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Comparing diversification rate methods

Abstract

Identifying along which lineages shifts in diversification rates occur is a central goal of comparative phylogenetics;
these shifts may coincide with key evolutionary events such as the development of novel morphological charac-
ters, the acquisition of adaptive traits, polyploidization or other structural genomic changes, or dispersal to a new
habitat and subsequent increase in environmental niche space. However, while multiple methods now exist to es-
timate diversification rates and identify shifts using phylogenetic topologies, the appropriate use and accuracy of
these methods is hotly debated. Here we test whether five Bayesian methods—Bayesian Analysis of Macroevolu-
tionary Mixtures (BAMM), two implementations of the Lineage-Specific Birth-Death-Shift model (LSBDS and PESTO),
the approximate Multi-Type Birth-Death model (MTBD; implemented in BEAST2), and the cladogenetic diversification
rate shift model (CLaDS2)—produce comparable results. We apply each of these methods to a set of 65 empirical time-
calibrated phylogenies and compare inferences of speciation rate, extinction rate, and net diversification rate. We find
that the five methods often infer different speciation, extinction, and net-diversification rates. Consequently, these
different estimates may lead to different interpretations of the macroevolutionary dynamics. The different estimates
can be attributed to fundamental differences among the compared models. Therefore, the inference of shifts in diver-
sification rates is strongly method-dependent. We advise biologists to apply multiple methods to test the robustness
of the conclusions or to carefully select the method based on the validity of the underlying model assumptions to
their particular empirical system.

Lay Summary

Understanding why some groups of organisms have more species than others is key to understanding the origin of
biodiversity. Theory and empirical evidence suggest that multiple distinct historical events—such as the evolution of
particular morphological features (e.g., the flower, the tetrapod limb) and competition amongst species—can produce
this pattern of divergent species richness. Identifying when and where on the tree of life shifts in diversification
rates occur is important for explaining the origin of modern-day biodiversity and understanding how disparity
among species evolves. Several statistical methods have been developed to infer diversification rates and identify
these shifts. While these methods each attempt to make inferences about changes in the tempo of diversification,
they differ in their underlying statistical models and assumptions. Here we test if these methods draw similar
conclusions using a dataset of 65 time-calibrated phylogenies from across multicellular life. We find that inferences
of where rate shifts occur strongly depends on the chosen method. Therefore, biologists should choose the model
whose assumptions they believe to be the most valid and justify their model choice a priori, or consider using several
independent methods to test an evolutionary hypothesis.

Key Words: [diversification-rate analyses, Phylogeny, BAMM, RevBayes, BEAST, ClaDS2, macroevolution, time-
dependence]

phylogeny, which allows for lineage-specific diversifica-
tion rate estimates (e.g., Rabosky, 2014; Hohna et al.,[2019;
Barido-Sottani et al.,|2020; Maliet and Morlon, 2022).

Introduction

Understanding the patterns and processes that shape the

tree of life is one of the central pursuits of biology. How-
ever, inferring the tempo of evolution among lineages—
the patterns of speciation and extinction that gave rise to
our extant biodiversity—remains a difficult problem both
theoretically and computationally (Rabosky),2010; Moore
et al.,[2016;|Louca and Pennell, [2020).

Several methods estimate diversification rates (speci-
ation and extinction rates, individually) assuming that
rates are constant across the tree (Morlon, 2014). Re-
cently developed methods have built upon constant-rate
models by allowing diversification parameters to vary
depending on the state of a focal character (Maddison
et al.,|2007) or, even more recently, among branches of the

Such lineage-specific methods have the potential to of-
fer powerful insights into our understanding of evolu-
tion, such as the potential time-dependency of macroevo-
lutionary diversification (Henao Diaz et al., 2019), the
macroecological and macroevolutionary causes of the
latitudinal diversity gradient (Givnish et al., 2018; Ra-
bosky et al) 2018), and macroevolutionary support of
Darwinian and Simpsonian theories of microevolution
within adaptive zones (Cooney et al.,[2017).

The application of these methods, however, has been
marred by controversy over their implementation (Moore
et al| 2016 Rabosky et al.,[2017; Meyer and Wiens, 2018;
Meyer et al) 2018; Rabosky, 2018) and by theoretical
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Comparing diversification rate methods

findings that seemingly undermine the general reliability
of inferring diversification parameters from phylogenies
of extant species (Louca and Pennell, 2020; |Helmstetter
et al., 2021). These issues are liable to discourage em-
piricists, who may wonder if the disagreements among
model developers and theorists correspond with biologi-
cally relevant inference differences in empirical studies.

