualisation, enabling cross-query of cell types and gene expressions across
modalities.

B. WebAtlas data ingestion pipeline converts diverse data objects from integrated single cell and
spatial technologies to the Zarr format and runs on Nextflow. The pipeline extracts shared
genes and cell types features across modalities.
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On WebAtlas, single cell and spatial datasets are linked by biomolecular metadata,
such as shared cell type or gene annotations. Linkage is performed prior to WebAtlas ingestion
using existing data integration methods like Cell2location® and StabMap'® that map scRNA-
seq cell type references onto ST datasets and impute unobserved gene expression in the
latter (Fig 1A).

Our re-usable data ingestion pipeline performs the extract-transform-load steps for
sequencing and imaging data objects generated from various single cell and spatial
transcriptomic technologies (Fig 1B). To enable scalable and interoperable online browsing of
tissue atlas datasets, our pipeline produces a standardised output using the Zarr file format,
which utilises an array chunking strategy for efficient data access from the cloud. Our Zarr
convention is closely aligned with the recently released SpatialData format'', supporting data
standardisation efforts.

Tabular gene expression and cell type annotation files for scRNA-seq and ST are
converted from the commonly used AnnData format'®'® into AnnData-Zarr. The raw image
components of ST data, including fluorescent or brightfield microscopy images along with label
images from cell segmentation, are converted into OME-Zarr format™ to enable efficient multi-
scale visualisation. Other ST data elements, such as points (e.g. RNA spots/molecules) and
polygons (e.g. cell masks), are also stored in Zarr according to the AnnData specification.
Together with the authors of SpatiaData, we propose that these structures are included in the
community-defined next-generation file format (NGFF)' to achieve a FAIR'® exchange of
multi-modal tissue atlas data.

The WebAtlas data ingestion pipeline is implemented on Nextflow and is configured
through a simple YAML schema that defines input data files and visualisation parameters.
Flexibility to support a diverse set of use-cases is built into the pipeline. Input datasets are
processed independently and users can choose to process an individual dataset (e.g. Visium),
specific components of a given dataset (e.g. cell segmentation masks but not raw images) or
any given combination of integrated datasets (e.g. sScRNA-seq and Visium or scRNA-seq and
imaging). This modular design also supports extensions to new data modalities and formats,
such as customised microscopy (see below). The pipeline outputs Zarr formatted datasets
and configuration files for web visualisation.

To visualise and cross-query integrated datasets, we use the open-source Vitessce
tool. Vitessce provides a customisable and serverless web framework for interactive
exploration of single cell and spatial data. However, it has not been utilised to date on fully
integrated single cell and spatial modalities, and its configuration requires programmatic
expertise. To coordinate Vitessce on computationally integrated datasets, the WebAtlas
pipeline first identifies shared ontology features such as genes and cell types across all
modalities. To simplify visualisation through Vitessce, the pipeline generates a default View
Config JSON file, which instructs Vitessce to access pertinent data features from each
ingested modality (Sup Methods). Each Vitessce component is bound to a specific dataset
and all components are updated in a coordinated manner to visualise queried genes or cell
types (Fig 2A).

To showcase the capabilities of WebAtlas, we applied it to a multi-modal atlas of the
developing human lower limb that integrates scRNA-seq, Visium and In Situ Sequencing (ISS)
technologies (Fig 2A). The scRNA-seq and Visium datasets were generated previously'. To
complement these with imaging-based ST data, we used a custom ISS pipeline to quantify
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the expression of 90 genes at single cell spatial resolution (see Methods). To facilitate the
integration and comparison of different modalities, we curated ISS genes from the scRNA-seq
atlas, focusing on cell type markers, and applied ISS to a tissue section adjacent to one of the
Visium slices profiled in our previous study.

To harmonise lower limb atlas modalities, we computationally integrated the scRNA-
seq reference with each ST dataset. The scRNA-seq and Visium integration, which
deconvolves cell types in Visium data, was performed using Cell2location®'’. To integrate
scRNA-seq and ISS, we used StabMap'® to create a joint embedding, where we annotated
cell types and imputed full transcriptomes of ISS-resolved cells based on the scRNA-seq
reference data (Sup Methods, Sup Fig 1). Finally, we ingested all datasets via the WebAtlas
pipeline to convert all elements, including raw images (i.e. Hematoxylin and Eosin (H&E)
brightfield images for Visium and fluorescent microscopy for ISS) and cell/spot label masks
from ST, into the Zarr format, and visualised them on the web portal.

WebAtlas enabled coordinated navigation of integrated transcriptomic datasets in the
lower limb atlas (Fig 2A). We could readily cross-query cell types across all three modalities
(Fig 2B). This facilitated comparison of spatial cell type locations between Visium and ISS
datasets, where we observed consistent regional patterns for many cell types including
chondrocyte and epithelial subtypes matching prior knowledge'” (Fig 2B, Sup Fig 2), validating
our computational integration approach. Owing to its increased resolution, we could
distinguish finer spatial cell type patterns in ISS than Visium, such as endothelial cells
surrounding digits and a proximo-distal gradient of chondrocyte differentiation (Sup Fig 2).
Beyond cell types, we could cross-query gene expression across the lower limb atlas (Fig 2C).
Examining the scRNA-seq and ISS integration, we observed accurate imputed expression
patterns of known marker genes that were missing from the ISS gene panel (Sup Fig 4).

