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Abstract 

The ability to stably maintain visual information over brief delays is central to healthy cognitive 
functioning, as is the ability to differentiate such internal representations from external inputs. 
One possible way to achieve both is via multiple concurrent mnemonic representations along 
the visual hierarchy that differ systematically from the representations of perceptual inputs. To 
test this possibility, we examine orientation representations along the visual hierarchy during 
perception and working memory. Human participants directly viewed, or held in mind, oriented 
grating patterns, and the similarity between fMRI activation patterns for different orientations 
was calculated throughout retinotopic cortex. During direct viewing of grating stimuli, similarity 
was relatively evenly distributed amongst all orientations, while during working memory the 
similarity was higher around oblique orientations. We modeled these differences in 
representational geometry based on the known distribution of orientation information in the 
natural world: The “veridical” model uses an efficient coding framework to capture hypothesized 
representations during visual perception. The “categorical” model assumes that different 
“psychological distances” between orientations result in orientation categorization relative to 
cardinal axes. During direct perception, the veridical model explained the data well. During 
working memory, the categorical model gradually gained explanatory power over the veridical 
model for increasingly anterior retinotopic regions. Thus, directly viewed images are represented 
veridically, but once visual information is no longer tethered to the sensory world there is a 
gradual progression to more categorical mnemonic formats along the visual hierarchy.  
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Introduction 

Holding images in mind over a brief delay is central to cognition, as it allows for the retention 
and manipulation of information that cannot be viewed directly. Visual working memory (VWM) 
recruits early visual cortex, including primary visual area V1 – as indexed by response patterns 
recorded with fMRI1–8. Being the first cortical processing site of visual inputs, the role of V1 during 
perception is fundamentally different from its role during visual working memory. This is because 
in the absence of direct visual input, mnemonic information in V1 and other early visual areas 
must necessarily be generated internally. Famously, sensory recruitment theory posits that 
higher-order frontal and parietal regions of the brain that are active throughout the working 
memory delay9–20, recruit early sensory areas in a top-down manner in order to maintain high 
fidelity sensory memories21,22. Alternatively, recurrent processes in local circuits could sustain 
information over a memory delay23,24, although such recurrenc3,4y is presumably stronger in more 
anterior brain areas where higher pyramidal cell spine counts are believed to support increased 
connection strength of local circuits25,26. Irrespective of the exact substrate of working memory 
maintenance – with inputs from the external sensory world during perception, and from sources 
within the brain during working memory, it is unlikely that viewed and remembered visual 
information would be represented in an identical manner in early visual cortex27–30. However, it 
remains an open question how a cortical area like V1, specialized for processing visual inputs, 
actually represents visual working memories. Are working memory representations just noisier 
versions of perceptual representations, or do they differ in a fundamental way? Might there be 
representational transformations along the visual hierarchy as top-down influences play an 
increasingly larger role during VWM?  

Recent work has claimed that early visual cortex (EVC) represents VWM information in a 
“sensory-like” format that is similar to representations driven by sensory inputs1,31, while more 
anterior visual areas like the Intraparietal Sulcus (IPS) represent VWM information in a format that 
is transformed away from the sensory driven response31. This claim of “sensory-likeness” in EVC 
comes from the fact that when participants remember an orientation, response patterns are 
similar to response patterns evoked by directly viewing a stimulus with the same orientation even 
when that viewed stimulus is not attended. In parietal cortex such cross-generalization from 
sensory to working memory responses fails, while memories are decodable when considering 
only the response patterns during working memory themselves (i.e., without cross-
generalization). The idea that visual representations are transformed away from the “sensory-
like” into a different, more abstract format during memory is further supported by work similarly 
using cross-generalization to decode VWM contents32. In this study, participants remembered 
one of two visually distinct features – the orientation of a grating, or the direction of a moving dot 
cloud. During encoding (i.e., stimulus perception), the two features evoked distinct response 
patterns in EVC that did not cross-generalize, likely owing to the distinct retinal inputs evoked 
by the two features. However, these two features share a spatial component (degrees on a 
circle), and during the memory delay the EVC response patterns for orientation and direction of 
the stimuli did successfully cross-generalize, likely owing to a “line-like” abstraction that is 
realizable for both visual features.     
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However, the possible range of to-be-remembered visual features far outstrips those that can 
be mapped onto a circle (and into a line). For example, surface features such as contrast or color 
are not readily abstracted into a “line-like” representation, let alone more complex features such 
as shapes or objects. Indeed, there is abundant psychophysical work showing that memory 
reports for numerous (surface) features are biased toward category centers33,34,35, indicative of 
categorization at the behavioral level. This means that a more general principle of abstraction 
remains to be uncovered. Furthermore, we know that retinotopically organized “sensory-like” 
representations or abstractions are not generally observed outside of early visual cortex31,32,36,37. 
An important step to investigate possible abstraction used for working memory is to consider 
not only response patterns, but also the representational geometry. A response pattern (also 
called a “coding scheme”38) simply refers to the pattern of responses that is measured during an 
experimental condition. Depending on the measurement technique, this could be a pattern of 
firing rates across multiple neurons, a pattern of BOLD responses across multiple voxels, or any 
other kind of response vector measured over a number of units. When it’s possible to cross-
generalize from one experimental condition to another – for example from sensory to memory, 
or from orientation to direction – we know that the response pattern is similar in the two 
conditions. For example, the specific pattern of brain activity in response to a directly viewed 
stimulus with an orientation of 90º would be similar to the pattern measured when that same 90º 
stimulus is held in working memory. The representational geometry captures a lower-dimensional 
format of a given stimulus set, and can be invariant to changes in the underlying response 
patterns39. The pairwise distances between patterns of responses corresponding to a set of 
stimuli determine the geometry, meaning that even if the underlying response patterns change 
(e.g., they are inverted, shifted, or undergo some other transformation), the geometry can remain 
stable. For example, in the case of orientation the geometry may reveal that adjacent orientations 
(say 90º and 91º) evoke similar underlying response patterns, and that this similarity drops at 
increasing distances in orientation space. Such representational geometry can be shared 
between direct sensory input and working memory maintenance, while a sensed stimulus of 90º 
may nevertheless evoke a completely different response pattern compared to a 90º stimulus 
held in working memory. As long as the pattern distances between different orientations are the 
same during a sensory and memory task, so is the geometry. Indeed, we know that despite 
dynamics in population response patterns over time, the representational geometry of a stimulus 
set can remain stable40,41.  

Here we want to examine the representational geometry during orientation working memory 
throughout the visual hierarchy, and see how this compares to bottom-up stimulus driven activity 
elicited by directly viewed stimuli. To ensure active perception of directly viewed sensory stimuli, 
while avoiding overlap in top-down attentional state, participants attended an orthogonal 
stimulus feature (contrast) during the sensory task, while holding a precise orientation in mind 
during the memory task. By looking at the representational geometry we can investigate the 
representational formats of both perception and working memory in a way that does not depend 
on response patterns generalizing from one condition to another. Moreover, it allows us to 
investigate potential systematic differences in the representational geometry between 
perception and working memory, even when underlying response patterns are still similar 
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enough for successful cross-generalization. To illustrate, what if abstraction in memory happens 
by compressing part of the stimulus space, making it more categorical? Such compression may 
warp response patterns for a subset of orientations, without necessarily transforming them to a 
point where the coding scheme breaks down. In such a case, cross-generalization from 
perception to working memory could coexist with a change in the representational geometry. 
Thus, examining the representational geometry allows us more freedom to see if perception and 
working memory are truly represented similarly, or if the representational formats perhaps differ 
in fundamental ways.   

We introduce a principled approach to investigating categorization across the visual hierarchy. 
First, we use representational similarity analysis (RSA) to show a clear differentiation between 
the geometry of perception and working memory representations for orientation in human visual 
cortex. Second, we model the extent to which the representational geometry is true to a 
simulated sensory response (the “veridical” model), or abstracted away from the sensory input 
(the “categorical” model). Our two models are constrained by a single principle, namely, the 
distribution of orientation information in the natural world42,43. By applying these two models to 
the data, we show that sensory inputs are represented in a largely veridical manner in EVC, 
adapted to the statistics of the natural visual world (i.e., efficient coding). By contrast, working 
memories are represented more categorically, in a manner predicted from the same landscape 
of visual input statistics, but using a higher-order metric based on how different any set of 
orientations may appear to the observer (i.e., their “psychological distance”). Critically, we show 
that during working memory the representational format becomes increasingly more categorical 
along the visual hierarchy, uncovering a gradient of abstraction.  
 
