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Abstract Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-𝛽 and
misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and
cognitive decline. Altered neural oscillations have been consistently demonstrated in AD.
However, the trajectories of abnormal neural oscillations in AD progression and their relationship
to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based
sequencing models (EBMs) to investigate the trajectories of long-range and local neural
synchrony across AD stages, estimated from resting-state magnetoencephalography. The
increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta
bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and
beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that
frequency-specific neuronal synchrony abnormalities are early manifestations of AD
pathophysiology. The long-range synchrony effects were greater than the local synchrony,
indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain.
These results demonstrate the evolution of functional neuronal deficits along the sequence of AD
progression.

Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by amyloid-𝛽 (A𝛽) and neu-
rofibrillary tangles of abnormally phosphorylated tau (DeTure and Dickson (2019)). Clinical and
epidemiological studies have suggested that A𝛽 accumulation occurs early in the timeline of neu-
ropathological changes in AD, likely preceding the accumulation of tau, and subsequent neurode-
generation and cognitive decline (Jack Jr et al., 2010; Sperling et al., 2011). The neuropathological
changes of AD are therefore described as a continuum, starting from the presymptomatic stage of
proteinopathy and continuing to progress during the symptomatic stage with increasing stages of
disease severity (Sperling et al., 2011; Jack Jr et al., 2018). Transgenic mouse models of AD have
shown that AD proteinopathy of A𝛽 and tau is associated with synaptic and circuit dysfunctions
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in neural networks (Busche et al., 2008; Ahnaou et al., 2017; Busche et al., 2019). However, the
temporal change in synaptic and circuit dysfunction during disease progression in patients with
AD remains largely unknown.

Functional deficits in neural networks, especially in the presymptomatic stage, have attracted at-
tention in recent years with the rapidly evolving landscape of plasma biomarkers of early detection
and novel therapeutics showing the benefits of early intervention (Dubois et al., 2016). In fact, ab-
normal neural oscillation synchrony has been reported not only in patients along the clinical spec-
trum of AD, including mild cognitive impairment (MCI) due to AD and AD-dementia (Jeong, 2004;
Fernández et al., 2006; Stam et al., 2006; Koelewijn et al., 2017; Nakamura et al., 2018; Hughes
et al., 2019; Ranasinghe et al., 2020; Meghdadi et al., 2021; Schoonhoven et al., 2022) but also
during the preclinical stages of AD (Nakamura et al., 2018; Ranasinghe et al., 2022a). Neuronal os-
cillations observed by noninvasive electrophysiologicalmeasures, such as electroencephalography
(EEG) and magnetoencephalography (MEG), represent the synchronized activity of excitatory and
inhibitory neurons and thus provide sensitive indices of altered neuronal and circuit functions in
AD. As synaptic dysfunction is strongly associated with AD proteinopathy, altered neural oscillation
synchrony may capture early functional deficits of neural networks even before clinical symptoms
appear. However, it remains unknown which neurophysiological signature changes capture such
deficits and the temporal evolution of these changes along the timeline of preclinical to MCI to AD
dementia stages in clinical populations.

In this study, we investigated the trajectories of neurophysiological changes along the course of
clinical progression of AD by examining long-range and local neural synchrony patterns in the rest-
ing brain. We hypothesized that frequency-specific long-range and local synchrony abnormalities
in neuronal oscillations may precede both neurodegeneration and cognitive deficits. To exam-
ine the temporal relationship amongst altered neural synchrony, neurodegeneration, and cogni-
tive deficits, we used data-driven disease progressionmodels, specifically event-based sequencing
models (EBM), which have been successfully used to predict AD progression from cross-sectional
biomarker data (Fonteijn et al., 2012; Young et al., 2014, 2018). In an EBM, disease progression is
described as a series of discrete events defined as the occurrence of a particular biomarker reach-
ing a threshold abnormal value, and the estimated likelihood of the temporal sequence of events
defines disease progression. Modifying conventional EBMs to find neurophysiological trajectories,
we developed a robust EBM framework that is less sensitive to the thresholds for determination of
abnormality thereby resulting in unbiased estimation of disease stage probability for each study
participant.

Leveraging the high spatiotemporal resolution of MEG imaging, we considered two represen-
tative neuronal oscillatory synchrony metrics: amplitude-envelope correlation (AEC) and regional
spectral power. The AEC and spectral power quantify long-range and local neural synchrony, re-
spectively. Recent test-retest studies of MEG resting-state metrics have revealed that both met-
rics are highly reliable (Colclough et al., 2016; Wiesman et al., 2021a). To evaluate the frequency
specificity of neurophysiological trajectories, three canonical frequency bands, delta-theta (2–7Hz),
alpha (8–12Hz), and beta (15–29Hz) bands, were considered. For a metric of global cognitive ability,
we used the mini-mental state examination (MMSE) score. Neurodegeneration, which is related to
neuronal loss as well as synaptic loss and synapse dysfunction (Selkoe, 2002; Spires-Jones and Hy-
man, 2014), is detectable as brain atrophy on structural MRI, and therefore we evaluated neurode-
generation as loss of gray matter (GM) volume, specifically volume loss of the parahippocampal
gyrus (PHG), extracted from individual T1 MRIs. We first deployed an Atrophy-Cognition EBM (AC-
EBM) with only the neurodegeneration and cognitive decline measures, and then quantitatively ex-
amined metrics of long-range and local synchrony of neuronal oscillations corresponding to each
estimated disease stage. Next, we deployed two separate Synchrony-Atrophy-Cognition EBMs
(SAC-EBMs) which respectively included long-range or local neural synchrony measures along with
PHG volume and global cognition, and investigated how the synchronymetrics stratify AD progres-
sion. Consistent with our hypothesis, we found that long-range and local neural synchrony in the
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alpha and beta bands, but not in the delta-theta band, becomes abnormal at the earliest preclinical
stages of AD, preceding both neurodegeneration and cognitive deficits.
Materials and methods
Participants
The present study included 78 patients who met National Institute of Aging–Alzheimer’s Associa-
tion (NIA-AA) criteria(McKhann et al., 2011; Albert et al., 2011; Jack Jr et al., 2018) and 70 cognitively-
unimpaired older adults. All participants were recruited from research cohorts at UCSF Alzheimer’s
Disease Research Center (UCSF-ADRC). The diagnosis of AD patients was established by consensus
in a multidisciplinary team. Among 78 AD patients, 20 had autopsy-confirmed AD neuropathology,
other 41 patients were positive on the A𝛽-PET scans, plus another 9 patients showed cerebrospinal
fluid (CSF) assays of amyloid and tau levels consistent with AD diagnosis. The remaining 8 patients
were clinically diagnosed, based on clinical evaluations and the characteristic pattern of cortical
atrophy on MRI. Control participants were recruited from an ongoing longitudinal study of healthy
aging at UCSF-ADRC. The eligibility criteria for cognitively normal controls included normal cogni-
tive performance, normal MRI, and absence of neurological, psychiatric, or other major medical
diseases. Forty-seven (out of 70) controls were evaluated with A𝛽-PET and 8 were read as positive
(39 as negative). The remaining 23 control participants were not evaluated with A𝛽-PET. All partici-
pants underwent MMSE and a structured caregiver interview to assess the clinical dementia rating
scale (CDR). All control participants were identified at CDR 0, indicating cognitively-unimpaired sta-
tus on the CDR scale. Patients with AD ranged from 0.5 to 2 on the CDR scale. The results of
demographic, functional, and cognitive assessments are shown in Supplementary file 1. Informed
consent was obtained from all participants or their assigned surrogate decision makers. The study
was approved by the Institutional Review Board of UCSF (UCSF-IRB 10-02245).
MRI acquisition and analyses
Structural brain images were acquired using a unified MRI protocol on 3T Siemens MRI scanners
(MAGNETOM Prisma or 3T TIM Trio) at the Neuroscience Imaging Center (NIC) at UCSF, within an
average of 1.05 years (range: −6.91–0.78) and 0.29 years (range: −2.13–1.29) of the MEG evaluation
for controls and patients, respectively. The acquired MRI was used to generate the head model
for source reconstructions of MEG sensor data and to evaluate GM volumes. The region-based
GM volumes corresponding to the 94 anatomical regions included in the Automated Anatomical
Labeling 3 (AAL3) atlas (Rolls et al., 2020) (Supplementary file 2) were evaluated using the Compu-
tational Anatomy Toolbox [CAT12 version 12.8.1 (1987)] (Gaser et al., 2022), which is an extension
of SPM12 (Penny et al., 2011); the regional GM volumes were calculated using the morphometry
pipeline implemented in CAT12 with default parameters. The total intracranial volume (TIV), the
sum of all segments classified as gray and white matter, and CSF, was also calculated for each
subject.
Resting-state MEG
Data acquisition
Each participant underwent 10–60-minutes resting-state MEG at the UCSF Biomagnetic Imaging
Laboratory (BIL). MEGwas recordedwith a 275 channel full-head CTFOmega 2000 system (CTFMEG
International Services LP, Coquitlam, British Columbia, Canada). Three fiducial coils for nasion and
left and right preauricular points were placed to localize the position of head relative to the sensor
array and later co-registered with individual MRI to generate an individualized head shape. Data
collection was optimized to minimize head movements within the session and to keep it below
0.5 cm. For analysis, a 10-min continuous recording was selected from each subject lying supine
and awake with the eyes closed (sampling rate 𝑓s = 600 Hz). From the continuous recordings, we
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further selected a 1-min continuous segment with minimal artifacts (i.e. minimal excessive scatter
at signal amplitude) for each subject.
Pre-processing
Each 1-min sensor signal was digitally filtered using a bandpass filter of 0.5–55 Hz. The power spec-
tral density (PSD) of each sensor signal was computed, and artifacts were confirmed by visual in-
spections. Channels with excessive noise within individual subjects were removed prior to the next
process. When environmental noises larger than a few pT/√Hz were observed around the 1–5-Hz
range in a PSD, the dual signal subspace projection (DSSP) (Sekihara et al., 2016) with the lead field
vectors computed for each individual subject’s headmodel was applied to the filtered sensor signal
for the removal of environmental noise. As a parameter, we chose the dimension of pseudo-signal
subspace 𝜇 as 50. DSSPs were needed to be applied to 13 of the total 148 subject signals. For the 13
data, the resulting dimension of the spatio-temporal intersection, that is, the degree of freedom
to be removed, was 3 or 4. We also applied a preconditioned independent component analysis
(ICA) (Ablin et al., 2018) to the signal to identify cardiac components and remove them. In each
data set, one or two clear cardiac ICA-component waveforms with approximately 1 Hz rhythms
were observed, which were easily identified by visual inspections.
Atlas-based source reconstruction
Isotropic voxels (5 mm) were generated in a brain region of a template MRI, resulting in 15, 448
voxels within the brain region. The generated voxels were spatially normalized to individual MRI
space, and subject-specific magnetic lead field vectors were computed for each voxel with a single-
shell model approximation (Nolte, 2003). The voxels for each subject were indexed to 94 cortical/
sub-cortical regions included in the AAL3 atlas.