We next used WebAtlas to investigate the spatial dynamics of limb development,
focusing on the chondroprogenitor cells from which the cartilage anlage arises. Leveraging
the imputed transcriptomes of ISS-resolved single cells, we sought to identify genes with
spatially variable expression patterns within chondroprogenitors (Fig 2D). This identified novel
proximo-distal expression gradients of chondrogenesis related genes. WNT5A, which induces
chondrogenesis'®, was upregulated in distal chondroprogenitors (Fig 2E), whereas cartilage
extracellular matrix genes such as MATN1, 3 & 4'° were upregulated in proximal
chondroprogenitors (Sup Fig 3). Importantly, we validated these expression gradients on
adjacent Visium sections using WebAtlas (Fig 2E, Sup Fig 3). Our observations are consistent
with the proximo-distal nature of limb maturation, with immature distal chondroprogenitors
beginning chondrogenesis whilst more mature proximal cells actively secrete extracellular
matrix proteins. Finally, WebAtlas also enabled us to flexibly visualise subsets of lower limb
atlas modalities, such as scRNA-seq data paired with either ISS (Fig 2F) or Visium (Fig 2G).
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Figure 2. The human lower limb Wels.
A. A snapshot of the WebAtlas app visualising integrated scRNA-seq, ISS and Visium datasets of
the human lower limb at 5.5 post conception weeks (PCWH5.5). The Vitessce component
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windows show the following as numbered. (1) UMAP representation of cell types in sScRNA-seq
dataset with 6 queried cell types highlighted in colour. (2) Spatial map of segmented single
cells in ISS tissue section highlighting the queried cell type set. Inset shows raw microscopy
images of DAPI and cell segmentation label masks that can be viewed on the app. (3) Visium
tissue section with spot label masks. Inset shows raw H&E images and Visium spot label
masks. (4) Cell set search console to cross-query multiple cell types across scRNA-seq and
ISS datasets. (5) Cell type search console to cross-query a single cell type across all three
datasets including Visium. (6) Gene search console to cross-query gene expression across all
datasets.

B. Cell type cross-query snapshot. Selecting chondroprogenitors via the cell type search console
simultaneously highlights their cell cluster in scRNA-seq and their spatial locations in ISS and
Visium datasets. On Visium data, the predicted abundance of chondroprogenitors per Visium
spot is shown.

C. Gene expression cross-query snapshot. Selecting the chondrocyte lineage marker COL2A1 via
the gene search console returns its expression pattern in all three modalities, plotted per cells
or Visium spots.

D. Diagram of analysis workflow for the identification of spatially variable gene expression in
chondroprogenitors.

E. App snapshots showing enrichment of WNT5A expression in distal chondroprogenitors in ISS
and Visium datasets. White dashed lines show the outline of developing bone where
chondroprogenitors are located. ISS shows label masks of only chondroprogenitor cells. Insets
show close up images of distal and proximal chondroprogenitors.

F. App snapshot showing scRNA-seq and ISS datasets only.

G. App snapshot showing scRNA-seq and Visium datasets only.

To demonstrate WebAtlas compatibility with other spatial technologies, we applied it
to Xenium, MERSCOPE and Visium CytAssist datasets as well as a mouse embryonic atlas
integrating scRNA-seq and seqFISH? (Sup Table 2, Sup Figure 4). WebAtlas identifies key
data elements from these diverse inputs and generates a standardised output, demonstrating
our technology-agnostic approach. WebAtlas is also scalable to large datasets, exemplified
here on a scRNA-seq study with over 900,000 cells and spatial datasets with over 700,000
cells (MERSCOPE) and up to 1.1 million RNA molecules/spots (ISS) (Sup Table 2, Sup Figure
4). We provide interactive access to all 19 datasets used in this study, including the lower limb
atlas, via the WebAtlas portal at https://cellatlas.io/webatlas.

Taken together, we provide an intuitive pipeline for interactive exploration of integrated
single cell and spatial transcriptomic datasets. WebAtlas incorporates data from diverse
atlassing technologies into easily accessible multi-modal tissue atlases, and leverages
scalable, standardised and FAIR data formats. We demonstrate exploration of a multi-modal
human lower limb atlas, and use WebAtlas to interpret new biological insights arising from
computational integration of single cell and spatial data. A current limitation of WebAtlas,
despite leveraging GPU-accelerated rendering, is the scaling of points (RNA molecules) (Sup
Note 1). This can be addressed in the future by rasterization of point data or multi-scale point
clouds.

WebAtlas will facilitate the creation of rich and easily accessible human tissue atlases
for biologists. We envision diverse use cases in the community, including anatomical and
pathology annotation of spatial datasets, data dissemination alongside publications, and
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centralised reference atlases all made possible by cooperation between community efforts
such as NGFF and SpatialData, uniform data structures and reusable software. In the future,
cloud-optimised reference datasets could be potentially hosted in central repositories, such as
Bioimage Archive?' or Image Data Resource® with the data served directly through external
web apps or analysed on the fly*>24, creating a globally accessible and flexible framework for
multimodal tissue atlases.

Data availability

All datasets presented on this paper, including the lower limb atlas, are publicly available for
exploration through the WebAtlas portal at https://cellatlas.io/webatlas.

