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Abstract  15 

Neuron-tracking algorithms exhibit suboptimal performance in calcium imaging when 16 

the same neurons are not consistently detected, as unmatched features hinder inter-17 

session alignment. CaliAli addresses this issue by employing an alignment-before-18 

extraction strategy that incorporates vasculature information to improve the detectability 19 

of weak signals and maximize the number of trackable neurons. By excelling in neural 20 

remapping and high spatial overlap scenarios, CaliAli paves the way toward further 21 

understanding long-term neural network dynamics. 22 

Main  23 

Existing neuron-tracking algorithms used in one-photon calcium (Ca2+) imaging align the 24 

spatial footprints of neurons in different recording sessions and apply spatial (CellReg)1 25 

and temporal (SCOUT)2 similarity thresholds to identify matching neurons. However, 26 

active neural populations fluctuate over time3,4, which hinders the estimation of brain 27 

deformations from unmatching neural features5. Indeed, a substantial part of brain 28 
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misalignment is non-rigid (Extended Data Fig. 1), which may cause incorrect alignment 29 

of neighboring neurons when neurons are intermittently detectable (Fig. 1a). This 30 

problem is exaggerated when neurons are tracked over longer periods of time as their 31 

footprint projection becomes more dissimilar. To address this issue, we developed 32 

CaliAli (Calcium Imaging intersession Alignment), a tool for long-term neural tracking 33 

that incorporates information from blood vessels (BVs) and neurons to correct for inter-34 

session misalignment (Fig. 1b-c, Extended Data Fig. 2). In artificially misaligned video 35 

simulations (Extended Data Fig. 3; Supplementary Video 1, 2), incorporating shapes 36 

of BVs, in contrast to other projections such as neuron shapes, the average frame of the 37 

video, or a filtered version of the mean frame, enhanced registration performance and 38 

diminished maximum displacement errors (Fig. 1d-f; Extended Data Fig. 4). These 39 

improvements were observed with BV spatial correlations higher than 0.4 as determined 40 

by video simulations with different magnitudes of correlation across sessions (Fig. 1g-i, 41 

Extended Data Fig. 5). This magnitude of BV correlation was maintained for up to 40 42 

days in Ca2+ imaging recordings from mice (Fig. 1j)—an interval longer than that used 43 

in most long-term neuron-tracking experiments4. Even so, if lengthier periods are to be 44 

covered, CaliAli can align remote recording sessions using structural information from 45 

intermediate recording sessions if inter-session gaps are short (Supplementary Note 46 

1). We illustrate this scenario by simulating imaging sessions in which the BV 47 

correlation is high between consecutive sessions but low for larger inter-session gaps 48 

(Fig. 1k) and show that incorporating intermediate recordings between non-alignable 49 

recordings markedly improved neuron tracking performance (Fig. 1l). 50 

A major problem with existing neuron tracking algorithms is their inability to clearly 51 

differentiate between inactive and undetected neurons4. Unlike footprint alignment 52 

methods, CaliAli extracts neural signals from BV-aligned concatenated videos, enabling 53 

the identification of Ca2+ activity with a low signal-to-noise ratio (SNR) that might 54 

otherwise go undetected (Fig. 2a-c, Extended Data Fig. 6a). This improves 55 

interpretability by ensuring that a consistent number of neurons are tracked across 56 

sessions. CaliAli achieves this heightened sensitivity through several optimized 57 

modules: preprocessing steps to minimize artifacts at session concatenation points, a 58 

rapid initialization pipeline for sparse Ca2+ activity, and batch non-negative matrix 59 
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factorization to reduce memory demands (Supplementary Note 2, Extended Data Fig. 60 

7). 61 

We next compared CaliAli’s performance with that of other neural tracking algorithms in 62 

three scenarios common to Ca2+ imaging experiments: (1) low overlap of neurons with 63 

active populations remaining consistent across sessions (Fig. 2d), (2) high overlap of 64 

neurons (Fig. 2e), and (3) remapping of neuronal population activity (Fig. 2f). CaliAli 65 

performed better than other methods in all scenarios (Fig. 2d-f, Extended Data Fig. 66 