 
Results 

To examine neural representations during perception and working memory, we analyze existing 
fMRI recordings from six participants who were either directly viewing oriented grating stimuli 
during a sensory task, or remembering orientations for later recall during a working memory task 
(Figure 1A). During the sensory task, participants saw each oriented grating for 9s at a time, and 
they had to actively detect a small reduction in contrast (500ms) that happened probabilistically 
(twice per 9s, meaning it could occur 0 to >2 times per trial). To avoid adaptation, grating contrast 
was phase reversed every 500ms. During the working memory task, participants briefly (500ms) 
saw a grating and remembered its orientation for 13s. On two-thirds of memory trials a visual 
distractor (filtered noise, or another grating with uncorrelated orientation) was presented during 
the middle portion of the delay (for 11 seconds). Because there was little-to-no quantifiable 
difference between the different trial types (see ref31), we analyzed data from all delays combined. 
For all analyses we use average voxel responses from 4.8–9.6s and 5.6–13.6s after stimulus 
onset for the sensory and memory task, respectively (replicating the time-windows used in the 
original publication31). For the working memory task in particular, this choice of time-window is 
based on the observation that (1) the BOLD response evoked by the to-be-remembered stimulus 
is back to baseline ~6s post stimulus onset in these data31, (2) decoding is possible for every 
single TR during the delay31 well beyond the stimulus-evoked BOLD response and despite poorer 
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signal-to-noise of single TR data, and (3) much prior work has shown that stimulus-evoked BOLD 
alone is insufficient for stimulus information to persist into the memory delay1,2,4,8,44,45.  

We use cross-validated representational similarity analysis (RSA) – a method that projects neural 
activation patterns into an abstract space that describes the stimulus (here: orientation)41, 46–48. 
Specifically, we created, for each visual cortical Region of Interest (ROI) and each of the two 
tasks (sensory and memory), a matrix capturing the similarity between the neural response 
patterns to all possible orientations using cross-validated correlations (Figure 1B). To illustrate: 
When two orientations are represented in a very similar manner, the pattern of voxel responses 
to the first orientation will correlate strongly with the pattern evoked by the second orientation. 
Conversely, for orientations with very distinct representations, correlations will be low. Because 
orientation space is continuous, physically similar orientations (e.g., 10º and 11º) will likely 
correlate more strongly than physically dissimilar orientations (e.g., 10º and 40º) in areas of the 
brain that encode orientation information.  

The representational similarity matrices (RSM’s) constructed for our visual ROI’s (Figure 1C; 
Supplementary Figure 1) show striking qualitative differences between how orientation is 
represented during perception (in the sensory task), and working memory (in the memory task). 
During the sensory task, early visual areas V1–V3 show a strong diagonal component and 
relatively higher degree of similarity around cardinal orientations (180º in particular, which is 
vertical), with notable transformations away from this representational geometry primarily along 
the dorsal stream (V3AB and IPS). During the memory task, there is a prominent clustering of 
representational similarity around oblique orientations (45º and 135º). This clustering seems to 
increase along the visual hierarchy and appears most pronounced in area IPS0. These results 
do not depend on the specific way we bin orientations in our RSA (Supplementary Figure 2).         

 
Figure 1: Task and main analysis (A) For the sensory task (left), participants viewed a randomly oriented grating for 
9 seconds per trial (contrast phase-reversing at 5 Hz) and reported instances of contrast dimming. For the working 
memory task (right), participants remembered a briefly presented (500 ms) randomly orientated grating for 13 seconds, 
until a 3 second recall epoch (not depicted). (B) For each Region of Interest (ROI) we employed a split-half 
randomization procedure to create a Representational Similarity Matrix (RSM) for each participant. On each 
randomization fold, voxel patterns from all trials (300–340 for sensory, 324 for memory) were randomly split in half. For 
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each half of trials, we averaged the voxel patterns for every degree in orientation space within a + 10º window. This 
resulted in 180 vectors with a length equal to the number of voxels for each split of the data. We then calculated the 
similarity between each vector (or degree) in one half of the data, to all vectors (or degrees) in the second half of the 
data, using a Spearman correlation coefficient. This resulted in a 180x180 similarity matrix on each fold. This 
randomization procedure was repeated 1000 times to generate the final RSM for each ROI and each participant. Across 
all folds, RSM’s are near-symmetrical around the diagonal, give-or-take some cross-validation noise. (C) 
Representational geometry of orientation during the sensory (top row) and working memory (bottom row) tasks, for 
retinotopically defined ROI’s (columns) across all participants. During the sensory task, the clear diagonal pattern in 
early visual areas V1–V3 indicates that orientations adjacent in orientation space are represented more similarly than 
orientations further away. During the memory task, similarity clusters strongly around oblique orientations (45º and 
135º), contrasting starkly with the similarity patterns during perception. Note that the diagonal represents an inherent 
noise-ceiling, due to the cross-validation procedure used. This noise ceiling shows inhomogeneities across orientation 
space, demonstrating how certain orientations may be encoded with more noise than others. RSM’s are scaled to the 
range of correlations within each subplot to ease visual comparison of representational structure between sensory and 
memory tasks for all ROI’s (exact ranges are shown in Supplementary Figure 3). For early ROI’s (V1–V4), only visually 
responsive voxels are included in the analysis. Throughout, 0º (and 180º) denotes vertical, and 90º denotes horizontal.    

To quantify the results in Figure 1C, we contrast two possible models – the “veridical” and the 
“categorical” model. The veridical model intends to capture how orientations are represented in 
a manner that faithfully reflects early visual processing of signals from the external world. The 
categorical model uses a higher-level concept – the “psychological distance” between 
orientations – as a basis for abstracting a physically continuous space into discrete categories. 
Importantly, these two models are jointly constrained by the known distribution of orientation 
information in the natural world, which has a higher occurrence of cardinal compared to oblique 
orientations (Figure 2A; ref42). According to the “efficient coding” hypothesis, this inhomogeneity 
in orientation input statistics leads to adaptive changes in the sensory system, with relatively 
more neural resources dedicated to cardinal compared to oblique orientations49–53. As a result, 
observers demonstrate a higher resolution (e.g., improved discriminability) around cardinal 
orientations – a phenomenon paradoxically known as the “oblique effect”54–56. Orientation reports 
also tend to be biased away from cardinal axes43,57,58. Together, this suggests a distinct role for 
cardinal orientations, both with respect to precision and bias.  

The idea behind the veridical model is that region-wide orientation representations emerge from 
low-level neural responses to sensory inputs. Specifically, the starting point for this model is a 
set of idealized tuning functions that tile orientation-space (Figure 2B, top). The amplitude of 
each orientation tuning function is scaled by the estimated frequency of occurrence for that 
orientation in the natural world (i.e., scaled by the theoretical “input statistics” function, see 
Figure 2A and Methods). Therefore, tuning functions closer to cardinal orientations have relatively 
higher amplitudes than those closer to obliques. We modulate tuning curve amplitude (and not 
other properties like tuning width or density) because of known amplitude differences in the fMRI 
signal for cardinals compared to obliques59. For any given stimulus orientation, we can simulate 
a vector of neural responses by reading out the hypothesized activity from every idealized neural 
tuning function. Such a simulated response vector can be correlated against simulated 
responses to all other possible stimulus orientations (analogous to the approach in Figure 1B), 
to arrive at the veridical model RSM (Figure 2B, bottom). Specifically, to preserve the BOLD 
amplitude differences mentioned above, we use Pearson correlations to generate the model 
RSM. Thus, here we model a veridical early visual representation by accounting for known 
inhomogeneities of orientation space, based on the principle of efficient coding43. Note that our 
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veridical model is a direct consequence of the choice to use amplitude modulation (instead of 
e.g., tuning width) as well as correlation (instead of e.g., Euclidian distance), and that there are 
multiple other possible ways to implement inhomogeneities across orientation space and the 
idea of efficient coding39,43,60.  

The idea behind the categorical model is to discretize the physically continuous orientation space 
into plausible higher-level psychological categories. A principled way to categorize orientation is 
to again rely on the input statistics function (Figure 2A), and consider how inhomogeneities in 
orientation space might affect more experiential measures such as perceptual similarity61. For 
example, in parts of the orientation space with high resolution (near the cardinals), two physically 
similar orientations (e.g., 4º apart) can look clearly different from one another, while orientations 
with the same physical similarity in parts of orientation space with lower resolution (near the 
obliques) can look indistinguishable. We formalize this “psychological distance” as the distance 
between any pair of orientations along the theoretical input statistics function (Figure 2C, top). 
Returning to our example, two near-cardinal orientations (e.g., 88º and 92º) will have a larger 
psychological distance (i.e., are relatively far apart along this function) compared to two near-
oblique orientations (e.g., 43º and 47º) (compare the Figure 2C grating inserts in blue versus red, 
respectively). The psychological distances between all possible orientations make up the 
categorical model RSM (Figure 2C, bottom). This RSM shows how orientations in one category 
(bound by two cardinals) are represented similarly to one another, but dissimilarly from 
orientations in a second category (on the other side of the cardinals). Thus, here we model how 
orientation representations can be categorized based on where an orientation is relative to 
cardinal – the cardinal axes effectively serving as category boundaries.  