Code availability

All  software code has been made publicly available on Github at
https://github.com/haniffalab/webatlas-pipeline. Each software release is permanently
archived on Zenodo at https://doi.org/10.5281/zenodo.7405818. Comprehensive
documentation, tutorials and sample workflows are available at
https://haniffalab.github.io/webatlas-pipeline.
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Supplementary Note 1: The landscape of platforms for
dissemination and navigation of tissue atlas data

The integration of single cell and spatial transcriptomics has become a standard approach for
building comprehensive tissue atlases. However, the diversity and scale of data types poses
significant challenges to usable and interpretable access of multi-modal tissue atlases. Here,
we provide a comparison of the WebAtlas pipeline to existing alternative platforms (Sup Table
1) and elaborate our key advances that democratise access to complex tissue atlases.

Desktop Web
Loupe MoBIE® CellxGene? | Visinity’ | TissUUm | SODB® WebAtlas
Platform Features Browser aps 3* via Vitessce
Tabular data Yes Yes Yes Yes Yes Yes Yes

g Multiscale raster Yes Yes No Yes Yes No Yes

= images

®

R

© Cell and RNA No Yes No Yes Yes No Yes

7 | segmentation

>
Remote data navigation No Yes Yes Yes Yes Yes Yes
Cloud-optimised data No Yes No Yes No No Yes
storage
Simultaneous browsing of No No No No No No Yes
scRNA-seq and ST
modalities
Cross-query of multiple No No No No No No Yes
modalities

Supplementary Table 1: Comparison of WebAtlas with alternative platforms.

Simultaneous browsing and cross-query of multiple modalities: The coordinated navigation of
scRNA-seq and ST datasets greatly facilitates biological insights from tissue atlases. Amongst
existing platforms, WebAtlas uniquely enables the browsing and cross-query of integrated
scRNA-seq and ST modalities. While the MoBIE plugin supports browsing individual imaging-
based ST datasets or overlaying images from correlative microscopy, WebAtlas allows
simultaneous browsing of integrated single cell and spatial transcriptomic datasets as well as
their cell type and gene expression cross-query. This is enabled by 1) the WebAtlas data
ingestion pipeline that can load datasets from most common scRNA-seq and ST technologies,
and configure them for integrated visualisation and 2) the Vitessce framework that supports
visualisation of multimodal single cell and spatial datasets.
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Cloud-optimised data storage: WebAtlas adopts the cloud-ready Zarr format, which provides
an agnostic approach to the underlying storage system, and employs an array chunking
strategy. The data is stored as a collection of text files, consisting of the data divided into
compressed chunks which can be read individually or in parallel, allowing very large datasets
to scale more efficiently in the cloud. While TissUUmaps 3 and SODB use native AnnData
objects for tabular data and TissUUmaps 3 uses OME tif file format for imaging data, WebAtlas
converts all scRNA-seq and ST data objects to Zarr. Our data standardisation is strongly
aligned with the community-defined next-generation file format (NGFF)'® built on Zarr.

Web application: WebAtlas does not require users to install specialised local software, unlike
the Loupe Browser (10X Genomics) and the Fiji plugin MoBIE, and is easily accessible on a
web browser. This is enabled through the adoption of the cloud-ready Zarr format and the
Vitessce serverless web framework in the WebAtlas pipeline.

Multiscale raster image visualisation: ST technologies generate complex tissue image data,
ranging from brightfield H&E images in Visium to multi-cyclic and multi-channel fluorescent
microscopy images in imaging-based ST methods, such as ISS. The diversity and scale (i.e.
high resolution imaging of large tissue areas) of these image data types poses challenges to
their online dissemination. While CellxGene and SODB platforms can serve tabular gene
expression files, they do not support online browsing of full resolution tissue images. WebAtlas
provides efficient multi-scale visualisation of diverse ST tissue image types via the OME-Zarr
format and the Vitessce tool.

Cell and RNA segmentation visualisation: The analysis of imaging-based ST data can
segment single cells and RNA molecules/spots in tissues. While SODB is limited to visualising
segmented single cells as points, WebAtlas uses OME-Zarr and Vitessce for multi-scale
visualisation of cell segmentation label masks that can depict complex cell shapes and cell-
cell contacts at high resolution in situ. WebAtlas also visualises RNA molecules as points
embedded in AnnData.

Limitations: We observed that while many millions of RNA molecules can be ingested into the
WebAtlas Pipeline and that the WebAtlas App can visualise 1.1 million RNA molecules on the
lower limb ISS dataset and 6.5 million molecules downsampled from a Xenium dataset (see
examples on the WebAtlas portal) , the responsiveness of the WebAtlas app is dramatically
reduced when we render over 10 million molecules on Xenium and MERSCOPE datasets (not
shown). Sitting underneath Vitessce is a visualisation framework called deck.gl
(https://deck.gl/), that leverages the WebGL 20 standard
(https://registry.khronos.org/webgl/specs/latest/2.0/) to access GPUs on the client device.
This significantly improves the performance of visual exploration of large datasets in the web
browser. However, despite the GPU-accelerated rendering in Vitessce, there is still eventually
a limit to the number of points that can be rendered in the web browser, and the user
experience will vary depending on the specification of the client device.

