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1) DELIiVR detects labelled cells in cleared brains with deep learning

2) DELIiVR is trained by annotating ground-truth data in virtual reality (VR)

3) DELiVR is launched via a FIJI plugin anywhere from PCs to clusters

4) Using DELIiVR, we found new brain activity patterns in weight-stable vs. cachectic cancer

Supplementary Videos can be seen at: https://www.DISCOtechnologies.org/DELiVR/
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ABSTRACT

Tissue clearing and fluorescent microscopy are powerful
tools for unbiased organ-scale protein expression
studies. Critical for interpreting expression patterns
of large imaged volumes are reliable quantification
methods. Here, we present DELiIVR a deep learning
pipeline that uses virtual reality (VR)-generated training
data to train deep neural networks, and quantify c-Fos
as marker for neuronal activity in cleared mouse
brains and map its expression at cellular resolution.
VR annotation significantly accelerated the speed of
generating training data compared to conventional 2D
slice based annotation. DELiVR detects cells with much
higher precision than current threshold-based pipelines,
and provides an extensive toolbox for data visualization,
inspection and comparison. We applied DELIVR to profile
cancer-related mouse brain activity, and discovered
a novel activation pattern that distinguishes between
weight-stable cancer and cancer-associated weight loss.
Thus, DELiIVR provides a robust mouse brain analysis
pipeline at cellular scale that can be used to study brain
activity patterns in health and disease.

The DELIVR software, Fiji plugin and documentation

can be found at https://www.DISCOtechnologies.org/
DELIiVR/.

INTRODUCTION
Analyzing the expression of proteins is essential
to understand cellular and molecular processes in

physiological and disease conditions. While standard
immunohistochemistry is useful to validate protein
expression on tissue sections, it does not provide a holistic
view of expression patterns in larger tissue pieces or
whole organs. In addition, essential information can be lost
during slicing™2. Tissue clearing and fluorescent imaging
solve many of these restrictions and allow unbiased
protein expression analysis at up to organism-scale’34.
By immunostaining for the expression of immediate early
genes such as c-Fos, it is possible to retrieve a brain-
wide snapshot of the neuronal activity of an animal
shortly before fixation. Unbiased quantification methods
for system-level examination at single-cell resolution are
essential to interpret those brain-wide findings®. Current
automated methods for cell detection and registration
to the Allen Mouse Brain Atlas were shown to be a
valuable tool when mapping brain activity following drug
treatment, whisker-evoked sensory processing, nesting
or fasting®®. However, these methods are commonly
challenged by some aspects of 3D whole-brain imaging,
specifically by variations in image acquisitions among
samples, uneven signal to noise ratio across the tissue
depth, or low abundance of the target protein. In such
cases, applying a single threshold to a whole-brain scan
can lead to a significant lack of detection sensitivity and/
or specificity. As a result, current pipelines tend to use
conservative thresholds and discard a lot of potentially
useful information.
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Figure 1: Summary of virtual reality (VR) aided deep learning for antibody labeled cell

segmentation in mouse brains

1. Fixed mouse brains are subjected to SHANEL based antibody labeling, tissue clearing and fluorescent light sheet imaging. 2.
Volumes of raw data are labeled in 3D using VR to generate ground truth data. 3. Brains are subjected to deep learning based cell
segmentation and registration to the Allen Brain atlas. Subsequently, region based cell counts are extracted and can be analyzed.
4. DELIVR automatically generates a color-coded validation data set.

In response to these challenges, we developed DELiVR
(Deep Learning and Virtual Reality mesoscale annotation
pipeline), a VR aided deep learning algorithm for detecting
c-Fos+ cells in cleared mouse brains (Fig. 1). We
used the SHANEL protocol for c-Fos immunostaining®,
tissue clearing and light-sheet fluorescence microscopy
(LSFM). In order to analyze the resulting 3D images,
we developed DELIVR: first, we generated high-quality
ground-truth data by segmenting c-Fos+ cells in VR.
Next, we trained a deep neural network on these ground
truth data, and used it to identify cells across the brain.
Subsequently, we registered the image stacks to the Allen
Brain Atlas in reference-brain space, and developed a

pipeline to map the aligned cells back into the original
image space. We used DELIiVR to map cancer-related
brain activity in tumor-bearing mice that were either
weight-stable or displayed cancer-associated weight loss
(cachexia). Interestingly, DELiVR revealed increased
neuronal activity in mice with weight-stable cancer in
brain areas related to sensory processing and foraging.
In contrast, this increase was lost in animals with
weight loss, suggesting a weight-stable cancer-specific
neurophysiological hyper-activation phenotype.

