

1 **CaliAli, a tool for long-term tracking of neuronal population dynamics**

2 **in calcium imaging**

3 Pablo Vergara^{1*}, Yuteng Wang^{1,2}, Sakthivel Srinivasan¹, Yoan Cherasse¹, Toshie Naoi¹,
4 Yuki Sugaya^{3,4}, Takeshi Sakurai¹, Masanobu Kano^{3,4}, and Masanori Sakaguchi^{1,2,5*}

5 ¹International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki,
6 Japan

7 ²Doctoral Program in Neuroscience, Degree Programs in Comprehensive Human Sciences, Graduate
8 School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

9 ³Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-
10 0033, Japan

11 ⁴International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for
12 Advanced Study (UTIAS), Tokyo 113-0033, Japan.

13 ⁵Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.

14 *Correspondence: pablo.vergara.g@ug.uchile.cl (P.V.); sakaguchi.masa.fp@alumni.tsukuba.ac.jp (M.S.).

15 **Abstract**

16 Neuron-tracking algorithms exhibit suboptimal performance in calcium imaging when
17 the same neurons are not consistently detected, as unmatched features hinder inter-
18 session alignment. CaliAli addresses this issue by employing an alignment-before-
19 extraction strategy that incorporates vasculature information to improve the detectability
20 of weak signals and maximize the number of trackable neurons. By excelling in neural
21 remapping and high spatial overlap scenarios, CaliAli paves the way toward further
22 understanding long-term neural network dynamics.

23 **Main**

24 Existing neuron-tracking algorithms used in one-photon calcium (Ca^{2+}) imaging align the
25 spatial footprints of neurons in different recording sessions and apply spatial (CellReg)¹
26 and temporal (SCOUT)² similarity thresholds to identify matching neurons. However,
27 active neural populations fluctuate over time^{3,4}, which hinders the estimation of brain
28 deformations from unmatching neural features⁵. Indeed, a substantial part of brain

29 misalignment is non-rigid (**Extended Data Fig. 1**), which may cause incorrect alignment
30 of neighboring neurons when neurons are intermittently detectable (**Fig. 1a**). This
31 problem is exaggerated when neurons are tracked over longer periods of time as their
32 footprint projection becomes more dissimilar. To address this issue, we developed
33 CaliAli (Calciu lImaging intersession Alignment), a tool for long-term neural tracking
34 that incorporates information from blood vessels (BVs) and neurons to correct for inter-
35 session misalignment (**Fig. 1b-c, Extended Data Fig. 2**). In artificially misaligned video
36 simulations (**Extended Data Fig. 3; Supplementary Video 1, 2**), incorporating shapes
37 of BVs, in contrast to other projections such as neuron shapes, the average frame of the
38 video, or a filtered version of the mean frame, enhanced registration performance and
39 diminished maximum displacement errors (**Fig. 1d-f; Extended Data Fig. 4**). These
40 improvements were observed with BV spatial correlations higher than 0.4 as determined
41 by video simulations with different magnitudes of correlation across sessions (**Fig. 1g-i**,
42 **Extended Data Fig. 5**). This magnitude of BV correlation was maintained for up to 40
43 days in Ca^{2+} imaging recordings from mice (**Fig. 1j**)—an interval longer than that used
44 in most long-term neuron-tracking experiments⁴. Even so, if lengthier periods are to be
45 covered, CaliAli can align remote recording sessions using structural information from
46 intermediate recording sessions if inter-session gaps are short (**Supplementary Note**
47 **1**). We illustrate this scenario by simulating imaging sessions in which the BV
48 correlation is high between consecutive sessions but low for larger inter-session gaps
49 (**Fig. 1k**) and show that incorporating intermediate recordings between non-alignable
50 recordings markedly improved neuron tracking performance (**Fig. 1l**).

51 A major problem with existing neuron tracking algorithms is their inability to clearly
52 differentiate between inactive and undetected neurons⁴. Unlike footprint alignment
53 methods, CaliAli extracts neural signals from BV-aligned concatenated videos, enabling
54 the identification of Ca^{2+} activity with a low signal-to-noise ratio (SNR) that might
55 otherwise go undetected (**Fig. 2a-c, Extended Data Fig. 6a**). This improves
56 interpretability by ensuring that a consistent number of neurons are tracked across
57 sessions. CaliAli achieves this heightened sensitivity through several optimized
58 modules: preprocessing steps to minimize artifacts at session concatenation points, a
59 rapid initialization pipeline for sparse Ca^{2+} activity, and batch non-negative matrix

60 factorization to reduce memory demands (**Supplementary Note 2, Extended Data Fig. 7**).
61