To overcome this scalability limitation, it is necessary to change the architecture of how
point data is visualised. Possible future scalability improvements include the rasterization of
point data so that point data can be rendered efficiently as multi-scale NGFF images. Whilst
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offering a visual representation of the data, this solution would be at the expense of the user
being able to interact with the molecule data through the web interface. Alternatively, multi-
scale point clouds would provide a sequence of progressively more downsampled copies of
the point data. Using a similar concept to the multi-scale pyramidal image formats, the app
would then only load the appropriate point resolution and region that corresponded to the area
of interest in the sample that the user requested to view.
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Supplementary Table 2: Datasets visualised on WebAtlas

embryo?

Dataset and Technology Cells/Visium Image Size Genes Molecules
Reference spots (pixels)
Human Lower scRNA-seq 125,955 N/A 26,509 N/A
Limb'?
12,903 after
multimodal
intersection
Human Lower ISS 65,080 26,525 x 47,831 90 1,164,802
Limb (loaded on
(this study) WebAtlas for
26,522 after the individual
imputation ISS dataset)
12,903 after
multimodal
intersection
Human Lower Visium* 1,279 15,040 x 26,680 13,730 N/A
Limb'?
12,903 after
multimodal
intersection
Human Breast | Visium CytAssist 4,992 19,505 x 21,571 18,085 N/A
Cancer
Human Breast Xenium 167,782 35,416 x 25,779 313 43,664,540 (not
Cancer?® loaded)
Human Brain Xenium** 40,887 39,794 x 23,900 319 13,324,742
Tumour (not loaded)
Human Breast MERSCOPE 710,073 110,485 x 500 490,398,542
Cancer 94,805 (not loaded)
Foetal Immune?® scRNA-seq 911,873 N/A 33,538 N/A
SeqFISH Mouse SeqgFISH 19,451 N/A 351 4,396,076
embryo?° (not loaded)
29,452 after
imputation
SeqFISH Mouse scRNA-seq 16909 N/A 29,452 N/A

Legend on next page
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Supplementary Table 2. Datasets visualised on WebAtlas in this study and their specifications.
All datasets can be publicly accessed on the WebAtlas portal.

*The lower limb study profiled multiple donors and anatomical regions across 8 Visium chips (i.e.
capture areas). One Visium chip with a PCW5.5 section was used for the integrated lower limb
WebAtlas. The rest of the samples can be accessed as individual datasets in our portal.

**Two additional human brain Xenium datasets can be accessed in our portal including healthy brain
and Alzheimer’s disease tissue sections.
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Supplementary Figure 1. Integration of human lower limb scRNA-seq and ISS datasets.

A) StabMap corrected UMAP displaying cells from scRNA-seq reference and ISS dataset.

B) StabMap corrected UMAP displaying reference cell type annotations on the scRNA-seq dataset and
the transferred cell type annotations on ISS dataset.

C) Spatial map of annotated cell types in the lower limb ISS dataset shows expected regional patterns,
validating StabMap computational integration. Panel 1; overview of the whole limb section displaying
7 out of 60 cell types . Panel 2; developing fifth digit consisting of chondroprogenitors (ChondroProg)
and proliferating chondrocytes (ProlifChon). Inset 3; posterior aspect of the developing zeugopod,
showing basal cells (AER-Basal) of the developing skin and mesenchymal progenitors (Mes1). Inset 4;
limb-trunk junction with chondroprogenitors and proliferating chondrocytes. Inset 5; developing tarsal
region showing mesenchymal condensate (MesCond), chondroprogenitors and proliferating
chondrocytes. Inset 6; developing tibia consisting of mesenchymal condensate, chondroprogenitors
and proliferating chondrocytes. Inset 7; Developing muscle of the stylopod, consisting of PAX3-
expressing myoprogenitors (PAX3+MyoProg) and MYL3-expressing myocytes (MYL3+MyoC).
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Supplementary Figure 2. Spatial locations of cell types in ISS and Visium datasets.

Panels show WebAtlas app snapshots of select cell types across different limb regions. ISS panels
show the spatial maps of cell types annotated by StabMap computational integration and Visium panels
show spatial cell type maps deconvolved by Cell2location computational integration.

A,B) Chondroprogenitors and the more differentiated resting chondrocytes are mapped to the
developing digits on both modalities. Chondroprogenitors are more abundant in the distal (indicated
with red arrow) than the proximal parts (white arrow) of the digits, whereas resting chondrocytes show
the inverse pattern, as more clearly distinguished by ISS data.

C) The fine spatial localisation of venous-endothelial cells to interdigital areas (red arrows) is more
clearly resolved in ISS than Visium data.

D) Dermal fibroblasts are mapped to the developing skin in both modalities.

E, F) MYL3+ myocytes and embryonic myoblasts (MyoB1) are mapped to the developing muscle in
both modalities.
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Supplementary Figure 3. Imputation of unobserved gene expression and spatially variable gene

expression analysis in the human lower limb.

A) WebAtlas app snapshots showing spatial expression of SOX9 (chondrocyte lineage marker) and
MYLPF (muscle marker) imputed in ISS versus observed in Visium. The imputed gene expression
patterns of both markers are consistent with the known spatial patterns of their respective cell types
and the observed expression in Visium.

B) Scatter plot of mean imputed expression and scHOT observed test statistic for spatial differential
expression for each imputed gene in the ChondroProg cell type in human lower limb. Top ranked genes
are labelled.