RESULTS
Generation of ground-truth labels is faster and more
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accurate in VR compared to 2D slice annotation
Deep learning algorithms are constrained by the amount
of annotated training data. A more reliable and faster
annotation approach can drastically improve deep
learning-based image analysis in diverse applications.
Here, we aimed to develop a powerful deep learning-
based solution to identify c-Fos+ cells. However, such
whole-brain immunolabelling datasets present unique
challenges, including changes in the ratio of labeling
intensity to background intensity in different areas. To
train segmentation models in a supervised manner, expert
annotations are crucial. Common annotation approaches
such as ITK-SNAP'™ enable sequential 2D slice-by-
slice annotation. Since this is a very time-consuming
task, we opted for a VR approach as this allows for full
immersion into the 3D volumetric data. We used two
different commercial VR annotation software packages
(Arivis VisionVR and syGlass''), and evaluated their
speed and accuracy in comparison to 2D slice annotation
in ITK-SNAP on a c-Fos labeled brain sub volume (Fig.
2a and b). For annotation using Arivis VisionVR, the
annotator defined a region of interest (ROI) in which an
adaptive thresholding function was applied, according
to the annotator’s input. (Fig. 2c-g, Supplementary
Video 1). In syGlass, the annotation tool allowed the
annotator to draw simple three-dimensional shapes as
the ROI and adjust a threshold until the annotation was
acceptable (Supplementary Fig. 1a-d, Supplementary
Video 2). In ITK-SNAP, annotation was performed by
annotating individual cells in each plane of the image
stack (Supplementary Fig. 1e, Supplementary Video
3). We evaluated the time spent by the annotators for
a 100° voxel sub volume (depicting 83 cells) as well as
the annotation quality of cell instances using the Dice
-score. In our experiment, we found that VR annotation
was substantially faster compared to 2D slice annotation
(Fig. 2h) and led to a speed up of annotation time
spent of average 7.1 times. Further, VR significantly
improved annotation quality, reflected in an increased
instance Dice of 80.3% (+6.5%, Fig. 2i). In conclusion,
VR annotation accelerates label generation compared to
2D slice annotation, leading to more annotated training
data of higher quality in in the same time spent. Thus, we
decided to generate ground truth data in VR for our deep
learning algorithm for c-Fos activity mapping.

Deep learning based DELIiVR outperforms threshold-
based c-Fos segmentation and enables easy
visualization of c-Fos expression in brain regions of
interest

In order to get a representative sample, we randomly
sampled and VR-annotated 48 100°® voxel patches
(referring to 5889 cells) from a c-Fos labeled brain that
were annotated in VR. From these we randomly selected
9 patches for testing and used 39 patches for training a
deep neural network (3D U-Net) with Ranger21 optimizer,
MISH activation function and binary cross entropy loss

(Fig. 3a). Training ran over 500 epochs, with an initial
learning rate of 1e-3 and a batch size of 4. We trained the
network on a single GPU with 2 random crops of a patch
size of 96x96x64 per batch element. We assessed both
volumetric as well as instance performance. Volumetric
scores are calculated across all voxels in the image,
while instance scores are calculated on the overlap
between individual cells (see methods section).Our
performance on the test set shows a 79.18% instance
Dice (+38.66% increase), 84.70% instance sensitivity
(+57.79% increase), 65.39% volumetric Dice (+46.56%
increase) and 56.85% volumetric sensitivity (+45.39%)
compared to ClearMap2 (Fig. 3b-d, Supplementary Fig.
2a). These scores demonstrate a clear improvement over
filter and threshold-based segmentation methods as the
deep learning model captures 73 times more cells (1611
true positives) than ClearMap1 (22 true positives) and
3 times more cells than ClearMap2 (515 true positives)
while not oversegmenting (Fig. 3e).