To address this question, we assess how inferences
under five leading contemporary Bayesian methods—
Bayesian Analysis of Macroevolutionary Mixtures (BAMM;
Rabosky, 2014); the Lineage-Specific Birth-Death-Shift
model (LSBDS; Hohna et al.,2019) and its MCMC-free im-
plementation: Phylogenetic Estimation of Shifts in the
Tempo of Origination (PESTO; [Kopperud et al., 2023a);
the approximate Multi-Type Birth-Death model (MTBD;
Barido-Sottani et al., [2020); and the Cladogenetic Diver-
sification Rate Shift model (CLaDS2; Maliet et al.,[2019)—
compare to each other.

While all five methods aim to estimate lineage-specific
diversification rates, they differ in how and where rate
shifts are allowed to occur.

1. BAMM models diversification rates as varying across
lineages by testing among models that include dif-
ferent numbers of diversification-rate regimes (sets
of speciation and extinction parameters) and differ-
ent placements of those regimes in the tree; however
BAMM does not model rate shifts on extinct (thus un-
observed) branches (Rabosky, 2014).

2. The LSBDS model, as implemented in RevBayes
(Hohna et al., 2016), samples rate regimes from a
prior distribution discretized into a fixed number of
rate categories; this discretization facilitates compu-
tation and allows the method to model shifts on ex-
tinct branches (Hohna et al., 2019).

3. PESTO is a new implementation of the LSBDS model
that analytically computes the posterior mean spe-
ciation and extinction rates conditional on a set of
hyperparameters without the need for Monte Carlo
sampling (Kopperud et al.,2023a)).

4. The MTBD method is based on a multitype birth-death
process that infers the number of rate regimes as well
as the transition rate y between rate regimes (Barido-
Sottani et al., [2020). This approach allows for the
same rate regime to be present in different parts of
the tree. The approximate MTBD, tested here, assumes
that no rate changes occur in the extinct parts of the
tree; this approximation, when applied with a high
transition rate prior, has been found to not substan-
tially differ from the exact MTBD method, which al-
lows rates changes along extinct lineages (Barido-
Sottani et al.,[2020).

5. Finally, in the CLaDS2 model, diversification rates
only change at speciation events. Descendant lin-
eages inherit the speciation rate via a stochastic pro-
cess that is influenced by the a parameter, which
represents the long-term trend (i.e., increase or de-
creases) of the speciation rate (Maliet et al) 2019).
This model results in many small and frequent shifts
in diversification rates regimes, unlike the other
methods, which tend to infer a few large shifts in
rate regimes (Maliet et al, 2019; Maliet and Morlon,
2022). Another aspect of CLaDS2 is that extinction
rates are not inferred per branch. Instead, the model
estimates a global turnover parameter (e = p;/A;)).
However, shifts are allowed to occur along extinct
branches.

Other methods, not tested here, leverage hidden states
using a maximum likelihood framework (e.g., [Vasconce-
los et al., 2022).

To assess whether the theoretical and computational
differences among these methods result in biologi-
cally meaningful differences, we reanalyze 65 empirical
datasets, compiled from |[Henao Diaz et al.|(2019), using
each of BAMM, LSBDS, PESTO, MTBD, and CLaDS2. We ad-
dress the question: do different analytical methods for
estimating branch-specific diversification rates produce
significantly different results across an array of empirical
datasets?

Methods

Empirical Data

Our empirical data are derived from from the set of
104 chronograms compiled and analyzed with BAMM by
Henao Diaz et al.| (2019). From the Henao Diaz et al.| set
we excluded trees with fewer than 30 extant taxa in order
to concentrate on more informative datasets, resulting in
our final set of 76 chronograms.