62 We next compared CaliAli's performance with that of other neural tracking algorithms in
63 three scenarios common to Ca^{2+} imaging experiments: (1) low overlap of neurons with
64 active populations remaining consistent across sessions (**Fig. 2d**), (2) high overlap of
65 neurons (**Fig. 2e**), and (3) remapping of neuronal population activity (**Fig. 2f**). CaliAli
66 performed better than other methods in all scenarios (**Fig. 2d-f, Extended Data Fig. 6b-d**), indicating that it improves trackability in both ideal and challenging conditions.
67 We also simulated a more complex scenario of representational drift (**Fig. 2g**), which is
68 when two orthogonal neural representations gradually change over time while
69 preserving information content⁶. Dimensionality reduction⁷ and unsupervised clustering⁸
70 of Ca^{2+} traces obtained by CaliAli recapitulated the multi-dimensional structure of the
71 neural trajectories in a more precise manner than other methods (**Fig. 2h, i**). We also
72 tested CaliAli's performance using actual Ca^{2+} imaging data. We transduced GCaMP6
73 and the stimulatory opsin Chrimson in dentate gyrus (DG) granule cells (**Fig. 2j**),
74 allowing us to optogenetically tag a subset of Chrimson-positive neurons ($49.6\% \pm 2.8\%$
75 of neurons) by orange light stimulation (**Fig. 2k**). If neural tracking is accurate, neurons
76 responding to light stimulation in one session would be expected to respond again in a
77 subsequent session (**Fig. 2l**). We found that the proportion of optogenetically consistent
78 neurons was higher with the use of CaliAli versus other methods (**Fig. 2m**), further
79 corroborating its better tracking performance.
80

81 Finally, we utilized CaliAli to track DG granule cells when a mouse explored two
82 different contexts over a period of 4 weeks. In contrast to other methods, CaliAli
83 detected more neurons that were active in all sessions (**Fig. 2n-p**). Also, population
84 vectors during different exploration sessions in the same context were more highly
85 correlated for data obtained by CaliAli than by other methods (**Fig 2q**), consistent with
86 observations that the DG produces stable neural representations over time⁹.
87 In summary, CaliAli is a powerful tool that outperforms state-of-the-art methods in
88 diverse neuron tracking scenarios. It identifies a consistent number of tracked neurons
89 and improves the detectability of smaller Ca^{2+} transients, making it suitable for studying

90 brain dynamics over long periods of time, including representational drift, remote
91 memory processing, neuron development, or behavior measured across multiple trials.

92 **Materials and Methods**

93 **Animals**

94 All animal experiments were approved by the University of Tsukuba Institutional Animal
95 Care and Use Committee. Mice were kept in a home cage in an insulated chamber
96 maintained at an ambient temperature of $23.5 \pm 2.0^{\circ}\text{C}$ with a 12-h light/dark cycle and
97 ad libitum access to food and water according to institutional guidelines. For
98 simultaneous imaging and optogenetic experiments, we utilized a mouse line (harboring
99 TIGRE-Ins-TRE-loxP-stop-loxP(LSL)-GCaMP6s; Ai94D, stock #024104, Jackson
100 Laboratory, Sacramento, CA, USA). For long-term imaging and video simulation
101 parameterization, virus-injected mice in a C57BL/6J background were used.

102 **Virus**

103 Adeno-associated viruses (AAVs) were prepared as previously described¹¹. For
104 simultaneous imaging and optogenetic experiments, the following viruses were used:
105 AAV1-Syn-Flex-ChrimsonR-Tdtomato (Addgene #62723), AAV2retro-CaMKII-0.4-Cre
106 (Addgene #105558), and AAV2retro-cFos-tTA-pA (Addgene #66794). The AAV2retro-
107 CamKIIa-jGCaMP8s-WRPE virus (Addgene #176752) was used for long-term imaging
108 experiments. The AAV10-CamKII-GCaMP6f-WPRE virus (Addgene #100834) was used
109 to obtain parameters utilized in video simulations and to calculate inter-session
110 missalignment (Extended Data Fig. 1a).

111 **Virus injection**

112 Mice between 9 and 15 weeks of age were anesthetized using isoflurane and secured
113 in a stereotaxic apparatus (Stoelting, USA). AAV solution (70 nl) was injected into the
114 dorsal hippocampus at AP -2.0 mm, ML +1.2 mm, and DV -1.7 mm relative to bregma.
115 The injection was performed using a Picospritzer III air pressure system (S48
116 Stumilator, Grass Technologies, USA) connected to a glass pipette injector. The
117 injection process lasted 15 min, after which the injector needle remained in position for

118 5 min before being gently removed. Following injection, mice were given a minimum
119 recovery period of 1 week before lens implantation.

120 **Lens implantation**

121 A microendoscope lens (1-mm diameter, 4-mm length, Inscopix, USA) was placed in
122 the dentate (DG) at AP -2.0 mm and ML +1.25 mm relative to bregma and 1.53 mm
123 below the dura. One week after, a UCLA miniscope baseplate¹² was attached above the
124 implanted lens. After baseplate surgery, mice were habituated to a dummy
125 microendoscope for 1-2 weeks before recording.