Whole-brain antibody labeling with c-Fos often leads
to antibody accumulations in ventricles of the brain,
thereby generating artifacts in these areas. To exclude
these areas from the analysis, we developed an
automated pre-processing step that masks the ventricles
(Supplementary Fig. 2b-e). DELiIVR then uses a
customized sliding window inferrer for the forward pass.
Afterwards we conduct a connected component analysis™?
to identify individual cells. After atlas alignment and size
filtering of the cells, we assign the corresponding atlas
region to each found cell and for visualization dilate the
cells with a kernel of size 4. The connected component
analysis returns a set of center-point coordinates and
volume for each segmented cell, which DELiVR then
automatically maps to the Allen Brain Atlas (CCF3,
50 um/voxel) with mBrainAligner®. Thereby, DELiVR
generates a whole-brain segmentation output that exists
in the original image space. Here, each segmented cell
corresponds to a threshold value fitting to an Area ID of
the Allen Brain Atlas and was colored according to the
brain region it belongs to (Fig. 4a and b, Supplementary
Video 4). In addition, we used BrainRender to plot
and visualize the detected cells in the atlas space (Fig.
4c).

DELIiVR identifies a novel brain activation pattern in
weight-stable tumor-bearing mice.

Cancer affects the normal physiology of cells leading
to changes in the metabolic activity of the tumor and
surrounding tissues. It can also lead to profound changes
in systemic metabolism of the patient. This is particularly
exemplified in the wasting syndrome cancer-associated
cachexia (CAC) that is characterized by involuntary loss
of body weight's'” and specific changes in brain activity®.
To identify brain regions that are potentially involved in
affecting body weight maintenance in cancer we used
DELiVRto compare the neuronal activity patterns between
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Figure 2: Virtual reality (VR) aided annotation is faster than 2D slice annotation

a, Volume of raw data (c-Fos labelled brain) imaged with light-sheet fluorescence microscopy and loaded into Arivis VisionVR. b,
lllustration of VR goggles and VR view of data. c-d, Using Arivis VisionVR, individual cells were annotated by placing a selection
cube on the cell (c), fitting the cube to the size of the cell (d) and filled (e). f-g, Zoomed in view of raw data (f) and annotation
overlay generated in VR (g). h, Time spent for annotating a test patch on using 2D slice and VR annotation. i, Instance Dice of
2D slice annotation vs VR annotation. n=7-12 / group. *p<0.05, ***p<0.001

weight-stable cancer and CAC. We subcutaneously
transplanted NC26 colon cancer cells that give rise to
weight-stable cancer or C26 colon cancer cells, which
induce weight loss (Fig. 5a). As expected, no changes
in body weight were observed in NC26 tumor-bearing
mice compared to controls, while C26 tumor-bearing
mice showed significant reductions in body weight (Fig.

5b). The differences in body weight were not due to
differences in tumor mass, as the tumor size was similar
between NC26 and C26 tumor-bearing animals (Fig. 5¢).
C26 tumor-bearing mice also displayed reduced weights
of the gastrocnemius muscle and white adipose tissue
depots (Supplementary Fig. 3a-c). We performed c-Fos
antibody labeling, clearing and imaging of whole brains
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Figure 3: Deep learning-based DELIiVR outperforms current methods for c-Fos detection

a, Architecture of the c-Fos deep learning network: a MONAI B

asicUNet3D. b — d, Quantitative comparison between ClearMap,

ClearMap2 and our model based on instances of cells and volumetric dice. e, 3D qualitative comparison between ClearMap,
ClearMap2, and our model on instance basis: Predicted cells with overlap in ground truth are masked in green, predicted cells
with no overlap in ground truth are masked in red, and ground truth cells with no corresponding prediction are marked in blue.

of these mice and applied DELIiVR for unbiased whole-
brain mapping of neuronal activity. Interestingly, c-Fos+
density maps indicated an increase in brain activity in
weight-stable NC26 tumor-bearing mice compared to
PBS controls, while this increase was not present in
cachectic C26 tumor-bearing mice (Fig. 5d).