C) App snapshots showing enrichment of MATN4 expression in proximal chondroprogenitors in ISS
and Visium datasets. White dashed lines show the outline of developing bone where
chondroprogenitors are located. ISS shows label masks of only chondroprogenitor cells. Insets show
close up images of distal and proximal chondroprogenitors.
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Supplementary Figure 4
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Supplementary Figure 4. Different ST technologies on WebAtlas.
WebAtlas app snapshots of (A) Xenium Human Breast Cancer, (B) Xenium Human Brain Cancer
(Glioblastoma), (C) MERSCOPE FFPE Breast Cancer, (D) Visium CytAssist Human Breast Cancer,
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and (E) integrated scRNA-seq and seqFISH mouse embryo datasets. For each panel, the Vitessce
component windows show the following as numbered. (1) Spatial map of segmented single cells or
Visium spots coloured according to annotated cell types or cell/spot transcriptomic clusters. (2) UMAP
representation of cell types or cell/spot transcriptomes. (3) Spatial layer console to toggle and adjust
raster images, label masks and molecules. (4) Gene search console. (5) Cell type or cell/spot cluster
search console. Inset panels show raw fluorescent or brightfield microscopy images, including DAPI for
Xenium, DAPI and cell boundary staining for MERSCOPE, and H&E images for Visium CytAssist, as
well as cell segmentation label images. The Xenium inset also shows RNA molecules.
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Supplementary Methods

Lower limb single cell RNA-seq and Visium data

We used 10X scRNA-seq and Visium data previously generated and analysed by Zhang et al.
. The scRNA-seq dataset spans the embryonic limb from PCW5 to PCW9, and consists of
125,955 cells that were annotated to 60 cell types. The Visium data spans PCW5 to PCW8
across 8 capture areas/chips. The whole scRNA-seq and Visium datasets were integrated
using Cell2location, and subsequently used in this study. In the integrated lower limb
WebAtlas, we visualise the whole scRNA-seq dataset along with one Visium capture chip from
a PCWS5.5 donor that matches our ISS dataset.

The tabular gene expression and cell type annotation tables were originally formatted
as AnnData, including the cell abundance estimates in the Visium dataset generated by
Cell2location analysis. The H&E images of Visium data were formatted as raw tiff files and
loaded from 10X SpaceRanger files.

Lower Limb ISS data generation

Sample acquisition and ethics

The lower limb of a PCW5.5 human embryo was obtained from an elective termination with
informed consent under REC 96/085 (East of England - Cambridge Central Research Ethics
Committee). The limb was embedded in optimal cutting temperature medium (OCT) and
frozen at -80°C on an isopentane-dry ice slurry. Cryosections were cut at a thickness of 10
pum using a Leica CM1950 cryostat and placed onto SuperFrost Plus slides (VWR).

Customised In situ sequencing pipeline

In situ sequencing was performed using the 10X Genomics CARTANA HS Library Preparation
Kit (1110-02, following protocol D025) and In Situ Sequencing Kit (3110-02, following protocol
D100), which comprise a commercialised version of HybISS?.

A limb section was fixed in 3.7% formaldehyde (Merck 252549) in PBS for 30 minutes,
washed twice in PBS for 1 minute each, permeabilized in 0.1 M HCI (Fisher 10325710) for 5
minutes, and washed twice again in PBS, all at room temperature. Following dehydration in
70% and 100% ethanol for 2 minutes each, a 9 mm diameter (50 pl volume) SecureSeal
hybridisation chamber (Grace Bio-Labs GBL621505-20EA) was adhered to the slide and used
to hold subsequent reaction mixtures. Following rehydration in buffer WB3, probe hybridisation
in buffer RM1 was conducted for 16 hours at 37°C. The 90-plex probe panel included 5 padlock
probes per gene, the sequences of which are proprietary (10X Genomics CARTANA). The
section was washed with PBS-T (PBS with 0.05% Tween-20) twice, then with buffer WB4 for
30 minutes at 37°C, and thrice again with PBS-T. Probe ligation in RM2 was conducted for 2
hours at 37°C and the section washed thrice with PBS-T, then rolling circle amplification in
RM3 was conducted for 18 hours at 30°C. Following PBS-T washes, all rolling circle products
(RCPs) were hybridised with LM (Cy5 labelling mix with DAPI) for 30 minutes at room
temperature, the section was washed with PBS-T and dehydrated with 70% and 100%
ethanol. The hybridisation chamber was removed and the slide mounted with SlowFade Gold
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Antifade Mountant (Thermo S36937). Imaging of Cy5-labelled RCPs at this stage acted as a
QC step to confirm RCP (‘anchor’) generation and served to identify spots during decoding.
Imaging was conducted using a Perkin EImer Opera Phenix Plus High-Content Screening
System in confocal mode with 1 um z-step size, using a 63X (NA 1.15, 0.097 um/pixel) water-
immersion objective and 7% overlap between adjacent tiles. Channels: DAPI (excitation 375
nm, emission 435-480 nm), Atto 425 (ex. 425 nm, em. 463-501 nm), Alexa Fluor 488 (ex. 488
nm, em. 500-550 nm), Cy3 (ex. 561 nm, em. 570-630 nm), Cy5 (ex. 640 nm, em. 650-760
nm).

