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Abstract

Neuron-tracking algorithms exhibit suboptimal performance in calcium imaging when
the same neurons are not consistently detected, as unmatched features hinder inter-
session alignment. CaliAli addresses this issue by employing an alignment-before-
extraction strategy that incorporates vasculature information to improve the detectability
of weak signals and maximize the number of trackable neurons. By excelling in neural
remapping and high spatial overlap scenarios, CaliAli paves the way toward further

understanding long-term neural network dynamics.

Main

Existing neuron-tracking algorithms used in one-photon calcium (Ca?*) imaging align the
spatial footprints of neurons in different recording sessions and apply spatial (CellReg)’
and temporal (SCOUT)? similarity thresholds to identify matching neurons. However,
active neural populations fluctuate over time3#, which hinders the estimation of brain

deformations from unmatching neural features®. Indeed, a substantial part of brain
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misalignment is non-rigid (Extended Data Fig. 1), which may cause incorrect alignment
of neighboring neurons when neurons are intermittently detectable (Fig. 1a). This
problem is exaggerated when neurons are tracked over longer periods of time as their
footprint projection becomes more dissimilar. To address this issue, we developed
CaliAli (Calcium Imaging intersession Alignment), a tool for long-term neural tracking
that incorporates information from blood vessels (BVs) and neurons to correct for inter-
session misalignment (Fig. 1b-c, Extended Data Fig. 2). In artificially misaligned video
simulations (Extended Data Fig. 3; Supplementary Video 1, 2), incorporating shapes
of BVs, in contrast to other projections such as neuron shapes, the average frame of the
video, or a filtered version of the mean frame, enhanced registration performance and
diminished maximum displacement errors (Fig. 1d-f; Extended Data Fig. 4). These
improvements were observed with BV spatial correlations higher than 0.4 as determined
by video simulations with different magnitudes of correlation across sessions (Fig. 1g-i,
Extended Data Fig. 5). This magnitude of BV correlation was maintained for up to 40
days in Ca?* imaging recordings from mice (Fig. 1j)—an interval longer than that used
in most long-term neuron-tracking experiments*. Even so, if lengthier periods are to be
covered, CaliAli can align remote recording sessions using structural information from
intermediate recording sessions if inter-session gaps are short (Supplementary Note
1). We illustrate this scenario by simulating imaging sessions in which the BV
correlation is high between consecutive sessions but low for larger inter-session gaps
(Fig. 1k) and show that incorporating intermediate recordings between non-alignable

recordings markedly improved neuron tracking performance (Fig. 11).

A major problem with existing neuron tracking algorithms is their inability to clearly
differentiate between inactive and undetected neurons*. Unlike footprint alignment
methods, CaliAli extracts neural signals from BV-aligned concatenated videos, enabling
the identification of Ca?* activity with a low signal-to-noise ratio (SNR) that might
otherwise go undetected (Fig. 2a-c, Extended Data Fig. 6a). This improves
interpretability by ensuring that a consistent number of neurons are tracked across
sessions. CaliAli achieves this heightened sensitivity through several optimized
modules: preprocessing steps to minimize artifacts at session concatenation points, a

rapid initialization pipeline for sparse Ca?* activity, and batch non-negative matrix


https://doi.org/10.1101/2023.05.19.540935
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.19.540935; this version posted May 19, 2023. The copyright holder for this preprint (which

60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86

87
88
89

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

factorization to reduce memory demands (Supplementary Note 2, Extended Data Fig.
7).

We next compared CaliAli’s performance with that of other neural tracking algorithms in
three scenarios common to Ca?* imaging experiments: (1) low overlap of neurons with
active populations remaining consistent across sessions (Fig. 2d), (2) high overlap of
neurons (Fig. 2e), and (3) remapping of neuronal population activity (Fig. 2f). CaliAli
performed better than other methods in all scenarios (Fig. 2d-f, Extended Data Fig.
6b-d), indicating that it improves trackability in both ideal and challenging conditions.
We also simulated a more complex scenario of representational drift (Fig. 2g), which is
when two orthogonal neural representations gradually change over time while
preserving information content®. Dimensionality reduction” and unsupervised clustering®
of Ca?* traces obtained by CaliAli recapitulated the multi-dimensional structure of the
neural trajectories in a more precise manner than other methods (Fig. 2h, i). We also
tested CaliAli’s performance using actual Ca?* imaging data. We transduced GCaMP6
and the stimulatory opsin Chrimson in dentate gyrus (DG) granule cells (Fig. 2j),
allowing us to optogenetically tag a subset of Chrimson-positive neurons (49.6% * 2.8%
of neurons) by orange light stimulation (Fig. 2k). If neural tracking is accurate, neurons
responding to light stimulation in one session would be expected to respond again in a
subsequent session (Fig. 21). We found that the proportion of optogenetically consistent
neurons was higher with the use of CaliAli versus other methods (Fig. 2m), further

corroborating its better tracking performance.