Further, we found significantly increased c-Fos+ density
in 73 areas in the NC26 brain compared to C26 (Fig.
5e-f, Fig. 6a). We found approximately half of the
overactive cortical areas in NC26 tumor-bearing mice
are linked to higher sensory processing, such as primary
and secondary visual, auditory and somatosensory,

areas as well as the ectorhinal cortex (Fig. 6a). In addition,
regions associated with foraging such as the retrosplenial
and prelimbic cortex were hyper-activated in NC26 tumor-
bearing mice (Fig. 6a). Besides cortical areas, we observed
increased c-Fos expression in several hypothalamic nuclei
including the lateral hypothalamic nucleus (LHA), which
is an important regulator of feeding and metabolism®2°,
To confirm the validity of our quantifications, we used
DELiVR’s novel visualization tool for c-Fos expression
confirmation in brain regions of interest. To this end, we
evaluated c-Fos expression in our original images and in
the DELiIVR segmentation output in the LHA and prelimbic


https://doi.org/10.1101/2023.05.18.540970
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.18.540970; this version posted May 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 4: Whole-brain segmentation output generated with DELiVR

a-b, 3D view of whole brain (a) and segmentation of detected cells, color-coded by atlas region (b). ¢, visualization of the area-

mapped cells in Atlas Space with BrainRender.

areas in brains of weight-stable and cachectic tumor-
bearing mice (Fig 6b). The color mapping of the cells
allows to highlight the area of interest e.g., using standard
Fiji tools. Doing so, we were able to highlight only the
segmented cells of this region and thereby making it easy
to find and confirm an anatomical or functional sub-area

in the original image stack of the brain. In agreement
with the quantification in Fig 6a, we observed increased
c-Fos expression in the LHA and prelimbic area of NC26
tumor-bearing mice (Fig. 6b).

Overall, our findings showed that brain activity in weight-
stable NC26 cancer-bearing mice are markedly different
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from both cachectic C26 cancer-bearing mice and PBS
controls. Thus, with DELIVR we were able to identify
a novel neuronal activity pattern specific to the NC26
cancer model.

DISCUSSION

DELIVR is a VR-enabled deep learning-based
quantification pipeline to study brain activity in cleared
mouse brains. We used VR to generate ground truth data
for training a deep learning based segmentation network.
DELIiVR improves segmentation accuracy compared to
current cell detection methods and generates a registered
segmentation output that can be examined in the original
image and in the atlas spaces.

Our experiments show that VR is more than a medium
for immersive games, but rather a superior means of
annotation and data exploration for volumetric data
analysis. Non-VR methods for segmentation show
orthogonal slices, which allows an annotator to outline
the shape of individual cells in 2D. However, it obfuscates
necessary spatial information which makes annotation
challenging and time consuming - an annotator never
sees the cell as a whole, only a cross section, and has
to scroll through slices to ensure that it is in fact a cell
and not background noise. In contrast, VR allows the
annotator to capture three-dimensional structures in their
entirety and thereby enables the fast generation of more
reliable annotated data.

Traditional, non-machine learning computer vision
solutions for large-scale analysis of c-Fos cell detection
such as ClearMap®?' rely on a sophisticated system of
thresholding and filtering to detect small structures and
classify them as cells. While such approaches have been
proven to generate valuable information®, they show
limited performance for data with variable signal-to-noise
ratios, as is the case when imaging large volumes such
as the mouse brain using LSFM. Those parameters can
be adjusted, but it is very difficult to find a parameter set
which accounts for all cells and hence the thresholds
tend to be set conservatively, meaning that subtle
differences may be lost during threshold-based analysis.
A trained deep learning model however learns these
local variances, allowing for a one-shoe-fits-all solution
once trained sufficiently. We find that with our datasets,
DELiVR increases instance Dice, volumetric Dice as
well as instance sensitivity. Thus, DELiVR can fulfill the
desired task of giving us the correct number of cells in
the right locations, while threshold-based cell detection
missed a large number of cells by being too conservative.