126 **Preparation of tissue sections**

127 After imaging, mice were perfused transcardially with phosphate-buffered saline (PBS;
128 0.1 M) and 4% paraformaldehyde (PFA). Brains were removed, fixed overnight in PFA,
129 and transferred to PBS. Coronal sections (30 μ m) were cut using a vibratome
130 (VT1200S, Leica). Sections were mounted on slides with mounting medium containing
131 DAPI (Merck). Images of GCaMP6s- and ChrimsonR-Tdtomato-expressing neurons
132 were obtained using a Zeiss Axio Observer Z1 microscope.

133 **Ca²⁺ imaging and optogenetic manipulation**

134 A miniaturized microscope with flexible light source input (Tscope)¹³ was utilized for
135 neuronal imaging and manipulation. For imaging without optogenetic manipulation, we
136 used a blue laser (445 nm, custom-made) delivering 0.3-1.3 mW at the bottom of the
137 Tscope. For the opt-tagging experiment, we used a blue laser (473 nm, Shanghai Laser
138 & Optics Century Co., Ltd., China) delivering 0.07-2.7 mW and an orange laser (589
139 nm, Shanghai Laser & Optics Century Co., Ltd.) delivering 0.3-1.2 mW at the bottom of
140 the Tscope. Stimulation was delivered through a custom-made laser combiner and an
141 optic patch cable (Thorlabs, Japan). For all experiments, images were acquired at 10
142 frames/s. Laser intensity, gain, and exposure settings were customized for each mouse
143 while monitoring the fluorescence intensity histogram to ensure that the highest possible
144 dynamic range was achieved without signal saturation. For opto-tagging experiments,
145 the blue laser was used to stimulate GCaMP (300-s sessions), and the orange laser
146 delivered a 1-s pulse every 29 s (10 Hz, 50% duty cycle). We performed two opt-tagging
147 sessions separated by 30 min.

148 Long-term imaging

149 Recordings were made in two distinct environments. Context A consisted of a chamber
150 with white plastic walls and a stainless steel grid (width × depth × height, 310 × 250 ×
151 280 mm). Context B consisted of a circular plastic chamber with a wooden bedding floor
152 (22-cm diameter)¹⁴. For context A, a white acrylic drop pan under the grid floor was
153 cleaned with 75% ethanol, generating a background odor, whereas no ethanol was
154 employed in context B. Recordings were made every 2-4 days for 28 days. Each day,
155 recordings were performed for contexts A and B, with a 30-min interval between
156 recordings. The order of recordings in A and B was changed each day to maintain a
157 balanced design. Each recording session lasted 5 min.

158 Obtaining realistic neural parameters from DG imaging data

159 Recordings were made 4 days apart from a GCaMP6f-expressing mouse exploring
160 context A for 5 min. Parameters obtained from recorded neurons were used to create
161 video simulations.

162 ***In vivo* Ca²⁺ imaging data processing**

163 Raw Ca²⁺ imaging videos were spatially downsampled four times. Motion artifacts were
164 corrected utilizing blood vessels (BVs) and the log-demon image registration algorithm.
165 Ca²⁺ traces were extracted by CNMFe using the implementation and preprocessing
166 steps described in **Supplementary Note 2** and **Extended Fig. 8**. The spatial filtering
167 (gSig) was 2.5. For simulations, the minimum peak-to-noise ratio (min_pnr) and
168 minimum pixel local correlation (min_coor) were 2.5 and 0.15, respectively. In the opto-
169 tagging experiment, min_pnr was set to 5 and min_corr varied from 0.4 to 0.8 in
170 increments of 0.05. This was performed to assess the performance of the CaliAli
171 algorithm under different scenarios, ranging from a scenario in which the majority of
172 neurons were extracted (albeit with some false positives) to a scenario in which false
173 positives were minimized at the cost of potentially missing some neurons. For the long-
174 term imaging experiment, it was not feasible to combine different initialization
175 parameters across the 20 recorded sessions due to computational constraints. To
176 address this issue, we manually defined min_pnr and min_corr by carefully monitoring
177 the correlation and PNR image of each recording. To minimize potential bias, we

178 randomly shuffled the session identities during threshold determination. We provide an
179 overlay of the footprints over the correlation image obtained for each recording using
180 the source data included in this paper.

181 **Statistical analysis**

182 Statistical analysis was performed in MATLAB (MathWorks, Maryland, USA) and
183 Graphpad Prism (GraphPad, California, USA). Error bars depict the 95% confidence
184 interval of the mean across all panels, except for in box-and-whisker plots where they
185 depict the range of values. Shaded error bars were obtained by bias-corrected and
186 accelerated bootstrap. Type I error was set to $\alpha = 0.05$.