How well can the representational geometry during the sensory and memory tasks (Figure 1C) 
be explained by our veridical (Figure 2B) and categorical (Figure 2C) models? Because our two 
models are not independent, we evaluated the correlation of each model to the data after first 
removing the variance explained by the other model, which is also known as a semi-partial 
correlation. Specifically, to look at the unique contribution of the veridical model in explaining 
the data, we first remove the variance of the categorical model from the veridical model, and 
then correlate the residuals to the data RSM’s (and vice versa for the categorical model; see 
Methods). We apply a Fisher transformation to the resulting correlation values to normalize their 
distribution, and better allow for statistical testing.  Transformed correlations are shown in Figure 
2D for our sensory (top) and memory (bottom) tasks. Importantly, these results do not depend 
on the specific fitting approach, and replicate when we fit each model directly to the data (without 
first taking the residuals), and also when we use a general linear model to simultaneously fit both 
models to estimate their beta weights (Supplementary Figure 4).  
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Figure 2: Modeling the representational similarity of perceived and remembered orientations (A) The distribution 
of visual orientation in the natural world is inhomogeneous, with higher prevalence of orientations closer to cardinal 
(90º & 180º) compared to oblique (45º & 135º). The function shown here approximates these input statistics, and is 
used to constrain both the veridical (in B) and categorical (in C) models. (B) The veridical model is based on the 
principle of efficient coding – the idea that neural resources are adapted to the statistics of the environment. We model 
this via 180 idealized orientation tuning functions with amplitudes scaled by the theoretical input statistics function (the 
top panel shows a subset of tuning functions for illustrational purposes). A vector of neural responses is simulated by 
computing the activity of all 180 orientation-tuned neurons to a given stimulus orientation. Representational similarity 
is calculated by correlating simulated neural responses to all possible orientations, resulting in the veridical model RSM 
(bottom panel). Note that while we chose to modulate tuning curve amplitude, there are multiple ways to warp the 
stimulus space (e.g., by applying non-uniform changes to gain, tuning width, tuning preference, etc.39,43). (C) In the 
categorical model, categorization is based on people’s subjective experience of relative similarity between orientations 
in different parts of orientation space: If orientations in part of the space appear quite similar, they are lumped together 
into the same category, while the most distinctive looking orientations serve as category boundaries. This is quantified 
via the “psychological distance” – the sum of derivatives along the input statistics function between any pair of 
orientations (see top panel). The insert shows an example of orientation-pairs near cardinal (in blue) and oblique (in 
red) that have the same physical distance, but different psychological distances. The psychological distance between 
each possible pair of orientations yields the categorical model’s RSM (bottom panel). (D) Fits of the veridical (grey) and 
categorical (teal) models for the sensory (top) and memory (bottom) tasks. During the sensory task, the veridical model 
better explains the data compared to the categorical model in almost all visual ROI’s (except IPS1–3), indicating a 
representational scheme that is largely in line with modeled early sensory responses. During the memory task, the 
categorical model gains increasingly more explanatory power over the veridical model along the visual hierarchy, and 
explains the data significantly better in V3, V3AB, V4, and IPS0. The Fisher transformed semi-partial correlations (on 
the y-axis) represent the unique contribution of each model after removing the variance explained by the other model 
via semi-partial correlations. Dots represent individual participants, and errorbars represent + 1 within-participant SEM. 
Asterisks indicate the significance level of post-hoc two-sided paired-sample t-tests (*p < 0.05; **p < 0.01; ***p < 0.001) 
comparing the two models in each ROI.    
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0.0003). This advantage is not the same in all ROI’s (interaction of model x ROI: F(7,35) = 4.158, p 
= 0.002), with post-hoc tests showing a difference between the two models in all ROI (except 
IPS1–3). The fact that the veridical model outperforms the categorical model during perception 
in the sensory task helps validate our modeling approach, given that the veridical model is 
founded on what we know about early bottom-up sensory processing.  

During the memory task, the categorical model better explains representational similarity than 
the veridical model (main effect of model: F(1,5) = 11.4, p = 0.0198). The extent to which the 
categorical model outperforms the veridical model differs across ROI’s (interaction of model x 
ROI: F(7,35) = 3.048, p = 0.013), with the categorical model explaining increasingly more of the 
representational geometry along the visual hierarchy. A significant difference between the two 
models emerges in area V3, and persists until area IPS0. These results corroborate the qualitative 
categorization already apparent from the memory task RSM’s in Figure 1C, and reveal a 
posterior-to-anterior gradient in terms of categorization strength during working memory, but 
not perception (interaction of ROI x task x model: F(7,35) = 3.226, p = 0.0095). Finally, we also 
confirmed that the presence of distractors during the delay did not impact the pattern of results 
in the memory task (Supplementary Figure 5). 

To verify that our modeling results do not critically depend on the exact shape of the theoretical 
input statistics function in Figure 2A, we next used behavioral error from an independent 
psychophysical experiment to constrain both our models (Figure 3A). A new set of 17 participants 
each completed 1620 trials of an orientation recall task. For every possible stimulus orientation 
that was shown (1º–180º in steps of 1º), we calculate the absolute mean recall error across all 
participants. With 27540 total trials in the experiment, and a sliding window of 3º for more reliable 
estimates, absolute errors are based on 459 trials for every possible stimulus orientation. We 
chose the mean absolute error as it takes both response variance and response bias into 
account. As expected, recall error is inhomogeneous along orientation space, with pronounced 
differences between cardinals and obliques (Figure 3A). Specifically, recall is more accurate 
around cardinal compared to oblique orientations. We generated the veridical and categorical 
models anew from this psychophysical input function (Figure 3B), and again fit both models to 
our empirical RSM’s to see how well they explained the data (Figure 3C). We replicated the 
difference between the sensory and memory tasks, and how their representational geometries 
are better explained by the veridical and categorical models, respectively (interaction ROI x task 
x model: F(7,35) = 4.712; p = 0.001). During the sensory task, the veridical model outperformed the 
categorical model (main effect of model: F(1,5) = 52.55, p = 0.001), and this advantage differed 
significantly between ROI’s (interaction of model x ROI: F(7,35) = 2.984, p = 0.015). During the 
memory task, the categorical model outperformed the veridical model (main effect of model: F(1,5) 
= 10.6, p = 0.023), and explained increasingly more of the representational geometry in some 
ROI’s than in others (interaction of model x ROI: F(7,35) = 4.539, p = 0.001). 
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Figure 3: Generating and fitting the veridical and categorical models based on independent behavioral data (A) 
During an independent psychophysical examination, a new set of participants (N=17) reported the orientation of briefly 
presented (200ms) and remembered (2s) single gratings by rotating a response dial with a computer mouse (i.e., via 
method-of-adjustment). For each possible stimulus orientation in the experiment (+1º), we calculated the mean absolute 
response error across all participants, and smooth the resulting function (Gaussian, over 10º). The absolute error–1 (y-
axis) is plotted against the stimulus orientation shown to participants. From this psychophysical input function, the 
veridical and categorical models were generated as previously described (see Figure 2B & 2C). (B) Veridical and 
categorical models generated from the psychophysical input function (in A). (C) Fits of the veridical (in grey) and 
categorical (in teal) models based on the independent psychophysical data. During the sensory task (top), the veridical 
model better explains the data compared to the categorical model in all visual ROI’s except for IPS1–3. During the 
memory task (bottom), the categorical model better explains the data compared to the veridical model in V2, V2AB, 
and V4 (and marginally better in IPS0 with p = 0.053). The Fisher transformed semi-partial correlations (on the y-axis) 
represent the unique contribution of each model after removing the variance explained by the other model. Dots 
represent individual participants, and errorbars represent + 1 within-participant SEM. Asterisks indicate the significance 
level of post-hoc two-sided paired-sample t-tests (*p < 0.05; **p < 0.01; ***p < 0.001) comparing the two models in each 
ROI. 

How might we reconcile the observed differences in representational geometry between the 
sensory and memory tasks, with the overlap in coding schemes that is evident from the ability 
to cross-generalize from the sensory to the memory task in EVC31? To directly relate these two 
analysis approaches, we modified the typical RSA approach by correlating response patterns 
from every perceived orientation in the sensory task to the response patterns from every 
remembered orientation in the memory task, in what we call “across-task RSA” (Figure 4A). As 
expected, our across-task RSM of V1 shows a clear diagonal component that is indicative of 
overlap in response patterns between perception and working memory, and the ability to cross-
generalize. Cross-generalization does not work in IPS, replicating what we know from previous 
analysis of these data31. Importantly, this approach also shows how the coding scheme for 
orientation during the memory task is warped with respect to coding scheme during the sensory 
task – response patterns for orientations held in working memory are biased towards what would 
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be patterns associated with obliques during perception (Figure 4B). We validate our “across-
task RSA” approach against a conventional multivariate analysis approach known as the inverted 
encoding model (or “IEM”62). First, we take into account the predicted gradual drop in 
representational similarity for orientations at increasing distances from the remembered 
orientation by creating a “correlation profile” (the sum of correlations between patterns for the 
remembered and perceived orientations, as shown in grey on top of the panels in Figure 4B, and 
for all ROI’s in Figure 4C). By collapsing the data based on “same” versus “increasingly different” 
orientations, we’re in essence performing decoding, but by using correlation. A more “peaked” 
correlation profile indicates more information about the remembered orientation, which we 
quantify using a previously established fidelity metric (as in 31, see Methods). Finally, we show 
that this “RSA fidelity” aligns closely with the same fidelity metric applied to results from an IEM 
(Figure 4D). 