We used DELIVR to profile the brain activation patterns
of cancer-bearing mice that were either weight-stable or
displayed CAC. Weight loss in cancer is driven by a mix
of reduced food intake, elevated catabolism, increased
energy expenditure and inflammation' The brain was
shown to contribute to anorexia in CAC, as it responds

to inflammatory cytokines that modulate the activity of
neuronal populations that regulate appetite??. In addition,
activation of neurons in the parabrachial nucleus was
shown to suppress appetite in mouse models of CAC23.
Of note, decreased food intake alone is not the sole
reason for cachexia development as nutritional support
fails to fully revert the syndrome?* In our dataset, we found
increased c-Fos+ cell counts in the LHA of weight-stable
NC26 tumor-bearing mice compared to cachectic C26
tumor-bearing mice, indicating a connection between LHA
activity and weight loss. Specifically in cachexia, reduced
LHA activity is caused by hypothalamic inflammation,
which triggers silencing of orexinergic neurons, thereby
tilting the energy balance towards energy wasting 182526,
In contrast, the NC26-specific LHA hyperactivation could
indicate a novel compensatory mechanism that maintains
normal body weight in this cancer model.

Surprisingly, we also found a strong increase in c-Fos+
countsinbrains of weight-stable NC26 tumor-bearing mice
in numerous other locations. Many of these areas where
located in the cortex and included all primary sensory
regions (somatosensory, visual, and auditory), as well as
secondary sensory regions, the retrosplenial cortex, and
large parts of the prelimbic and orbitofrontal regions —
all involved in higher-order sensory processing as well
as motion sequencing and (partially) foraging?-?°. The
abundance of sensory-related regions being affected in
our weight-stable cancer model also opens the possibility
of a cancer-specific impairment in GABAergic inhibition®.
The strong sensory component is unique to NC26 non-
cachectic cancer brains in our dataset and differentiates
them from both C26 and PBS controls. Whether this
increase in neuronal activation in weight-stable cancer
bearing mice somehow affects body weight maintenance
will be interesting to explore in future studies.

To conclude, we present DELiVR: an integrated pipeline
to label, scan, and analyze neuronal activity markers
across the entire mouse brain. We innovate by bringing a
deep-learning segmenter to cleared-brain analysis, and
speed up processing time by generating the required
training data more accurately in VR. Using DELIVR, we
find differences in c-Fos expression between cachectic
and non-cachectic cancer mouse brains, pointing us to
a previously unknown neurophysiological phenotype in
cancer-related weight control.

MATERIALS AND METHODS

Whole-brain immunolabeling and clearing
Immunostaining for c-Fos was performed using a
modified version of SHANELS®. All incubation steps were
carried out under moderate shaking (300 rpm). For the
pretreatment, samples were dehydrated with an ethanol/
water series (50% EtOH, 70% EtOH, 100% EtOH) at
room temperature for 3h per step. Next, samples were
incubated in DCM/MeOH (2:1 v/v) at room temperature
for 1 day. Brains were rehydrated with an ethanol/water
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Figure 5: DELIiVR identifies changes in neuronal activity in weight-stable cancer

a, Experimental set-up. Mice were subcutaneously injected with PBS, NC26 cells that lead to a weight-stable tumor formation
or cachexia-inducing C26 cancer cells. b, Mouse body weight change over the course of the experiment. ¢, Tumor weight at the
end of the experiment. d, , Average density maps of c-Fos expression in brains of PBS controls, mice with weight-stable cancer
(NC26) and mice with cancer-associated weight loss (C26). e, Volcano plot of areas activated in weight-stable cancer (NC26 over
C26) based on c-Fos expression. Significantly changed areas are color-coded according to the Allen Brain Atlas. f, Significantly
different areas between NC26 and C26, visualized using BrainRender. n=6/group. ****p<0.0001.
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Figure 6: DELIiVR identifies cancer-related brain activation patterns

a, Fold change of brain regions induced by cancer compared to a control group. * p<0.05 (n=6/group). b, Per-region cell label
validation in the prelimbic Cortex (PL) and Lateral Hypothalamic Area (LHA). Atlas and average heatmap are displayed in atlas
space (25um/px). The labelled cells and microscope images are displayed in the original image Space (36 pm z-projection). Scale

