
Commonly used Bayesian diversification-rate models produce
biologically meaningful differences on empirical phylogenies
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Comparing diversification rate methods

Abstract

Identifying along which lineages shifts in diversification rates occur is a central goal of comparative phylogenetics;
these shifts may coincide with key evolutionary events such as the development of novel morphological charac-
ters, the acquisition of adaptive traits, polyploidization or other structural genomic changes, or dispersal to a new
habitat and subsequent increase in environmental niche space. However, while multiple methods now exist to es-
timate diversification rates and identify shifts using phylogenetic topologies, the appropriate use and accuracy of
these methods is hotly debated. Here we test whether five Bayesian methods—Bayesian Analysis of Macroevolu-
tionary Mixtures (BAMM), two implementations of the Lineage-Specific Birth-Death-Shift model (LSBDS and PESTO),
the approximate Multi-Type Birth-Death model (MTBD; implemented in BEAST2), and the cladogenetic diversification
rate shift model (CLaDS2)—produce comparable results. We apply each of these methods to a set of 65 empirical time-
calibrated phylogenies and compare inferences of speciation rate, extinction rate, and net diversification rate. We find
that the five methods often infer different speciation, extinction, and net-diversification rates. Consequently, these
different estimates may lead to different interpretations of the macroevolutionary dynamics. The different estimates
can be attributed to fundamental differences among the compared models. Therefore, the inference of shifts in diver-
sification rates is strongly method-dependent. We advise biologists to apply multiple methods to test the robustness
of the conclusions or to carefully select the method based on the validity of the underlying model assumptions to
their particular empirical system.

Lay Summary

Understanding why some groups of organisms have more species than others is key to understanding the origin of
biodiversity. Theory and empirical evidence suggest that multiple distinct historical events—such as the evolution of
particular morphological features (e.g., the flower, the tetrapod limb) and competition amongst species—can produce
this pattern of divergent species richness. Identifying when and where on the tree of life shifts in diversification
rates occur is important for explaining the origin of modern-day biodiversity and understanding how disparity
among species evolves. Several statistical methods have been developed to infer diversification rates and identify
these shifts. While these methods each attempt to make inferences about changes in the tempo of diversification,
they differ in their underlying statistical models and assumptions. Here we test if these methods draw similar
conclusions using a dataset of 65 time-calibrated phylogenies from across multicellular life. We find that inferences
of where rate shifts occur strongly depends on the chosen method. Therefore, biologists should choose the model
whose assumptions they believe to be the most valid and justify their model choice a priori, or consider using several
independent methods to test an evolutionary hypothesis.

Key Words: [diversification-rate analyses, Phylogeny, BAMM, RevBayes, BEAST, ClaDS2, macroevolution, time-
dependence]

Introduction

Understanding the patterns and processes that shape the1

tree of life is one of the central pursuits of biology. How-2

ever, inferring the tempo of evolution among lineages—3

the patterns of speciation and extinction that gave rise to4

our extant biodiversity—remains a difficult problem both5

theoretically and computationally (Rabosky, 2010; Moore6

et al., 2016; Louca and Pennell, 2020).7

Several methods estimate diversification rates (speci-8

ation and extinction rates, individually) assuming that9

rates are constant across the tree (Morlon, 2014). Re-10

cently developed methods have built upon constant-rate11

models by allowing diversification parameters to vary12

depending on the state of a focal character (Maddison13

et al., 2007) or, even more recently, among branches of the14

phylogeny, which allows for lineage-specific diversifica- 15

tion rate estimates (e.g., Rabosky, 2014; Höhna et al., 2019; 16

Barido-Sottani et al., 2020; Maliet and Morlon, 2022). 17

Such lineage-specific methods have the potential to of- 18

fer powerful insights into our understanding of evolu- 19

tion, such as the potential time-dependency of macroevo- 20

lutionary diversification (Henao Diaz et al., 2019), the 21

macroecological and macroevolutionary causes of the 22

latitudinal diversity gradient (Givnish et al., 2018; Ra- 23

bosky et al., 2018), and macroevolutionary support of 24

Darwinian and Simpsonian theories of microevolution 25

within adaptive zones (Cooney et al., 2017). 26

The application of these methods, however, has been 27

marred by controversy over their implementation (Moore 28

et al., 2016; Rabosky et al., 2017; Meyer and Wiens, 2018; 29

Meyer et al., 2018; Rabosky, 2018) and by theoretical 30
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findings that seemingly undermine the general reliability31