Following imaging, the slide was de-coverslipped vertically in PBS (gently, with minimal
agitation such that the coverslip ‘fell’ off to prevent damage to the tissue). The section was
dehydrated with 70% and 100% ethanol, and a new hybridisation chamber secured to the
slide. The previous cycle was stripped using 100% formamide (Thermo AM9342), which was
applied fresh each minute for 5 minutes, then washed with PBS-T. Barcode labelling was
conducted using two rounds of hybridisation, first an adapter probe pool (AP mixes AP1-AP6,
in subsequent cycles), then a sequencing pool (SP mix with DAPI, customised with Atto 425
in place of Alexa Fluor 750), each for 1 hour at 37°C with PBS-T washes in between and after.
The section was dehydrated, the chamber removed, and the slide mounted and imaged as
previously. This was repeated another five times to generate the full dataset of 7 cycles
(anchor and 6 barcode bits).

Lower limb ISS image data processing

1. Image pre-processing

We used proprietary software provided by Perkin Elmer for the initial processing of raw ISS
image data. This entailed illumination correction, maximum Z intensity projection and stitching,
resulting in the generation of an ome.tiff file per imaging cycle that encompasses all the
channels (DAPI, Atto425, Alexa Fluor 488, Cy3 and Cy5).

2. Image registration

We used the Microaligner package for a two-step registration process of ISS imaging cycles®*.
The first step is Affine feature-based registration, where the DAPI channel in the first ISS cycle
serves as the reference image and the subsequent cycles are registered to this reference. We
begin by detecting image features in the DAPI channels using the FAST feature point finder
algorithm in OpenCV package®, which identifies image areas with significant intensity
changes. Next, the DAISY feature descriptor algorithm extracts histograms of oriented
gradients for each identified feature point. The extracted feature points are then matched using
the FLANN-based KNN matcher algorithm across cycles, which determines the
correspondence between the features of the reference and moving images. The matches are
filtered based on the default distance threshold between neighbouring features, and the
resulting matched feature coordinates are aligned using the RANSAC algorithm in OpenCV to
compute the affine transformation. The process is applied to tiled images with tile size of 6000
by 6000 pixels to optimise the alignment and reduce memory usage. For each tile, a
transformation matrix is derived after applying the DoG function with predefined kernel sizes,
which is eventually unified by employing the matmul function in Python.
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The second step is non-linear optical flow-based registration that relies on the
Farneback method (calcOpticalFlowFarneback) in OpenCV that identifies pixels with the
highest similarity within a given window, with fine tuned parameters - pyr_scale=0.5, levels=3,
winsize=51, iterations=3, poly_n=1, poly_sigma=1.7,
flags=OPTFLOW_FARNEBACK_GAUSSIAN. For each pixel, the method computes a 2D
vector that characterises the movement of the pixel from one image to the other. This is applied
to tiled images with a tile size of 1000 by 1000 pixels with an overlap of 100 pixels between
adjacent tiles.

3. ISS barcode decoding with PoSTcode

To decode individual RNA transcripts from cyclic ISS images, we used the PoSTcode barcode
decoding algorithm® and customised image preprocessing. To improve the accuracy of
downstream spot-calling and quality of intensity-based decoding, we first applied the white hat
filter with the kernel size of 5 pixels to filter out noise from all coding channels. Subsequently,
the transcript detection was performed exclusively on the anchor channel using the ‘locate’
method in TrackPy® with percentile equal 90, spot size equals 5 and separation equals 4. One
intensity profile for each transcript was extracted from the registered image generated in the
last step. This intensity profile is of shape 4x6 representing the intensity extracted from 4
channels per cycle and from all the 6 cycles. Yet, to improve decoding outcome, we expanded
the searching range of the maximum intensity to +/- 2 pixels across coding channels. The
decoding step in PoSTcode takes this 4x6 matrix and the codebook from CARTANA as input
and returns prediction of gene type for each transcript with a confidence value. Only transcripts
with a value higher than 0.97 were kept and saved as a .csv file for downstream processing.

4. Single cell segmentation

To segment single cells from the registered image stack, we applied the cell segmentation in
CellPose’ using the pretrained “cyto2" model on DAPI channel with the cell size of 70 pixels
in diameter. To mimic the cytoplasm boundary, expansion of 10 pixels is applied and the
expanded cell segmentation was used to generate the cell by gene expression matrix. Due to
the large memory requirements, we adopted a strategy of dividing the whole images into
smaller tiles and performed the segmentation on each of the tiles individually. Following this,
we stitched the tiles back together to reconstruct the complete image without compromising
much segmentation accuracy. There were in total 117,788 cells detected.

5. Anndata object generation

The decoded 1,164,802 spots were assigned to the 117,788 cells using the STRtree®. Out of
the 117,788 cells, only 66,675 cells were kept after filtering out cells with less than 4
transcripts. The output is saved as an AnnData object.

Lower limb ISS and scRNA-seq data integration and analysis
1. Generating reference embeddings for sScRNA-seq and ISS

For the scRNA-seq data, we used the principal components from the previous study as the
target reference embedding for mosaic integration. For the ISS data, we selected cells with at
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least 5 detected transcripts in at least 3 genes. We then calculated additional spatially-
informed features beyond per-cell expression counts by calculating the gene counts from
among the nearest 25 transcripts detected from the centroid of each ISS-resolved cell. These
new features were concatenated among the per-cell expression counts and converted to log-
counts. We calculated 30 principal components and treated this as the reference embedding
for ISS.