 

 
Figure 4: Ability to cross-decode using RSA (A) Using across-task representational similarity analysis, we directly 
compare orientation response patterns recorded during the sensory task (y-axis), to those measured during the memory 
task (x-axis). Here we show V1 (left subplot) and IPS0 (right subplot) as example ROI’s. The across-task RSM in V1 
shows a clear diagonal component, indicating similar response patterns for specific orientations in the sensory and 
memory tasks. In IPS0 such pattern similarity for matching orientations in the sensory and memory tasks is less evident. 
(B) We want to quantify the extent to which orientations held in working memory evoke response patterns that overlap 
with response patterns from those same orientations when viewed directly, and how this similarity drops at larger 
distances in orientation space. First, we center our across-task RSM’s on the remembered orientation (notice the x-
axis), and then take the sum of correlations relative to the remembered orientation (plotted on top of the across-task 
RSM’s in grey). We call this the “correlation profile” of the remembered orientation. In V1 we see that correlations are 
highest between response patterns from matching perceived and remembered orientations (0º on the x-axis), 
explaining the ability to cross-decode between sensory and memory tasks as demonstrated in previous work (e.g.,1,31). 
By contrast, IPS0 shows a much flatter correlation profile. (C) Correlation profiles for all retinotopic ROI’s in our study, 
obtained by performing across-task RSA (left panel). Most ROI’s show a peaked correlation profile, indicative of shared 
pattern similarity between the same orientations when directly viewed and when remembered. The different offsets 
along the y-axis for different ROI’s reflect the overall differences in pattern similarity in different areas of the brain, with 
pattern similarity being highest in area V1. Shaded areas indicate + 1 SEM (D) To validate the ability to cross-decode 
using RSA, we directly compare this new approach (x-axis) to the multivariate analysis performed by Rademaker et al. 
in 2019 (y-axis). The latter used an inverted encoding model (IEM) that was trained on the sensory task, and tested on 
the delay period of the memory task. Both the correlation profiles from RSA, and the channel response functions from 
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IEM yield more-or-less peaked functions over orientation space (relative to the remembered orientation) that can be 
quantified using the same fidelity metric (i.e., convolving with a cosine). Here, we show a high degree of consistency 
between the fidelity metrics derived with both approaches, and successful cross-generalization from the sensory to the 
memory task (as indexed by >0 fidelities) in many ROI’s. Each color represents a different ROI, and for each ROI we 
plot each of the six participants as an individual dot.  

Thus far, we examined the structure of orientation representations during perception and 
working memory in individual visual ROI’s, and find that orientation representations differ 
between sensory and memory tasks. We also find that representational geometry within the 
same task is captured by our models to varying extents in different ROI’s. To move beyond 
specific patterns of information in local ROI’s (e.g., Figure 1C; Supplementary Figure 1), and 
more formally assess representational geometries across visual cortex, we use a 2nd level RSA. 
In this analysis, similarity between different visual cortical areas is calculated by correlating the 
RSM from every ROI with that of every other ROI. To this end, we use more fine-grained ROI’s 
than in previous analyses, allowing us to look at dorsal versus ventral streams, as well as 
subregions of IPS and Lateral Occipital (LO) cortex. We evaluate how orientation information is 
represented across visual cortex in this manner separately for the sensory task and the memory 
task (Figure 5).  

During the sensory task, there is notable shared representational similarity amongst early visual 
areas (V1–V4) and amongst areas in the intraparietal sulcus (IPS0–3), but low similarity between 
the two (Figure 5A, top). During the memory task, orientation geometries across various ROI’s 
show a somewhat different inter-areal organization (Figure 5A, bottom). First, the overall similarity 
between ROI’s is more pronounced during the memory task, with higher overall correlations 
between ROI’s compared the sensory perception task (r = 0.553 + 0.132 s.d., versus r = 0.32 + 
0.082 s.d., respectively, with p < 0.001). This implies that there are fewer transformations of 
orientation geometry along the visual hierarchy during working memory compared to perception. 
Second, the cluster of early visual ROI’s with high representational similarity that was observed 
during perception (i.e., V1–V4), is shifted “upwards” along the visual hierarchy during memory – 
with V1 becoming less similar, and IPS becoming more similar to rest of EVC.  
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Figure 5: Second level RSA (A) To compare how orientation is represented across different regions of visual cortex, 
RSM’s from fine-grained individual ROI’s (Supplementary Figure 1) were correlated in a 2nd level similarity analysis. 
For the sensory task (top panel), representational similarity is high among early visual areas; high among the various 
IPS regions; and high among LO regions. Similarity between these three clusters is relatively low. For the memory task 
(bottom panel) there is a slight shift in similarity compared to the sensory task, with V1 becoming less similar, and IPS0 
becoming more similar, to areas V2–V4. Furthermore, the distinction between areas is generally less pronounced. (B) 
Representational similarity can also be used as an indicator of connectivity between ROI’s based on shared 
representational geometry: When the geometry is similar, the “connection” is stronger (indicated here by the width of 
the grey lines connecting different ROI’s). The sum of the strength of these connections in a given ROI (i.e., degree 
centrality) indicates to which extent a local representational geometry resembles that of other ROI’s. Degree centrality 
is highest in early visual cortex and lowest in IPS regions, indicating a higher conservation of geometry across early 
visual cortical regions. 

Finally, we probe the underlying “representational connectivity” structure in individual 
participants46. Unlike traditional functional connectivity analysis, the representational 
connectivity approach does not target covarying activation per se, but rather assumes 
connections on the basis of shared representational geometry. Visualizing these “connections” 
in a graph (Figure 5B) highlights the dense clustering of early visual cortex, weaker connections 
to LO, and weakest connections to IPS, both during the sensory and memory tasks. Based on 
this graph, we can compute the degree centrality of each ROI (or “node” in this graph) as the 
sum of connection strengths to other ROI’s. A high degree centrality denotes high 
representational similarity to many –or an especially strong representational similarity with some– 
other brain regions. Highest degree centrality is observed in early visual cortex, suggesting 
substantial overlap in representational geometry across these early regions. More downstream 
visual areas (IPS and LO) show the lowest degree centrality, implying a gradual transformation 
of representational geometry along the visual pathway that results in geometries not present at 
earlier processing stages. This analysis also shows how functional measurements of sensory 
driven responses to oriented gratings, and even responses during working memory when no 
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stimulus is on the screen, are transformed along functionally defined ROI’s in a manner that is 
commensurate with the known anatomical structure of the visual hierarchy. This further highlights 
the power of an approach like RSA, whereby functionally measured response patterns are 
transformed into an abstracted representational space. 

 
Discussion 

Here we compare how a simple visual stimulus is represented when it is either perceived or 
temporarily held in working memory, and show fundamental differences in the representational 
geometry of visual perception and visual working memory throughout human retinotopic cortex. 
By looking at the similarity of response patterns evoked by grating stimuli of different 
orientations, combined with a novel modeling approach, we are able to demonstrate relatively 
veridical representations during perception, and more categorical representations during 
working memory. We also find that the extent to which working memory representations are 
categorical increases along the visual hierarchy from posterior-to-anterior visual areas – 
modeling results that can be readily verified by simply looking at the geometries in the data. 
Importantly, our models make distinct predictions about veridical and categorical 
representations from a single input function based on the statistics of the natural world, which 
can also be implemented by measuring human behavior with a simple psychophysical task. This 
makes our modeling approach a potentially powerful tool to apply in other research contexts as 
well. With clear differences in representational geometry, it seems unlikely that working memory 
representations are merely noisier versions of perceptual representations, and our data imply a 
systematic compression of the coding scheme in parts of orientation space as a basis for 
categorization in working memory. Finally, by looking at inter-area representational similarity we 
recover known anatomical cortical structure, and observe a high degree of similarity for areas 
within early visual cortex (EVC), intraparietal sulcus (IPS), and lateral occipital cortex (LO) – but 
relatively low similarity between these respective regions. 

Previous work from our group has claimed that visual working memories are represented in a 
“sensory-like” manner in early visual cortex31. This conclusion was drawn from the ability to cross 
generalize from sensory evoked responses, to responses recorded during the delay of a working 
memory task (using multivariate decoding techniques). However, there are multiple clues that 
VWM representations may be abstracted away from sensory evoked responses30–32,63–66, 
including the considerable differences between perceptual and working memory geometries 
unveiled in the present work. From a conceptual point of view there may be good reasons to 
keep formats distinct, as having identical representations for visual inputs and visual memories 
might make it difficult to distinguish external reality from internally generated thought6,67,68. 
Moreover, some sort of transformation of the information held in mind is often necessary to 
adequately support behavioral goals and motor output69,70. How can we reconcile the apparent 
contradiction between successful sensory-to-memory cross-generalization on the one hand, 
and the mounting evidence favoring abstraction during VWM on the other?  

To understand how perception and working memory can evoke overlapping response patterns 
(i.e., have an overlapping coding scheme) while also differing in their representational format (i.e., 
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the representational geometry), we will examine the relationship between multivariate decoding 
and RSA more closely. First, note that within any kind of task, a high degree of similarity along 
the diagonal of a cross-validated RSM is a prerequisite for successful multivariate decoding, and 
vice versa. After all, if a particular stimulus would evoke uncorrelated response patterns every 
time it is presented (i.e., no similarity along the diagonal), a decoder would not be able to predict 
such a stimulus from the disparate response patterns that make up its training set (i.e., no 
decoding). A lower off-diagonal similarity is a second prerequisite, as otherwise the patterns 
evoked by different stimuli are indistinguishable. Thus, in areas of the brain that care about a 
certain kind of stimulus, you can expect both a clear diagonal component in the RSM, as well as 
successful within-task decoding. Things are a bit more nuanced for continuously varying stimuli 
such as orientation. To illustrate: Two identical orientations might evoke similar patterns of 
responses, give or take some noise, but so will two orientations that are adjacent in orientation 
space. While two orientations that are further apart are likely to evoke dissimilar responses. 
Based on the gradual transition in physical similarity between continuously varying stimuli, one 
would predict an RSM pattern where similarity gradually drops off at larger distances from the 
diagonal. In this case, off-diagonal similarity can have meaning, albeit with diminishing returns 
as representational similarity decreases with increasing stimulus distance.  