of inferring diversification parameters from phylogenies32

of extant species (Louca and Pennell, 2020; Helmstetter33

et al., 2021). These issues are liable to discourage em-34

piricists, who may wonder if the disagreements among35

model developers and theorists correspond with biologi-36

cally relevant inference differences in empirical studies.37

To address this question, we assess how inferences38

under five leading contemporary Bayesian methods—39

Bayesian Analysis of Macroevolutionary Mixtures (BAMM;40

Rabosky, 2014); the Lineage-Specific Birth-Death-Shift41

model (LSBDS; Höhna et al., 2019) and its MCMC-free im-42

plementation: Phylogenetic Estimation of Shifts in the43

Tempo of Origination (PESTO; Kopperud et al., 2023a);44

the approximate Multi-Type Birth-Death model (MTBD;45

Barido-Sottani et al., 2020); and the Cladogenetic Diver-46

sification Rate Shift model (CLaDS2; Maliet et al., 2019)—47

compare to each other.48

While all five methods aim to estimate lineage-specific49

diversification rates, they differ in how and where rate50

shifts are allowed to occur.51

1. BAMM models diversification rates as varying across52

lineages by testing among models that include dif-53

ferent numbers of diversification-rate regimes (sets54

of speciation and extinction parameters) and differ-55

ent placements of those regimes in the tree; however56

BAMM does not model rate shifts on extinct (thus un-57

observed) branches (Rabosky, 2014).58

2. The LSBDS model, as implemented in RevBayes59

(Höhna et al., 2016), samples rate regimes from a60

prior distribution discretized into a fixed number of61

rate categories; this discretization facilitates compu-62

tation and allows the method to model shifts on ex-63

tinct branches (Höhna et al., 2019).64

3. PESTO is a new implementation of the LSBDS model65

that analytically computes the posterior mean spe-66

ciation and extinction rates conditional on a set of67

hyperparameters without the need for Monte Carlo68

sampling (Kopperud et al., 2023a).69

4. The MTBD method is based on a multitype birth-death70

process that infers the number of rate regimes as well71

as the transition rate γ between rate regimes (Barido-72

Sottani et al., 2020). This approach allows for the73

same rate regime to be present in different parts of74

the tree. The approximate MTBD, tested here, assumes75

that no rate changes occur in the extinct parts of the76

tree; this approximation, when applied with a high77

transition rate prior, has been found to not substan-78

tially differ from the exact MTBD method, which al-79

lows rates changes along extinct lineages (Barido-80

Sottani et al., 2020).81

5. Finally, in the CLaDS2 model, diversification rates 82

only change at speciation events. Descendant lin- 83

eages inherit the speciation rate via a stochastic pro- 84

cess that is influenced by the α parameter, which 85

represents the long-term trend (i.e., increase or de- 86

creases) of the speciation rate (Maliet et al., 2019). 87

This model results in many small and frequent shifts 88

in diversification rates regimes, unlike the other 89

methods, which tend to infer a few large shifts in 90

rate regimes (Maliet et al., 2019; Maliet and Morlon, 91

2022). Another aspect of CLaDS2 is that extinction 92

rates are not inferred per branch. Instead, the model 93

estimates a global turnover parameter (ε = µi/λi). 94

However, shifts are allowed to occur along extinct 95

branches. 96

Other methods, not tested here, leverage hidden states 97

using a maximum likelihood framework (e.g., Vasconce- 98

los et al., 2022). 99

To assess whether the theoretical and computational 100

differences among these methods result in biologi- 101

cally meaningful differences, we reanalyze 65 empirical 102

datasets, compiled from Henao Diaz et al. (2019), using 103

each of BAMM, LSBDS, PESTO, MTBD, and CLaDS2. We ad- 104

dress the question: do different analytical methods for 105

estimating branch-specific diversification rates produce 106

significantly different results across an array of empirical 107

datasets? 108

Methods 109

Empirical Data 110

Our empirical data are derived from from the set of 111

104 chronograms compiled and analyzed with BAMM by 112

Henao Diaz et al. (2019). From the Henao Diaz et al. set 113

we excluded trees with fewer than 30 extant taxa in order 114

to concentrate on more informative datasets, resulting in 115

our final set of 76 chronograms. 116

Model Settings 117

Our goal was to apply each method as a typical dili- 118

gent user might. For each chronogram, we used the 119

incomplete-sampling fraction collected from the original 120

study by Henao Diaz et al. (2019), and applied that sam- 121

pling fraction when we ran each of the five inference 122

methods. While the methods differ in their specific pa- 123

rameterizations of the birth-death process, we attempted 124

to use comparable settings and priors across methods. 125

For BAMM analyses, we modified the control files 126

from Henao Diaz et al. (2019). We set lambda to 127

be time-constant rather than time-variable in order to 128

more closely match the inferences of other methods and 129
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given concerns about the statistical validity of time-130

