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Graphical Abstract

Highlights
1) DELiVR detects labelled cells in cleared brains with deep learning
2) DELiVR is trained by annotating ground-truth data in virtual reality (VR) 
3) DELiVR is launched via a FIJI plugin anywhere from PCs to clusters 
4) Using DELiVR, we found new brain activity patterns in weight-stable vs. cachectic cancer

Supplementary Videos can be seen at: https://www.DISCOtechnologies.org/DELiVR/
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ABSTRACT
Tissue clearing and fluorescent microscopy are powerful 
tools for unbiased organ-scale protein expression 
studies. Critical for interpreting expression patterns 
of large imaged volumes are reliable quantification 
methods. Here, we present DELiVR a deep learning 
pipeline that uses virtual reality (VR)-generated training 
data to train deep neural networks, and quantify c-Fos 
as marker for neuronal activity in cleared mouse 
brains and map its expression at cellular resolution. 
VR annotation significantly accelerated the speed of 
generating training data compared to conventional 2D 
slice based annotation. DELiVR detects cells with much 
higher precision than current threshold-based pipelines, 
and provides an extensive toolbox for data visualization, 
inspection and comparison. We applied DELiVR to profile 
cancer-related mouse brain activity, and discovered 
a novel activation pattern that distinguishes between 
weight-stable cancer and cancer-associated weight loss. 
Thus, DELiVR provides a robust mouse brain analysis 
pipeline at cellular scale that can be used to study brain 
activity patterns in health and disease. 
The DELiVR software, Fiji plugin and documentation 
can be found at https://www.DISCOtechnologies.org/
DELiVR/.

INTRODUCTION
Analyzing the expression of proteins is essential 
to understand cellular and molecular processes in 

physiological and disease conditions. While standard 
immunohistochemistry is useful to validate protein 
expression on tissue sections, it does not provide a holistic 
view of expression patterns in larger tissue pieces or 
whole organs. In addition, essential information can be lost 
during slicing1,2. Tissue clearing and fluorescent imaging 
solve many of these restrictions and allow unbiased 
protein expression analysis at up to organism-scale1,3,4. 
By immunostaining for the expression of immediate early 
genes such as c-Fos, it is possible to retrieve a brain-
wide snapshot of the neuronal activity of an animal 
shortly before fixation. Unbiased quantification methods 
for system-level examination at single-cell resolution are 
essential to interpret those brain-wide findings5. Current 
automated methods for cell detection and registration 
to the Allen Mouse Brain Atlas were shown to be a 
valuable tool when mapping brain activity following drug 
treatment, whisker-evoked sensory processing, nesting 
or fasting6-8. However, these methods are commonly 
challenged by some aspects of 3D whole-brain imaging, 
specifically by variations in image acquisitions among 
samples, uneven signal to noise ratio across the tissue 
depth, or low abundance of the target protein. In such 
cases, applying a single threshold to a whole-brain scan 
can lead to a significant lack of detection sensitivity and/
or specificity. As a result, current pipelines tend to use 
conservative thresholds and discard a lot of potentially 
useful information.
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1. Fixed mouse brains are subjected to SHANEL based antibody labeling, tissue clearing and fluorescent light sheet imaging. 2. 
Volumes of raw data are labeled in 3D using VR to generate ground truth data. 3. Brains are subjected to deep learning based cell 
segmentation and registration to the Allen Brain atlas. Subsequently, region based cell counts are extracted  and can be analyzed. 
4. DELiVR automatically generates a color-coded validation data set.

Figure 1: Summary of virtual reality (VR) aided deep learning for antibody labeled cell 
segmentation in mouse brains  

In response to these challenges, we developed DELiVR 
(Deep Learning and Virtual Reality mesoscale annotation 
pipeline), a VR aided deep learning algorithm for detecting 
c-Fos+ cells in cleared mouse brains (Fig. 1). We 
used the SHANEL protocol for c-Fos immunostaining9, 
tissue clearing and light-sheet fluorescence microscopy 
(LSFM). In order to analyze the resulting 3D images, 
we developed DELiVR: first, we generated high-quality 
ground-truth data by segmenting c-Fos+ cells in VR. 
Next, we trained a deep neural network on these ground 
truth data, and used it to identify cells across the brain. 
Subsequently, we registered the image stacks to the Allen 
Brain Atlas in reference-brain space, and developed a 

pipeline to map the aligned cells back into the original 
image space. We used DELiVR to map cancer-related 
brain activity in tumor-bearing mice that were either 
weight-stable or displayed cancer-associated weight loss 
(cachexia). Interestingly, DELiVR revealed increased 
neuronal activity in mice with weight-stable cancer in 
brain areas related to sensory processing and foraging. 
In contrast, this increase was lost in animals with 
weight loss, suggesting a weight-stable cancer-specific 
neurophysiological hyper-activation phenotype.