Array-gain scalar beamformer (Sekihara et al., 2004) was applied to the 60-sec cleaned sensor
time series to obtain source-localized brain activity at the voxel level, i.e., voxel-level time courses.
Lead field vectors were normalized to avoid the center-of-the-head artifact, and a generalized
eigenvalue problem was solved to determine the optimal source orientation (Sekihara and Na-
garajan, 2008). The beamformer weights were calculated in the time domain; a data covariance
matrixwas calculated using awhole 60-sec time series, and a singular value truncation (threshold of
10−6 ×maximum singular value) was performed when inverting the covariance matrix. Ninety-four
regional time courses were extracted with alignment with the AAL3 atlas by performing a principal
component analysis (PCA) across voxel-level time courses within each of the regions and taking
a time course of the first principal component. These pre-processing and source reconstructions
were performed using in-house MATLAB® scripts utilizing Fieldtrip toolbox functions (Oostenveld
et al., 2011). We also used BrainNet Viewer toolbox (Xia et al., 2013) to obtain brain rendering
images of regional MEG metrics and GM atrophy.
MEG resting-state metrics
Based on the regional time courses derived from MEG, we evaluated two measures of neural syn-
chrony: the amplitude-envelope correlation (AEC) and spectral power, which describe long-range
and local neural synchrony, respectively. Three canonical frequency bands were considered: delta-
theta, alpha, beta bands.
Amplitude-envelope correlation
The AECs are defined as Pearson’s correlation coefficients (PCCs) between any two amplitude en-
velopes of regional time courses (total 94 × 93∕2 = 4, 371 pairs). Regional time courses were first
processed by a band-pass filtering, and then their envelopes were extracted by the Hilbert trans-
form. To discount spurious correlations caused by source leakages, we orthogonalized any two
band-limited time courses before computing their envelopes by employing a pairwise orthogonal-
ization (Hipp et al., 2012; Sekihara and Nagarajan, 2015). The AECwith leakage corrections is often
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expressed as AEC-c and is known as a robust measure (Briels et al., 2020b). The pairwise orthog-
onalization provides asymmetric values between two time courses; the value depends on which
time course is taken as a seed. Therefore, the PCCs between orthogonalized envelopes for both
directions were averaged, resulting in a symmetric AEC matrix. Regional AECs, that represent the
connectivity strengths of each ROI, were computed by averaging over row/column components of
the symmetric AEC matrix.
Spectral power
The spectral power of a given band, which has often been used as ametric to discriminate patients
with AD from controls (Jeong, 2004; Engels et al., 2016; Wiesman et al., 2021b), is defined by the
ratio of a band power to total power and was calculated from regional PSDs. Regional PSDs were
calculated from the 94 regional time courses using Welch’s method (50% overlap) with 0.293-Hz
(= 𝑓s∕2048) frequency steps.
Scalar neural synchrony metrics
To identify general trends in changes in long-range and local synchrony with the severity of AD, we
performed group comparisons of the regional synchrony metrics between AD patients and con-
trols. Based on the group contrasts of regional metrics observed, we introduced scalar synchrony
metrics by calculating the averages within several regions where large region-level group contrasts
were identified. The scalar MEG metrics were used in the SAC-EBMs.
Metric trajectory analyses
Event-based sequencing modeling
Imaging and neuropsychological biomarkers for AD are continuous quantities taking values from
normal to severe, while the stages of the disease are discrete and are identified by estimating
the values of biomarkers (Sperling et al., 2011). As a data-driven disease progression model, an
event-based sequencing model (EBM) has been proposed that allows us to make inferences about
disease progression from cross-sectional data (Fonteijn et al., 2012; Young et al., 2014, 2018). In
an EBM, disease progression is described as a series of metric events, where events are defined
as the occurrences of abnormal values of metrics, and the values of events act as thresholds to
determine discrete stages of disease (Fonteijn et al., 2012). The model infers temporal sequences
of the events from cross-sectional data.

It is also possible to set multiple events per metric by defining them as occurrences of taking
certain 𝑧-scores within the range from initial to final 𝑧-scores ([𝑧initial 𝑧f inal]), in which 𝑧-scores for
each metric linearly increase between all consecutive events and the stages are located at tem-
poral midpoints between the two consecutive event occurrence times (Young et al., 2018). In this
linear 𝑧-score event model, a metric trajectory is described as a series of metric values evaluated
at estimated stages.