187 **Video simulations**

188 Spatial components were simulated by randomly sampling from 1,137 DG granule cells
189 from eight GCaMP6f-expressing mice. Spatial components were positioned randomly in
190 the field of view, constrained by minimum distances to neighboring cells (low overlap: 26
191 μm , medium overlap: 21 μm , high overlap: 8 μm). Temporal components were
192 simulated considering rising times produced by a Bernoulli process and subsequently
193 convolved with a temporal kernel $g(t) = \exp(-t/\tau_d) - \exp(-t/\tau_r)$. The Ca^{2+} rates and
194 kinetics for each neuron were sampled from a lognormal distribution with parameters
195 obtained from mouse DG recordings: transient probability $\mu = -4.9$, $\sigma = 2.25$; $\tau_r^{-1} \mu =$
196 2.08 , $\sigma = 0.29$; $\tau_d^{-1} \mu = 0.55$, $\sigma = 0.44$. Note that the mean transient rate in our
197 simulation was marginally higher than that in the empirical data, as neurons were
198 required to exhibit a minimum of one Ca^{2+} transient per session. A constant peak-to-
199 noise ratio of 2 was used in all simulations. Local background fluctuations were
200 modeled using a 2D Gaussian-filtered version of the spatial components ($\sigma = 20$), with
201 weakly correlated noise generated by applying a 2D Gaussian filter with $\sigma = 0.5$ on
202 white noise. Inter-session misalignment was emulated using gradients of a random 2D
203 Gaussian ($\sigma = 60$), scaled to produce a maximum non-rigid misalignment of 15-25 μm ,
204 which corresponds to our estimation in the emperical data (Extended data Fig. 1).
205 Remapping was simulated by rendering a subset of neurons inactive in certain
206 sessions. Variable signal-to-noise ratios were simulated in a similar manner as in
207 remapping, but the amplitude of Ca^{2+} transients was reduced by 80% instead of

208 inactivating neurons. The parameters employed in each simulation are found in the
209 source data accompanying this paper.

210 **Incorporation of realistic BV structures**

211 We utilize frames obtained from DG recordings as a static baseline. To incorporate
212 modest variation in the static baseline, we utilized frames obtained 4 days apart, which
213 were manually aligned and used as a static baseline for each session. For simulations
214 utilizing more than two sessions, additional baseline frames were created by linear
215 interpolation. To simulate BV variation larger than that observed within 4 days (Fig.
216 1i,k), we computed weighted averages between baseline images obtained from different
217 mice.

218 **Enhancement of BV structures**

219 BV structures were enhanced from raw one-photon Ca^{+2} imaging frames using Hessian-
220 based enhancement filters. In Ca^{+2} imaging experiments, BVs typically appear as
221 elongated structures with lower intensity values than the surrounding tissue. Hessian-
222 based enhancement filters exploit these characteristics by examining the eigenvalues of
223 the Hessian matrices of an image. The Hessian matrix has two eigenvalues at each
224 pixel location. The relationship between these eigenvalues helps identify different
225 structures in the image. In the case of BVs, the primary eigenvalue (λ_1) is generally
226 much smaller in magnitude than the secondary eigenvalue (λ_2), indicating a tubular
227 structure. In practice, the filtering is implemented as follows:

228 Step 1: Empirically determine the range of BV diameters d_1, d_2, \dots, d_n in the raw image.

229 Step 2: For each diameter, perform steps 3 to step 6.

230 Step 3: Sequentially convolute the columns and rows of the image using a 1-D

231 Gaussian filter with $\sigma = \frac{d_1}{4}, \frac{d_2}{4}, \dots, \frac{d_n}{4}$.

232 Step 4: Compute the Hessian matrix of the filtered image:

$$233 H_2(x, y) = \begin{bmatrix} \frac{\partial^2 f(x, y)}{\partial x^2} & \frac{\partial^2 f(x, y)}{\partial x \partial y} \\ \frac{\partial^2 f(x, y)}{\partial y \partial x} & \frac{\partial^2 f(x, y)}{\partial y^2} \end{bmatrix}$$

234 Here, $f(x, y)$ is the intensity function of the filtered image at pixel (x, y) and $\frac{\partial^2 f(x, y)}{\partial x^2}$,
235 $\frac{\partial^2 f(x, y)}{\partial x \partial y}$, etc. are second-order partial derivatives of f . For faster computation, we
236 calculated the Hessian matrix using the implementation described by Yang et al.¹⁵
237 Step 5: Find the eigenvalues of the Hessian matrix. The eigenvalues of $H_2(x, y)$ are
238 obtained from the following analytical equation:

$$239 \quad \lambda_1 = \frac{1}{2} \left(-\alpha_1 + \sqrt{\alpha_1^2 - 4\alpha_2} \right), \lambda_2 = \frac{1}{2} \left(-\alpha_1 - \sqrt{\alpha_1^2 - 4\alpha_2} \right)$$