For our data, this means that the clear diagonal component in the RSM’s during both perception 
and working memory (see EVC ROI’s in Figure 1C) are indicative of the ability to decode 
orientation within each of these two tasks. However, such apparent overlap in the 
represenational geometry around the diagonals does not speak to the overall geometry, nor does 
it speak to the ability to decode between the sensory and memory tasks (via cross 
generalization). With respect to the overall geometry, we know that even relatively subtle 
transformations (e.g., shifts or warping) of an otherwise fairly stable underlying coding scheme 
can lead to dynamics in the low-dimensional geometry39,71. Vice versa, the representational 
geometry can remain stable in the presence of dynamics in the coding scheme39–41. With respect 
to cross-generalization, this means that a clear diagonal component in both perception and 
working memory RSM’s could in theory stem from totally different non-generalizable response 
patterns in one task compared to the other, as long as the pairwise distances between response 
pattern are comparable between tasks. We show that in early visual ROI’s the underlying coding 
schemes during the sensory and memory tasks are sufficiently similar to yield a clear diagonal 
component in an “across-task RSA” (Figure 4). Importantly, we validate our across-task RSA 
approach against a common implementation of multivariate decoding for continuous stimulus 
spaces (the so-called inverted encoding model31,62). More interestingly, the across-task RSM also 
provides some insight into how the coding scheme may be warped during working memory 
compared to perception in V1 – we observe biases away from cardinal orientations during 
working memory, with many remembered orientations resulting in response patterns that are 
similar to those of directly perceived oblique orientations. To sum up, working memory 
representations in EVC can be “sensory-like”, in that there is considerable overlap in the 
response patterns during perception and working memory. At the same time, a systematic 
warping of the geometry for orientation during the memory task, relative to the sensory task, may 
result in a more categorical geometry during VWM with high similarity around obliques.   
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In addition to using cross-generalization from sensory-to-memory responses to conclude that 
early visual areas store “sensory-like” working memory representations, our previous work drew 
upon the lack of such cross-generalization (in the presence of high within-task decoding 
performance) to conclude that IPS stores working memories in a format “transformed away” 
from sensory-like responses31,72. However, our current analyses reveal how the representational 
geometry during working memory is predominantly categorical throughout much of the visual 
hierarchy: A significant benefit of the categorical over the veridical model can be seen in V3–
IPS0 when using a theoretical input function (Figure 2A, 2D bottom panel), and when using the 
psychophysical input function (Figure 3A, 3C bottom panel). The reason that cross-
generalization from the sensory to the memory task fails in IPS may therefore not be due to a 
transformation in the representational geometry from earlier-to-later visual areas during working 
memory.  

Instead, IPS might simply process information quite differently during perception than during 
working memory. Recent recordings from non-human primates reveal that the receptive field of 
an IPS neuron (in lateral intraparietal “LIP” cortex) that was demarcated by showing the animal 
visual stimuli on a screen does not necessarily overlap with the receptive field of that same 
neuron when demarcated by measuring responses during a delayed-match-to-sample task73. 
This implies a distinct mechanism for representing sensory inputs and working memory contents 
at the level of single neurons, which plausibly scales up to the level of population recordings as 
obtained with fMRI. A second reason why cross-generalization from perception-to-memory 
might be lacking in IPS is because the sensory input is represented rather weakly in IPS in our 
sensory task. While the full-field grating stimulus was attended, the feature of interest to our 
analyses (orientation) was not directly relevant to the participants’ task (detect contrast changes). 
This means that the sensory task signal-to-noise may have been insufficient for cross decoding. 
Alternatively, feature-based attention might change or improve stimulus representations in IPS, 
as it was shown to do in EVC78. Given the central role of IPS in attention74–77, it would be 
interesting to examine how attending different features of the same stimulus might impact 
stimulus representations, and whether this could explain the relatively noisy RSM’s we observed 
in IPS during our sensory task (Figure 1C, top). 

Of course, the attentional state in different tasks matters more generally in terms of the 
conclusions we can draw. It’s been shown that a decoder trained on patterns of responses to 
perceived but unattended orientation stimuli (RSVP task at fixation) generalized to response 
patterns during the working memory delay1. By using unattended gratings, the authors could 
conclude that orientation-selective responses for remembered gratings depend on the same 
orientation-selective subpopulations driven during a bottom-up sensory response. In our work, 
we wanted to additionally control the deployment of spatial attention (presumably much narrower 
for a task at fixation) by having participants attend the contrast of a perceived grating. We already 
know that cross-generalized (sensory-to-memory) and within-task decoding (memory-to-
memory) work well under these conditions31, so this choice meant we could be confident that 
possible geometrical differences would not be driven by differences in response patterns (or 
SNR) between the sensory and memory tasks. For future work it would be interesting to compare 
the sensory geometry resulting from our contrast attention task to a situation where the grating 
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is not attended (task at fixation), or when the orientation of the grating is attended. We would 
speculate that in the presence of orientation attention, the geometry of a perceived grating would 
become even more veridical, as attention can be anchored to relevant attributes of the physical 
stimulus, spacing orientation representations more regularly throughout the 180º feature space.  

A big question in the field of VWM concerns the role of primary visual area V1 during memory 
maintenance. On the one hand, sensory recruitment theory posits that involvement of area V1 is 
critical to maintaining highly detailed visual representations, as this is the only site thought to 
have the resolution to do so21,79. In support of this theory, many fMRI studies have shown that 
VWM contents can be decoded from V11,2, and correlations between behavioral and decoding 
performance imply a functional role for V172,80. On the other hand, outside of the fMRI literature 
there is less evidence to support a neural correlate of VWM in area V1, with a general failure to 
find sustained firing in EVC81,82,83 (but see also84,85), which has led some people to conclude that 
V1 decoding could be epiphenomenal67,68. Might our findings speak to this discrepancy between 
fMRI and single cell recording? Receptive fields in V1 are small, so if there is a representational 
shift from “veridical” during perception, to more “categorical” during VWM (presumably under 
the influence of top-down feedback), then working memory contents may be coded by a (subtly) 
different subset of neurons than those that respond to perceptual input. The reasoning that the 
same neurons may not code for the same stimulus under different task conditions holds true on 
several levels. For example, multi-unit activity associated with working memory maintenance 
was restricted to deep and superficial layers in V1, while such activity during perception also 
included the input layer 486. Thus, even small shifts in the neural code (from one layer to the next, 
or from one orientation column to the next) may decrease the chance of finding sustained spiking 
when a one-to-one mapping between perception and working memory is assumed. Only looking 
at population wide neural coding, as we do here, can uncover working memory contents that 
has undergone a shift in representational geometry relative to perception.   

Relying on population responses from fMRI BOLD does have one obvious caveat, which is the 
slow temporal profile of the signal. However, stimulus-evoked BOLD from the memory target 
can likely not explain the geometry during the working memory delay. Ample work has shown 
that even with identical sensory inputs at encoding, such BOLD does not carry stimulus 
information into the working memory delay when active maintenance of a stimulus feature is no 
longer required, with decoding performance for task-irrelevant features quickly dropping to 
chance4,8,44,45. For example, if one of two consecutive stimuli is cued for report immediately after 
stimulus presentation, the cued target cannot be decoded in the delay that follows1. When shown 
a stimulus with two independent features (i.e., orientation and color), only the remembered 
feature can be decoded during the delay2. Etc. Finally, clear geometrical differences between the 
sensory and memory RSM’s would not be expected if both tasks reflected the same response.  

A well-known strength of RSA is that it projects response patterns associated with different task 
conditions (in our case, task conditions are 180 levels of orientation) into an abstracted space 
where representations can be compared between imaging modalities, species, models, or with 
behavior46. Thus, RSA is a powerful tool to sidestep the correspondency problem, allowing us to 
compare the output of systems that differ greatly. For example, one can construct an RSM from 
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behavioral responses and correlate it with an RSM constructed from neural responses of specific 
brain regions6,46,47. However, visual perception involves a cascade of processes of increasing 
complexity, from simple feature-detectors in primary sensory cortex, to more invariant and 
category-based representations in ventral visual cortex. Behavior is the result of the entire brain 
working in concert to produce one output87, which means that even for a very simple stimulus 
such as orientation, the representational geometry can differ between areas and tasks. Using a 
behavior-derived RSM as a model could therefore miss a lot of variability in representational 
geometry across cortical areas, or produce misleading conclusions about a given area 
representing orientation while ignoring other areas that match behavioral output less. This is why 
using behavioral measurements (here: psychophysical input function) in a hypothesis-driven 
manner as the basis for multiple models (here: veridical and categorical), may allow for deeper 
insight into which specific areas of the brain are involved in multiple underlying components of 
a single behavior.  