6b-d), indicating that it improves trackability in both ideal and challenging conditions. 67 

We also simulated a more complex scenario of representational drift (Fig. 2g), which is 68 

when two orthogonal neural representations gradually change over time while 69 

preserving information content6. Dimensionality reduction7 and unsupervised clustering8 70 

of Ca2+ traces obtained by CaliAli recapitulated the multi-dimensional structure of the 71 

neural trajectories in a more precise manner than other methods (Fig. 2h, i). We also 72 

tested CaliAli’s performance using actual Ca2+ imaging data. We transduced GCaMP6 73 

and the stimulatory opsin Chrimson in dentate gyrus (DG) granule cells (Fig. 2j), 74 

allowing us to optogenetically tag a subset of Chrimson-positive neurons (49.6% ± 2.8% 75 

of neurons) by orange light stimulation (Fig. 2k). If neural tracking is accurate, neurons 76 

responding to light stimulation in one session would be expected to respond again in a 77 

subsequent session (Fig. 2l). We found that the proportion of optogenetically consistent 78 

neurons was higher with the use of CaliAli versus other methods (Fig. 2m), further 79 

corroborating its better tracking performance.  80 

Finally, we utilized CaliAli to track DG granule cells when a mouse explored two 81 

different contexts over a period of 4 weeks. In contrast to other methods, CaliAli 82 

detected more neurons that were active in all sessions (Fig. 2n-p). Also, population 83 

vectors during different exploration sessions in the same context were more highly 84 

correlated for data obtained by CaliAli than by other methods (Fig 2q), consistent with 85 

observations that the DG produces stable neural representations over time9.  86 

In summary, CaliAli is a powerful tool that outperforms state-of-the-art methods in 87 

diverse neuron tracking scenarios. It identifies a consistent number of tracked neurons 88 

and improves the detectability of smaller Ca2+ transients, making it suitable for studying 89 
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brain dynamics over long periods of time, including representational drift, remote 90 

memory processing, neuron development, or behavior measured across multiple trials. 91 

Materials and Methods 92 

Animals 93 

All animal experiments were approved by the University of Tsukuba Institutional Animal 94 

Care and Use Committee. Mice were kept in a home cage in an insulated chamber 95 

maintained at an ambient temperature of 23.5 ± 2.0°C with a 12-h light/dark cycle and 96 

ad libitum access to food and water according to institutional guidelines. For 97 

simultaneous imaging and optogenetic experiments, we utilized a mouse line (harboring 98 

TIGRE-Ins-TRE-loxP-stop-loxP(LSL)-GCaMP6s; Ai94D, stock #024104, Jackson 99 

Laboratory, Sacramento, CA, USA). For long-term imaging and video simulation 100 

parameterization, virus-injected mice in a C57BL/6J background were used.  101 

Virus  102 

Adeno-associated viruses (AAVs) were prepared as previously described11. For 103 

simultaneous imaging and optogenetic experiments, the following viruses were used: 104 

AAV1-Syn-Flex-ChrimsonR-Tdtomato (Addgene #62723), AAV2retro-CaMKII-0.4-Cre 105 

(Addgene #105558), and AAV2retro-cFos-tTA-pA (Addgene #66794). The AAV2retro-106 

CamKIIa-jGCaMP8s-WRPE virus (Addgene #176752) was used for long-term imaging 107 

experiments. The AAV10-CamKII-GCaMP6f-WPRE virus (Addgene #100834) was used 108 

to obtain parameters utilized in video simulations and to calculate inter-session 109 

missalignment (Extended Data Fig. 1a). 110 

Virus injection 111 

Mice between 9 and 15 weeks of age were anesthetized using isoflurane and secured 112 

in a stereotaxic apparatus (Stoelting, USA). AAV solution (70 nl) was injected into the 113 

dorsal hippocampus at AP -2.0 mm, ML +1.2 mm, and DV -1.7 mm relative to bregma. 114 