RESULTS
Generation of ground-truth labels is faster and more 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.18.540970doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.540970
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

accurate in VR compared to 2D slice annotation 
Deep learning algorithms are constrained by the amount 
of annotated training data. A more reliable and faster 
annotation approach can drastically improve deep 
learning-based image analysis in diverse applications. 
Here, we aimed to develop a powerful deep learning-
based solution to identify c-Fos+ cells. However, such 
whole-brain immunolabelling datasets present unique 
challenges, including changes in the ratio of labeling 
intensity to background intensity in different areas. To 
train segmentation models in a supervised manner, expert 
annotations are crucial. Common annotation approaches 
such as ITK-SNAP10 enable sequential 2D slice-by-
slice annotation. Since this is a very time-consuming 
task, we opted for a VR approach as this allows for full 
immersion into the 3D volumetric data. We used two 
different  commercial VR annotation software packages 
(Arivis VisionVR and syGlass11), and evaluated their 
speed and accuracy in comparison to 2D slice annotation 
in ITK-SNAP on a c-Fos labeled brain sub volume (Fig. 
2a and b). For annotation using Arivis VisionVR, the 
annotator defined a region of interest (ROI) in which an 
adaptive thresholding function was applied, according 
to the annotator’s input. (Fig. 2c-g, Supplementary 
Video 1). In syGlass, the annotation tool allowed the 
annotator to draw simple three-dimensional shapes as 
the ROI and adjust a threshold until the annotation was 
acceptable (Supplementary Fig. 1a-d, Supplementary 
Video 2).  In ITK-SNAP, annotation was performed by 
annotating individual cells in each plane of the image 
stack (Supplementary Fig. 1e, Supplementary Video 
3). We evaluated the time spent by the annotators for 
a 100³ voxel sub volume (depicting 83 cells) as well as 
the annotation quality of cell instances using the Dice 
-score. In our experiment, we found that VR annotation 
was substantially faster compared to 2D slice annotation 
(Fig. 2h) and led to a speed up of annotation time 
spent of average 7.1 times. Further, VR significantly 
improved annotation quality, reflected in an increased 
instance Dice of 80.3% (+6.5%, Fig. 2i). In conclusion, 
VR annotation accelerates label generation compared to 
2D slice annotation, leading to more annotated training 
data of higher quality in in the same time spent. Thus, we 
decided to generate ground truth data in VR for our deep 
learning algorithm for c-Fos activity mapping.

Deep learning based DELiVR outperforms threshold-
based c-Fos segmentation and enables easy 
visualization of c-Fos expression in brain regions of 
interest
In order to get a representative sample, we randomly 
sampled and VR-annotated 48 100³ voxel patches 
(referring to 5889 cells) from a c-Fos labeled brain that 
were annotated in VR. From these we randomly selected 
9 patches for testing and used 39 patches for training a 
deep neural network (3D U-Net) with Ranger21 optimizer, 
MISH activation function and binary cross entropy loss 

(Fig. 3a). Training ran over 500 epochs, with an initial 
learning rate of 1e-3 and a batch size of 4. We trained the 
network on a single GPU with 2 random crops of a patch 
size of 96x96x64 per batch element. We assessed both 
volumetric as well as instance performance. Volumetric 
scores are calculated across all voxels in the image, 
while instance scores are calculated on the overlap 
between individual cells (see methods section).Our 
performance on the test set shows a 79.18% instance 
Dice (+38.66% increase), 84.70% instance sensitivity 
(+57.79% increase), 65.39% volumetric Dice (+46.56% 
increase) and 56.85% volumetric sensitivity (+45.39%) 
compared to ClearMap2 (Fig. 3b-d, Supplementary Fig. 
2a). These scores demonstrate a clear improvement over 
filter and threshold-based segmentation methods as the 
deep learning model captures 73 times more cells (1611 
true positives) than ClearMap1 (22 true positives) and 
3 times more cells than ClearMap2 (515 true positives) 
while not oversegmenting (Fig. 3e).