240 Here, α_1 and α_2 are the roots of the characteristic polynomial of $H_2(x, y)$ given by:

$$241 \quad \alpha_1 = - \left(\frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2} \right), \alpha_2 = - \left(\frac{\partial^2 f(x, y)}{\partial x^2} \frac{\partial^2 f(x, y)}{\partial y^2} - \frac{\partial^2 f(x, y)}{\partial x \partial y} \frac{\partial^2 f(x, y)}{\partial y \partial x} \right)$$

242 Step 6: Calculate the filter response function, defined as the larger absolute value
243 between λ_1 and λ_2 :

$$244 \quad \phi(x, y) = \begin{cases} \lambda_1, & \text{if } |\lambda_1| > |\lambda_2| \\ \lambda_2, & \text{if } |\lambda_1| \leq |\lambda_2| \end{cases}$$

245 Step 7: To obtain the enhanced vasculature image, we applied the filter response
246 function to the original image by combining the results from multiple scales (i.e.,
247 different vessel diameters or filter sizes):

$$248 \quad BV_{enhanced} = \sum_{i=1}^n \sigma_i \phi(x, y)$$

249 We considered 10 diameter sizes ranging from $2.4 \times gSiz$ to $3.5 \times gSiz$, where $gSiz$ is the
250 filter size (in pixels) defined in CNMFe.

251 **Neuron tracking parameters**

252 We utilized default parameters for SCOUT and CellReg except for a non-rigid
253 registration approach for field of view alignment, as all simulations involved non-rigid
254 deformations. In some cases, the footprint registration algorithm used by SCOUT
255 produced lower performance than CellReg, mainly when neural densities were low and
256 the active neural population remapped. To ensure that any differences in performance

257 were not due to incorrect footprint alignment, we used the same alignment module as
258 was used with CellReg for SCOUT. Through these modifications, we were able to
259 maintain or improve the performance of SCOUT.

260 **Dimensionality reduction and unsupervised clustering of drifting neural activities**
261 The population activities shown in Fig. 2h,i were subjected to dimensionality reduction
262 and clustering using the UMAP algorithm. Cosine distance metric, a minimum distance
263 of 0.1, and 10 nearest neighbors were used for this purpose, as they have been shown
264 to produce the best outcomes in ground truth data. Unsupervised clustering was
265 performed on the reduced data using the k-means algorithm and squared Euclidean
266 distance metric.

267 **Inter-session registration**

268 Sessions were registered using the diffeomorphic log-Demons algorithm¹⁶, which is an
269 image registration method that computes a smooth and invertible deformation field to
270 match a moving image to a fixed reference image. The algorithm is based on the
271 original Demons algorithm by Thirion¹⁷, which was extended to ensure diffeomorphism
272 (i.e., smoothness of the deformation). The optimal displacement field S that aligns a
273 moving image M to the static image F is estimated by minimizing the velocity field \vec{v} in
274 the following energy function:

275

$$E(\vec{v}) = \|F - M \circ (S + \exp(\vec{v}))\|^2 + \frac{\sigma_i^2}{\sigma_x^2} \|\exp(\vec{v})\|^2$$

276 The velocity field \vec{v} is used to additively update S in each iteration, and σ_i^2 and σ_x^2 are
277 weights regulating the similarity term $\|F - M \circ (S + \exp(\vec{v}))\|^2$ and the maximum step in
278 each iteration, respectively. The algorithm uses an exponential map to update the
279 deformation field to ensure that it remains diffeomorphic. Here, $\exp(\vec{v})$ is the
280 exponential map of the vector field \vec{v} . \vec{v} is calculated using the additive demon
281 algorithm: $\vec{v} = \frac{(F-M)\vec{v}M}{(\vec{v}M)^2 + (F-M)^2}$.

282 Two regularization steps are included at each iteration. For a fluid-like regularization, we
283 convolute \vec{v} with a Gaussian kernel with size = σ_{fluid} . For a diffusion-like regularization,
284 we convolute S with a Gaussian kernel with size = $\sigma_{diffusion}$. The regulation parameters

285 used at each registration level are $\sigma_{fluid} = (1, 1, 3, 3)$, $\sigma_{diffusion} = (5, 5, 3, 3)$, $\sigma_x^2 = (1, 1,$
286 $1, 2)$, and $\sigma_i^2 = (1, 1, 1, 1)$.

287 **Code availability**

288 The codes for CaliAli, along with demo videos and tutorials, are available on GitHub:
289 <https://github.com/CaliAli-PV/CaliAli>

290 **Source data**

291 The Ca^{2+} imaging videos supporting this study and the codes to recreate simulations
292 are available at:

293 <https://data.mendeley.com/datasets/mvg4w89s4s/draft?a=febfa476-d9ef-4e98-abe4-24113a24549e>

295 **Acknowledgments**

296 We thank K.G. Akers for comments on the manuscript. We thank M. Sakurai for
297 secretarial support.

298 **Funding**

299 This work was partially supported by Japan Agency for Medical Research and
300 Development (JP23zf0127005, JP23km0908001); Japan Society for the Promotion of
301 Science (22H00469, JP16H06280, 20H03552, 21H05674, 21F21080, 16H06280,
302 23H02784); Takeda Science Foundation; Uehara Memorial Foundation; The Mitsubishi
303 Foundation to MS and JST JPMJSP2124 to YW.