The injection was performed using a Picospritzer III air pressure system (S48 115 

Stumilator, Grass Technologies, USA) connected to a glass pipette injector. The 116 

injection process lasted 15 min, after which the injector needle remained in position for 117 
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5 min before being gently removed. Following injection, mice were given a minimum 118 

recovery period of 1 week before lens implantation. 119 

Lens implantation 120 

A microendoscope lens (1-mm diameter, 4-mm length, Inscopix, USA) was placed in 121 

the dentate (DG) at AP -2.0 mm and ML +1.25 mm relative to bregma and 1.53 mm 122 

below the dura. One week after, a UCLA miniscope baseplate12 was attached above the 123 

implanted lens. After baseplate surgery, mice were habituated to a dummy 124 

microendoscope for 1-2 weeks before recording. 125 

Preparation of tissue sections 126 

After imaging, mice were perfused transcardially with phosphate-buffered saline (PBS; 127 

0.1 M) and 4% paraformaldehyde (PFA). Brains were removed, fixed overnight in PFA, 128 

and transferred to PBS. Coronal sections (30 µm) were cut using a vibratome 129 

(VT1200S, Leica). Sections were mounted on slides with mounting medium containing 130 

DAPI (Merck). Images of GCaMP6s- and ChrimsonR-Tdtomato-expressing neurons 131 

were obtained using a Zeiss Axio Observer Z1 microscope.  132 

Ca2+ imaging and optogenetic manipulation 133 

A miniaturized microscope with flexible light source input (Tscope)13 was utilized for 134 

neuronal imaging and manipulation. For imaging without optogenetic manipulation, we 135 

used a blue laser (445 nm, custom-made) delivering 0.3-1.3 mW at the bottom of the 136 

Tscope. For the opt-tagging experiment, we used a blue laser (473 nm, Shanghai Laser 137 

& Optics Century Co., Ltd., China) delivering 0.07-2.7 mW and an orange laser (589 138 

nm, Shanghai Laser & Optics Century Co., Ltd.) delivering 0.3-1.2 mW at the bottom of 139 

the Tscope. Stimulation was delivered through a custom-made laser combiner and an 140 

optic patch cable (Thorlabs, Japan). For all experiments, images were acquired at 10 141 

frames/s. Laser intensity, gain, and exposure settings were customized for each mouse 142 

while monitoring the fluorescence intensity histogram to ensure that the highest possible 143 

dynamic range was achieved without signal saturation. For opto-tagging experiments, 144 

the blue laser was used to stimulate GCaMP (300-s sessions), and the orange laser 145 

delivered a 1-s pulse every 29 s (10 Hz, 50% duty cycle). We performed two opt-tagging 146 

sessions separated by 30 min. 147 
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Long-term imaging 148 

Recordings were made in two distinct environments. Context A consisted of a chamber 149 

with white plastic walls and a stainless steel grid (width × depth × height, 310 × 250 × 150 

280 mm). Context B consisted of a circular plastic chamber with a wooden bedding floor 151 

(22-cm diameter)14. For context A, a white acrylic drop pan under the grid floor was 152 

cleaned with 75% ethanol, generating a background odor, whereas no ethanol was 153 

employed in context B. Recordings were made every 2-4 days for 28 days. Each day, 154 

recordings were performed for contexts A and B, with a 30-min interval between 155 

recordings. The order of recordings in A and B was changed each day to maintain a 156 

balanced design. Each recording session lasted 5 min. 157 

Obtaining realistic neural parameters from DG imaging data 158 

Recordings were made 4 days apart from a GCaMP6f-expressing mouse exploring 159 

context A for 5 min. Parameters obtained from recorded neurons were used to create 160 

video simulations.  161 

In vivo Ca2+ imaging data processing 162 

Raw Ca2+ imaging videos were spatially downsampled four times. Motion artifacts were 163 

corrected utilizing blood vessels (BVs) and the log-demon image registration algorithm. 164 