We developed a robust EBM framework to quantify metric trajectories on the basis of the linear
𝑧-score model, employing the following form of a data likelihood:

𝑃 (𝑍|𝑆) =
𝐽
∏

𝑗=1

𝑁+1
∑

𝑘=1
𝑝(𝑡𝑗 = 𝑘)𝑝(𝑍𝑗|𝑆, 𝑡𝑗 = 𝑘), (1)

where𝑁 denotes a total number of events, 𝑆 denotes a sequence of the events, and 𝑖, 𝑗, and 𝑘 are
the indices of metric, subject, and stage, respectively. 𝐽 is the number of subjects (𝐽 = 148). 𝐼 is
the number of metrics: 𝐼 = 2 for an AC-EBM and 𝐼 = 3 for an SAC-EBM, respectively. The symbol
𝑡𝑗 denotes stages for each subject 𝑗, and a conditional probability, 𝑝(𝑍𝑗|𝑆, 𝑡𝑗 = 𝑘), describes the
probability that a subject 𝑗 takes biomarker values of 𝑍𝑗 given a sequence of events 𝑆 and that
𝑡𝑗 = 𝑘 (that is, the subject 𝑗 is in a stage 𝑘). The symbol 𝑍𝑗 = [𝑧1𝑗 , 𝑧2𝑗 ,… , 𝑧𝐼𝑗]T, where 𝑧𝑖𝑗 denotesthe 𝑧-score of a metric 𝑖 for a subject 𝑗, and the symbol 𝑍 = [𝑍1, 𝑍2,… , 𝑍𝐽 ] describing the datamatrix with the 𝐼 × 𝐽 dimension. Since there are𝑁 +2 event occurrence times including initial and
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final times, 𝑁 + 1 stages are provided. When employing Equation 1, we assumed that the prior
distribution in which the subject 𝑗 is in a stage 𝑘 is uniform: 𝑝(𝑡𝑗 = 𝑘) = (𝑁 + 1)−1. We also assumed
that the prior probability of 𝑝(𝑍𝑗|𝑆, 𝑡𝑗 = 𝑘) arises from independent Gaussian distributions for each
metric 𝑖, resulting in a multivariate factorized prior. Hence,

𝑝(𝑍𝑗|𝑆, 𝑡𝑗 = 𝑘) ∝
𝐼
∏

𝑖=1
exp

(

−
(𝑧𝑖𝑗 − 𝜇𝑖(𝑘))2

2

)

. (2)
The symbol 𝜇𝑖(𝑘) denotes a value of the 𝑧-score of a metric 𝑖 at a stage 𝑘 and is given by a linearly
interpolated midpoint 𝑧-score between two 𝑧-scores evaluated at consecutive event occurrence
times. The goal of this formulation is to evaluate the posterior distribution that a subject 𝑗 belongs
to a stage 𝑘, 𝑝(𝑡𝑗 = 𝑘|𝑍𝑗 , 𝑆̄), with the most likely order of events 𝑆̄.

The most likely order of the events is given by the sequence of events, 𝑆, which maximizes the
posterior distribution 𝑃 (𝑆|𝑍) = 𝑃 (𝑆)𝑃 (𝑍|𝑆)∕𝑃 (𝑍). Under the assumption that the prior 𝑃 (𝑆) is
uniformly distributed (Fonteijn et al., 2012), the most likely sequence is obtained by solving the
maximum likelihood problem of maximizing Equation 1. To solve the problem, for a given set of
events, we performed Markov chain Monte Carlo (MCMC) sampling on sequences and chose the
maximum likelihood sequence from 50, 000 MCMC samples. In the generation of the MCMC sam-
ples, we initialized the MCMC algorithm with an initial sequence close to or equal to the maximum
likelihood solution by running an ascent algorithm 10 times from different initialization points, i.e.,
randomly generated event sequences (Fonteijn et al., 2012).
z-scoring of metrics
We computed 𝑧-scores of the PHG volume, MMSE score, and scalar neural synchrony metrics to
utilize them in the EBM frameworks. Since a linear 𝑧-score model assumes a monotonous in-
crease in 𝑧-scored metrics along disease progression (i.e., higher stage denotes more severity),
“sign-inverted” 𝑧-scores were introduced to the metrics with decreasing trends along disease pro-
gression. Specifically, for GM volumes, MMSE score, and neural synchrony metrics in the alpha
and beta bands, the 𝑧-score of a metric 𝑖 for a subject 𝑗 was defined by 𝑧𝑖𝑗 = (𝑥̄C

𝑖 − 𝑥𝑖𝑗)∕𝜎C
𝑖 , where 𝑥𝑖𝑗denotes a value of ametric 𝑖 for a subject 𝑗, and 𝑥̄C

𝑖 and 𝜎C
𝑖 denote themean and standard deviation

(SD) of the metric values of the controls, respectively. For the delta-theta-band neural synchrony
metrics, 𝑧-scores were defined in a standard way as 𝑧𝑖𝑗 = (𝑥𝑖𝑗 − 𝑥̄C

𝑖 )∕𝜎
C
𝑖 . Using these 𝑧-scored met-

rics, the initial and final events, 𝑧initial and 𝑧f inal, for each metric were set as the bottom and top 10%
average 𝑧-scores, respectively.
Events-setting optimization
In addition to the initial and final events of the 𝑧-score, 𝑧initial and 𝑧f inal, we set three events for
each metric because various possible curves of the metric trajectories were supposed to be well
expressed by three variable points with two fixed points. For example, in an AC-EBM analysis, that
is, a two-metric trajectory analysis for PHG volume loss and MMSE decline, a total of six events
were considered (𝑁 = 6). The metric trajectory as a series of stage values 𝜇𝑖(𝑘) is sensitive to eventsettings because predefined events do not necessarily capture appropriate boundaries between
disease stages. To determine disease stages less sensitive to specifications of the 𝑧-score events,
we tried several sets of events and selected the set of eventswith the highest data likelihood among
the trials. Specifically, we searched for the set of events that better fits the data𝑍 by trying all com-
binations of three 𝑧-scores from {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}-quantiles for eachmetric. The number
of combinations of events for each metric was accordingly (7𝐶3 =)35. Therefore, MCMC samplings
(50, 000 samples for each set of events) were performed 1, 225 times for an AC-EBM and 42, 875
times for an SAC-EBM, respectively, to find the set of events and their sequence 𝑆̄ with the highest
data likelihood. This exhaustive search for optimal event settings, which was not implemented in
a conventional linear 𝑧 score EBM (Young et al., 2018), is shown schematically in Figure 1—figure
Supplement 1.
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Although it is tractable to directly evaluate 𝑃 (𝑍|𝑆) for all ordered arrangements of 𝑧-score
events when the number of the permutations for each set of 𝑧-score events is just 20(= 6𝐶3) for
𝐼 = 2 (Supplementary file 3) and 1, 680(= 9𝐶3× 6𝐶3) for 𝐼 = 3, such a direct evaluation is not tractable
when 𝐼 > 3 and requires MCMC sampling. Furthermore, MCMC enables the computation of se-
quence statistics. Therefore, we used MCMC sampling from which we could compute the posi-
tional variance estimates for each event (see Figure 1—figure Supplement 1 and Figure 1—figure
Supplement 2).
Trajectory computations
Given the most likely sequence 𝑆̄ as a result of the exhaustive search, the probabilities that a
subject 𝑗 falls into a stage 𝑘 are evaluated by the posterior distribution:

𝑝𝑗(𝑘) ≡ 𝑝(𝑡𝑗 = 𝑘|𝑍𝑗 , 𝑆̄) =
𝑝(𝑍𝑗|𝑆̄, 𝑡𝑗 = 𝑘)