Finally, we utilized CaliAli to track DG granule cells when a mouse explored two
different contexts over a period of 4 weeks. In contrast to other methods, CaliAli
detected more neurons that were active in all sessions (Fig. 2n-p). Also, population
vectors during different exploration sessions in the same context were more highly
correlated for data obtained by CaliAli than by other methods (Fig 2q), consistent with

observations that the DG produces stable neural representations over time®.

In summary, CaliAli is a powerful tool that outperforms state-of-the-art methods in
diverse neuron tracking scenarios. It identifies a consistent number of tracked neurons

and improves the detectability of smaller Ca?* transients, making it suitable for studying
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90 brain dynamics over long periods of time, including representational drift, remote

91  memory processing, neuron development, or behavior measured across multiple trials.

92 Materials and Methods

93 Animals
94  All animal experiments were approved by the University of Tsukuba Institutional Animal
95 Care and Use Committee. Mice were kept in a home cage in an insulated chamber
96 maintained at an ambient temperature of 23.5 £ 2.0°C with a 12-h light/dark cycle and
97 ad libitum access to food and water according to institutional guidelines. For
98  simultaneous imaging and optogenetic experiments, we utilized a mouse line (harboring
99  TIGRE-Ins-TRE-loxP-stop-loxP(LSL)-GCaMP6s; Ai94D, stock #024104, Jackson

100 Laboratory, Sacramento, CA, USA). For long-term imaging and video simulation

101  parameterization, virus-injected mice in a C57BL/6J background were used.

102 Virus

103  Adeno-associated viruses (AAVs) were prepared as previously described''. For

104  simultaneous imaging and optogenetic experiments, the following viruses were used:
105 AAV1-Syn-Flex-ChrimsonR-Tdtomato (Addgene #62723), AAV2retro-CaMKII-0.4-Cre
106  (Addgene #105558), and AAVZ2retro-cFos-tTA-pA (Addgene #66794). The AAV2retro-
107  CamKlla-jGCaMP8s-WRPE virus (Addgene #176752) was used for long-term imaging
108 experiments. The AAV10-CamKII-GCaMP6f-WPRE virus (Addgene #100834) was used
109 to obtain parameters utilized in video simulations and to calculate inter-session

110 missalignment (Extended Data Fig. 1a).

111 Virus injection

112  Mice between 9 and 15 weeks of age were anesthetized using isoflurane and secured
113 in a stereotaxic apparatus (Stoelting, USA). AAV solution (70 nl) was injected into the
114  dorsal hippocampus at AP -2.0 mm, ML +1.2 mm, and DV -1.7 mm relative to bregma.
115  The injection was performed using a Picospritzer Il air pressure system (S48

116  Stumilator, Grass Technologies, USA) connected to a glass pipette injector. The

117  injection process lasted 15 min, after which the injector needle remained in position for
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118 5 min before being gently removed. Following injection, mice were given a minimum

119  recovery period of 1 week before lens implantation.

120 Lens implantation

121 A microendoscope lens (1-mm diameter, 4-mm length, Inscopix, USA) was placed in
122 the dentate (DG) at AP -2.0 mm and ML +1.25 mm relative to bregma and 1.53 mm

123 below the dura. One week after, a UCLA miniscope baseplate'? was attached above the
124  implanted lens. After baseplate surgery, mice were habituated to a dummy

125  microendoscope for 1-2 weeks before recording.

126  Preparation of tissue sections

127  After imaging, mice were perfused transcardially with phosphate-buffered saline (PBS;
128 0.1 M) and 4% paraformaldehyde (PFA). Brains were removed, fixed overnight in PFA,
129  and transferred to PBS. Coronal sections (30 um) were cut using a vibratome

130 (VT1200S, Leica). Sections were mounted on slides with mounting medium containing
131  DAPI (Merck). Images of GCaMP6s- and ChrimsonR-Tdtomato-expressing neurons

132 were obtained using a Zeiss Axio Observer Z1 microscope.