Our models are indeed able to quantify notable differences in representational geometry between 
orientation perception and working memory tasks, as well as differences between various 
retinotopic areas within a single task. However, there remain patterns in the data that neither of 
our current models are designed to capture. Most notably, data recorded during the sensory 
task from area V3AB (and arguably also V4, IPS, and LO) show a representational similarity 
pattern implying that the obliques (45º and 135º) are quite similarly to one another (Figure 1C, 
top row). This pattern hints at another possible form of (object-level) categorization, where all 
tilted lines, irrespective of their tilt direction, are represented in a similar fashion. This parallels 
evidence showing that people use the same verbal labeling (“diagonal”) for both obliques88. 
Alternatively, this pattern in V3AB could reflect something about the task, because tilt direction 
(45º or 135º) matters in the memory task due to the orientation recall requirement after the delay. 
During the sensory task, only contrast is attended. Precise top-down orientation signals during 
memory may override the tilt-agnostic tendency that certain areas (such as V3AB) might 
otherwise display.  

Another example where we see the data diverge from our models, is in the non-uniformity along 
the diagonal of our RSM’s. Specifically, for the sensory task there appears to be lower similarity 
for horizontal (90º) compared to vertical (0º) orientations in many ROI’s, and similarity also 
appears relatively higher for obliques (45º and 135º) in some ROI (Supplementary Figure 6A). 
This non-uniformity implies that already at the level of sensory-driven responses all orientations 
are not represented equally, which is a well-established finding59,60,89,90. The higher overall 
similarity for oblique compared to cardinal orientations is exacerbated in the memory task 
(Supplementary Figure 6B). This may be due to a compression of orientation space around 
oblique orientations, leading to highly similar response patterns in this part of orientation space, 
while the pattern around cardinals is more distinct. This idea is supported by results from 
multidimensional scaling (Supplementary Figure 6C), which takes into account the entire 
geometrical pattern, showing stronger clustering around obliques compared to cardinals during 
the memory task.  
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Our categorical model was designed only to capture an extreme version of inhomogeneities in 
orientation space between cardinals and obliques. However, these inhomogeneities appear to 
some extent during the sensory task as well, and differ across the visual hierarchy. To directly 
test the extent to which these inhomogeneities appear across tasks and ROI, we designed an 
alternative model that uses a single parameter to modulate the magnitude of inhomogeneities 
(Supplementary Figure 7A). Specifically, by varying the exponent of the input function we create 
a family of model RSM’s that range from having higher similarity around cardinals (as also our 
veridical model), to diagonal, to higher similarity around obliques (including our categorical 
model). In fact, this approach closely approximates a previously proposed model57 that was not 
based on natural input statistics. When we fit this model to our data, we again show a gradual 
transition toward more categorical representations (with high similarity around obliques) along 
the visual hierarchy during memory, but not perception (Supplementary Figure 7B). Of course, 
we would construct even more complex models, with (many) more parameters, to eventually 
capture every specific geometrical pattern in every ROI. But this was never our goal. Instead, the 
main point of our models is to have a simple yet well-motivated quantification of the stark 
differences in geometry between the sensory and memory task, and the changes in the geometry 
along the visual hierarchy (in the memory task), that are readily observable by eye (Figure 1C). 
We show that these differences can indeed be quantified, and hold independent of the exact 
fitting approach (Supplementary Figure 4), binning approach (Supplementary Figure 2), and 
modeling approach (Supplementary Figure 7).  

Given the diversity in RSM patterns described above, how might we compare the geometry 
within a given task, while remaining agnostic to the precise patterns in different regions of 
interest? To evaluate inter-area representational geometry differences in a more hypothesis-free 
manner, we used a “representational connectivity” analysis, which subsumes all possible 
patterns by simply quantifying degree of overlap. This allows us to compare how the visual 
system orchestrates representations across large swaths of cortex during both perception and 
working memory. One observation that emerges from this approach is that during VWM we see 
a shift in the interplay between areas, as compared to during perception. Specifically, during 
working memory the geometry in V1 becomes more differentiable from the geometry in the rest 
of EVC, and IPS0 becomes more differentiable from the rest of IPS (but more similar to EVC). In 
other words, we see that the inter-areal structuring of representational geometry differs between 
perception and memory. Another observation is that compared to perception, geometries during 
VWM show higher similarity across visual cortical areas. Such homogeneity might be expected 
if a unitary categorical top-down signal dominates feedback signals to multiple earlier areas. 
After all, in the absence of visual input, working memory information in V1 must be coming from 
within the brain itself, either through feedback connections or local recurrent processing.  

Using representational similarity, in combination with the novel modeling approach outlined here, 
can be a powerful tool for studying representational formats during perception and working 
memory. Once the input statistics are known, either by deriving them from the environment or 
behavior, these models can be applied to any feature. Thus, in addition to tapping into a possible 
categorization for spatial features in EVC32, our approach has potential for surface-based 
features such as color or contrast, more complex visual objects such as shapes or faces, as well 
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as stimuli in other sensory modalities. Many of the well-known advantages from RSA approaches 
also apply here, such as the potential to fit models across the entire brain in a manner that is not 
restricted to early sensory areas for which the receptive field mapping is known. Furthermore, 
the approach can be used with different measurement techniques that have a higher temporal 
resolution, allowing additional queries about the temporal progression of representational 
geometry as stimuli are encoded, remembered, and recalled.  

 

Methods 

Stimuli and procedures 

We used a publicly available dataset, originally part of a study by Rademaker et al. (2019). This 
dataset contains both a visual perception task (the “sensory task”) and a visual working memory 
task (the “memory task”) performed in the scanner, and presented in the paper as Experiment 1 
(6 participants with mean age = 28.67, sd = 3.675, and 5 females). The dataset also contains an 
independent psychophysical experiment, presented in the original paper as Supplementary 
Figure 9 (21 participants with mean age = 20.12, sd = 2.01, and 14 females. For this 
psychophysical experiment, only 17 participants were included in the analysis (3 dropped out, 
and 1 performed at chance level). All participants who contributed to the dataset were 
neurologically healthy, had normal or corrected-to-normal vision, received monetary 
reimbursement, and provided their written informed consent. Data were collected at the 
University of California San Diego.  

In the scanner, both the sensory and memory tasks used full-contrast donut-shaped grating 
stimuli (1.5º and 7º inner and outer radius, respectively) with smoothed edges, a spatial 
frequency of 2 cycles per degree, random phase, a pseudo-randomized orientation. Stimuli were 
presented against a uniform grey background, and participants fixated a 0.4º central dot 
throughout. In the sensory task, donut-shaped gratings were presented in 9 second trials, 
contrast reversing at 5 Hz. Such donut trials were interleaved with trials showing a circular grating 
(1.5º radius), and fixation periods (10% of total). Grating contrast was briefly (200ms) and 
probabilistically reduced to 80% Michelson twice every 9s, and participants’ task was to report 
such contrast changes. Participants completed a total of 300-320 sensory task trials across 3 
separate scanning sessions. The sensory task was also used to localize visually responsive 
voxels (via a donut > circle contrast), and in our current analysis we use this contrast as a mask 
for all EVC ROI’s (but not IPS and LO, where all retinotopically defined voxels are included). In 
the working memory task, a target grating was shown for 500ms, and recalled 13 seconds later 
by rotating a white line (spanning 7º) for 3 seconds to match the remembered orientation. 
Between trials, there could be 3, 5, or 8 second fixation intervals. During the delay of two-thirds 
of memory task trials, a distractor of 50% Michelson contrast could be presented for 11 seconds 
during the middle portion of the delay. Distractors could be a grating (1/3rd of trials) or filtered 
noise (1/3rd of trials), contrast reversing at 4Hz. By ensuring uniform orientations of grating 
distractors with respect to memory targets, we are able to look at the representations of 
remembered and distractors orientations independently. Importantly, due to the negligible 
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differences between trials with or without distractors, both in terms of behavior as well as 
decoding, we collapse the data across all working memory trials for our main analyses. Each 
participant completed 324 total working memory trials over the course of 3 different scanning 
sessions.  

The independent psychophysical experiment was completed outside of the scanner, and stimuli 
consisted of gratings presented at 20% Michelson contrast against a uniform grey background. 
Gratings had a 2º radius, spatial frequency of 2 cycles per degree, random phase, and pseudo-
randomized orientation. Each trial started with a 200ms target orientation that was remembered 
over a 3s delay, and recalled by rotating a dial to match the remembered orientation in an 
unspeeded manner. Intervals between trials were 800-1000ms. Grating distractors were 
presented for 200ms during the middle portion of the delay on 90% of trials. As in the scanner, 
targets and distractors were uncorrelated across trials, allowing for independent analysis of 
responses to the target. Any biases resulting from distractor presentation were small 
(Supplementary Figure 9 of ref30) and did not exert much influence on responses. Each 
participant completed 1620 trials over the course of several testing sessions.  

For more detailed information on scanning and task procedures, please reference Rademaker et 
al. (2019). 