304 **Conflicts of Interest**

305 The authors declare no conflict of interest. The funders had no role in the design of the
306 study; in the collection, analyses, or interpretation of data; in the writing of the
307 manuscript, or in the decision to publish the results.

308

309 **References**

- 310 1. Sheintuch, L. *et al.* Tracking the Same Neurons across Multiple Days in Ca²⁺
311 Imaging Data. *Cell Reports* **21**, 1102–1115 (2017).
- 312 2. Johnston, K. G. *et al.* Tracking longitudinal population dynamics of single neuronal
313 calcium signal using SCOUT. *Cell Reports Methods* **2**, 100207 (2022).
- 314 3. Fyhn, M., Hafting, T., Treves, A., Moser, M.-B. & Moser, E. I. Hippocampal
315 remapping and grid realignment in entorhinal cortex. *Nature* **446**, 190–194 (2007).
- 316 4. Keinath, A. T., Mosser, C.-A. & Brandon, M. P. The representation of context in
317 mouse hippocampus is preserved despite neural drift. *Nat Commun* **13**, 2415
318 (2022).
- 319 5. Lagache, T., Hanson, A., Pérez-Ortega, J. E., Fairhall, A. & Yuste, R. Tracking
320 calcium dynamics from individual neurons in behaving animals. *PLoS Comput Biol*
321 **17**, e1009432 (2021).
- 322 6. Driscoll, L. N., Duncker, L. & Harvey, C. D. Representational drift: Emerging theories
323 for continual learning and experimental future directions. *Current Opinion in*
324 *Neurobiology* **76**, 102609 (2022).
- 325 7. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold
326 Approximation and Projection. *Journal of Open Source Software* **3**, 861 (2018).
- 327 8. Huang, K. *et al.* A hierarchical 3D-motion learning framework for animal
328 spontaneous behavior mapping. *Nat Commun* **12**, 2784 (2021).
- 329 9. Hainmueller, T. & Bartos, M. Parallel emergence of stable and dynamic memory
330 engrams in the hippocampus. *Nature* **558**, 292–296 (2018).

331 10. Zhou, P. *et al.* Efficient and accurate extraction of in vivo calcium signals from
332 microendoscopic video data. *eLife* **7**, e28728 (2018).

333 11. Arousal Effect of Caffeine Depends on Adenosine A2A Receptors in the Shell of the
334 Nucleus Accumbens | *Journal of Neuroscience*.
335 <https://www.jneurosci.org/content/31/27/10067.long>.

336 12. Cai, D. J. *et al.* A shared neural ensemble links distinct contextual memories
337 encoded close in time. *Nature* **534**, 115–118 (2016).

338 13. Srinivasan, S. *et al.* Miniaturized microscope with flexible light source input for
339 neuronal imaging and manipulation in freely behaving animals. *Biochemical and*
340 *Biophysical Research Communications* **517**, 520–524 (2019).