133  Ca?* imaging and optogenetic manipulation

134 A miniaturized microscope with flexible light source input (Tscope)'® was utilized for

135  neuronal imaging and manipulation. For imaging without optogenetic manipulation, we
136  used a blue laser (445 nm, custom-made) delivering 0.3-1.3 mW at the bottom of the
137  Tscope. For the opt-tagging experiment, we used a blue laser (473 nm, Shanghai Laser
138 & Optics Century Co., Ltd., China) delivering 0.07-2.7 mW and an orange laser (589

139  nm, Shanghai Laser & Optics Century Co., Ltd.) delivering 0.3-1.2 mW at the bottom of
140 the Tscope. Stimulation was delivered through a custom-made laser combiner and an
141  optic patch cable (Thorlabs, Japan). For all experiments, images were acquired at 10
142  frames/s. Laser intensity, gain, and exposure settings were customized for each mouse
143 while monitoring the fluorescence intensity histogram to ensure that the highest possible
144  dynamic range was achieved without signal saturation. For opto-tagging experiments,
145  the blue laser was used to stimulate GCaMP (300-s sessions), and the orange laser

146  delivered a 1-s pulse every 29 s (10 Hz, 50% duty cycle). We performed two opt-tagging
147  sessions separated by 30 min.
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148 Long-term imaging

149  Recordings were made in two distinct environments. Context A consisted of a chamber
150  with white plastic walls and a stainless steel grid (width x depth x height, 310 x 250 x
151 280 mm). Context B consisted of a circular plastic chamber with a wooden bedding floor
152 (22-cm diameter)'4. For context A, a white acrylic drop pan under the grid floor was

153  cleaned with 75% ethanol, generating a background odor, whereas no ethanol was

154  employed in context B. Recordings were made every 2-4 days for 28 days. Each day,
155  recordings were performed for contexts A and B, with a 30-min interval between

156  recordings. The order of recordings in A and B was changed each day to maintain a

157  balanced design. Each recording session lasted 5 min.

158  Obtaining realistic neural parameters from DG imaging data

159  Recordings were made 4 days apart from a GCaMP6f-expressing mouse exploring
160 context A for 5 min. Parameters obtained from recorded neurons were used to create

161 video simulations.

162  In vivo Ca?* imaging data processing

163 Raw Ca?* imaging videos were spatially downsampled four times. Motion artifacts were
164  corrected utilizing blood vessels (BVs) and the log-demon image registration algorithm.
165 Ca?* traces were extracted by CNMFe using the implementation and preprocessing
166  steps described in Supplementary Note 2 and Extended Fig. 8. The spatial filtering
167  (gSig) was 2.5. For simulations, the minimum peak-to-noise ratio (min_pnr) and

168  minimum pixel local correlation (min_coor) were 2.5 and 0.15, respectively. In the opto-
169  tagging experiment, min_pnr was set to 5 and min_corr varied from 0.4 to 0.8 in

170  increments of 0.05. This was performed to assess the performance of the CaliAli

171 algorithm under different scenarios, ranging from a scenario in which the majority of
172 neurons were extracted (albeit with some false positives) to a scenario in which false
173  positives were minimized at the cost of potentially missing some neurons. For the long-
174  term imaging experiment, it was not feasible to combine different initialization

175  parameters across the 20 recorded sessions due to computational constraints. To

176  address this issue, we manually defined min_pnr and min_corr by carefully monitoring

177  the correlation and PNR image of each recording. To minimize potential bias, we
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randomly shuffled the session identities during threshold determination. We provide an
overlay of the footprints over the correlation image obtained for each recording using

the source data included in this paper.

Statistical analysis

Statistical analysis was performed in MATLAB (MathWorks, Maryland, USA) and
Graphpad Prism (GraphPad, California, USA). Error bars depict the 95% confidence
interval of the mean across all panels, except for in box-and-whisker plots where they
depict the range of values. Shaded error bars were obtained by bias-corrected and

accelerated bootstrap. Type | error was set to a = 0.05.

Video simulations

Spatial components were simulated by randomly sampling from 1,137 DG granule cells
from eight GCaMP6f-expressing mice. Spatial components were positioned randomly in
the field of view, constrained by minimum distances to neighboring cells (low overlap: 26
MM, medium overlap: 21 um, high overlap: 8 um). Temporal components were
simulated considering rising times produced by a Bernoulli process and subsequently
convolved with a temporal kernel g(t) = exp(-tza) — exp(-tzr). The Ca?* rates and
kinetics for each neuron were sampled from a lognormal distribution with parameters
obtained from mouse DG recordings: transient probability y = -4.9, 0 =2.25; &' y =
2.08, 0 =0.29; 74!, y = 0.55, 0 = 0.44. Note that the mean transient rate in our
simulation was marginally higher than that in the empirical data, as neurons were
required to exhibit a minimum of one Ca?* transient per session. A constant peak-to-
noise ratio of 2 was used in all simulations. Local background fluctuations were
modeled using a 2D Gaussian-filtered version of the spatial components (o = 20), with
weakly correlated noise generated by applying a 2D Gaussian filter with o = 0.5 on
white noise. Inter-session misalignment was emulated using gradients of a random 2D
Gaussian (o = 60), scaled to produce a maximum non-rigid misalignment of 15-25 um,
which corresponds to our estimation in the emperical data (Extended data Fig. 1).
Remapping was simulated by rendering a subset of neurons inactive in certain
sessions. Variable signal-to-noise ratios were simulated in a similar manner as in