Whole-brain antibody labeling with c-Fos often leads 
to antibody accumulations in ventricles of the brain, 
thereby generating artifacts in these areas. To exclude 
these areas from the analysis, we developed an 
automated pre-processing step that masks the ventricles 
(Supplementary Fig. 2b-e). DELiVR then uses a 
customized sliding window inferrer for the forward pass. 
Afterwards we conduct a connected component analysis12

to identify individual cells. After atlas alignment and size 
filtering of the cells, we assign the corresponding atlas 
region to each found cell and for visualization dilate the 
cells with a kernel of size 4. The connected component 
analysis returns a set of center-point coordinates and 
volume for each segmented cell, which DELiVR then 
automatically maps to the Allen Brain Atlas (CCF3, 
50 µm/voxel) with mBrainAligner13. Thereby, DELiVR 
generates a whole-brain segmentation output that exists 
in the original image space. Here, each segmented cell 
corresponds to a threshold value fitting to an Area ID of 
the Allen Brain Atlas and was colored according to the 
brain region it belongs to (Fig. 4a and b, Supplementary 
Video 4). In addition, we used BrainRender14 to plot 
and visualize the detected cells in the atlas space (Fig. 
4c).

DELiVR identifies a novel brain activation pattern in 
weight-stable tumor-bearing mice.
Cancer affects the normal physiology of cells leading 
to changes in the metabolic activity of the tumor and 
surrounding tissues. It can also lead to profound changes 
in systemic metabolism of the patient. This is particularly 
exemplified in the wasting syndrome cancer-associated 
cachexia (CAC) that is characterized by involuntary loss 
of body weight15-17 and specific changes in brain activity18.
To identify brain regions that are potentially involved in 
affecting body weight maintenance in cancer we used 
DELiVR to compare the neuronal activity patterns between 
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a, Volume of raw data (c-Fos labelled brain) imaged with light-sheet fluorescence microscopy and loaded into Arivis VisionVR. b, 
Illustration of  VR goggles and VR view of data. c-d, Using Arivis VisionVR, individual cells were annotated by placing a selection 
cube on the cell (c),  fitting the cube to the size of the cell (d) and filled (e). f-g, Zoomed in view of raw data (f) and annotation 
overlay generated in VR (g). h, Time spent for annotating a test patch on using 2D slice and VR annotation. i, Instance Dice of 
2D slice annotation vs VR annotation. n=7-12 / group. *p<0.05, ***p<0.001

Figure 2: Virtual reality (VR) aided annotation is faster than 2D slice annotation

5b). The differences in body weight were not due to 
differences in tumor mass, as the tumor size was similar 
between NC26 and C26 tumor-bearing animals (Fig. 5c). 
C26 tumor-bearing mice also displayed reduced weights 
of the gastrocnemius muscle and white adipose tissue 
depots (Supplementary Fig. 3a-c). We performed c-Fos 
antibody labeling, clearing and imaging of whole brains 

weight-stable cancer and CAC. We subcutaneously 
transplanted NC26 colon cancer cells that give rise to 
weight-stable cancer or C26 colon cancer cells, which 
induce weight loss (Fig. 5a). As expected, no changes 
in body weight were observed in NC26 tumor-bearing 
mice compared to controls, while C26 tumor-bearing 
mice showed significant reductions in body weight (Fig. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.18.540970doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.540970
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

Figure 3: Deep learning-based DELiVR outperforms current methods for c-Fos detection
a, Architecture of the c-Fos deep learning network: a MONAI BasicUNet3D. b – d, Quantitative comparison between ClearMap, 
ClearMap2 and our model based on instances of cells and volumetric dice. e, 3D qualitative comparison between ClearMap, 
ClearMap2, and our model on instance basis: Predicted cells with overlap in ground truth are masked in green, predicted cells 
with no overlap in ground truth are masked in red, and ground truth cells with no corresponding prediction are marked in blue. 