bars = 500 ym in both spaces.
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series (100% EtOH, 70% EtOH, 50% EtOH, diH20)
at room temperature for 3h per step. Samples were
incubated in 0.5M acetic acid at room temperature for 5
hours followed by washing with diH,O. Next, brains were
incubated in 4M guanidine HCI, 0.05M sodium acetate,
2% vlv triton x100, pH=6.0 at RT for 5 hours followed
by washing with diH,O. Brains were incubated in a mix
of 10% CHAPS and 25% N-Methyldiethanolamine at
37° for 12h before washing with diH,O. Blocking was
performed by incubating the brains in 0.2% triton x100,
10% DMSO, 10% goat serum in PBS shaking at 37°
for 2 days. Samples were incubated with c-Fos primary
antibody (Cell Signaling, #2250, 1:1000) in primary
antibody buffer (0.2% Tween-20, 5% DMSO, 3% goat
serum, 100ul heparin/100 ml PBS) shaking at 37° for
7 days. The antibody solution was filtered (22 ym pore
size) before use. Samples were washed in washing
solution (0.2% Tween-20, 100ul heparin/100 ml PBS)
shaking at 37° for 1 day at which the washing solution
was refreshed 5 times. Brains were incubated with the
secondary antibody (Alexa Fluor 647, Goat anti-Rabbit
IgG (H+L) from Invitrogen #A-21245) in secondary
antibody buffer (0.2% Tween-20, 3% goat serum, 100ul
heparin/100 ml PBS) shaking at 37°C for 7 days followed
by incubating in washing solution shaking at 37° for 1 day
at which the washing solution was refreshed 5 times.
Brains were dehydrated using 3DISCO? with a THF/
diH,0 series (50% THF, 70% THF, 90%THF, 100%THF)
for 12h per step followed by an incubation in DCM for
1h. Tissues were incubated in benzyl alcohol/benzyl
benzoate (BABB, 1:2 v/v) until tissue transparency was
reached (>4 h).

Light-Sheet Imaging

Light-sheet imaging was conducted through a 4x
objective lens (Olympus XLFLUOR 340) equipped with
an immersion corrected dipping cap mounted on an
UltraMicroscope Il (LaVision BioTec) coupled to a white
light laser module (NKT SuperK Extreme EXW-12).
The antibody signal was visualized using a 640/40 nm
excitation and 690/50 nm emission filter. Tiling scans
(3 by 3 tiles) were acquired with a 20% overlap, 60%
sheet width and 0.027 NA. The images were taken in 16
bit depth and at a nominal resolution of 1.625 um/voxel
on the XY axes. In z-dimension we took images in 6 um
steps using left and right sided illumination. Stitching of
tile scans was carried out using Fiji's stitching plugin,
using the “Stitch Sequence of Grids of Images” plugin®’
and custom Python scripts.

ClearMap

ClearMap® and ClearMap2’s CellMap portion?" were
used with adapted settings for thresholds and cell sizes
that fitted to the higher resolution and different signal to
noise ratios in our dataset. Segmentation masks were
saved as tiff stacks by toggling the “save” option in
the last segmentation step. ClearMap 1 was ported to

Python 3 before use, but functioned identically®2. We only
used the cell segmentation portions, no pre-processing
(e.g. ClearMap2’s flat-field correction) or post-processing
such as atlas alignment were performed. Both pipelines
were run for an entire brain and subsequently subdivided
into test patches that we used for the comparisons with
DELIiVR.

Ventricle masking

We wrote an automated preprocessing script that
downsamples the image stack to an isotropic 25x25x25
pm/voxel, and then applies a custom-trained Random
Forest to identify ventricles. Specifically, we integrated
llastik® (version 1.407b) with a 3D pixel classifier, which
we trained on several downsampled brain image stacks
to differentiate between ventricles and brain parenchyma.
The preprocessing script then generates a 3D mask
stack, which our script upsamples to the original image
stack dimensions, using bicubic interpolation to avoid
aliasing artefacts at ventricle edges. It then masks each
original z-plane image with the respective mask and
returns a 16-bit tiff stack with the ventricles masked out.