Ca2+ traces were extracted by CNMFe using the implementation and preprocessing 165 

steps described in Supplementary Note 2 and Extended Fig. 8. The spatial filtering 166 

(gSig) was 2.5. For simulations, the minimum peak-to-noise ratio (min_pnr) and 167 

minimum pixel local correlation (min_coor) were 2.5 and 0.15, respectively. In the opto-168 

tagging experiment, min_pnr was set to 5 and min_corr varied from 0.4 to 0.8 in 169 

increments of 0.05. This was performed to assess the performance of the CaliAli 170 

algorithm under different scenarios, ranging from a scenario in which the majority of 171 

neurons were extracted (albeit with some false positives) to a scenario in which false 172 

positives were minimized at the cost of potentially missing some neurons. For the long-173 

term imaging experiment, it was not feasible to combine different initialization 174 

parameters across the 20 recorded sessions due to computational constraints. To 175 

address this issue, we manually defined min_pnr and min_corr by carefully monitoring 176 

the correlation and PNR image of each recording. To minimize potential bias, we 177 
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randomly shuffled the session identities during threshold determination. We provide an 178 

overlay of the footprints over the correlation image obtained for each recording using 179 

the source data included in this paper.  180 

Statistical analysis 181 

Statistical analysis was performed in MATLAB (MathWorks, Maryland, USA) and 182 

Graphpad Prism (GraphPad, California, USA). Error bars depict the 95% confidence 183 

interval of the mean across all panels, except for in box-and-whisker plots where they 184 

depict the range of values. Shaded error bars were obtained by bias-corrected and 185 

accelerated bootstrap. Type I error was set to α = 0.05. 186 

Video simulations  187 

Spatial components were simulated by randomly sampling from 1,137 DG granule cells 188 

from eight GCaMP6f-expressing mice. Spatial components were positioned randomly in 189 

the field of view, constrained by minimum distances to neighboring cells (low overlap: 26 190 

µm, medium overlap: 21 µm, high overlap: 8 µm). Temporal components were 191 

simulated considering rising times produced by a Bernoulli process and subsequently 192 

convolved with a temporal kernel ( ) = exp(− ⁄ ) − exp(− ⁄ ). The Ca2+ rates and 193 

kinetics for each neuron were sampled from a lognormal distribution with parameters 194 

obtained from mouse DG recordings: transient probability µ = -4.9, σ = 2.25; r-1 µ = 195 

2.08, σ = 0.29; d-1, µ = 0.55, σ = 0.44. Note that the mean transient rate in our 196 

simulation was marginally higher than that in the empirical data, as neurons were 197 

required to exhibit a minimum of one Ca2+ transient per session. A constant peak-to-198 

noise ratio of 2 was used in all simulations. Local background fluctuations were 199 

modeled using a 2D Gaussian-filtered version of the spatial components (σ = 20), with 200 

weakly correlated noise generated by applying a 2D Gaussian filter with σ = 0.5 on 201 

white noise. Inter-session misalignment was emulated using gradients of a random 2D 202 

Gaussian (σ = 60), scaled to produce a maximum non-rigid misalignment of 15-25 µm, 203 

which corresponds to our estimation in the emperical data (Extended data Fig. 1). 204 

Remapping was simulated by rendering a subset of neurons inactive in certain 205 

sessions. Variable signal-to-noise ratios were simulated in a similar manner as in 206 

remapping, but the amplitude of Ca2+ transients was reduced by 80% instead of 207 
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inactivating neurons. The parameters employed in each simulation are found in the 208 

source data accompanying this paper.  209 

Incorporation of realistic BV structures 210 

We utilize frames obtained from DG recordings as a static baseline. To incorporate 211 

modest variation in the static baseline, we utilized frames obtained 4 days apart, which 212 

were manually aligned and used as a static baseline for each session. For simulations 213 

utilizing more than two sessions, additional baseline frames were created by linear 214 

interpolation. To simulate BV variation larger than that observed within 4 days (Fig. 215 