∑

𝑘′ 𝑝(𝑍𝑗|𝑆̄, 𝑡𝑗 = 𝑘′)
. (3)

These probabilities describe the contribution of a subject 𝑗 to stage 𝑘, allowing us to evaluate the
stage value of any metric 𝑥 of 𝑖 at a stage 𝑘 as a weighted mean:

𝑥̄𝑖(𝑘) =

∑𝐽
𝑗=1 𝑝𝑗(𝑘) ⋅ 𝑥𝑖𝑗
∑𝐽

𝑗=1 𝑝𝑗(𝑘)
. (4)

Then, we represented the trajectory of the metric 𝑖 by a series of the stage values, 𝑥̄𝑖(𝑘). The stan-dard error (SE) of the weighted mean at stage 𝑘 was evaluated by

SE(𝑘) = 𝜎𝑖 ⋅

√

√

√

√

√

√

∑𝐽
𝑗=1 𝑝𝑗(𝑘)2

(

∑𝐽
𝑗=1 𝑝𝑗(𝑘)

)2
, (5)

where 𝜎𝑖 is a standard deviation of a metric 𝑖. This definition of SE provides an usual expression of
the standard error of the mean, 𝜎𝑖∕√𝐽 , if all subjects contributed equally to all stages.

These formulations of trajectories were applied to several metrics. In the AC-EBM, the metrics
𝑖 denote the PHG volume loss 𝑧-score and the MMSE scores. In the SAC-EBM, they denote each
scalar neural synchrony metric in addition to the PHG volume loss 𝑧-score and the MMSE score.
We also used Equation 4 to evaluate the progressions of the regional neural synchrony metrics
and the regional GM volume loss 𝑧-scores along the estimated EBM stages. When evaluating the
proportion of subjects classified into each stage, we treated (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝐽 ) as a vector in which ametric 𝑖 represents a category of subjects provided by the CDR scale. For example, when evaluating
the ratio of subject with CDR 0.5, 𝑥𝑖𝑗 = 1 only when a subject 𝑗 has CDR scale of 0.5, otherwise 𝑥𝑖𝑗 = 0.
Statistical analyses
To test demographic differences between AD patients and controls, the unpaired 𝑡-test was used
for age and the chi-square test for sex. The age was defined at the time of the MEG scan date.
In statistical analyses, 𝑝-values below 0.05 were considered statistically significant. For group com-
parisons of GM volumes, MMSE scores, and neural synchrony metrics, two-sided significance tests
(against a null value of zero) were performed using the general linear model (GLM). For statisti-
cal tests on GM volumes, TIV, age, and the difference between MRI and MEG dates were included
as covariates. For statistical tests on MMSE scores, age and the difference between MMSE and
MEG dates were included as covariates. For statistical tests of neural synchrony metrics, age was
included as a covariate. The problem of multiple comparisons between 94 regions was solved
by controlling the Benjamini-Hochberg false discovery rate (FDR) (Benjamini and Hochberg, 1995).
The FDR adjusted 𝑝-value (i.e., 𝑞-value) below 0.05 or 0.01 was considered statistically significant.

A non-parametric test was performed to statistically compare metrics between stages, i.e., to
test statistical significance of the difference between stage values represented by weighted means
[e.g., stage 𝑘 vs 𝑘′: 𝛿𝑥 = 𝑥̄𝑖(𝑘)− 𝑥̄𝑖(𝑘′)]. For a metric 𝑖, we used bootstrap resampling (50, 000 samples)
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of an original data set, 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝐽 ), to generate new data sets, (𝑥⋆
𝑖1, 𝑥

⋆
𝑖2,… , 𝑥⋆

𝑖𝐽 ), using a
random number generator, where each 𝑥⋆

𝑖𝑗 is one of the components of the original data set 𝒙𝑖.We then calculated the weighted means 𝑥̄⋆
𝑖 (𝑘) (Equation 4) for each sample. The same procedures

were performed for stage 𝑘′, obtaining weightedmeans 𝑥̄⋆
𝑖 (𝑘

′) for each sample. We then tested the
null hypothesis that a weightedmean in stage 𝑘, 𝑥̄𝑖(𝑘), is equal to a weightedmean in stage 𝑘′, 𝑥̄𝑖(𝑘′),
evaluating the null distribution of differences in the weighted mean values, 𝛿𝑥⋆ = 𝑥̄⋆

𝑖 (𝑘) − 𝑥̄⋆
𝑖 (𝑘

′).
The problem of multiple comparisons across stages was solved by controlling the FDR. The 𝑞-value
below 0.05 was considered statistically significant.
Results
Participant demographics
This study included a cohort of 78 patients with AD (50 female; 28 male) including 35 patients with
AD dementia and 43 patients with MCI due to AD, and also included 70 cognitively-unimpaired
older adults as controls (41 female; 29male). The CDR scales were 0 for the cognitively-unimpaired
controls, 0.5 for patients with MCI, and 1 (𝑛 = 27) or 2 (𝑛 = 8) for patients with AD dementia. There
were no differences in sex distribution between the AD and control groups [𝜒2(1) = 0.477; 𝑝 = 0.49].
The average age at the time of MEG was slightly higher in the control group than patients with
AD (controls, mean±SE: 70.5 ± 0.99, range: 49.5–87.7; AD, mean±SE: 63.9 ± 1.01, range: 49.0–84.4)
[unpaired 𝑡-test: 𝑡(146) = −4.708; 𝑝 < 0.001]. The mean MMSE in patients with AD was 22.7 ± 0.43
(mean±SE) while the mean MMSE in the controls 29.2 ± 0.48. MMSE scores were adjusted for age
and time differences between MMSE administration and MEG scan using a GLM (Figure 1—figure
Supplement 3B). MMSE-decline 𝑧-scores, 𝑧MMSE, were standardized by adjustedMMSE scores of the
control group and sign-inverted (Figure 1B).