of these mice and applied DELiVR for unbiased whole-
brain mapping of neuronal activity. Interestingly, c-Fos+ 
density maps indicated an increase in brain activity in 
weight-stable NC26 tumor-bearing mice compared to 
PBS controls, while this increase was not present in 
cachectic C26 tumor-bearing mice (Fig. 5d). 
Further, we found significantly increased c-Fos+ density 
in 73 areas in the NC26 brain compared to C26 (Fig. 
5e-f, Fig. 6a). We found approximately half of the 
overactive cortical areas in NC26 tumor-bearing mice 
are linked to higher sensory processing, such as primary 
and secondary visual, auditory and somatosensory, 

areas as well as the ectorhinal cortex (Fig. 6a). In addition, 
regions associated with foraging such as the retrosplenial 
and prelimbic cortex were hyper-activated in NC26 tumor-
bearing mice (Fig. 6a). Besides cortical areas, we observed 
increased c-Fos expression in several hypothalamic nuclei 
including the lateral hypothalamic nucleus (LHA), which 
is an important regulator of feeding and metabolism19,20. 
To confirm the validity of our quantifications, we used 
DELiVR’s novel visualization tool for c-Fos expression 
confirmation in brain regions of interest. To this end, we 
evaluated c-Fos expression in our original images and in 
the DELiVR segmentation output in the LHA and prelimbic 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.18.540970doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.540970
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

a-b, 3D view of whole brain (a) and segmentation of detected cells, color-coded by atlas region (b). c, visualization of the area-
mapped cells in Atlas Space with BrainRender. 

Figure 4: Whole-brain segmentation output generated with DELiVR

areas in brains of weight-stable and cachectic tumor-
bearing mice (Fig 6b). The color mapping of the cells 
allows to highlight the area of interest e.g., using standard 
Fiji tools. Doing so, we were able to highlight only the 
segmented cells of this region and thereby making it easy 
to find and confirm an anatomical or functional sub-area 

in the original image stack of the brain. In agreement 
with the quantification in Fig 6a, we observed increased 
c-Fos expression in the LHA and prelimbic area of NC26 
tumor-bearing mice (Fig. 6b).
Overall, our findings showed that brain activity in weight-
stable NC26 cancer-bearing mice are markedly different 
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from both cachectic C26 cancer-bearing mice and PBS 
controls. Thus, with DELiVR we were able to identify 
a novel neuronal activity pattern specific to the NC26 
cancer model.

DISCUSSION 
DELiVR is a VR-enabled deep learning-based 
quantification pipeline to study brain activity in cleared 
mouse brains. We used VR to generate ground truth data 
for training a deep learning based segmentation network. 
DELiVR improves segmentation accuracy compared to 
current cell detection methods and generates a registered 
segmentation output that can be examined in the original 
image and in the atlas spaces. 

Our experiments show that VR is more than a medium 
for immersive games, but rather a superior means of 
annotation and data exploration for volumetric data 
analysis. Non-VR methods for segmentation show 
orthogonal slices, which allows an annotator to outline 
the shape of individual cells in 2D. However, it obfuscates 
necessary spatial information which makes annotation 
challenging and time consuming - an annotator never 
sees the cell as a whole, only a cross section, and has 
to scroll through slices to ensure that it is in fact a cell 
and not background noise. In contrast, VR allows the 
annotator to capture three-dimensional structures in their 
entirety and thereby enables the fast generation of more 
reliable annotated data.

Traditional, non-machine learning computer vision 
solutions for large-scale analysis of c-Fos cell detection 
such as ClearMap6,21 rely on a sophisticated system of 
thresholding and filtering to detect small structures and 
classify them as cells. While such approaches have been 
proven to generate valuable information5, they show 
limited performance for data with variable signal-to-noise 
ratios, as is the case when imaging large volumes such 
as the mouse brain using LSFM. Those parameters can 
be adjusted, but it is very difficult to find a parameter set 
which accounts for all cells and hence the thresholds 
tend to be set conservatively, meaning that subtle 
differences may be lost during threshold-based analysis. 
A trained deep learning model however learns these 
local variances, allowing for a one-shoe-fits-all solution 
once trained sufficiently. We find that with our datasets, 
DELiVR increases instance Dice, volumetric Dice as 
well as instance sensitivity. Thus, DELiVR can fulfill the 
desired task of giving us the correct number of cells in 
the right locations, while threshold-based cell detection 
missed a large number of cells by being too conservative.