1i,k), we computed weighted averages between baseline images obtained from different 216 

mice.  217 

Enhancement of BV structures  218 

BV structures were enhanced from raw one-photon Ca+2 imaging frames using Hessian-219 

based enhancement filters. In Ca+2 imaging experiments, BVs typically appear as 220 

elongated structures with lower intensity values than the surrounding tissue. Hessian-221 

based enhancement filters exploit these characteristics by examining the eigenvalues of 222 

the Hessian matrices of an image. The Hessian matrix has two eigenvalues at each 223 

pixel location. The relationship between these eigenvalues helps identify different 224 

structures in the image. In the case of BVs, the primary eigenvalue (λ1) is generally 225 

much smaller in magnitude than the secondary eigenvalue (λ2), indicating a tubular 226 

structure. In practice, the filtering is implemented as follows: 227 

Step 1: Empirically determine the range of BV diameters d1, d2, …dn in the raw image.  228 

Step 2: For each diameter, perform steps 3 to step 6. 229 

Step 3: Sequentially convolute the columns and rows of the image using a 1-D 230 

Gaussian filter with σ = .  231 

Step 4: Compute the Hessian matrix of the filtered image:  232 

 233 
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Here,  is the intensity function of the filtered image at pixel  and  , 234 

, etc. are second-order partial derivatives of . For faster computation, we 235 

calculated the Hessian matrix using the implementation described by Yang et al.15  236 

Step 5: Find the eigenvalues of the Hessian matrix. The eigenvalues of  are 237 

obtained from the following analytical equation: 238 

 239 

Here,  and  are the roots of the characteristic polynomial of  given by: 240 

,  241 

Step 6: Calculate the filter response function, defined as the larger absolute value 242 

between λ  and λ : 243 

 244 

Step 7: To obtain the enhanced vasculature image, we applied the filter response 245 

function to the original image by combining the results from multiple scales (i.e., 246 

different vessel diameters or filter sizes): 247 

 248 

We considered 10 diameter sizes ranging from 2.4×gSiz to 3.5×gSiz, where gSiz is the 249 

filter size (in pixels) defined in CNMFe.  250 

Neuron tracking parameters 251 

We utilized default parameters for SCOUT and CellReg except for a non-rigid 252 

registration approach for field of view alignment, as all simulations involved non-rigid 253 

deformations. In some cases, the footprint registration algorithm used by SCOUT 254 

produced lower performance than CellReg, mainly when neural densities were low and 255 

the active neural population remapped. To ensure that any differences in performance 256 
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were not due to incorrect footprint alignment, we used the same alignment module as 257 

was used with CellReg for SCOUT. Through these modifications, we were able to 258 

maintain or improve the performance of SCOUT.  259 

Dimensionality reduction and unsupervised clustering of drifting neural activities 260 

The population activities shown in Fig. 2h,i were subjected to dimensionality reduction 261 

and clustering using the UMAP algorithm. Cosine distance metric, a minimum distance 262 

of 0.1, and 10 nearest neighbors were used for this purpose, as they have been shown 263 

to produce the best outcomes in ground truth data. Unsupervised clustering was 264 

performed on the reduced data using the k-means algorithm and squared Euclidean 265 

distance metric. 266 

Inter-session registration 267 

Sessions were registered using the diffeomorphic log-Demons algorithm16, which is an 268 

image registration method that computes a smooth and invertible deformation field to 269 

match a moving image to a fixed reference image. The algorithm is based on the 270 

original Demons algorithm by Thirion17, which was extended to ensure diffeomorphism 271 