Group comparisons of GM volumes for each of the anatomical regions included in the AAL3
atlas showed that GM volumes in the temporal regions are significantly smaller in AD patients than
in controls (Figure 1—figure Supplement 4; Supplementary file 4). Among temporal GM volumes,
we focused on a volume of PHG as a key indicator of neurodegeneration in AD progression. The
PHG includes the perirhinal and entorhinal cortices of the medial temporal lobe (MTL), and MRI-
based studies have reported thatMTL volumedecreases, especially in the perirhinal and entorhinal
cortices, in the early stages of typical AD (Teipel et al., 2006; Echávarri et al., 2011;Matsuda, 2016).
In this study, PHG volumewas defined as a sum of the volumes of left- and right-hemisphere PHGs.
The average volume of PHG in AD patients (7.99 ml ± 0.09) was significantly lower than in controls
(9.28 ml ± 0.11) [unpaired 𝑡-test: 𝑡(143) = −9.508; ∗∗∗𝑝 < 0.001] (Figure 1—figure Supplement 3A);
the PHG volumes were adjusted for TIV, age, and the difference between MRI and MEG dates by
including them in a GLM as covariates. PHG volume loss 𝑧-scores, 𝑧PHG, were standardized by theadjusted PHG volumes of the control group and sign-inverted (Figure 1A).
Abnormal frequency specific long-range and local neural synchrony in AD
We performed group comparisons of MEG metrics. Three canonical frequency bands were con-
sidered: 2–7 Hz (delta-theta), 8–12 Hz (alpha), and 15–29 Hz (beta) bands (Figure 2—figure Supple-
ment 1). For regional long-range synchrony (AEC), increases in delta-theta-band synchrony in pa-
tients with ADwere identified in frontal regions, and reductions in alpha- and beta-band synchrony
were identified in the whole brain (Figure 2—figure Supplement 2C, E; Supplementary file 5). These
regional contrasts were similar to those observed between AD dementia and subjective cognitive
decline (SCD) in MEG/EEG studies (Schoonhoven et al., 2022; Briels et al., 2020a). For regional local
synchrony (spectral power), increases in delta-theta-band power in patients with AD were identi-
fied in the whole brain, and reductions in alpha- and beta-band power were identified in temporal
regions and the whole brain, respectively (Figure 2—figure Supplement 2D, F; Supplementary file
6). These regional contrasts were similar to those observed between MCI and controls in a multi-
center study of MEG (Hughes et al., 2019).
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Figure 1. Atrophy-cognition EBM staging of AD progression. (A) Histogram of PHG volume loss 𝑧-scores, 𝑧PHG. (B) Histogram of MMSE-decline
𝑧-scores, 𝑧MMSE. The 𝑧-scores for PHG volume loss and MMSE were standardized by the adjusted scores of the control group and sign-invertedso that higher 𝑧-scores denote more severity. (C) Posterior probabilities, 𝑝𝑗 (𝑘), that a subject 𝑗 belongs to a stage 𝑘 evaluated by the AC-EBM.(D) The ratio of subjects classified to each stage; blue: Control (CDR 0), orange: MCI due to AD (CDR 0.5), pink: mild AD dementia (CDR 1), and red:moderate AD dementia (CDR 2). (E) Distribution of the stages in the space spanned by PHG volume loss and MMSE score. Each subject 𝑗 wasdistinctly assigned to one of the stages with the highest posterior probability, argmax𝑘𝑝𝑗 (𝑘). The colors of the dots denote the seven stages. A starsymbol denotes the probability-based weighted means of 𝑧PHG and MMSE scores at stage 4: 𝑧PHG = 1.33 (±0.258) and MMSE= 26.3 (±0.82). Thevalues in parentheses denote the standard error (SE; Equation 5) of the weighted means. (F) Trajectories of PHG volume loss and MMSE score asa function of the seven stages. Probability-based weighted means (± SE) are shown. The initial and final 𝑧-scores used in the AC-EBM were:
(𝑧initial, 𝑧f inal) = (−1.372, 3.804) for PHG volume loss and (−0.902, 12.712) for MMSE decline, respectively. (G) Progression of GM volume loss(𝑧-scores) from stage 1 to 7. Regional GM atrophy in the predicted stage of MCI (stage 4) was circled with a dotted line.
Figure 1—figure supplement 1. Steps for computing metric trajectories.
Figure 1—figure supplement 2. An example of positional variance diagram of 𝑧-score events.
Figure 1—figure supplement 3. Group comparisons of PHG volumes and MMSE scores.
Figure 1—figure supplement 4. Group comparison of GM volumes.
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Based on the group contrasts of regional metrics observed, we introduced six scalar metrics
to quantify long-range and local synchrony: [i] frontal delta-theta-band AEC, [ii] whole-brain alpha-
band AEC, [iii] whole-brain beta-band AEC, [iv] whole-brain delta-theta-band spectral power, [v]
temporal alpha-band spectral power, and [vi] whole-brain beta-band spectral power. We com-
puted the average within several regions where large group contrasts were identified at the region
level (the temporal and frontal regions of interest (ROI) are illustrated in Figure 2—figure Supple-
ment 3). Consistent with regional group comparisons, the long-range and local synchrony scalar
metrics in delta-theta band increased in AD patients compared to controls, and the long-range and
local synchrony scalar metrics in alpha and beta bands were reduced in AD patients compared to
controls (Figure 2—figure Supplement 2A, B). We also calculated the 𝑧-scores, 𝑧MEG, of each scalarmetric that was used in the SAC-EBMs.
PHG volume loss precedes the MMSE decline in AD progression
An AC-EBM analysis with the two metrics, PHG volume loss, 𝑧PHG, and MMSE decline, 𝑧MMSE, wasperformed for six events (𝑁 = 6; three events for each metric). Robust event thresholds were de-
termined by the exhaustive search of multiple event thresholds (𝑧-score thresholds) and choosing
the set of event thresholds that maximize the data likelihood (Equation 1). The AC-EBM provided
seven stages, each located between consecutive event occurrence times. The resulting posterior
probabilities, 𝑝𝑗(𝑘), that a subject 𝑗 belongs to a stage 𝑘 are shown in Figure 1C. Based on the prob-
abilities, the ratio of subjects classified into each stage was calculated as the probability-based
weighted mean (Figure 1D). The ratio of subjects with CDR 0.5 was highest in stage 4, and the ratio
of controls with CDR 0 in stage 4was small compared to those in less severe stages of 1–3, indicating
that stage 4 corresponds best to clinical MCI due to AD.

The trajectory of PHG volume loss preceded that of MMSE decline (Figure 1F), consistent with
the relationship between brain atrophy and cognitive decline described in a hypothetical model of
biomarker trajectories (Jack Jr et al., 2010; Sperling et al., 2011). Figure 1E visualizes the distribution
of the seven stages in the PHG volume loss versus MMSE score. At stage 4, the value of 𝑧PHG of
1.33 ± 0.258 was in the range of 1–2. This 𝑧-score range of PHG volume loss corresponds to a mild-
atrophy range representing approximately the MCI stage, e.g., in the voxel-based specific regional
analysis system for AD (VSRAD) software (Hirata et al., 2005; Matsuda et al., 2012). Furthermore,
the MMSE score of 26.3 ± 0.82 at stage 4 was in the range of 23–27. This range of MMSE scores is
considered typical for MCI due to AD (Tsoi et al., 2015). Stage 4 therefore corresponds toMCI stage,
whereas stages 3 and 5 correspond to preclinical-AD and mild AD-dementia stages, respectively.

The GM volume 𝑧-scores as a function of the seven stages showed that prominent atrophy
with 𝑧 > 1 is observed in the temporal regions starting at stage 4 (Figure 1G). This trajectory of GM
volume approximated the evolution of brain atrophy in the typical progression of AD reported in
MRI-based studies; GM volume loss in AD starts in the MTL in the MCI stage, spreads to the lateral
temporal and parietal lobes in themild AD-dementia stage, and spreads further to the frontal lobe
in moderate AD-dementia (Scahill et al., 2002; Tondelli et al., 2012; Jack Jr et al., 2013).

These results of the AC-EBM indicate that the PHG volume loss precedes theMMSE decline, and
their metric changes track the stages of AD from preclinical AD to moderate AD-dementia. The
order of events for GM volume loss and cognitive decline was consistent with the observation that
cognitive decline in the early stage of AD progression reflects neuronal loss in the medial temporal
regions (Jack Jr et al., 2018; DeTure and Dickson, 2019).
Neural synchrony progressively changes throughout the AD stages estimated by
AC-EBM
For the seven stages determined by the AC-EBM (Figure 1E–G), long-range and local neural syn-
chrony profiles were estimated (Figure 2). Along the EBM stages, the delta-theta-band synchrony
was consistently increased and the alpha and beta-band synchrony was consistently decreased.
Neural synchrony showed prominent changes around stage 4 (clinical stage of MCI due to AD). The
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Figure 2. Profiles of neural synchrony as a function of the AD stages estimated by AC-EBM. (A,B) Profiles of AEC (A) and spectral power (B)as a function of the seven stages, showing probability-based weighted means (± SE). Neural synchrony increased monotonously with ADprogression in the delta-theta band and decreased monotonously in the alpha and beta bands. (C,D) Regional AEC (C) and spectral power (D) asa function of the seven stages. Deviations from the neural-synchrony spatial patterns averaged over the controls are displayed. The deviationswere evaluated using the probability-based weighted means of 𝑧-scores standardized by the controls. Spatial patterns in the MCI stage (stage 4)were circled with dotted lines. (E,F) Changes in neural synchrony during the preclinical stages. Regional comparisons between two stages (stages
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Figure 2—figure supplement 1. Normalized power spectral densities for the AD and control groups.
Figure 2—figure supplement 2. Group comparisons of MEG metrics.
Figure 2—figure supplement 3. Frontal and temporal regions of interest.
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long-range synchrony in the alpha and beta bands decreased steadily in stages 1–3 and then de-
creased further in stage 4 (Figure 2A). Local synchrony in the beta band also decreased by half
from 1 to 4 (Figure 2B). On the contrary, there were little changes in delta-theta-band long-range
synchrony and delta-theta- and alpha-band local synchrony from stage 1 to 3 but these changes
became prominent after stage 3.