We used DELiVR to profile the brain activation patterns 
of cancer-bearing mice that were either weight-stable or 
displayed CAC. Weight loss in cancer is driven by a mix 
of reduced food intake, elevated catabolism, increased 
energy expenditure and inflammation17. The brain was 
shown to contribute to anorexia in CAC, as it responds 

to inflammatory cytokines that modulate the activity of 
neuronal populations that regulate appetite22. In addition, 
activation of neurons in the parabrachial nucleus was 
shown to suppress appetite in mouse models of CAC23. 
Of note, decreased food intake alone is not the sole 
reason for cachexia development as nutritional support 
fails to fully revert the syndrome24. In our dataset, we found 
increased c-Fos+ cell counts in the LHA of weight-stable 
NC26 tumor-bearing mice compared to cachectic C26 
tumor-bearing mice, indicating a connection between LHA 
activity and weight loss. Specifically in cachexia, reduced 
LHA activity is caused by hypothalamic inflammation, 
which triggers silencing of orexinergic neurons, thereby 
tilting the energy balance towards energy wasting 18,25,26. 
In contrast, the NC26-specific LHA hyperactivation could 
indicate a novel compensatory mechanism that maintains 
normal body weight in this cancer model. 

Surprisingly, we also found a strong increase in c-Fos+ 
counts in brains of weight-stable NC26 tumor-bearing mice 
in numerous other locations. Many of these areas where 
located in the cortex and included all primary sensory 
regions (somatosensory, visual, and auditory), as well as 
secondary sensory regions, the retrosplenial cortex, and 
large parts of the prelimbic and orbitofrontal regions – 
all involved in higher-order sensory processing as well 
as motion sequencing and (partially) foraging27-29. The 
abundance of sensory-related regions being affected in 
our weight-stable cancer model also opens the possibility 
of a cancer-specific impairment in GABAergic inhibition30. 
The strong sensory component is unique to NC26 non-
cachectic cancer brains in our dataset and differentiates 
them from both C26 and PBS controls. Whether this 
increase in neuronal activation in weight-stable cancer 
bearing mice somehow affects body weight maintenance 
will be interesting to explore in future studies. 

To conclude, we present DELiVR: an integrated pipeline 
to label, scan, and analyze neuronal activity markers 
across the entire mouse brain. We innovate by bringing a 
deep-learning segmenter to cleared-brain analysis, and 
speed up processing time by generating the required 
training data more accurately in VR. Using DELiVR, we 
find differences in c-Fos expression between cachectic 
and non-cachectic cancer mouse brains, pointing us to 
a previously unknown neurophysiological phenotype in 
cancer-related weight control. 

MATERIALS AND METHODS 
Whole-brain immunolabeling and clearing
Immunostaining for c-Fos was performed using a 
modified version of SHANEL9. All incubation steps were 
carried out under moderate shaking (300 rpm). For the 
pretreatment, samples were dehydrated with an ethanol/
water series (50% EtOH, 70% EtOH, 100% EtOH) at 
room temperature for 3h per step. Next, samples were 
incubated in DCM/MeOH (2:1 v/v) at room temperature 
for 1 day. Brains were rehydrated with an ethanol/water 
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Figure 5 Nerve-immune cell interactions in the gut

a, Experimental set-up. Mice were subcutaneously injected with PBS, NC26 cells that lead to a weight-stable tumor formation 
or cachexia-inducing C26 cancer cells. b, Mouse body weight change over the course of the experiment. c, Tumor weight at the 
end of the experiment. d, , Average density maps of c-Fos expression in brains of PBS controls, mice with weight-stable cancer 
(NC26) and mice with cancer-associated weight loss (C26). e, Volcano plot of areas activated in weight-stable cancer (NC26 over 
C26) based on c-Fos expression. Significantly changed areas are color-coded according to the Allen Brain Atlas. f, Significantly 
different areas between NC26 and C26, visualized using BrainRender. n=6/group. ****p<0.0001.