remapping, but the amplitude of Ca?* transients was reduced by 80% instead of
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208 inactivating neurons. The parameters employed in each simulation are found in the

209  source data accompanying this paper.

210 Incorporation of realistic BV structures

211 We utilize frames obtained from DG recordings as a static baseline. To incorporate

212 modest variation in the static baseline, we utilized frames obtained 4 days apart, which
213 were manually aligned and used as a static baseline for each session. For simulations
214  utilizing more than two sessions, additional baseline frames were created by linear

215 interpolation. To simulate BV variation larger than that observed within 4 days (Fig.

216  1i,k), we computed weighted averages between baseline images obtained from different

217  mice.

218  Enhancement of BV structures

219 BV structures were enhanced from raw one-photon Ca*? imaging frames using Hessian-
220 based enhancement filters. In Ca*? imaging experiments, BVs typically appear as

221  elongated structures with lower intensity values than the surrounding tissue. Hessian-
222 based enhancement filters exploit these characteristics by examining the eigenvalues of
223 the Hessian matrices of an image. The Hessian matrix has two eigenvalues at each

224  pixel location. The relationship between these eigenvalues helps identify different

225  structures in the image. In the case of BVs, the primary eigenvalue (A1) is generally

226  much smaller in magnitude than the secondary eigenvalue (A2), indicating a tubular

227  structure. In practice, the filtering is implemented as follows:
228  Step 1: Empirically determine the range of BV diameters d1, dz, ...dn in the raw image.
229  Step 2: For each diameter, perform steps 3 to step 6.

230 Step 3: Sequentially convolute the columns and rows of the image using a 1-D

. . . d;{ d d
231  Gaussian filter with o = f,f T".

232 Step 4: Compute the Hessian matrix of the filtered image:

’f(x,y) 0*f(xY)
dx? d0x0y
*f(x,y) 9°f(x,y)
dyodx dy?

233 Hy(x,y) =
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Here, f(x,y) is the intensity function of the filtered image at pixel (x,y) and

9%f (x,y)
dx2

% (xy)

oxy etc. are second-order partial derivatives of f. For faster computation, we

calculated the Hessian matrix using the implementation described by Yang et al."®

Step 5: Find the eigenvalues of the Hessian matrix. The eigenvalues of H,(x,y) are

obtained from the following analytical equation:

1 1
Alzz(—a1+ /alz—4a2>,/12= E(_al_ /alz—4a2)

Here, a; and a, are the roots of the characteristic polynomial of H,(x,y) given by:

_ (% fGy) | 9% f(xy) _ _(%fGy) 0% f(xy) 9% f(xy) 9% f (x.y)
ay = ( 0x2 0y? )’ a2 = ( dx2 0y? oxdy  0yox )
Step 6: Calculate the filter response function, defined as the larger absolute value
between A; and A;:
R o I/lzl}
X, = .
6w = Y = 1n

Step 7: To obtain the enhanced vasculature image, we applied the filter response
function to the original image by combining the results from multiple scales (i.e.,

different vessel diameters or filter sizes):

n
BVenhancea = Z Gid)(x' y)
i=1

We considered 10 diameter sizes ranging from 2.4xgSiz to 3.5%xgSiz, where gSiz is the

filter size (in pixels) defined in CNMFe.

Neuron tracking parameters

We utilized default parameters for SCOUT and CellReg except for a non-rigid
registration approach for field of view alignment, as all simulations involved non-rigid
deformations. In some cases, the footprint registration algorithm used by SCOUT
produced lower performance than CellReg, mainly when neural densities were low and

the active neural population remapped. To ensure that any differences in performance
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257  were not due to incorrect footprint alignment, we used the same alignment module as
258  was used with CellReg for SCOUT. Through these modifications, we were able to

259  maintain or improve the performance of SCOUT.