varying diversification analyses (Louca and Pennell,131

2020). We set BAMM priors for each phylogeny using the132

setBAMMpriors() function in the BAMMtools R package133

(Rabosky et al., 2014b). This function computes dataset-134

specific priors by estimating metrics from the dataset135

such as the root age of the chronogram and then esti-136

mating reasonable and broad expectations for shifts and137

rates. We ran BAMM v. 2.5.0 using the BAMMtools pri-138

ors and control files, which determined the phylogeny-139

specific number of generations for a single MCMC chain.140

We removed the first 10% of the MCMC samples as141

burnin and assessed convergence by computing esti-142

mates of effective sample size (ESS) using the R pack-143

age Coda (Plummer et al., 2006). We specifically looked144

for convergence of the log-likelihood parameter and the145

’number of distinct regimes’ parameter, as is recom-146

mended (Rabosky et al., 2014a). Analyses that did not147

reach convergence were run for additional generations148

until they converged.149

For LSBDS analyses we used the same set of priors for150

all phylogenies (except for sampling fraction) with eight151

categories for speciation and for extinction (64 total rate152

categories). The number of rate categories was chosen153

after performing a test on one representative phylogeny,154

which found that increasing the rate categories above 64155

did not result in a significant change in model fit. For each156

chronogram we ran four MCMC chains for 5,000 genera-157

tions. Convergence was assessed for each chain by check-158

ing that the ESS values for all model parameters in the159

log files were greater than 200 using the R package Coda160

(Plummer et al., 2006). Chains that did not reach con-161

vergence were restarted and run for an additional 5000162

generations. We merged the posteriors, retaining the last163

4000 generations from the MCMC (10% burnin for non-164

restarts and 60% burnin for restarts).165

We applied PESTO in a three-step fashion. First, we esti-166

mated the parameters of a constant-rate birth-death pro-167

cess and treated these as hyperparameters: the speciation168

rate (λ) and the extinction rate (µ). Second, we set up169

a state-dependent speciation-extinction (SSE) model. In170

this model, we used rate values that correspond to ten171

quantiles of two lognormal distributions with medians λ172

and µ, and standard deviation 0.587. In the SSE model,173

we used all pairwise comparisons of these (i.e. 100 rate174

categories). Further, we estimated the shift rate param-175

eter η conditional on the speciation and extinction rates,176

using maximum likelihood. Third, we calculated the pos-177

terior state probabilities along each branch. Finally, we178

plotted the posterior mean rates averaged over the time179

span for each individual branch.180

We ran the MTBD model under default priors (imple-181

mented in BEAST2; Bouckaert et al., 2014; Barido-Sottani182

et al., 2020). We ran three MCMC chains for 100,000,000183

generations per phylogeny. We removed the first 25% 184

as burnin and assessed MCMC convergence by checking 185

that ESS values were higher than 200 for all rates. 186

We ran CLaDS2 using the default priors (as described in 187

Maliet and Morlon, 2022). We ran three MCMC chains for 188

each dataset and took a 25% burnin, as is the default set- 189

ting for CLaDS2. Convergence was assessed by calculat- 190

ing the Gelman statistic (Gelman et al., 2014) every 1000th
191

generation and stopping the analysis once it achieved a 192

Gelman statistic of 1.05, following the standard guide- 193

lines for CLaDS2. 194

Convergence analysis 195

In cases where MCMC convergence was difficult, we 196

aimed to determine the potential underlying cause. To 197

assess whether the subset of trees where one or more 198

method failed to converge was substantially different 199

from the subset that did converge, we compared de- 200

scriptive metrics including phylogeny size, phylogeny 201

age, incomplete sampling fraction, branch length vari- 202

ance, and multidimensional scaling (MDS) via Robinson- 203

Foulds (RF Robinson and Foulds, 1981) and Kuhner- 204

Felsenstein (KF, Kuhner and Felsenstein, 1994) distances. 205

Processing Model Output 206

We obtained estimates of the relevant diversification 207

parameters (e.g., speciation rate, extinction rate, etc.) 208

from each model. BAMM posterior estimates of spe- 209

ciation rate and extinction rate were extracted using 210

the getMarginalBranchRateMatrix() function in the 211

BAMMtools R package (Rabosky et al., 2014b). 212

We extracted LSBDS posterior distributions from 213

the stochastic branch rate log file produced by the 214

mnStochasticBranchRate() function in LSBDS. In the 215

PESTO analyses, we computed the branch rates averaged 216

across the branch. If λk and µk are the rate values in state 217

k, and Pk(t) is the posterior probability of being in state k 218

at time t, then the average net-diversification rate along a 219

branch is 220

1
t1 − t0

∫ t1

t0

[
∑
k
(λk − µk)Pk(t)

]
dt, (1) 221

where t0 is the youngest and t1 is the oldest end point 222

of the branch. 223

The posterior distributions of speciation and extinction 224

rates of the MTBD model were obtained from the ex- 225

tended Newick file produced by BEAST2 using a modi- 226

fied read.beast() function from the treeio package (Wang 227

et al., 2020). As CLaDS2 does not directly infer extinc- 228

tion rates, we calculated extinction rates per branch by 229

multiplying the inferred global turnover value (ε) by the 230

branch-specific speciation rates (µi = λi ∗ ε). For all 231

branches and models, we calculated net diversification by 232

4
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subtracting extinction rate from speciation rate (λi − µi)233