2. Mosaic integration using StabMap

Using the scRNA-seq and ISS reference embeddings, we jointly mapped these data onto each
other using StabMap, which included a rescaling of embedding values according to L1 norm.
Then to ensure no residual modality-specific effect, we performed horizontal data integration
using Harmony. This resulted in a joint corrected StabMap lower-dimensional embedding for
all cells.

3. Imputation and Cell type classification

We used the joint embedding for all cells to perform point imputation and cell type
classification. For point imputation, for each ISS-resolved cell, we calculated the mean
logcount gene expression across the five nearest euclidean distance scRNA-seq resolved
cells within the corrected lower-dimensional embedding. For cell type classification, we used
the K-nearest neighbours algorithm, with K = 5, and selected the majority class for each I1SS-
resolved cell, with ties broken by the classes nearest to the ISS-resolved cell. To denoise
individual cell classifications, we reassigned cell type labels of each ISS-resolved cell to the
majority class of the ISS-resolved cell’'s 30 most proximate cells in euclidean distance.

4. Spatially variable gene expression analysis

We next performed spatially variable gene expression analysis on the imputed and cell type
classified ISS data. We downsampled to 1,000 cells within ChondroProg, randomly sampled
across the entire ISS spatial coordinates. We then used scHOT® to measure departure from
homogenous expression across space via weighted means for each cell, with weights
proportional to euclidean distances in space spanning 5% of the nearest cells. The scHOT
observed test statistics were used to rank imputed genes according to departure from
homogenous spatial expression, and the top 20 imputed genes were identified as spatially
differentially expressed.

WebAtlas data ingestion

The WebAtlas data ingestion pipeline requires the user to provide a YAML file that defines
input datasets. Each dataset can be composed of tabular data and/or images. Currently
supported dataset types are AnnData object (e.g. HDF5 files of tabular gene expression from
scRNA-seq and ST), Visium SpaceRanger output (up to version 1.2.0), Xenium output (up to
version 1.3), MERSCOPE output (version 2022.5.26), molecules CSV/TSV file (e.g. RNA
spots from customised ISS), and any raster images including raw microscopy and cell/spot
label masks supported by bioformats2raw. The ingestion of different scRNA-seq and ST
modalities is detailed below.
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The user must specify the paths or URLs for each dataset and their corresponding
types, along with visualisation options for Vitessce, including the final URL hosting the data.
We provide various template YAML files for different modalities on our Github repository (see
Code availability section).

The pipeline converts tabular AnnData to Zarr format via the canonical write_zarr
function within the ScanPy package'. Raster images are converted to OME-Zarr using the
bioformats2raw tool using default parameters.

The pipeline outputs data objects converted to Zarr and a View Config JSON file,
which configures the WebAtlas web application (see below). To visualise datasets on the
web app, the user needs to ensure that the Zarr data objects and the View Config file are
accessible, which can be accomplished through local hosting or by placing the files onto
cloud-based services such as AWS S3 bucket or Google cloud (see Vitessce guidance at
http://vitessce.io/docs/data-hosting/).

1. sScRNA-seq data
We ingest scRNA-seq datasets in the AnnData format and convert them to AnnData-Zarr.

2. Visium data

We can ingest raw Visium and Visium CytAssist datasets from the SpaceRanger output
directories. We convert tabular spot by gene expression files to AnnData-Zarr and H&E raster
images to OME-Zarr. To visualise Visium spots to be overlaid on the H&E images, we generate
label images of Visium spots based on the spatial information included in the SpaceRanger
output files defining each spot's centre coordinates and diameter. For Visium datasets that
have been integrated with scRNA-seq by Cell2location, we can ingest Cell2location output
AnnData objects that list the deconvolved cell type abundances per Visium spot. To visualise
deconvolved cell types on Visium data, which are formatted as continuous cell abundance
numbers per Visium spot, further preprocessing is required and is described in the integrated
modality visualisation section below.

3. Custom ISS data

Our ISS image analysis pipeline generates 1) tabular cell by gene expression files that are
loaded as AnnData-Zarr and 2) raster images of raw microscopy data and segmentation label
masks that are loaded as OME-Zarr. Additionally, if available, segmented RNA
spots/molecules can be loaded as embedded in the AnnData format.

4. Xenium data

We used 4 Xenium datasets provided by 10X Genomics, including a human breast tumour’
(Xenium file format version 1.0.1) and human brain tissue including glioblastoma tumours
(Xenium file format version 1.3.0) (provided in
https://www.10xgenomics.com/resources/datasets/xenium-human-brain-preview-data-1-
standard). The tabular cell by gene expression input files, available as 10x-Genomics-
formatted HDF5 files, are ingested and converted to AnnData-Zarr using a dedicated loading
function in ScanPy. Raster microscopy images are ingested to OME-Zarr. The cell
segmentation masks are formatted as polygons in the Xenium file format, and are converted
to label images in OME-Zarr format. Additional information provided by Xenium technology,
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such as cell centroid coordinates and default clustering labels, are loaded using additional
scripts in the pipeline.