Regional patterns of long-range and local synchrony as a function of the seven stages indicated
that prominent changes manifest themselves at stage 4 (Figure 2E, F; Supplementary file 7 and
Supplementary file 8). The regions with prominent deviations overlapped with the regions where
a significant increase and decrease in neural synchrony was observed in the group comparisons
(Figure 2—figure Supplement 2E, F).

The changes in neural synchrony metrics with AD progression indicate that neural synchrony
is a sensitive indicator of functional change along AD progression. To further investigate the tem-
poral association of functional deficits with neurodegeneration and cognitive decline, we included
neural synchrony in addition to the PHG volume loss and MMSE decline in the EBM frameworks,
performing SAC-EBMs.
Long-range synchrony changes in the alpha and beta bands precede PHG volume
loss and MMSE decline
SAC-EBMs that include PHG volume loss, 𝑧PHG, MMSE decline, 𝑧MMSE, and long-range synchrony
metric 𝑧-scores, 𝑧MEG, were performed setting a total of nine events (𝑁 = 9). SAC-EBMs separately
included long-range neural synchrony metrics in the delta-theta, alpha, and beta bands. Each EBM
determined the order of nine events, thus defining ten stages (Figure 3—figure Supplement 1;
for the corresponding positional variance diagrams of the optimal set of 𝑧-score events in the
SAC-EBMs, see Figure 3—figure Supplement 2 and Figure 3—figure Supplement 3). The result-
ing posterior probabilities, 𝑝𝑗(𝑘), that a subject 𝑗 belongs to a stage 𝑘 are shown in Figure 3—figure
Supplement 4.

For all frequency bands, around stages 5 and 6, the weighted means of PHG volume loss 𝑧-
scores were in the range of 1–2 and the MMSE scores were in the range of 23–27 (Figure 3B, F, J).
Furthermore, the ratio of subjects with CDR 0.5 was high around stage 5 (Figure 3A, E, I). These
indicated that stage 5 best represents the onset of clinical MCI stage, and stages 1-4, where MMSE
scores remain almost constant at or near 30, correspond to the preclinical stages of AD. Changes
in long-range synchrony during the preclinical stages are shown as statistical bars, and the region-
level changes are shown in Figure 3C–D, G–H, and K–L.

Long-range synchrony in the alpha and beta bands decreased markedly during the preclinical
stages of AD, preceding both PHG volume loss and MMSE decline. Specifically, between stages 1
and 4, the alpha- and beta-band long-range synchrony decreased by more than 80 % of the total
drop seen from stage 1 to 10. The whole brain, but especially the temporal area, was involved in
these prominent preclinical changes (Figure 3H, L). In contrast, the trajectory of delta-theta-band
long-range synchrony (Figure 3B, C) was almost identical to the evolution of the PHG volume loss
throughout the stages, but a large variation occurred around the MCI stages (stages 5 and 6) as
was found in the AC-EBM (Figure 2A). There were no significant increases in region-level synchrony
in delta-theta band during the preclinical stages (Figure 3D), consistent with an observation seen
in the AC-EBM (Figure 2F).

The trajectory shapes of the PHG volume loss (almost linear) and MMSE scores (half parabola)
were similar to those obtained in the AC-EBM (Figure 1G). This indicates that prominent changes
in alpha- and beta-band long-range synchrony during preclinical stages can be utilized to stratify
the preclinical stages determined only by neurodegeneration and cognitive deficits.
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Figure 3—figure supplement 1. Event sequences and trajectories determined by SAC-EBMs.
Figure 3—figure supplement 2. Positional variance diagrams of the 𝑧-score events in SAC-EBMs.
Figure 3—figure supplement 3. MCMC samples of the sequence of the optimal set of 𝑧-score events in the SAC-EBM including alpha-band AEC.
Figure 3—figure supplement 4. Posterior probabilities evaluated by the SAC-EBMs.
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Local synchrony changes in the alpha and beta bands precede PHGvolume loss and
MMSE decline
SAC-EBMs including PHG volume loss, MMSE decline, and local synchronymetric 𝑧-scores were per-
formed, separately considering delta-theta-, alpha-, and beta-band local synchrony metrics. When
considering delta-theta and alpha bands, around stages 6 and 7, the PHG volume loss 𝑧-scoreswere
in the range of 1–2 and the MMSE scores were in the range of 23–27 (Figure 4B, F), indicating that
stage 6 best represents the onset of the MCI stage. Furthermore, the ratios of subjects with CDR
0.5 were high in stages 6 and 7 (Figure 4A, E). For the beta band, based on similar observations,
stage 6 best represented the MCI stage (Figure 4I, J). For all frequency bands, stages 1-5, where
MMSE scores remain almost constant at or near 30, corresponded to the preclinical stages of AD.
The changes in local synchrony during the preclinical stages are shown as statistical bars, and the
corresponding region-level changes are shown in Figure 4C–D, G–H, and K–L.

Local synchrony in the alpha and beta bands decreased during the preclinical stages of AD,
preceding both PHG volume loss andMMSE decline (Figure 4F, G and Figure 4J, K). On the contrary,
the local synchrony in the delta-theta band increased, lagging the evolution of PHG volume loss
(Figure 4B, C). Specifically, the alpha-band local synchrony decreased considerably by the onset
of the MCI stage, showing significant reductions in the temporal regions (Figure 4H) during the
preclinical stages (stages 6 vs 1). It is noted that these trends were inconsistent with those found
in the AC-EBM (Figure 2B), especially within the preclinical stages, where there was little change
found in the alpha-band local synchrony. This can be interpreted as evidence that early stages
in AD progression may be better characterized by including neurophysiological markers as AD
indicators. Beta-band local synchrony also decreased during the preclinical stages, preceding PHG
volume loss and MMSE decline; by stage 5, the beta-band power decreased by approximately 55 %
of the total drop seen throughout the stages, and the reductions were observed in the whole brain
(Figure 4L). Unlike the local synchrony trajectories in the alpha and beta bands, the local synchrony
in the delta-theta band increased. The hyper-synchrony lagged the evolution of the loss of PHG
volume in the preclinical stages and made a large jump around the stages 6 and 7 (Figure 4D).