per MCMC generation.234

Comparing Model Inferences235

To compare inferences among the five models, we (1) vi-236

sualized rate estimates on individual chronograms, (2)237

summarized inferences across all chronograms in the238

dataset to reveal systematic differences, (3) identified dif-239

ferences in the location and magnitude of inferred shifts240

among methods, and 4) tested for overlap in the 95%241

HPD interval of the posterior distributions.242

Visualizing rates on trees243

The canonical way of presenting the results of branch-244

specific diversification-rate analyses is by coloring the245

branches of the tree by the estimated rates. For each tree,246

we colored each branch by the posterior median estimate247

of speciation, extinction, and net diversification to visual-248

ize if the methods inferred similar shifts in similar loca-249

tions on the tree.250

Comparing rate estimates by method251

To understand whether the methods displayed any con-252

sistent differences across the chronograms, we calculated253

six summary statistics for each tree. For each diversifica-254

tion rate (i.e., speciation rate, extinction rate, and net di-255

versification rate) we calculated the posterior medians for256

each branch, and from those posterior medians we calcu-257

lated the tree-wide mean and variance in branch rates for258

each phylogeny. For each of the six summary statistics259

(mean and variance for each of the three rates), we set up260

a linear mixed-effect model:261

log(summary statistic) = Xβ + Zu + r, (2)

with inference method as a fixed-effect categorical pre-262

dictor (effect sizes β), phylogeny as a random effect cat-263

egorical predictor (u), and an error term r. X and Z are264

design matrices for the fixed and random effects. We vi-265

sually checked that the residuals (r) were normally dis-266

tributed and did not suffer from heteroscedasticity; phy-267

logenies that violated these assumptions were excluded268

from this analysis. For each linear model, we tested if the269

least-square means of each pair of methods were statisti-270

cally different using Tukey’s corrected p-value for multi-271

ple comparisons.272

Location and magnitude of rate shifts273

We additionally tested whether the methods inferred con-274

sistent locations and magnitudes of rate shifts, using the275

rooted version of the Kuhner-Felsenstein distance (Kuh-276

ner and Felsenstein, 1994). To do this, we first replaced277

branch lengths of each timetree with the posterior me- 278

dian rate estimate, from a given method, then scaled each 279

branch by the total tree height. This produces a method- 280

dependent tree with branch lengths that provide informa- 281

tion regarding the magnitude and location of rate shifts 282

but with identical topology. We calculated KF distances 283

between the rescaled trees from each pair of methods; this 284

distance is equivalent to the mean square error (MSE) 285

given that the two trees being compared have the same 286

topology, as they do in our analyses. For each tree and for 287

each diversification parameter, we computed the mean 288

square error among the different methods: 289

MSE =
1
N

N

∑
i
(λi − λ′i)

2, (3)

where λi (or similarly µi, or (λi − µi)) is the diversifica- 290

tion rate parameter for branch i. 291

A large MSE tells us that the two methods being com- 292

pared infer different rate magnitudes and/or rate shifts 293

in different locations. A small MSE, however, indicates 294

that the two methods give us similar results. 295

Computation 296

We ran all diversification analyses either locally, on the 297

Savio HPC at UC Berkeley, or using the CIPRES Science 298

Gateway V. 3.3 (Miller et al., 2010). 299

We performed all comparison analyses in R version 300

3.6.0 (R Core Team, 2013). We performed data manip- 301

ulation with the R packages phytools, (Revell, 2012), 302

tidyverse (Wickham, 2017), reshape2 (Wickham, 2012), 303

readr (Wickham and Hester, 2020), plyr (Wickham, 304

2011b), and coda (Plummer et al., 2006). We gener- 305

ated plots with R packages see (Lüdecke et al., 2021), 306

ggplot2 (Wickham, 2011a), ggpubr (Kassambara, 2018), 307

ggtree (Yu et al., 2018), ggsignif (Ahlmann-Eltze, 2017), 308

ggExtra (Attali and Baker, 2016), cowplot (Wilke, 2016) 309

and pdftools (Ooms, 2020). We fit linear mixed models 310

using the R package lmer (Bates et al., 2015) and obtain 311

emeans estimates using the R package eemeans (Lenth, 312

2020). We additionally used smacof (Mair et al., 2022) and 313

phangorn (Schliep, 2011) to perform MDS and to calculate 314

RF and KF distances. Citations for R packages were gen- 315

erated with RefManageR (McLean, 2014). 316

Results and Discussion 317

Convergence 318

Our full dataset contains 76 chronograms from multicel- 319

lular organisms, with 31 – 4161 extant tips, root ages of 4.9 320

– 349.8 MYA, and 0.014% – 100% of extant species sam- 321

pled (Fig. S1A and Table S1). All methods converged for 322

43 trees (the “complete subset”; Fig. S1B). Of the methods 323

5
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Figure 1: Three representative phylogenies with Z-transformed (mean centering and scaling to unit variance) posterior median estimate of net
diversification painted on the branches. Columns show estimates from BAMM (A,F,K), LSBDS (B,G,L), PESTO (C,H,M), MTBD (D,I,N) and CLaDS2