Figure 5: DELiVR identifies changes in neuronal activity in weight-stable cancer 
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Figure 6: DELiVR identifies cancer-related brain activation patterns
a, Fold change of brain regions induced by cancer compared to a control group. * p<0.05 (n=6/group). b, Per-region cell label 
validation in the prelimbic Cortex (PL) and Lateral Hypothalamic Area (LHA). Atlas and average heatmap are displayed in atlas 
space (25µm/px). The labelled cells and microscope images are displayed in the original image Space (36 µm z-projection). Scale 
bars = 500 µm in both spaces.
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series (100% EtOH, 70% EtOH, 50% EtOH, diH20) 
at room temperature for 3h per step. Samples were 
incubated in 0.5M acetic acid at room temperature for 5 
hours followed by washing with diH2O. Next, brains were 
incubated in 4M guanidine HCl, 0.05M sodium acetate, 
2% v/v triton x100, pH=6.0 at RT for 5 hours followed 
by washing with diH2O. Brains were incubated in a mix 
of 10% CHAPS and 25% N-Methyldiethanolamine at 
37° for 12h before washing with diH2O. Blocking was 
performed by incubating the brains in 0.2% triton x100, 
10% DMSO, 10% goat serum in PBS shaking at 37° 
for 2 days. Samples were incubated with c-Fos primary 
antibody (Cell Signaling, #2250, 1:1000) in primary 
antibody buffer (0.2% Tween-20, 5% DMSO, 3% goat 
serum, 100ul heparin/100 ml PBS) shaking at 37° for 
7 days. The antibody solution was filtered (22 µm pore 
size) before use. Samples were washed in washing 
solution (0.2% Tween-20, 100ul heparin/100 ml PBS) 
shaking at 37° for 1 day at which the washing solution 
was refreshed 5 times. Brains were incubated with the 
secondary antibody (Alexa Fluor 647, Goat anti-Rabbit 
IgG (H+L) from Invitrogen #A-21245) in secondary 
antibody buffer (0.2% Tween-20, 3% goat serum, 100ul 
heparin/100 ml PBS) shaking at 37°C for 7 days followed 
by incubating in washing solution shaking at 37° for 1 day 
at which the washing solution was refreshed 5 times.
Brains were dehydrated using 3DISCO2 with a THF/
diH20 series (50% THF, 70% THF, 90%THF, 100%THF) 
for 12h per step followed by an incubation in DCM for 
1h. Tissues were incubated in benzyl alcohol/benzyl 
benzoate (BABB, 1:2 v/v) until tissue transparency was 
reached (>4 h).

Light-Sheet Imaging
Light-sheet imaging was conducted through a 4× 
objective lens (Olympus XLFLUOR 340) equipped with 
an immersion corrected dipping cap mounted on an 
UltraMicroscope II (LaVision BioTec) coupled to a white 
light laser module (NKT SuperK Extreme EXW-12). 
The antibody signal was visualized using a 640/40 nm 
excitation and 690/50 nm emission filter. Tiling scans 
(3 by 3 tiles) were acquired with a 20% overlap, 60% 
sheet width and 0.027 NA. The images were taken in 16 
bit depth and at a nominal resolution of 1.625 μm/voxel 
on the XY axes. In z-dimension we took images in 6 μm 
steps using left and right sided illumination. Stitching of 
tile scans was carried out using Fiji's stitching plugin, 
using the “Stitch Sequence of Grids of Images” plugin31 

and custom Python scripts.

ClearMap
ClearMap6 and ClearMap2’s CellMap portion21 were 
used with adapted settings for thresholds and cell sizes 
that fitted to the higher resolution and different signal to 
noise ratios in our dataset. Segmentation masks were 
saved as tiff stacks by toggling the “save” option in 
the last segmentation step. ClearMap 1 was ported to 

Python 3 before use, but functioned identically32. We only 
used the cell segmentation portions, no pre-processing 
(e.g. ClearMap2’s flat-field correction) or post-processing 
such as atlas alignment were performed. Both pipelines 
were run for an entire brain and subsequently subdivided 
into test patches that we used for the comparisons with 
DELiVR. 

Ventricle masking
We wrote an automated preprocessing script that 
downsamples the image stack to an isotropic 25x25x25 
µm/voxel, and then applies a custom-trained Random 
Forest to identify ventricles. Specifically, we integrated 
Ilastik33 (version 1.407b) with a 3D pixel classifier, which 
we trained on several downsampled brain image stacks 
to differentiate between ventricles and brain parenchyma. 
The preprocessing script then generates a 3D mask 
stack, which our script upsamples to the original image 
stack dimensions, using bicubic interpolation to avoid 
aliasing artefacts at ventricle edges. It then masks each 
original z-plane image with the respective mask and 
returns a 16-bit tiff stack with the ventricles masked out. 