Annotation

VR annotation was carried out using Arivis VisionVR or
syGlass''. For this purpose, the annotator was wearing a
VR head set (Oculus Rift S) and carried out annotations
in VR using hand controllers (Oculus touch). Slice by
slice annotation was carried out using ITK-SNAP™. For
comparing VR and 2D-sliced based annotation, a 100®
voxel volume of c-Fos labelled brain was annotated by
the participants and the time was recorded until the
annotation task was finished. For training and testing
our deep learning network, we annotated a total of 48
100° voxel patches in VR. All of our training and test
patches were furthermore vetted by an expert biologist
in ITK-SNAP to ensure that only cells were annotated.
We evaluated the annotation quality using the formula of
Dice as described below.

Deep Learning

To automatically segment the cells in all brains we
trained a BasicUnet3D from the MONAI library®4. The
annotated dataset of 48 100° patches was split in 9
patches for testing and 39 patches for training. As an
activation function we chose MISH®*® and as optimizer
Ranger21%¢ in order to flatten the loss landscape and
allow for easier generalization. As loss function we used
binary cross entropy loss. For the training of 500 epochs,
we set the initial learning rate to 1e-3 and the batch size
to 4. The network is then trained on a single GPU (Nvidia
RTX3090) with 2 random crops with a patch size of
96x96x64 per batch element.

Evaluation of the segmentation model

Evaluation of the deep learning model was done in a
two-fold way, we compared both the volumetric quality
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of the segmentation by assessing for each voxel if it was
correctly classified as foreground or background, as well
as the instance segmentation quality, where we assess
on a single cell level whether a cell has been detected or
not. Volumetric quality assessment gave us true positives
(TP), false positives (FP), false negatives (FN) and true
negatives (TN) by comparing every prediction voxel with
the ground truth voxel. Instance quality assessment
gave us TP, FP and FN by first conducting a connected
component analysis on both the network prediction as
well as the ground truth. For each connected component,
we then compared whether there was at least a single
voxel overlap between one connected component in the
prediction and in the ground truth. The corresponding
ground truth component was then removed from the set
of components and was counted as true positive. Every
ground truth component that had no overlap was counted
as a FN, every prediction component without overlap was
counted as a FP. The intuition here is that our biological
question requires a truthful count of cells at the correct
area rather than voxel perfect segmentations of each
cell. Comparison with ClearMap and ClearMap2 was
performed as follows: We first applied the methods on
the same brain we took our test data from, masked it with
our random forest masker and then cut out the relevant
100° voxel patches. These patches were then compared
to our ground truth annotation.
Scores were defined as follows:
Dice= 2TP/(2TP+FP+FN) Sensitvity= TP/(TP+FN)
Atlas registration and statistical analysis

Because the SHANEL protocol's aggressive detergent
treatment warps the brains considerably more than in
other clearing techniques, we could not use Elastix for
Atlas registration (data not shown). Rather, we used
a novel and recently published tool, mBrainAligner,
which worked well with our datasets (Supplementary
Fig. 4). We manually saved the downsampled isotropic
25x25x25 pm/voxel stacks as .v3draw using Vaa3d®.
Subsequently, we wrote an automated script that aligned
the image stacks to mBrainAligner’s 50x50x50 um/voxel
version of the Allen Brain Atlas CCF3 reference atlas,
using the Light-Sheet Fluorescent Microscopy example
settings with minor adaptations. Subsequently, we used
mBrainAligner’'s swc transformation tool to map the
center point coordinates of our c-Fos+ cells into atlas
space.

Furthermore, we wrote a custom cell-to-atlas script
(reusing parser code from VeSSAP%¢, and the CCF3
atlas file as provided by the Scalable Brain Atlas®) that
filters the cells by size, based on 3x standard deviation
(upper bound = 104 voxels) and returns two tables: A
table with each cell as a row, including the region, Allen
Brain Atlas color code, etc. Furthermore, a region table
with one region per row, in which the number of c-Fos+
cells per region is summarized. Lastly, for all datasets,

the postprocessing script generates overview tables that
contain cell counts for all regions. We used the latter for
uncorrected Student’s t tests. Lastly, we implemented a
level-aware multiple-testing script that compares between
groups at the Allen Brain Atlas’s 11 structure levels.