(E,J,O). (A-E) Phylogeny of Lindsaeaceae (necklace ferns; Testo and Sundue, 2016), (F-J) Phylogeny of Ruminants (tetrapod; Toljagić et al., 2018),
and (K-O) Phylogeny of Odonates (dragonflies and damselflies; Waller and Svensson, 2017). The rate values are in units of events per lineage per
million years.

tested, LSBDS had the most difficulty achieving MCMC324

convergence (it converged for 46 trees). All methods ex-325

cept LSBDS converged in 65 trees (the “partial subset”;326

Fig. S1C); PESTO directly computes the posterior mean327

and thus ”convergence” does not apply. Trees that did328

not converge have poorer taxon sampling (i.e. the ra- 329

tio of sampled species to total species richness; P-value 330

= .039), older root ages (P-value = 0.0001), and greater 331

branch length variance (P-value = .00006) than the con- 332

verged trees, but sample size (number of tips) was not an 333

6
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important factor (P-value = .076; Fig. S2C–F). The branch334

length variance is consistent with the degree of spread335

between the KF and RF MDS analyses (Fig. S2A–B); the336

KF MDS—which accounts for branch lengths as well as337

topology—has a larger spread then the RF MDS. Over-338

all these results fit with our intuitive understanding of339

the challenges in inferring shifts in diversification rates.340

We expect that older trees and trees with greater varia-341

tion in branch lengths should undergo more rate shifts342

than younger trees and those with less variation in branch343

lengths. Thus inferring the diversification rates of these344

trees should be generally more challenging. These re-345

sults suggest that users should be particularly attentive346

to MCMC convergence if their chronogram(s) are poorly347

sampled, old, or have a lot of branch-length variation,348

and especially so if they are using LSBDS. In these cases,349

even more so than usual, it is important to run each350

MCMC multiple times independently, to assess both sta-351

tionarity and convergence.352

Comparison of Methods353

Visualizing rates on trees354

None of the 43 phylogenies in our “complete subset”355

had concordant estimates among all methods given our356

evaluation criteria (Fig. 1). For some phylogenies, the357

methods inferred similar shifts in net diversification (e.g.,358

Fig. 1A–E), whereas for others the inferred shifts differed359

slightly (e.g., Fig.1F–J) or strongly (e.g., Fig. 1K–O).We360

would expect some differences when comparing differ-361

ent modeling approaches, as there are patterns to the dif-362

ferences in our results that can be attributed to the fun-363

damental differences between the models. We illustrate364

these patterns using a few example phylogenies, which365

are representative of the patterns one will find when pe-366

rusing the full set of trees in the supplemental materials367

(Supplemental Section S5).368

Occasionally two methods generally identified similar369

patterns. For example, BAMM and LSBDS identified a simi-370

lar shift of about the same magnitude in speciation rates371

for some clades, e.g., the Lindsaeaceae (necklace ferns,372

clade i; Fig. 1A,B). Nonetheless, there are still differences373

between the two methods, e.g., a second nested rate shift374

in the LSBDS and PESTO estimates (clade ii).375

In the ruminants (tetrapods) phylogeny (Fig. 1 F–J),376

we find that even for results that overall appear similar377

between methods, there are meaningful differences be-378

tween their estimates. For example, BAMM, LSBDS, and379

PESTO inferred a shift around the ancestor of clade i, but380

LSBDS and PESTO also find approximately two more shifts381

(Fig. 1 G, clades ii and iii). Likewise, MTBD differs from382

the latter two as it infers several shifts in the largest clade383

and low net diversification rates on the backbone of that384

lineage (Fig. 1 I). Similarly, CLaDS2 infers a slightly dif-385

ferent history from all of them, including multiple slow 386

downs as well as an increase in net-diversification within 387

clade i. BAMM, LSBDS, and PESTO identify a shift in approx- 388

imately the same node (indicated by i) while MTBD infers 389

many replicated increases in rate within clade i. LSBDS 390