(i.e., smoothness of the deformation). The optimal displacement field S that aligns a 272 

moving image M to the static image F is estimated by minimizing the velocity field   in 273 

the following energy function:  274 

 275 

The velocity field  is used to additively update S in each iteration, and  and  are 276 

weights regulating the similarity term  and the maximum step in 277 

each iteration, respectively. The algorithm uses an exponential map to update the 278 

deformation field to ensure that it remains diffeomorphic. Here,  is the 279 

exponential map of the vector field .  is calculated using the additive demon 280 

algorithm: . 281 

Two regularization steps are included at each iteration. For a fluid-like regularization, we 282 

convolute  with a Gaussian kernel with size = . For a diffusion-like regularization, 283 

we convolute S with a Gaussian kernel with size = . The regulation parameters 284 
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used at each registration level are  = (1, 1, 3, 3),  = (5, 5, 3, 3),  = (1, 1, 285 

1, 2), and  = (1, 1, 1, 1). 286 

Code availability 287 

The codes for CaliAli, along with demo videos and tutorials, are available on GitHub: 288 

https://github.com/CaliAli-PV/CaliAli 289 

Source data 290 

The Ca2+ imaging videos suppor�ng this study and the codes to recreate simula�ons 291 

are available at: 292 

h�ps://data.mendeley.com/datasets/mvg4w89s4s/dra�?a=febfa476-d9ef-4e98-293 

abe4-24113a24549e 294 
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351 

Fig. 1 |CaliAli incorporates blood vessel (BV) information to maximize neuron 352 

tracking performance. a, b, Session registration with or without BVs. c, BV-neuron 353 

projection from a raw frame stack. d-f, Comparison of projections and their registration 354 

performance. g, Simulated BV correlation. h, Comparison between ground truth and 355 

CaliAli-extracted neurons. i, F1 score vs. simulated BV correlation. j, BV correlations in 356 

recordings from mice vs. inter-session gaps. I,j, Red line reflects a sigmoidal fit, and 357 

dashed line indicates the threshold where F1 score varies by >5%. k, Simulation of BV 358 

decorrelation over time. l, Tracking performance between the first and last session with 359 

or without intermediate sessions. Similarity threshold is the temporal similarity between 360 

the extracted component and the matched ground truth neurons used to determine true 361 

positives. For i, a threshold of 0.8 was used. 362 
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 363 

Fig. 2 |CaliAli maximizes the number of tracked neurons while maintaining 364 

consistent properties of tracked neurons. a, Simulated scenario in which some 365 

neurons’ signal-to-noise ratio fluctuates into undetectable levels. b,c Traces for partially 366 
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undetected neurons and overall tracking performance. d,e,f, Tracking performance in 367 

different activity scenarios. a-f Optimal plot (black) is the maximum achievable 368 

performance by CNMFe10 (in denoised and perfectly aligned videos). h, Dimensionality 369 

reduction and unsupervised clustering of Ca2+ activity during representational drift. Red 370 

circles depict incorrect classifications. i, Clustering performance. Repeated measures 371 

one-way ANOVA with Dunnet’s multiple comparisons. j, Histology of GCaMP6f and 372 

Chrismon. k, Heatmap and average peristimulus time histograms for opto(+) and opto 373 

(-) neurons. l, Representative traces for optogenetically consistent and inconsistent 374 

neurons. Green = opto(+), red = opto(+). m, Percentage of optogenetically consistent 375 

neurons for different opto(+) thresholds (for k, the threshold is 3 standard deviations). 376 

Permutation test. Error bars depict the confidence intervals for different CNMFe 377 

initialization parameters applied to data from one mouse. n, BV-neuron projection from 378 

a 4-week Ca+2 imaging experiment. o, Spatial components obtained by different 379 

methods. p, Proportions of tracked neurons across all sessions over time. q, Correlation 380 

between pairs of population vectors vs. time. Two-way ANOVA with Sidak’s multiple 381 

comparisons. ****p < 0.001, *p = 0.018. 382 
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