Visualization

For visualizing the cells and regions in atlas space,
we used BrainRender' with a modified density plot
function®. In order to visualize the segmented cells in the
original image space, we combined the area-wise color-
code from the Allen Brain Atlas with the 3D segment
mask output by the connected component analysis. The
result is a cell mask file with each cell being color-coded
according to the brain area it belongs to, which makes
overlaying with the original image data in e.g. Fiji easy
and allows for direct visual inspection of the segmentation
results.

Cell culture

C26 and NC26 colon cancer cells were cultured in
high glucose DMEM with pyruvate (Life Technologies
#41966052), supplemented with 10% fetal bovine serum
(Sigma-Aldrich #F7524) and 1% penicillin-streptomycin
(Thermo Fisher #15140122)*. Before using the cells
for transplantation, cells had a confluence of 80%. Cells
were trypsinized, counted and required cell numbers
were suspended in Dulbecco's phosphate-buffered
saline (PBS, Thermo Fisher #14190250).

Animal experimentation

Experiments were carried out with male BALB/c mice atan
age of 10-12 weeks. They were purchased from Charles
River (CRL, Brussels), maintained on a 12-h light-dark
cycle and fed a regular unrestricted chow diet. They were
injected with 1x1086 C26 or 1.5x10® NC26 cells in 50 pl
PBS subcutaneously into the right flank. Control mice
were injected with PBS. 5 days after cell implantation,
mice were monitored daily for tumor growth and body
weight. Cachectic C26 tumor-bearing mice considered
cachectic when they had lost 10% - 15% of body weight.
Mice were sacrificed following deep anesthesia with a mix
of ketamine/xylazine, followed by intracardiac perfusion
with heparinized PBS (10 U/ml heparin) followed by a
perfusion with 4% paraformaldehyde (PFA). Tissues
and organs were dissected, weighed and post-fixed at
4°C overnight. Animal experimentation was performed
in accordance with the European Union directives and
the German animal welfare act (Tierschutzgesetz). They
have been approved the state ethics committee and the
government of Upper Bavaria (ROB-55.2-2532.Vet_02-
18-93).

Statistical analysis

Results from biological replicates were expressed as
mean * standard error of the mean. Statistical analysis
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was performed using GraphPad Prism 7. Normality was
tested using Shapiro—Wilk normality tests. To compare
two conditions, unpaired Student's t-tests or Mann-—
Whitney tests were performed. One-way analysis of
variance (ANOVA) or Kruskal-Wallis tests with Sidak’s
post hoc test were used to compare three groups.
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Suppl. Fig. 1. VR Segmentation in syGlass and 2D slice-based segmentation using ITK-
SNAP

a, Volume of raw data (c-Fos labelled brain) that was generated by light sheet microscopy and loaded into syGlass. b-d, Using
VR, individual cells were segmented in syGlass by using three-dimensional euclidean shapes as ROl and adjust a threshold until
the segmentation was acceptable. e, ITK-SNAP view of a single plane of the image stack. Cells were labelled individually slice by
slice. Colored cells indicate the segmentations performed by the annotator.
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Suppl. Fig. 2. DELIiVR pre-processing automatically removes artefacts

a, Quantitative comparison between ClearMap, ClearMap2 and DELIiVR based on volumetric sensitivity. b, Preprocessing work-
flow. DELIiVR preprocessing down-samples the original image stack. Subsequently, it uses a random forest segmenter (llastik pix-
el classification) to create a mask for ventricles. Lastly, the mask is upscaled and applied on the original slices to create a masked
image stack. c-e, Horizontal view of an original image slice (c), the proposed mask (d) and the masked image slice generated (e).
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Suppl. Fig. 3. Tissue weights of mice with weight-stable cancer (NC26) and cancer-asso-
ciated weight loss (C26)

a-c, Weights of gastrocnemius (GC) muscle (a), epididymal white adipose tissue (WAT) (b) and subcutaneous WAT (c). n=6/
group. *p<0.05, *p<0.01.
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NC26 C26
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Suppl. Fig. 4. Atlas Registration with mBrainAligner

Post-registration overlap for representative brains of the experimental groups PBS (left), NC26 (middle) and C26 (right). Green,
registered image stack. Magenta, mBrainAligner’s version of the CCF3 reference atlas.
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