and PESTO infer the same shift, which is expected as they 391

are based on the same underlying model and assump- 392

tions. 393

Multiple diversification shifts across a phylogeny is 394

common to many of the MTBD trees (Fig. 1I,N; Barido- 395

Sottani et al., 2020). This pattern is caused by the bi- 396

modal posterior distribution commonly inferred by this 397

method (Barido-Sottani et al., 2020). Point-estimate sum- 398

mary statistics (e.g., posterior median) of these types of 399

distributions are susceptible to small variation between 400

the ancestor-descendant branches, which causes point es- 401

timates to switch between the two optima producing the 402

rapid switching pattern (Fig. 1I,N). 403

Likewise, CLaDS2 is the only time-dependent model in 404

our analysis and thus is capable of detecting time-varying 405

diversification patterns. Furthermore, the inherited spe- 406

ciation rate (α) only changes at cladogenic events, which 407

results in many small changes at cladogenetic events, 408

rather than the few large changes that characterize the 409

other methods (Maliet et al., 2019; Maliet and Morlon, 410

2022). When α < 1 evolutionary slowdowns occur where 411

the ancestral lineages have higher net diversification rates 412

than the descendant lineages, a pattern observed in our 413

data (Fig. 1O; Moen and Morlon, 2014). 414

On the other hand, BAMM, LSBDS, and PESTO are similar 415

models and therefore we may expect them to infer simi- 416

lar diversification rates and shifts (Ronquist et al., 2021). 417

While this is sometimes true (Figure 1 K,L), other times 418

there are pronounced differences (Figure 1 F,G). This may 419

be due to the well-known differences between these two 420

models, namely assuming either rate shifts can (LSBDS 421

and PESTO) or cannot (BAMM) occur on extinct lineages or 422

unsampled lineages (Moore et al., 2016). 423

Comparisons of rate estimates by method 424

To gain a global perspective of the differences between 425

these models, we calculated two tree-wide summary 426

statistics and distance metrics in order to compare these 427

methods across the entire dataset (Fig. 2, S3). 428

We ran all comparisons on the complete subset (the 43 429

trees that converged for all methods) and on the partial 430

subset (the 65 trees that converged for all methods except 431

LSBDS). Comparisons between these two subsets reveal 432

only one small difference (compare BAMM vs. MTBD - 433

Fig. 2C vs. Supplemental Fig. S4C) and the most signifi- 434

cant differences did not change. Given the large number 435

of datasets that did not converge for LSBDS but converged 436

for all other methods (unconverged datasets = 22) as well 437

as the theoretical similarities between PESTO and LSBDS, 438
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Table 1: Post-hoc pairwise comparisons of inference methods using the tree-wide average of summary statistics: speciation, extinction, and
net-diversification rates. Columns contain the summary statistics, contrasts of inference methods, the ratios of geometric means, standard errors,
degrees of freedom, t-ratios, Tukey-adjusted p-values, significances, and the percent variances explained by the random effect.

Summary Statistic Contrasts Means
Ratio

SE DF T-
Ratio

Adj. P-
Value

Sig. % Var.

Speciation BAMM / ClaDS2 1.0114 0.0336 189 0.3402 0.986 N.S. 94.57
BAMM / PESTO 0.8833 0.0294 189 -3.7326 0.001 **
BAMM / MTBD 1.0352 0.0344 189 1.041 0.726 N.S.
ClaDS2 / PESTO 0.8733 0.029 189 -4.0728 0.000 ***
ClaDS2 / MTBD 1.0236 0.034 189 0.7009 0.897 N.S.
PESTO / MTBD 1.172 0.039 189 4.7736 0.000 ***

Extinction BAMM / ClaDS2 1.2616 0.3006 189 0.9752 0.764 N.S. 58.65
BAMM / PESTO 3.0505 0.7268 189 4.6808 0.000 ***
BAMM / MTBD 1.119 0.2666 189 0.4718 0.965 N.S.
ClaDS2 / PESTO 2.418 0.5761 189 3.7056 0.002 **
ClaDS2 / MTBD 0.887 0.2113 189 -0.5034 0.958 N.S.
PESTO / MTBD 0.3668 0.0874 189 -4.209 0.000 ***

Net Diversification BAMM / ClaDS2 0.6467 0.0406 188.067 -6.9392 0.000 *** 81.83
BAMM / PESTO 0.6666 0.0419 188.067 -6.4555 0.000 ***
BAMM / MTBD 0.8278 0.052 188.067 -3.0073 0.016 *
ClaDS2 / PESTO 1.0309 0.0644 188.0003 0.4863 0.962 N.S.
ClaDS2 / MTBD 1.2802 0.08 188.0003 3.9523 0.001 ***
PESTO / MTBD 1.2419 0.0776 188.0003 3.466 0.004 **