As shown in the previous section, large alpha- and beta-band hypo-synchrony during the pre-
clinical stages was also observed in long-range synchrony (Figure 3F, J). Notably, the decreases in
the long-range metrics were much greater than those in the local metrics, especially in the early
stages during the phase of preclinical AD (stages 1–3).
Discussion
We demonstrated that functional deficits of frequency-specific neural synchrony show progressive
changes across AD stages. Both long-range and local neural synchrony in the alpha and beta bands,
but not in the delta-theta band, was found to decrease in preclinical stages of AD, preceding neu-
rodegeneration and cognitive decline, with more robust findings for long-range neural synchrony.
These findings highlight the frequency-specific manifestations of neural synchrony in AD and that
synchrony reductions in the alpha and beta bands are sensitive indices reflecting functional deficits
in the earliest stages of disease progression.
Electrophysiological metrics of neural synchrony precede volume loss and cogni-
tive decline
A key finding of the current study is that functional deficits as depicted by reduced neural syn-
chrony precede structural volume loss and cognitive deficits. The EBMs on cross-sectional data
clearly demonstrated that alpha- and beta-band synchrony within the inferior temporal and pos-
terior parieto-occipital regions show significant deficits in the early disease stages–stages where
volumetric and clinical deficits are still not significantly deviated from their baseline trajectory. This
is consistent with the finding that functional changes occur earlier in the time course than struc-
tural changes in AD (Jack Jr et al., 2010; Sperling et al., 2011).
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Previous functional MRI studies have demonstrated disrupted connectivity especially between
the hippocampus and several areas of the cortical default mode network (DMN) in subjects with
amyloid deposition but without cognitive impairment (Sperling et al., 2014). This disruption in
DMNhas also been observed in clinically normal older individuals without prominent brain atrophy
in MTL that preserves hippocampal activity (Miller et al., 2008; Hedden et al., 2009), indicating
altered functional connectivity during the preclinical period of AD. In contrast to such fMRI data
reflecting the cascade of neural, metabolic, hemodynamic events in AD, our findings from MEG,
which captures the synaptic physiology as the collective oscillatory spectra, demonstrate direct
observations of AD-related altered neuronal activity.
Frequency-specific manifestations of neural synchrony deficits along the progres-
sion of the disease
We demonstrated that oscillatory deficits and their temporal association with neurodegeneration
and cognitive decline are frequency specific. In particular, it is the alpha and beta hyposynchrony
that precedes PHG atrophy and MMSE decline, whereas the delta-theta hypersynchrony does not
seem to show such a precedence. This is consistent with previous findings that alpha and beta
hyposynchrony is more tightly associated with tau accumulation, which is closely allied to neu-
rodegeneration and cognitive decline (Pusil et al., 2019; Ranasinghe et al., 2020, 2021). Neural
hyposynchrony in the alpha and beta bands may therefore represent harbingers of altered synap-
tic physiology associated with tau accumulation in AD. In fact, in human postmortem studies, the
strongest correlate of cognitive deficits in AD patients is loss of synapse (DeKosky and Scheff, 1990;
Terry et al., 1991). A study using transgenic AD mice has also shown that synaptotoxicity is an
early phenomenon in AD pathophysiology (Zhou et al., 2017). In the context of fluid biomarkers
to detect plasma amyloid, alpha and beta hyposynchrony can detect and quantify tau-associated
neurodegenerative mechanisms, and hence may provide crucial information for early therapeutic
interventions.

Previous studies have also shown that delta-theta oscillatory activity increases in AD and is
strongly associated with amyloid accumulation (Ranasinghe et al., 2020, 2022b). In particular, in-
creased delta-theta activity is a robust signal in individuals who are amyloid positive and cognitively
unimpaired as well as those who harbor APOE-𝜖4 allele and an increased risk of AD (Cuesta et al.,
2015; Nakamura et al., 2018). These previous findings indicate that delta-theta hypersynchrony is
an early change in AD spectrum and may even precede neurodegeneration and cognitive deficits.
However, in the current results, the trajectory of the delta-theta hypersynchrony was identical to
or lagged that of the PHG volume loss. This apparent controversy may be due to the possibility
that oscillatory changes in the delta-theta band are more closely related to amyloid accumulations
in AD, which become saturated early in the disease course and have a poor association with neu-
rodegeneration and cognitive trajectories. It would be worth exploring how the trajectory of early
saturated variables may be captured by EBM approaches.
Distinction between long-range and local synchrony deficits in disease progression
The decrease in alpha and beta-band long-rangemetrics in the preclinical stages wasmuch greater
than that in the local metrics. This is consistent with the fact that AD-related abnormal brain activi-
ties are observed as disruptions of functional networks. Long-range cross-regionalmetrics, such as
AECs, directly capture network disruptions involving all brain regions, while local metrics capture
features of individual regions. From the definition, local synchrony describes collective neuronal
oscillations in each local region, and thus the change along AD progression may depend mainly
on long-term, slowly changing regional neuronal loss. On the other hand, long-range synchrony
describes temporal coherence amongst regional collective neuronal oscillations and is vulnerable
to altered neuronal oscillations. Therefore, long-range metrics are more sensitive to abnormal
rhythms, collecting local abnormalities.
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Preclinical neurophysiological markers that indicate the pathophysiology of AD are clinically im-
portant but have not been established. A𝛽 accumulation in preclinical stages is just a necessary
condition for AD, and additional preclinical markers are required to fully predict the progression
of AD. From this point of view, the present study indicates that alpha- and beta-band MEG met-
rics, especially long-range synchrony metrics (AEC), which were found to be sensitive to preclinical
stages, could be promising candidates as such additional markers.
Limitations
A limitation of the current study is that there were differences in age between controls and AD
patients. Although we adjusted the age of each metric using GLMs, age trajectories in neurophys-
iological measures have been reported to be nonlinear even in healthy aging (Sahoo et al., 2020).
Age-related changes in brain atrophy have also been reported to follow a nonlinear time course
depending on the brain areas (Coupé et al., 2019). These studies indicate that it may be better to
employ a non-linear method beyond GLM to perfectly correct aging effects.

Another limitation is that we have not performed independent validations of the predicted tra-
jectories and also have not examined the heterogeneity in AD progression, although we clarified
for the first time the time courses of MEG neurophysiological metrics in AD progression. In fact, AD
is a heterogeneous multifactorial disorder with various pathobiological subtypes (Jellinger, 2022).
In this context, an EBM called Subtype and Stage Inference (SuStaIn) capable of capturing spatio-
temporal heterogeneity of diseases (Young et al., 2018) has been proposed to subtyping neurode-
generative diseases including typical AD and has been applied to find different spatio-temporal
trajectories of longitudinal tau-PET data in AD (Vogel et al., 2021). Since oscillatory rhythms are
thought to depend on AD subtypes (Ranasinghe et al., 2017, 2022a), an extended trajectory analy-
sis considering spatial and temporal variations of the MEG/EEG metrics is warranted in the future,
and such analyses would provide distinct neurophysiological trajectories depending on AD sub-
types. As a validation of the predicted trajectories, it would be necessary to investigate whether
the predicted EBM stages are reliable and predictive of conversions (e.g., from control toMCI) while
taking the AD subtypes into account.
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and a set ofMATLAB scripts for reproducing all results and figures in themanuscript are available at
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Positional Variance

Figure 1—figure supplement 1. Steps for computing metric trajectories. The metrics-
trajectory computation steps in the AC-EBM are illustrated. Similar steps were executed for the
SAC-EBMs. In an SAC-EBM, the number of iterations in Step 1 was (7C3 × 7C3 × 7C3 =)42, 875. A dia-
gram shown at the bottom of Step 1 represents the relationship between the events and stages in
a linear 𝑧-score model. A stage is located between two consecutive event occurrence times and its
model value (𝜇𝑖(𝑘)) is given by a midpoint value. When a total of 𝑁 events is set, the models pro-
vide𝑁 + 1 EBM stages. Positional variance diagrams of the 𝑧-score events created from the 50, 000
MCMC samples indicated that there was no uncertainty in the predicted positions of selected 𝑧-
score events. Another example of positional variance with positional uncertainty has been shown
in Figure 1—figure Supplement 2.
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Figure 1—figure supplement 2. An example of positional variance diagram of 𝑧-score events.
The 𝑧-score events, 𝑧PHG = [E1 E2 E3] = [0.5 0.75 1.5] and 𝑧MMSE = [E4 E5 E6] = [0.1 0.3 3.0], were
selected. MCMC sampling (50, 000 samples) was performed to find an optimal sequence of events.
It should be noted that this set of 𝑧-score events was not used in the AC-EBM shown in the main
text. This figure is intended to show just an example of positional variance diagrams with posi-
tional uncertainty. In the AC-EBM shown in the main text, we obtained the positional variance
diagrams without positional uncertainty for the optimal sets of 𝑧-score events (Figure 1—figure
Supplement 1).