Models 

First, the function that constrains both the veridical and categorical models, and emulates the 
frequency distribution of orientations in the natural world, is described by 

𝑓(𝑥) = &|sin 𝓍| −1&! + 𝑏 

Where −𝜋 < 𝓍 < 𝜋, and 𝑏 is any non-zero baseline (due to z-scoring before fitting this function 
is scale-free). This function is loosely based on the function defined in 38. Another way to think 
about this theoretical “input statistics” function, is as the normalized amount of Fisher 
information at each orientation in orientation-space. We ensured that the results of our model 
fits were robust to the specific shape of the input function by not only using a theoretical input 
function based on the statistics of the natural world (Figure 2A), but by also using a 
psychophysical input function (generated from independent psychophysical measurements, 
Figure 3A) as the basis for our two models. Irrespective of the input function used (theoretical 
based on previous literature, or psychophysical based on independent data), model generation, 
as described next, is identical. Note, for the alternative model in Supplementary Figure 7, this 
function is also used, with the difference that the exponent (here set to 2) is a free parameter 
over range [0	inf).	

For the veridical model, we assume a set of idealized tuning functions (Figure 2B, top) and use 
it to simulate neural responses to all possible stimulus orientations. From these simulated 
responses we calculate the similarity (rho) between all possible pairs of stimulus orientation (as 
shown in Figure 1B), resulting in a veridical model RSM (Figure 2B, bottom). Each tuning function 
in the veridical model is defined by a von Mises (circular analogue of a Gaussian distribution), 
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𝑓(𝑥) = 	𝑎(
𝑒" #$%( '())

2𝜋𝐼+(𝜅)
) 

with a fixed concentration parameter 𝜅 = 6, a center defined by	𝜇, and −𝜋 < 𝓍 < 𝜋. 𝐼+(𝜅) is the 
modified Bessel function of order 0. The amplitude 𝑎 of each tuning function varies across 
orientation space as determined by the height of the input statistics function (i.e., from 0.1–1.1).  

For the categorical model, we calculated the psychological distance between all possible pairs 
of orientation. For any pair of orientations, we sum over the approximated derivatives between 
these two points along the input statistics function as follows, 

> ?
𝑦,-. − 𝑦,
𝑥,-. − 𝑥,

?
/01(.

,234564

 

 
where 𝑥 is an orientation in orientation space (and wraps around a circle), and 𝑦 is the amount 
of normalized y-axis information for that orientation.  

The veridical and categorical models described above were converted from radians to degree 
(spanning the entire orientation space from 1º to 180º, in steps of 1º) to match the dimensions 
of the data (also in degree). To evaluate if the representational structure in the data RSM’s (Figure 
1C) is more or less similar to veridical or categorical model RSM’s (Figure 2B-C), both data and 
model RSM’s were normalized before fitting. The correlation between each model with the data 
RSM’s was done via semi-partial correlations, because the veridical and categorical models are 
not independent. Specifically, to evaluate the correlation between model A and the data RSM of 
a given ROI (𝑅𝑆𝑀789), we first removed the variance explained by model B (𝑅𝑆𝑀:) from model A 
(𝑅𝑆𝑀;), to get its model residuals (ℰ:):  

𝑅𝑆𝑀; = 𝑤:𝑅𝑆𝑀: + ℰ: 
 
Where 𝑤: are the initial weights of model B, and the residuals ℰ: reflect any pattern in model A 
unaccounted for by model B. To illustrate, imagine the extreme case where model B explains 
none of the same variance as model A, then 𝑤: would be 0, and the residuals ℰ: would be equal 
to model A itself. Next, the residuals of model B are correlated to the data 𝑅𝑆𝑀789, and we apply 
a Fisher transformation (also known as inverse hyperbolic tangent, or 𝑡𝑎𝑛ℎ(.) to normalize the 
bound correlation data (from –1 to 1), to unbound values (–Inf to Inf) suitable for statistical testing.  

𝑡𝑎𝑛ℎ(.(𝑥) = 	
1
2
	𝑙𝑜𝑔 L

1 + 𝑥
1 − 𝑥M

 

This transformed correlation gives the amounts of variance explained by model A independent 
of model B. To summarize, this procedure ensures that any resemblance (big or small) between 
the two models is accounted for first, after which we obtain the unique contribution made by 
model A. 

To ensure that our results did not depend on the specific fitting approach described above, we 
also fit our two models directly to the data without taking into account the overlap between the 
models. The difference in model fits is still informative in this case (showing which model fits the 
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data better), which was confirmed by statistical replication of the main findings. Second, we used 
general linear regression to fit both models simultaneously in the form of:  

𝑦 = 	𝛽.	𝑅𝑆𝑀. + 𝛽!	𝑅𝑆𝑀! + ℰ 

Where 𝛽 reflects the beta weight for each of our two model RSM’s. Also using this procedure, 
the statistics of our effects replicated. For a figure showing both these approaches, see 
Supplementary Figure 4 

Across-task RSA fidelity 

To directly relate cross-generalization from decoding (or more specifically, from the inverted 
encoding model, or “IEM”, as used in ref30) to our novel “across-task RSA” (Figure 4), we 
calculate a fidelity metric to quantify how much information there is about the remembered 
orientation based on the pattern responses to the perceived orientations. Because orientation is 
a continuous variable, we also take into account the representational similarity to orientations 
nearby the remembered one, and the expected drop in similarity at increasingly larger distances 
in orientation space. For each correlation profile (see Figure 4B–D) we calculate fidelity in a 
manner identical to how this has been calculated for IEM channel reconstructions (in ref30”, and 
shown here as the y-axis in Figure 4D). Specifically, we take the correlation value at each degree 
in orientation space (wrapped onto a 2π circle), and project this vector onto the remembered 
orientation (centered to zero degrees) via cos 𝐴5<3(+º(1) =	

<
>
, where A is the angle between the 

remembered orientation (at 0º) and the degree in orientation space being evaluated (d), and h is 
the correlation value at d (i.e. the hypotenuse of a right triangle). This procedure was repeated 
for all 180 degrees in orientation space, and we then calculate the mean of all 180 projected 
vectors. This fidelity metric captures the amount of information at the remembered orientation, 
and removes additive offsets. 

Analyses of 2nd level RSM and representational connectivity  

To compare the representational geometry across all retinotopic ROI’s during perception and 
working memory, we employed two approaches first described by41: A 2nd level RSA and a 
‘representational connectivity’ analysis. Note that for these analyses we used the smallest 
possible ROI’s that were retinotopically defined, meaning we split early visual areas into their 
dorsal and ventral parts, and used the individual sub-areas of IPS and LO. For the 2nd level RSA, 
we calculated the similarity of each across-subject RSM (as shown in Supplementary Figure 1) 
to every other across-subject RSM using spearman correlation (as RSM’s are monotonically, but 
perhaps not linearly related). This resulted in the 2nd level RSM’s in Figure 5A, showing 
representational similarity between all retinotopic ROI’s during perception, and during working 
memory. For the ‘representational connectivity’ we similarly computed Spearman correlations 
between ROI’s but at a within-subject level as is the recommended procedure41.  Across-subject 
averages are visualized in a graph (Figure 5B) where each node signifies a ROI, and each edge 
signifies the correlation coefficient to each other ROI. Thicker and shorter edges indicate higher 
similarity. We computed degree centrality for each node as the sum of all edges, depicted by 
the saturation of each node (less saturation indicating higher degree centrality). Thus, higher 
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degree centrality indicates that a ROI shares its representational geometry either strongly with a 
few, or somewhat strongly with many, other ROI’s.  

Statistics  
First, for the main analyses (Figures 2 and 3) we tested if model fits differed between task 
(sensory or memory), model (veridical or categorical), or ROI’s by running a three-way repeated 
measures ANOVA using R (version 4.1.1) and RStudio (version 1.4.1717). Significant three-way 
interactions (between task, ROI, and model) were followed up with two targeted two-way 
repeated-measures ANOVA’s – one for the sensory task, and one for the memory task (as 
described in the main text). Significant interactions arising from two-way ANOVA’s were further 
examined via post-hoc two-sided paired-sample t-tests within each task and ROI (uncorrected 
for multiple comparisons). For the main model fitting results using the theoretical and behavioral 
input functions (Figure 2D and 3C, respectively) these t-tests are reported in detail in 
Supplementary Table 1. 

For the second order RSA (Figure 5) we tested if there was a significant difference between 
perception and working memory in terms of the overall correlations between ROIs (Figure 5A). 
First, we calculated the mean correlation between all ROI’s (excluding the diagonal) for a given 
subject within each task. During the sensory task the mean correlation between all ROI’s was r 
= 0.32 (+0.082 sd), and during the memory task it was r = 0.553 (+ 0.132 sd). Next, we performed 
a permutation test where we shuffled the assignment of each ROI-ROI correlation pair (i.e., each 
value in the 2nd order RSM, excluding the diagonal) to either the sensory or memory task at 
random for each subject. On each permutation we then calculated the mean correlation between 
all ROI’s within the shuffled sensory and shuffled memory RSM’s, and took the difference 
between these means. A null distribution of differences was generated over 1000 permutations, 
and compared to the real difference between the mean correlations (i.e., 0.553 – 0.32 = 0.233), 
which was significantly greater than expected by chance (p < 0.001). 