260 Dimensionality reduction and unsupervised clustering of drifting neural activities
261  The population activities shown in Fig. 2h,i were subjected to dimensionality reduction
262  and clustering using the UMAP algorithm. Cosine distance metric, a minimum distance
263 of 0.1, and 10 nearest neighbors were used for this purpose, as they have been shown
264  to produce the best outcomes in ground truth data. Unsupervised clustering was

265 performed on the reduced data using the k-means algorithm and squared Euclidean

266  distance metric.

267 Inter-session registration

268  Sessions were registered using the diffeomorphic log-Demons algorithm6, which is an
269  image registration method that computes a smooth and invertible deformation field to
270  match a moving image to a fixed reference image. The algorithm is based on the

271 original Demons algorithm by Thirion'”, which was extended to ensure diffeomorphism
272 (i.e., smoothness of the deformation). The optimal displacement field S that aligns a
273  moving image M to the static image F is estimated by minimizing the velocity field v in

274  the following energy function:

2
R . o; R
275 E@) =|IF —Mo (S +exp@)I* + 0_12 llexp(@) 2
X

276  The velocity field v is used to additively update S in each iteration, and ¢/ and ¢ are
277  weights regulating the similarity term ||[F — M o (S + exp (?)]|? and the maximum step in
278  each iteration, respectively. The algorithm uses an exponential map to update the

279  deformation field to ensure that it remains diffeomorphic. Here, exp (v) is the

280 exponential map of the vector field v. v is calculated using the additive demon

(F-M)VM

281 algorlthm: v = W

282  Two regularization steps are included at each iteration. For a fluid-like regularization, we

283 convolute v with a Gaussian kernel with size = o7,,,;4. For a diffusion-like regularization,

284  we convolute S with a Gaussian kernel with size = g4;fysion- The regulation parameters
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used at each registration level are o5y,;4 = (1, 1, 3,3), 04iffusion = (5, 5, 3,3), 07 = (1, 1,
1,2),and ¢? = (1,1, 1,1).
Code availability

The codes for CaliAli, along with demo videos and tutorials, are available on GitHub:
https://github.com/CaliAli-PV/CaliAli

Source data

The Ca?* imaging videos supporting this study and the codes to recreate simulations
are available at:

https://data.mendeley.com/datasets/mvg4w89s4s/draft?a=febfa4d76-d9ef-4e98-

abe4-24113324549e
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Fig. 1 |CaliAli incorporates blood vessel (BV) information to maximize neuron
tracking performance. a, b, Session registration with or without BVs. ¢, BV-neuron
projection from a raw frame stack. d-f, Comparison of projections and their registration
performance. g, Simulated BV correlation. h, Comparison between ground truth and
CaliAli-extracted neurons. i, F1 score vs. simulated BV correlation. j, BV correlations in
recordings from mice vs. inter-session gaps. l,j, Red line reflects a sigmoidal fit, and
dashed line indicates the threshold where F1 score varies by >5%. k, Simulation of BV
decorrelation over time. I, Tracking performance between the first and last session with
or without intermediate sessions. Similarity threshold is the temporal similarity between
the extracted component and the matched ground truth neurons used to determine true

positives. For i, a threshold of 0.8 was used.
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367 undetected neurons and overall tracking performance. d,e,f, Tracking performance in
368 different activity scenarios. a-f Optimal plot (black) is the maximum achievable

369 performance by CNMFe'° (in denoised and perfectly aligned videos). h, Dimensionality
370 reduction and unsupervised clustering of Ca?* activity during representational drift. Red
371  circles depict incorrect classifications. i, Clustering performance. Repeated measures
372 one-way ANOVA with Dunnet’s multiple comparisons. j, Histology of GCaMP6f and

373  Chrismon. k, Heatmap and average peristimulus time histograms for opto(+) and opto
374  (-) neurons. |, Representative traces for optogenetically consistent and inconsistent
375 neurons. Green = opto(+), red = opto(+). m, Percentage of optogenetically consistent
376  neurons for different opto(+) thresholds (for k, the threshold is 3 standard deviations).
377  Permutation test. Error bars depict the confidence intervals for different CNMFe

378 initialization parameters applied to data from one mouse. n, BV-neuron projection from
379 a4-week Ca*? imaging experiment. o, Spatial components obtained by different

380 methods. p, Proportions of tracked neurons across all sessions over time. q, Correlation
381 between pairs of population vectors vs. time. Two-way ANOVA with Sidak’s multiple

382 comparisons. ****p < 0.001, *p = 0.018.

383


https://doi.org/10.1101/2023.05.19.540935
http://creativecommons.org/licenses/by-nc-nd/4.0/