we report the following results for the partial dataset (see439

Fig. S4A–F for summaries from the complete dataset).440

We recover consistent differences in rate estimates441

among methods, particularly between PESTO (which is442

additionally standing-in for LSBDS in these comparisons,443

given that those two approaches share the same under-444

lying model) and all other models; CLaDS2 also was an445

outlier, albeit to a lesser extent (Table 1). In contrast, BAMM446

and MTBD tended to infer similar speciation and extinction447

rates. We find that tree-wide average speciation and ex-448

tinction estimates of PESTO are statistically different from449

all other methods (Fig. 2A-B).450

While PESTO inferred higher tree-wide average specia-451

tion values, the magnitude of the differences is small (ra-452

tio of means < 1.2 for all significant contrasts; Table 1).453

Conversely, PESTO inferred lower tree-wide averages of454

extinction rates with larger magnitude changes (ratio of455

geometic means > 1.2; Table 1). The significant difference456

between PESTO and other methods holds for tree-wide av-457

erage net-diversification as well, except for the compari-458

son between PESTO and CLaDS2 (Fig. 2C), which is not459

significant.460

Additionally, CLaDS2 tree-wide average net-461

diversification estimates are significantly different462

from BAMM and MTBD (Fig. 2C). A significant difference463

in net-diversification could be driven by the CLaDS2464

parameterization of extinction: extinction is not directly465

estimated in CLaDS2. Therefore the net diversification466

rates of CLaDS2 are scaled speciation rates. Alternatively, 467

the differences between methods could be due to the 468

wider variance of net diversification estimates that both 469

BAMM and MTBD have compared to CLaDS2 (Fig. S3A–C). 470

However, similar to tree-wide average speciation, the 471

magnitude of difference between the contrast is not large 472

(Table 1). There is also a weakly significant difference 473

between speciation rates of BAMM and MTBD in our partial 474

subset that was not found in the smaller complete subset. 475

All methods generally had comparable tree-wide aver- 476

age extinction-rate estimates with the exception of PESTO, 477

which may infer much lower extinction rates for some 478

trees than the other methods (though, on average, it in- 479

fers higher extinction rates). The inference of extinction 480

rate has been the subject of substantial debate, particu- 481

larly in how failures to account for diversification shifts 482

along extinct branches can impact the likelihood function 483

(Moore et al., 2016; Rabosky et al., 2017). Regardless of 484

the theoretical importance of correctly inferring extinc- 485

tion rates, we demonstrate that differences between ex- 486

tinction and speciation rates manifest in statistically dif- 487

ferent estimates of net diversification in empirical studies. 488

Therefore, our results indicate that method-dependent 489

tree-wide bias in diversification parameter inference may 490

influence the interpretation of evolutionary shifts in di- 491

versification rates. 492

We find discrepancies between results derived from 493

tree-wide summary statistics and our visual inspection 494
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Figure 2: Comparison of tree-wide summary statistics across methods for the partial subset (n=65). (A–C) Tree-wide mean of posterior median
estimates of the branch-specific rate parameters, plotted on a log scale. Asterisks correspond to the p-value of linear mixed model, calculated on
the natural log of the rates (*: 0.05 > P-value > 0.01; **: 0.01 > P-value > 0.001; ***: 0.001 > P-value). (D–F) Pairwise mean squared error (MSE)
between inference methods of phylogenies with branch lengths scaled by rates (speciation, extinction, and net diversification), plotted on a log
scale. Split colors correspond to inference method color in A–C. Distributions closer to zero indicate that the inference methods produced more
similar rate estimates, whereas higher values indicate greater dissimilarity. (D) MSE of speciation-scaled phylogenies; (E) MSE of extinction-scaled
phylogenies; (F) MSE of net-diversification-scaled phylogenies.

of trees (see section “Visualizing rates on trees”). For495

example we find that CLaDS2 and PESTO show no statis-496

tical difference in average net diversification (Fig. 2C).497

However, visual inspection of many trees suggests that498

CLaDS2 and PESTO often differ greatly in the number and499

position of inferred rate shifts (e.g., Fig. 1). Conversely,500

BAMM and LSBDS often look very similar when we as-501

sess individual phylogenies and yet significantly differ502

when we compare speciation, extinction, and diversifica-503

tion averages S3A–C). This discrepancy reveals the diffi-504

culty of summarizing diversification rate estimates across505

phylogenies to reveal general patterns, and motivates506

the topology-informed rate comparisons, discussed in the 507

following section. 508

Location and magnitude of rate shifts 509

We also test whether the models recover similar locations 510

and magnitudes of rate shifts by comparing the mean 511

squared error (MSE) of branch rates; this metric bridges 512

the discrepancies between the global metrics and the ob- 513

served patterns across the trees (both described above; 514

Fig. 2). 515

When quantifying differences in the location and mag- 516

nitude of shifts in speciation and net diversification rates, 517

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2023. ; https://doi.org/10.1101/2023.05.17.541228doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541228
http://creativecommons.org/licenses/by-nc-nd/4.0/