Code accessibility  

The data are public and can be accessed via the Open Science Framework (OSF) at 
https://osf.io/dkx6y which has an accompanying wiki. The code for the analyses in this paper 
can be found at https://osf.io/ej9db/. 
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Supplementary Materials 

 
Supplementary Figure 1: Orientation representational geometry (as indexed by RSM’s) during sensory perception 
and working memory for all retinotopically defined ROI’s (across all participants) that were not already shown in Figure 
1C. Here, ROI’s are organized by whether they are located in the dorsal or ventral stream (top and bottom two rows, 
respectively). Early visual areas V1–V3 were split by their dorsal and ventral portions – used as input to the second-
level RSA analysis (Figure 5 of the main text). Areas IPS1–3 (in the dorsal stream) and LO (in the ventral stream) were 
split based on their respective sub-portions – and similarly used as input to the second-level RSA analyses. All RSM’s 
are scaled to the range of correlations within each subplot to ease visual comparison of representational structure.   
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Supplementary Figure 2: With 180 possible target orientations, and a finite number of trials, some form of smoothing 
or binning is necessary for RSA to yield reliable correlations. In our main analysis we smooth over a window of +10º, 
which could in theory impact the geometry around categorical boundaries (90º and 180º). In particular, it could induce 
some smearing of the categorical pattern observed in the memory task. To ensure that this pattern does not critically 
depend on the way trials are combined, here we show the data for the memory task binned (instead of smoothed) into 
12 bins of 15º. On top, we show RSM’s with bins centered on the 2 cardinals and the 2 obliques (see inset), meaning 
that the parts of orientation space highlighted in dark-red are bins that include a cardinal or an oblique orientation. On 
the bottom, we show the same analysis but with the bins shifted, such that they respect cardinal and oblique boundaries, 
and bins fall on either side. We observe that similarity in bins that include a cardinal (top row) is relatively low, 
presumably due to the relatively large psychological distance between orientations on different sides of a cardinal 
orientation, resulting in lower correlations. Nevertheless, there is relatively low similarity around cardinals also when 
we respect the categorical boundary (bottom row), implying these categorical effects are not impacted much by the 
specific binning approach. Overall, binning or smoothing do not drastically change the geometry (though of course, the 
resolution of the RSM is much lower with binning).  
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Supplementary Figure 3: Exact ranges of correlations in the RSM’s from Figure 1C. To best show the representational 
structure for sensory and memory representations across ROI’s, and to ease comparison between them, the RSM’s in 
Figure 1C are scaled to the range (min-to-max) of correlations within each subplot. But the minimum and maximum 
correlations are not identical across subplots, therefore, correlation ranges across all participants (black rectangles) 
and individual participants (grey lines) are shown here for sensory (left) and memory (right) RSM’s. 
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Supplementary Figure 4: Two alternative fitting approaches. (A) Model weights when fitting the veridical and 
categorical models directly to the RSM’s (without first taking the residuals), and (B) model weights derived with a 
general linear regression (independent weights for each model). Irrespective of the fitting approach, the geometrical 
differences between our two tasks are captured by higher “veridical” weights in the sensory task, and more “categorical” 
weights in the memory task. For the “direct fitting” approach (in A) there is a significant 3-way interaction (model x ROI 
x task, F(7,35) = 2.413; p = 0.0398), which we followed up by post-hoc ANOVA’s within the sensory and memory task 
separately. There is a main effect of model in both the sensory (F(1,5) = 40.26; p = 0.001) and memory (F(1,5) = 12.47; p 
= 0.017) tasks that is not the same in all ROI’s (as indexed by model x ROI interactions for sensory F(7,35) = 3.262, p = 
0.009 and memory F(7,35) = 2.791, p = 0.024 tasks). Similarly, for the general linear regression approach (in B) there is 
also a significant 3-way interaction (model x ROI x task, F(7,35) = 2.414; p = 0.0398), and main effects of model in both 
the sensory (F(1,5) = 40.28, p = 0.001) and memory (F(1,5) = 12.48, p = 0.017) tasks, and this difference between the 
models is not the same in all ROI’s (as indexed by model x ROI interactions for both sensory F(7,35) = 3.26, p = 0.009, 
and memory F(7,35) = 2.79, p = 0.024 tasks). Asterisks indicate the significance level of post-hoc two-sided paired-
sample t-tests (*p < 0.05; **p < 0.01) comparing the two models in each ROI.  
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Supplementary Figure 5: Model fits for the 3 different working memory distractor conditions. Overall, the results split 
by condition are qualitatively similar to the main results across all trails (Figure 2D, bottom panel). Two-way ANOVA’s 
comparing model and ROI showed that the categorical model did a better job at explaining the data in some of the ROI 
on trials without a distractor (model x ROI interaction: F(7,35) = 2.914; p = 0.016; main effect model: F(1,5) = 13.07; p = 
0.015) and with a grating distractor (model x ROI interaction: F(7,35) = 4.3; p = 0.0016; main effect model: F(1,5) = 6.344; 
p = 0.053), indicating increasing differences between the veridical and categorical models along the visual hierarchy. 
While we see similar trends for the 108 trials with a noise distractor, these effects did not reach significance (model x 
ROI interaction: F(7,35) = 1.812; p = 0.116; main effect model: F(1,5) = 1.335; p = 0.3). Nevertheless, despite using only 
1/3rd of the data in each of these sub-plots, the pattern in the data is highly consistent. Asterisks indicate the significance 
level of post-hoc two-sided paired-sample t-tests (*p < 0.05; **p < 0.01) comparing the two models in each ROI. 
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Supplementary Figure 6: Orientation inhomogeneities of the representational geometry (A) To examine the 
inhomogeneity or representational similarity throughout orientation space, we plot the diagonals of the RSM’s from in 
Figure 1C. During the sensory task, we see that similarity tends to be relatively high around vertical orientations 
(0º/180º) compared to horizontal orientations (90º). For both tasks, oblique orientations are represented relatively more 
similar, and cardinals less similar. This “oblique” like effect is much exacerbated in the memory task compared to the 
sensory task. (B) We use multidimensional scaling (MDS) to projects high dimensional response patterns into 2 
dimensions, in order to better visualize of how orientation space is represented. During the sensory task there is an 
orderly geometrical progression of orientation space, with the highest similarity between adjacent orientations (and 
some clustering around cardinal orientations, especially 180º) in early visual areas V1–V3. There’s also a “pinching” of 
orientation space around the obliques (45º and 135º become very similar) in more anterior visual areas V3AB–IPS and 
LO. During the memory task, the orientation space geometry remains circular in all ROI’s, with notable clustering of 
similarity around the obliques. 
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Supplementary Figure 7: Alternative model based on psychological distance. (A) An alternative way to model the 
sensory and memory task RSM’s is to vary the degree of similarity that can be expected at cardinals or at obliques. By 
changing the exponent in the input statistics function 𝑓(𝑥) = &|sin𝓍| −1&

!"#$%!%& + 0.1 to a free parameter, and using 
the psychological distance between every pair of orientations (as in the categorical model), we can create a family of 
input statistics functions (left panel) that modulate the shape of the model RSM’s (right panels) such that we can span 
any orientation anisotropy ranging from highest similarity around cardinals to highest similarity around obliques (similar 
to the modeling approach in 57). Each of the input functions in the left panel matches an RSM in the right panels (with 
the input function overlaid in white). At an exponent of 0.55 we approximate a uniform diagonal RSM, or a “physical” 
model of orientation space. Note that by modulating the shape of the input function in this manner, we can retrieve 
models that look very similar to our veridical model (e.g., exponent = 0.4), and a model identical to our categorical 
model (exponent = 2) in this parametric RSM space. (B) We plot the best fitting exponent for the input function for all 
ROI’s (x-axis) and separately for the memory (dark blue) and sensory (light blue) tasks, and show that those differ 
significantly (ROI x task interaction: F(7,35) = 9.658; p < 0.001). For the sensory task the best fitting exponent stays close 
to 0.55 for all ROI’s, indicating that an RSM with a close-to uniform diagonal fits the data well. That said, the exponent 
does differ across ROI’s (main effect of roi, F(7,35) = 3.307; p = 0.008), showing that a model with slightly higher similarity 
around obliques (exponent > 0.55) does better in for example V1, while a model with slightly higher similarity at cardinals 
(exponent between 0 and 0.55) does better at for example V4. For the memory task we see a gradual increase in the 
exponent along the visual hierarchy (up to and including IPS0), indicating that a model with increasingly stronger 
similarity around oblique orientations (i.e., increasingly stronger categorization) is better at explaining the memory 
geometry for more anterior ROI’s (main effect of roi, F(7,35) = 9.213; p < 0.001). Best fitting exponents for individual 
subjects are shown as dots, and error bars indicate + 1 within-subject SEM.  
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p=0.999     

t=1.79 
p=0.133 

t=3.424 
p=0.019 

t=4.398 
p=0.007 

t=2.812 
p=0.037 

t=3.233 
p=0.023 

t=0.824 
p=0.448     

t=1.1 
p=0.321 

be
ha

vi
or

 sensory t=8.204 
p<0.001         

t=6.772 
p=0.001   

t=5.178 
p=0.004           

t=5.383 
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p=0.016 
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p=0.008 
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p=0.053 

t=0.463 
p=0.663   

t=1.096 
p=0.323 

Supplementary Table 1: Post-hoc statistics for two-sided paired t-tests from the theoretical input function based on 
the statistics in the natural world (in green) and from the psychophysical input function based on independent 
behavioral measurements (in blue). All significant cells are colored in a lighter shade for the purpose of quick 
visualization. 
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