Annotation
VR annotation was carried out using Arivis VisionVR or 
syGlass11. For this purpose, the annotator was wearing a 
VR head set (Oculus Rift S) and carried out annotations 
in VR using hand controllers (Oculus touch). Slice by 
slice annotation was carried out using ITK-SNAP10. For 
comparing VR and 2D-sliced based annotation, a 1003 

voxel volume of c-Fos labelled brain was annotated by 
the participants  and the time was recorded until the 
annotation task was finished. For training and testing 
our deep learning network, we annotated a total of 48 
100³ voxel patches in VR. All of our training and test 
patches were furthermore vetted by an expert biologist 
in ITK-SNAP to ensure that only cells were annotated. 
We evaluated the annotation quality using the formula of 
Dice as described below.

Deep Learning
To automatically segment the cells in all brains we 
trained a BasicUnet3D  from the MONAI library34. The 
annotated dataset of 48 100³ patches was split in 9 
patches for testing and 39 patches for training. As an 
activation function we chose MISH35 and as optimizer 
Ranger2136 in order to flatten the loss landscape and 
allow for easier generalization. As loss function we used 
binary cross entropy loss. For the training of 500 epochs, 
we set the initial learning rate to 1e-3 and the batch size 
to 4. The network is then trained on a single GPU (Nvidia 
RTX3090) with 2 random crops with a patch size of 
96x96x64 per batch element.

Evaluation of the segmentation model
Evaluation of the deep learning model was done in a 
two-fold way, we compared both the volumetric quality 
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of the segmentation by assessing for each voxel if it was 
correctly classified as foreground or background, as well 
as the instance segmentation quality, where we assess 
on a single cell level whether a cell has been detected or 
not. Volumetric quality assessment gave us true positives 
(TP), false positives (FP), false negatives (FN) and true 
negatives (TN) by comparing every prediction voxel with 
the ground truth voxel. Instance quality assessment 
gave us TP, FP and FN by first conducting a connected 
component analysis on both the network prediction as 
well as the ground truth. For each connected component, 
we then compared whether there was at least a single 
voxel overlap between one connected component in the 
prediction and in the ground truth. The corresponding 
ground truth component was then removed from the set 
of components and was counted as true positive. Every 
ground truth component that had no overlap was counted 
as a FN, every prediction component without overlap was 
counted as a FP. The intuition here is that our biological 
question requires a truthful count of cells at the correct 
area rather than voxel perfect segmentations of each 
cell. Comparison with ClearMap and ClearMap2 was 
performed as follows: We first applied the methods on 
the same brain we took our test data from, masked it with 
our random forest masker and then cut out the relevant 
100³ voxel patches. These patches were then compared 
to our ground truth annotation.
Scores were defined as follows:

Dice=  2TP/(2TP+FP+FN)           Sensitvity=  TP/(TP+FN)

Atlas registration and statistical analysis
Because the SHANEL protocol’s aggressive detergent 
treatment warps the brains considerably more than in 
other clearing techniques, we could not use Elastix for 
Atlas registration (data not shown). Rather, we used 
a novel and recently published tool, mBrainAligner13, 
which worked well with our datasets (Supplementary 
Fig. 4). We manually saved the downsampled isotropic 
25x25x25 µm/voxel stacks as .v3draw using Vaa3d37. 
Subsequently, we wrote an automated script that aligned 
the image stacks to mBrainAligner’s 50x50x50 µm/voxel 
version of the Allen Brain Atlas CCF3 reference atlas, 
using the Light-Sheet Fluorescent Microscopy example 
settings with minor adaptations. Subsequently, we used 
mBrainAligner’s swc transformation tool to map the 
center point coordinates of our c-Fos+ cells into atlas 
space. 
Furthermore, we wrote a custom cell-to-atlas script 
(reusing parser code from VeSSAP38, and the CCF3 
atlas file as provided by the Scalable Brain Atlas39) that 
filters the cells by size, based on 3x standard deviation 
(upper bound = 104 voxels) and returns two tables: A 
table with each cell as a row, including the region, Allen 
Brain Atlas color code, etc. Furthermore, a region table 
with one region per row, in which the number of c-Fos+ 
cells per region is summarized. Lastly, for all datasets, 

the postprocessing script generates overview tables that 
contain cell counts for all regions. We used the latter for 
uncorrected Student’s t tests. Lastly, we implemented a 
level-aware multiple-testing script that compares between 
groups at the Allen Brain Atlas’s 11 structure levels. 

Visualization
For visualizing the cells and regions in atlas space, 
we used BrainRender14 with a modified density plot 
function32. In order to visualize the segmented cells in the 
original image space, we combined the area-wise color-
code from the Allen Brain Atlas with the 3D segment 
mask output by the connected component analysis. The 
result is a cell mask file with each cell being color-coded 
according to the brain area it belongs to, which makes 
overlaying with the original image data in e.g. Fiji easy 
and allows for direct visual inspection of the segmentation 
results.