Comparing diversification rate methods

CLaDS2 differs the most (larger MSE), compared with the518

other methods (Fig. 2D,F) and it is by far the biggest out-519

lier across the models when visually inspecting the trees520

(Fig. 1E,J,O). This result indicates that CLaDS2 estimates521

differ strongly from those of the other methods in the de-522

gree of the shifts in infers, and in their location. This523

result is in contrast to the tree-wide averages presented524

above (see also Fig. 2A–C), where CLaDS2 is unexcep-525

tional.526

These results are also corroborated by analyses that527

take into account uncertainty in rate estimates (see Sup-528

plemental Section S4).529

Tools for Assessing Methods530

Inferred rates generally differ depending on the analysis531

method; how then should an empirical biologist choose532

which method to use?533

Our advice for empirical users is to take one of two534

paths. The first path is to carefully select a method535

based on the model assumptions. The methods presented536

in this analysis have theoretical differences in their ap-537

proach, which appear to produce corresponding differ-538

ences in results. For example, methods differ in whether539

shifts in diversification rates are allowed on extinct or540

unsampled lineages (LSBDS, PESTO, and the “exact MTBD”541

not tested here), whether diversification rates of each542

regime are drawn from a continuous distribution (BAMM,543

MTBD, and CLaDS2) or from a set of discrete rate cate-544

gories (LSBDS and PESTO), and if shifts occur at clado-545

genetic events (CLaDS2) or along lineages (BAMM, MTBD,546

LSBDS, and PESTO). The models make additional assump-547

tions, such as whether shifts in diversification rates af-548

fect the process-intrinsic parameters (the speciation and549

extinction rates) or transformations thereof (e.g., the net550

diversification or turnover rate) and whether shifts affect551

single parameters or combinations of parameters. These552

assumptions lead to notably different interpretations of553

how values change through time. Choice of method can554

be supported by taxon-specific data such as species distri-555

bution, fossil record, or phenotypic data (Morlon, 2014).556

Thus, users should also familiarize themselves with how557

these models parameterize and estimate diversification558

rates and ensure that these modeling choices reflect the559

user’s assumptions about biological processes.560

The second path is to critically compare multiple meth-561

ods when performing diversification analyses. We have562

shown that—despite the difference in models—in some563

cases multiple methods produce results with similar bi-564

ological interpretations. To facilitate the adoption of this565

practice, we provide R code to easily visualize the results566

of multiple diversification-rate models across the same567

phylogeny: https://github.com/Jesusthebotanist/568

CompDiv_processing_and_plotting.569

The Future of Diversification Analyses 570

The rise of methods aiming to identify shifts in diversifi- 571

cation speaks to the importance of these analyses for un- 572

derstanding the drivers and impacts of important evolu- 573

tionary events. However, we advocate for caution, for 574

two reasons described below. 575

First, taking a cautious approach is especially im- 576

portant in light of the many potential problems with 577

these methods, including the controversy surrounding 578

the identifiability of birth-death models (Louca and Pen- 579

nell, 2020, but see also Helmstetter et al. 2021; Legried and 580

Terhorst 2022; Morlon et al. 2022; Kopperud et al. 2023b, 581

among others). 582

Louca and Pennell (2020) presented a class of birth- 583

death models that are unidentifiable if the rate func- 584

tions are time-varying (but homogeneous across lineages) 585

and allowed to take any continuous shape. Nonetheless, 586

hypothesis-driven approaches are not allowed to take 587

any arbitrary shape. Since the rate shapes are designed to 588

test diversification scenarios, defined a priori, it has been 589

argued that this approach is less prone to the identifiabil- 590

ity issue (Morlon et al., 2022). Even time-varying models 591

that are more agnostic about prior hypotheses are not typ- 592

ically allowed to take any continuous rate shape. Among 593

the “agnostic” models, the piecewise-constant model is 594

the most eminent (Stadler, 2011; Magee et al., 2020), and 595

this model has been proven to be asymptotically identifi- 596

able provided there are not too many pieces (Legried and 597

Terhorst, 2022). 598

However, in spite of the non-identifiability, inferences 599

of rapidly changing speciation and extinction rates are 600

still typically robust (Kopperud et al., 2023b). The issue of 601

non-identifiability remains to be investigated thoroughly 602

in lineage-heterogeneous models. These models are more 603

parameter-rich than their homogeneous cousins, and so 604

we do not expect the issue of non-identifiability to be any 605

simpler here. 606

Second, we caution against relying too heavily on the 607

estimates from a single method without justifying the as- 608

sumptions encoded into the model’s choices regarding 609

parameterization and estimation, as we describe in detail 610

in ”Tools for Assessing Methods”. 611

The methods investigated in this paper vary in their 612

underlying model and assumptions, but are theoretically 613

related (Ronquist et al., 2021). Due to these model dif- 614

ferences, we expect differences in inferences which, in 615

turn, could translate into different biological interpreta- 616

tions. Using a set of empirically derived phylogenies, 617

we show that this is true (Fig. 1): no two methods in- 618

ferred the same shifts for any phylogeny. In some cases, 619

methods generally agreed upon the location and timing 620

of inferred shifts, but in other cases methods strongly 621

disagreed. Method-dependent differences of individual 622

trees were corroborated by tree-wide summary statistics, 623
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which indicated small but significant differences between624

methods (Fig. 2; Table 1). While these results hold up625

when we take into account the uncertainty in rate es-626

timates, we also urge caution in relying too heavily on627

summary statistics and encourage users to carefully ex-628

amine their posterior distributions, as 95% HPD intervals629

vary among methods and distributions may be bimodal,630

which may mislead common summary statistics (Fig. S6,631

see also Barido-Sottani et al., 2020).632

Regardless, it is clear there will be a continued interest633

in using diversification analysis with a renewed apprecia-634

tion for the complexities of these methods and the details635

of how rates are parameterized and estimated.636
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