Control

AD

10 20 30

MMSE

***

Control

AD

6 8 10 12

PHG volume [ml]

***

A B

Figure 1—figure supplement 3. Group comparisons of PHG volumes and MMSE scores.
(A) Group comparison of PHG volume [unpaired 𝑡-test: 𝑡(143) = −9.508; ∗∗∗𝑝 < 0.001] based on
𝑇 -statistic while adjusting for the effects of TIV, age, and the difference between MRI and MEG
dates. The PHG volume was defined as the sum of the volumes of PHGs from the left and right
hemispheres. The average PHG volume in patients with AD was 7.99 ml ± 0.09, and the average
PHG volume in controls 9.28 ml ± 0.11. (B) Group comparison of MMSE scores [unpaired 𝑡-test:
𝑡(144) = −10.171; ∗∗∗𝑝 < 0.001] based on 𝑇 -statistic while adjusting for the effects of age and the dif-
ference between MMSE and MEG dates. MMSEs were performed within an average of 0.48 years
(range: −2.83–1.50) and 0.22 years (range: −1.52–1.01) of the evaluation of MEG for controls and
patients, respectively.
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Figure 1—figure supplement 4. Group comparison of GM volumes. Group comparisons of GM
volume for each of the 94 anatomical regions included in the AAL3 atlaswere performedby comput-
ing 𝑇 - and 𝑝-values using GLMswith total intracranial volume (TIV), age, and the difference between
MRI and MEG dates as covariates. Eighty-seven regional GM volumes were significantly smaller in
patients with AD than in controls, especially in the temporal regions. 𝑇 -values exceeding thresh-
old (𝑞 < 0.01, FDR corrected) were displayed. Top 10 regions with significant group differences are
listed in Supplementary file 4.

Figure 2—figure supplement 1. Normalized power spectral densities (PSDs) for the AD and
control groups.. PSDs were averaged in all regions of the brain (94 AAL3 atlas) for controls and
AD patients, respectively. Their 95% confidence intervals are also shown. The shaded areas in
the frequency axis denote the canonical frequency bands: delta-theta (2–7 Hz), alpha (8–12 Hz),
and beta (15–29 Hz) bands. In terms of the average PSD in AD, a clear alpha peak disappeared.
Alpha frequencies in each region in AD patients generally decrease (i.e. alpha slowing) compared
to controls. The magnitude of alpha slowing depends on brain regions as well as AD severity; for
example, alpha slowing is prominent in temporal regions. Averaging over PSD curves with different
alpha peaks results in the disappearance of an alpha peak in the average PSD in patients with AD.
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Figure 2—figure supplement 2. Group comparisons of MEGmetrics. (A,B) Group comparisons
(violin plots) and 𝑧-score histograms of the six scalar MEGmetrics: [i] frontal delta-theta-band AEC,
[ii] whole-brain alpha-band AEC, [iii] whole-brain beta-band AEC, [iv] whole-brain delta-theta-band
spectral power, [v] temporal alpha-band spectral power, and [vi] whole-brain beta-band spectral
power. Group comparisons were performed by 𝑇 -statistics while adjusting for the effect of age
(∗∗∗𝑝 < 0.001). In terms of the 𝑧-scores of the scalar MEG metrics, raw 𝑧-score values in alpha and
beta bandswere negative in patientswith AD, and thereforewedefined 𝑧MEG, multiplying the values
by −1 so that higher 𝑧-scores denote more severity. The sign-inverted 𝑧-scores were included in
the SAC-EBMs. (C–F) Group comparisons of the regional MEG metrics based on 𝑇 -statistic maps
of region-wise comparisons (94 AAL3-atlas regions) while adjusting for the effect of age. For the
regional AECs, we considered the connectivity strengths of each ROI. The unit of spectral power is
a percentage of total power. 𝑇 -values exceeding thresholds (𝑞 < 0.05 for long-range synchrony (E)
and 𝑞 < 0.01 for local synchrony (F), FDR corrected) are displayed. The top 10 regionswith significant
group differences in long-range (E) and local (F) synchrony are listed in Supplementary file 5 and
Supplementary file 6, respectively.
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Temporal ROIFrontal ROI

Figure 2—figure supplement 3. Frontal and temporal regions of interest. The regions of inter-
ests (ROIs) were based on group differences in neural synchronymetrics between patients with AD
and controls. ROIs were selected symmetrically for the left and right hemispheres from the regions
where large group contrasts were identified (see Figure 2—figure Supplement 2E, F). For the frontal
delta-theta-band AEC, 12 subregions were chosen mainly from the frontal area: left and right pre-
central, superior frontal (dorsolateral/medial), middle frontal, anterior cingulate & paracingulate
gyri, and supplementary motor areas. For the temporal alpha-band spectral power, 20 subregions
were chosen from the temporal area: left and right parahippocampal, lingual, superior/middle/
inferior occipital, fusiform, superior/middle/inferior temporal gyri, and precunei.
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Figure 3—figure supplement 1. Event sequences and trajectories determined by SAC-EBMs.
Sequences of nine events (𝑁 = 9) are displayed as filled dots. In a linear 𝑧-score model, two con-
secutive events for a metric are linearly interpolated. Stages are located at temporal midpoints
between two consecutive event occurrence times. The combinations of frequency bands and re-
gions circled by blue dotted lines were considered in the SAC-EBMs described in themain text. The
trajectory panels circled by blue dotted lines are the same as the trajectories shown in Figures 3
and 4 of the main text.
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Positional Variance of the selected z-score events in SAC-EBM including Long-range synchrony (AEC)

delta-theta alpha beta

Positional Variance of the selected z-score events in SAC-EBM including Local synchrony (Spectral Power)

delta-theta alpha beta

Figure 3—figure supplement 2. Positional variance diagrams of the 𝑧-score events in SAC-
EBMs. The SAC-EBMs with the optimal sets of the 𝑧-scores are shown. The labels of the 𝑧-score
events, E1, E2, … , E9, are for the PHG volume loss 𝑧-scores, the MMSE decline 𝑧-scores, and the
MEG-metric 𝑧-scores, respectively; 𝑧PHG = [E1,E2,E3], 𝑧MMSE = [E4,E5,E6], and 𝑧MEG = [E7,E8,E9].
Positional variance was evaluated based on the MCMC samples of the sequence of the optimal set
of 𝑧-score events, such as Figure 3—figure Supplement 3.
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Figure 3—figure supplement 3. MCMC samples of the sequence of the optimal set of 𝑧-score
events in the SAC-EBM including alpha-bandAEC.Apositional variance diagram for the SAC-EBM
including alpha-band AEC (a upper middle panel in Figure 3—figure Supplement 2) was calculated
based on this occurrence frequency of the sequence of the 𝑧-score events.
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Posterior probabilities in the SAC-EBM including Long-range synchrony (AEC)

delta-theta alpha beta

Posterior probabilities in the SAC-EBM including Local synchrony (Spectral power)

delta-theta alpha beta

Figure 3—figure supplement 4. Posterior probabilities evaluated by the SAC-EBMs. The pos-
terior probabilities that a subject 𝑗 belongs to a stage 𝑘 are given by 𝑝𝑗(𝑘). (upper panels) Posteriorprobabilities in the SAC-EBM including long-range synchrony. (lower panels) Posterior probabilities
in the SAC-EBM including local synchrony.
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