Model Settings

Our goal was to apply each method as a typical dili-
gent user might. For each chronogram, we used the
incomplete-sampling fraction collected from the original
study by [Henao Diaz et al.|(2019), and applied that sam-
pling fraction when we ran each of the five inference
methods. While the methods differ in their specific pa-
rameterizations of the birth-death process, we attempted
to use comparable settings and priors across methods.
For BAMM analyses, we modified the control files
from Henao Diaz et al| (2019). We set lambda to
be time-constant rather than time-variable in order to
more closely match the inferences of other methods and
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given concerns about the statistical validity of time-
varying diversification analyses (Louca and Pennell,
2020). We set BAMM priors for each phylogeny using the
setBAMMpriors() function in the BAMMtools R package
(Rabosky et al., 2014b). This function computes dataset-
specific priors by estimating metrics from the dataset
such as the root age of the chronogram and then esti-
mating reasonable and broad expectations for shifts and
rates. We ran BAMM v. 2.5.0 using the BAMMtools pri-
ors and control files, which determined the phylogeny-
specific number of generations for a single MCMC chain.
We removed the first 10% of the MCMC samples as
burnin and assessed convergence by computing esti-
mates of effective sample size (ESS) using the R pack-
age Coda (Plummer et al.,[2006). We specifically looked
for convergence of the log-likelihood parameter and the
‘number of distinct regimes’ parameter, as is recom-
mended (Rabosky et al., 2014a). Analyses that did not
reach convergence were run for additional generations
until they converged.

For LSBDS analyses we used the same set of priors for
all phylogenies (except for sampling fraction) with eight
categories for speciation and for extinction (64 total rate
categories). The number of rate categories was chosen
after performing a test on one representative phylogeny,
which found that increasing the rate categories above 64
did not result in a significant change in model fit. For each
chronogram we ran four MCMC chains for 5,000 genera-
tions. Convergence was assessed for each chain by check-
ing that the ESS values for all model parameters in the
log files were greater than 200 using the R package Coda
(Plummer et al., 2006). Chains that did not reach con-
vergence were restarted and run for an additional 5000
generations. We merged the posteriors, retaining the last
4000 generations from the MCMC (10% burnin for non-
restarts and 60% burnin for restarts).

We applied PESTO in a three-step fashion. First, we esti-
mated the parameters of a constant-rate birth-death pro-
cess and treated these as hyperparameters: the speciation
rate (A) and the extinction rate (u). Second, we set up
a state-dependent speciation-extinction (SSE) model. In
this model, we used rate values that correspond to ten
quantiles of two lognormal distributions with medians A
and p, and standard deviation 0.587. In the SSE model,
we used all pairwise comparisons of these (i.e. 100 rate
categories). Further, we estimated the shift rate param-
eter # conditional on the speciation and extinction rates,
using maximum likelihood. Third, we calculated the pos-
terior state probabilities along each branch. Finally, we
plotted the posterior mean rates averaged over the time
span for each individual branch.

We ran the MTBD model under default priors (imple-
mented in BEAST2; Bouckaert et al., [2014; Barido-Sottani
et al., 2020). We ran three MCMC chains for 100,000,000

generations per phylogeny. We removed the first 25%
as burnin and assessed MCMC convergence by checking
that ESS values were higher than 200 for all rates.

We ran CLaDS2 using the default priors (as described in
Maliet and Morlon), 2022)). We ran three MCMC chains for
each dataset and took a 25% burnin, as is the default set-
ting for CLaDS2. Convergence was assessed by calculat-
ing the Gelman statistic (Gelman et al., 2014) every 1000th
generation and stopping the analysis once it achieved a
Gelman statistic of 1.05, following the standard guide-
lines for CLaDS2.

Convergence analysis

In cases where MCMC convergence was difficult, we
aimed to determine the potential underlying cause. To
assess whether the subset of trees where one or more
method failed to converge was substantially different
from the subset that did converge, we compared de-
scriptive metrics including phylogeny size, phylogeny
age, incomplete sampling fraction, branch length vari-
ance, and multidimensional scaling (MDS) via Robinson-
Foulds (RF Robinson and Foulds| 1981) and Kuhner-
Felsenstein (KF, Kuhner and Felsenstein), 1994) distances.

Processing Model Output

We obtained estimates of the relevant diversification
parameters (e.g., speciation rate, extinction rate, etc.)
from each model. BAMM posterior estimates of spe-
ciation rate and extinction rate were extracted using
the getMarginalBranchRateMatrix() function in the
BAMMtools R package (Rabosky et al.,|2014b).

We extracted LSBDS posterior distributions from
the stochastic branch rate log file produced by the
mnStochasticBranchRate() function in LSBDS. In the
PESTO analyses, we computed the branch rates averaged
across the branch. If A, and py are the rate values in state
k, and Pg(t) is the posterior probability of being in state k
at time £, then the average net-diversification rate along a
branch is

1 t
P— /to [;()\k - Vk)Pk(t)}dt/ 1)

where t( is the youngest and ¢, is the oldest end point
of the branch.