Cell culture
C26 and NC26 colon cancer cells were cultured in 
high glucose DMEM with pyruvate (Life Technologies 
#41966052), supplemented with 10% fetal bovine serum 
(Sigma-Aldrich #F7524) and 1% penicillin-streptomycin 
(Thermo Fisher #15140122)40. Before using the cells 
for transplantation, cells had a confluence of 80%. Cells 
were trypsinized, counted and required cell numbers 
were suspended in Dulbecco's phosphate-buffered 
saline (PBS, Thermo Fisher #14190250).

Animal experimentation
Experiments were carried out with male BALB/c mice at an 
age of 10-12 weeks. They were purchased from Charles 
River (CRL, Brussels), maintained on a 12-h light–dark 
cycle and fed a regular unrestricted chow diet. They were 
injected with 1x106 C26 or 1.5x106 NC26 cells in 50 µl 
PBS subcutaneously into the right flank. Control mice 
were injected with PBS.  5 days after cell implantation, 
mice were monitored daily for tumor growth and body 
weight. Cachectic C26 tumor-bearing mice considered 
cachectic when they had lost 10% - 15% of body weight. 
Mice were sacrificed following deep anesthesia with a mix 
of ketamine/xylazine, followed by intracardiac perfusion 
with heparinized PBS (10 U/ml heparin) followed by a 
perfusion with 4% paraformaldehyde (PFA). Tissues 
and organs were dissected, weighed and post-fixed at 
4°C overnight. Animal experimentation was performed 
in accordance with the European Union directives and 
the German animal welfare act (Tierschutzgesetz). They 
have been approved the state ethics committee and the 
government of Upper Bavaria (ROB-55.2-2532.Vet_02-
18-93).

Statistical analysis
Results from biological replicates were expressed as 
mean ± standard error of the mean. Statistical analysis 
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54-57, doi:10.1109/MPUL.2017.2701493 (2017).
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12 Silversmith, W. cc3d: Connected components on 
multilabel 3D & 2D images. (3.2.1). Zenodo, doi:https://doi.
org/10.5281/zenodo.5719536 (2021).
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was performed using GraphPad Prism 7. Normality was 
tested using Shapiro–Wilk normality tests. To compare 
two conditions, unpaired Student's t-tests or Mann–
Whitney tests were performed. One-way analysis of 
variance (ANOVA) or Kruskal–Wallis tests with Sidak´s 
post hoc test were used to compare three groups. 
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Suppl. Fig. 1. VR Segmentation in syGlass and 2D slice-based segmentation using ITK-
SNAP
a, Volume of raw data (c-Fos labelled brain) that was generated by light sheet microscopy and loaded into syGlass. b-d, Using 
VR, individual cells were segmented in syGlass by using three-dimensional euclidean shapes as ROI and adjust a threshold until 
the segmentation was acceptable. e, ITK-SNAP view of a single plane of the image stack. Cells were labelled individually slice by 
slice. Colored cells indicate the segmentations performed by the annotator.
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Suppl. Fig. 2. DELiVR pre-processing automatically removes artefacts

a, Quantitative comparison between ClearMap, ClearMap2 and DELiVR based on volumetric sensitivity. b, Preprocessing work-
flow. DELiVR preprocessing down-samples the original image stack. Subsequently, it uses a random forest segmenter (Ilastik pix-
el classification) to create a mask for ventricles. Lastly, the mask is upscaled and applied on the original slices to create a masked 
image stack. c-e, Horizontal view of an original image slice (c), the proposed mask (d) and the masked image slice generated (e).
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Suppl. Fig. 3. Tissue weights of mice with weight-stable cancer (NC26) and cancer-asso-
ciated weight loss (C26) 
a-c, Weights of gastrocnemius (GC) muscle (a), epididymal white adipose tissue (WAT) (b) and subcutaneous WAT (c). n=6/
group. *p<0.05, **p<0.01.
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Suppl. Fig. 4. Atlas Registration with mBrainAligner 

Post-registration overlap for representative brains of the experimental groups PBS (left), NC26 (middle) and C26 (right). Green, 
registered image stack. Magenta, mBrainAligner’s version of the CCF3 reference atlas. 
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