5. MERSCORPE data

We used a human breast cancer MERSCOPE FFPE dataset released by Vizgen (Human
Immuno-oncology Data Release from https://vizgen.com/data-release-program/).  The
MERSCOPE data format stores metadata in separate files, necessitating the development of
specialised loading functions to construct the AnnData object as well as to generate labelled
images. We use the pandas package to load the multiple CSV files from the MERSCOPE
output. We load the cell by gene matrix filtering out blank control barcodes which we identify
by being prefixed with "Blank". We load cell metadata and along with the expression matrix
we build an AnnData object. To be able to map cells to labelled images we transform the cell
centroid micron coordinates included in each cell metadata with a transformation matrix
provided by MERSCOPE to obtain pixel coordinates. In a similar manner, we obtain
segmentation pixel coordinates from a cell boundaries HDF5 file and the micron to pixel
transformation matrix. We use these segmentations to generate labelled images in tiff format,
where each segmentation is assigned the corresponding cell ID. As for the raw image, we aim
to obtain a single multipage tiff image that will then get converted to OME Zarr. MERSCOPE
outputs each channel as a different tiff file and thus we first concatenate them into a single file
through the pyvips'? package and set all necessary OME metadata that is then used by
bioformats2raw when performing the conversion to Zarr.

WebAtlas visualisation via Vitessce

The WebAtlas Data ingestion pipeline creates a Vitessce View Config JSON file to facilitate
data visualisation, outlining pertinent information such as input datasets, specifications of each
data type, embeddings to be represented, component layout within the app, and the
transformed dataset's behaviour in Vitessce. The View Config file conforms to the guidelines
outlined in the Vitessce documentation (http://vitessce.io/docs/view-config-json/).

WebAtlas visualisation of integrated modalities

To facilitate the integrated visualisation of gene expression and cell types in the scRNA-
seq/ISS/Visium datasets, it is necessary to preprocess all the data.

Firstly, we manipulate the expression matrices of all data modalities to facilitate the
visualisation of deconvolved cell type abundances in Visium. In the Visium data, we
concatenate the cell type abundance predictions from Cell2location into the spot by gene
expression matrix and identify which features are cell type predictions using a boolean column
labelled "is_celltype". The genes from the original spot by gene part of the matrix are then
labelled as "is_gene." This manipulation allows for the display of continuous cell type
predictions generated by Cell2location, rather than showing only a single cell type prediction
per Visium spot. Along with this, we expand the expression matrices of the corresponding
scRNA-seq and ISS data to accommodate the “is_celltype” and "is_gene" columns and enable
simultaneous searching across all modalities through the “featureList” component in Vitessce.
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This expansion involves translating the original categorical cell type values in the scRNA-seq
and ISS label encoding into a one-hot encoding matrix. This is done by representing each
label as a binary vector with a value of 1 in the corresponding category and Os elsewhere. The
axes between all the modalities are intersected, and the objects are sliced to contain only
these values. We also ensure that each observation (cell/spot) of each modality has a unique
identifier - as an integer - across all modalities by adding offsets to different datasets cell/spot
IDs. This is done because an overlap can cause incorrect visualisation in Vitessce. The
intersected AnnData objects then get written into AnnData-Zarr.

Secondly, in the View Config file, an appropriate coordination value is assigned for the
type of observation for all three modalities, which may be cells or spots depending on the
sequencing method used. The feature type and their corresponding values, which might be
gene expression or cell type abundance, is also defined. These coordination values are used
by Vitessce when the web application is rendered, and are leveraged to achieve the integrated
visualisation. Users can utilise the cell type or gene lists to search across the chosen ontology
and visualise the expression of selected features across all modalities, allowing visualisation
of gene expression or cell type abundance across both spatial profiles and embedding spaces
such as UMAP or t-SNE. This is also true when visualising hierarchical observations such as
cell type or any other shared ontology. Additionally, we coordinate other properties such as
the colour map range and zoom values, that can be controlled separately by dataset or in a
unified manner, to emphasise or compare between modalities.

We manually create a Vitessce View Config file to enable the loading of gene and cell
type subsets of the concatenated matrices through specific coordination values. Within the
View Config file we include each modality as a separate dataset object. For each modality we
define three observation-by-feature matrices. The first observation-by-feature matrix points to
the concatenated genes and cell types matrix within the AnnData-Zarr. We set the
"featureType" coordination value of this matrix as "combined". This first matrix must be
included so the software can access the full matrix. The second and third observation-by-
feature matrices point to the same concatenated matrix but are filtered through the
"featureFilterPath" option. We filter the matrices by pointing this "featureFilterPath" to the
column within the AnnData object's feature axis that contains the boolean values that indicates
whether that feature is a gene or a cell type. We respectively specify the "featureType"
coordination value to "gene" in one observation-by-feature matrix and "celltype" in the other.
These filtered matrices allow us to then set controls that load only one subset of the
concatenated matrix at a time. For the datasets' image data we set the "featureType"
coordination value as "combined". We then use the three "featureType" values, "combined",
"gene" and "celltype", in the coordination space of the View Config. We refer to the "combined"
value within the layout definition for the scatterplot and spatial components. Distinctly, we
define two feature list components and refer one to the "gene" "featureType" and the other to
"celltype". Thus, each list displays only the values that correspond to each feature type, and
selecting a feature loads the respective column from the concatenated matrices which are
visualised on the scatterplot and spatial components. The feature list components can load
the complete set of features from any of the datasets as they contain the same data from the
intersection step. For future visualisations that are similar, such View Config files can be used
as a template to generate relevant configurations and examples of these are provided in the
WebAtlas Github repo.
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