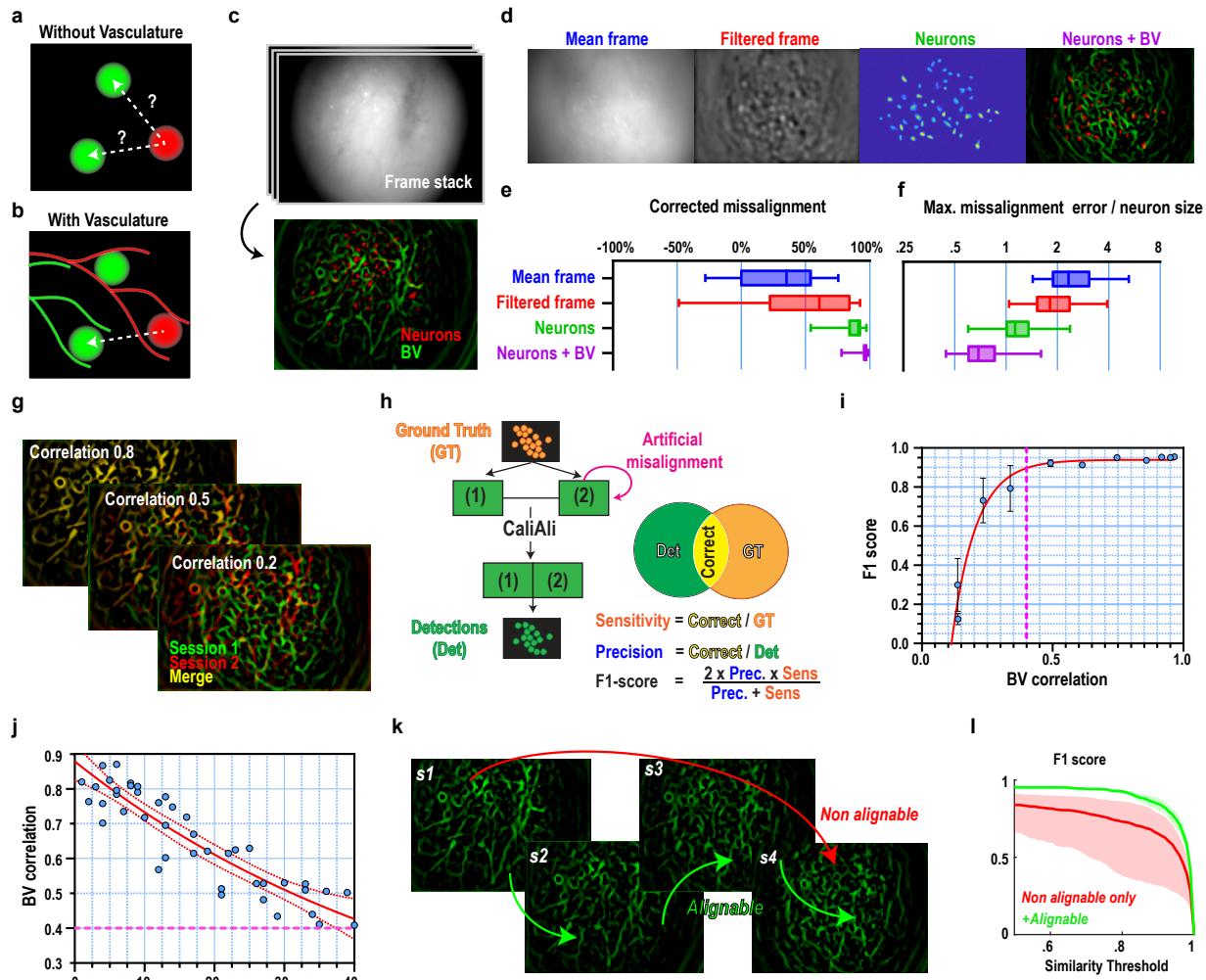
341 14. Kumar, D. *et al.* Sparse Activity of Hippocampal Adult-Born Neurons during REM
342 Sleep Is Necessary for Memory Consolidation. *Neuron* **107**, 552–565.e10 (2020).

343 15. Yang, S.-F. & Cheng, C.-H. Fast computation of Hessian-based enhancement filters
344 for medical images. *Computer Methods and Programs in Biomedicine* **116**, 215–225
345 (2014).

346 16. Vercauteren, T., Pennec, X., Perchant, A. & Ayache, N. Diffeomorphic demons:
347 Efficient non-parametric image registration. *NeuroImage* **45**, S61–S72 (2009).

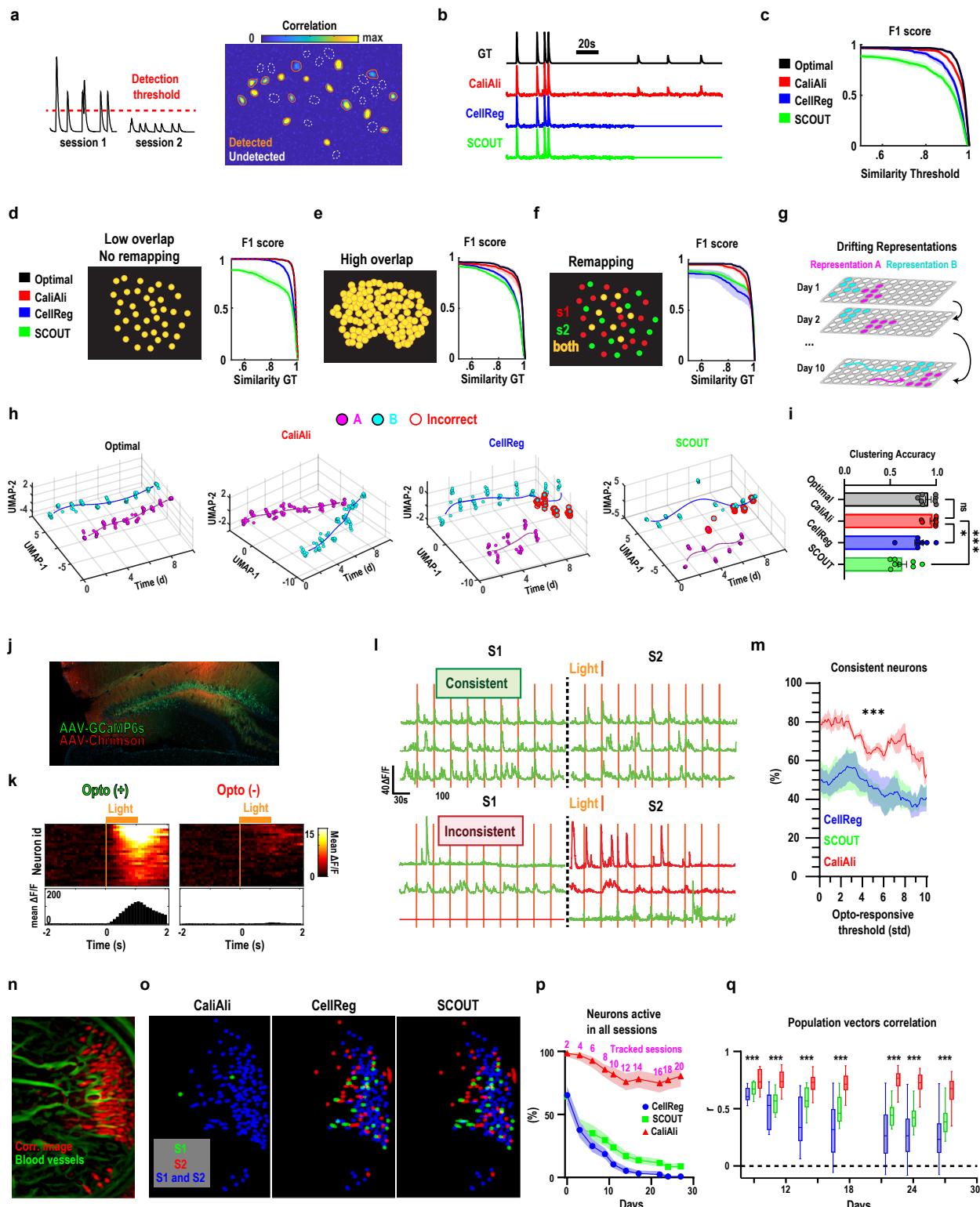
348 17. Thirion, J.-P. Image matching as a diffusion process: an analogy with Maxwell's
349 demons. *Medical Image Analysis* **2**, 243–260 (1998).

350



351

352 **Fig. 1 |CaliAli incorporates blood vessel (BV) information to maximize neuron**
 353 **tracking performance. a, b, Session registration with or without BVs. c, BV-neuron**
 354 **projection from a raw frame stack. d-f, Comparison of projections and their registration**
 355 **performance. g, Simulated BV correlation. h, Comparison between ground truth and**
 356 **CaliAli-extracted neurons. i, F1 score vs. simulated BV correlation. j, BV correlations in**
 357 **recordings from mice vs. inter-session gaps. l, j, Red line reflects a sigmoidal fit, and**
 358 **dashed line indicates the threshold where F1 score varies by >5%. k, Simulation of BV**
 359 **decorrelation over time. l, Tracking performance between the first and last session with**
 360 **or without intermediate sessions. Similarity threshold is the temporal similarity between**
 361 **the extracted component and the matched ground truth neurons used to determine true**
 362 **positives. For i, a threshold of 0.8 was used.**



363

364 **Fig. 2 |CaliAli maximizes the number of tracked neurons while maintaining**
 365 **consistent properties of tracked neurons. a**, Simulated scenario in which some
 366 neurons' signal-to-noise ratio fluctuates into undetectable levels. **b,c** Traces for partially

367 undetected neurons and overall tracking performance. **d,e,f**, Tracking performance in
368 different activity scenarios. **a-f** Optimal plot (black) is the maximum achievable
369 performance by CNMFe¹⁰ (in denoised and perfectly aligned videos). **h**, Dimensionality
370 reduction and unsupervised clustering of Ca²⁺ activity during representational drift. Red
371 circles depict incorrect classifications. **i**, Clustering performance. Repeated measures
372 one-way ANOVA with Dunnet's multiple comparisons. **j**, Histology of GCaMP6f and
373 Chrismon. **k**, Heatmap and average peristimulus time histograms for opto(+) and opto
374 (-) neurons. **l**, Representative traces for optogenetically consistent and inconsistent
375 neurons. Green = opto(+), red = opto(+). **m**, Percentage of optogenetically consistent
376 neurons for different opto(+) thresholds (for **k**, the threshold is 3 standard deviations).
377 Permutation test. Error bars depict the confidence intervals for different CNMFe
378 initialization parameters applied to data from one mouse. **n**, BV-neuron projection from
379 a 4-week Ca²⁺ imaging experiment. **o**, Spatial components obtained by different
380 methods. **p**, Proportions of tracked neurons across all sessions over time. **q**, Correlation
381 between pairs of population vectors vs. time. Two-way ANOVA with Sidak's multiple
382 comparisons. **** $p < 0.001$, * $p = 0.018$.

383