The posterior distributions of speciation and extinction
rates of the MTBD model were obtained from the ex-
tended Newick file produced by BEAST2 using a modi-
fied read.beast() function from the treeio package (Wang
et al., 2020). As CLaDS2 does not directly infer extinc-
tion rates, we calculated extinction rates per branch by
multiplying the inferred global turnover value (€) by the
branch-specific speciation rates (y; = A; x€). For all
branches and models, we calculated net diversification by
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subtracting extinction rate from speciation rate (A; — y;)
per MCMC generation.

Comparing Model Inferences

To compare inferences among the five models, we (1) vi-
sualized rate estimates on individual chronograms, (2)
summarized inferences across all chronograms in the
dataset to reveal systematic differences, (3) identified dif-
ferences in the location and magnitude of inferred shifts
among methods, and 4) tested for overlap in the 95%
HPD interval of the posterior distributions.

Visualizing rates on trees

The canonical way of presenting the results of branch-
specific diversification-rate analyses is by coloring the
branches of the tree by the estimated rates. For each tree,
we colored each branch by the posterior median estimate
of speciation, extinction, and net diversification to visual-
ize if the methods inferred similar shifts in similar loca-
tions on the tree.

Comparing rate estimates by method

To understand whether the methods displayed any con-
sistent differences across the chronograms, we calculated
six summary statistics for each tree. For each diversifica-
tion rate (i.e., speciation rate, extinction rate, and net di-
versification rate) we calculated the posterior medians for
each branch, and from those posterior medians we calcu-
lated the tree-wide mean and variance in branch rates for
each phylogeny. For each of the six summary statistics
(mean and variance for each of the three rates), we set up
a linear mixed-effect model:

log(summary statistic) = Xp + Zu +r, ()

with inference method as a fixed-effect categorical pre-
dictor (effect sizes B), phylogeny as a random effect cat-
egorical predictor (1), and an error term r. X and Z are
design matrices for the fixed and random effects. We vi-
sually checked that the residuals (r) were normally dis-
tributed and did not suffer from heteroscedasticity; phy-
logenies that violated these assumptions were excluded
from this analysis. For each linear model, we tested if the
least-square means of each pair of methods were statisti-
cally different using Tukey’s corrected p-value for multi-
ple comparisons.

Location and magnitude of rate shifts

We additionally tested whether the methods inferred con-
sistent locations and magnitudes of rate shifts, using the
rooted version of the Kuhner-Felsenstein distance (Kuh-
ner and Felsenstein, [1994). To do this, we first replaced

branch lengths of each timetree with the posterior me-
dian rate estimate, from a given method, then scaled each
branch by the total tree height. This produces a method-
dependent tree with branch lengths that provide informa-
tion regarding the magnitude and location of rate shifts
but with identical topology. We calculated KF distances
between the rescaled trees from each pair of methods; this
distance is equivalent to the mean square error (MSE)
given that the two trees being compared have the same
topology, as they do in our analyses. For each tree and for
each diversification parameter, we computed the mean
square error among the different methods:

1 N N2
MSE = NZ()\,-—Ai) ,

1

®)

where A; (or similarly y;, or (A; — p;)) is the diversifica-
tion rate parameter for branch i.

A large MSE tells us that the two methods being com-
pared infer different rate magnitudes and/or rate shifts
in different locations. A small MSE, however, indicates
that the two methods give us similar results.

Computation

We ran all diversification analyses either locally, on the
Savio HPC at UC Berkeley, or using the CIPRES Science
Gateway V. 3.3 (Miller et al., 2010).

We performed all comparison analyses in R version
3.6.0 (R Core Team), 2013). We performed data manip-
ulation with the R packages phytools, (Revell, 2012),
tidyverse (Wickham) 2017), reshape2 (Wickham, |2012),
readr (Wickham and Hester, 2020), plyr (Wickham),
2011b), and coda (Plummer et al) 2006). We gener-
ated plots with R packages see (Ludecke et al., 2021),
gegplot2 (Wickham| [2011a), ggpubr (Kassambara) [2018),
ggtree (Yu et al}2018), ggsignif (Ahlmann-Eltze| |[2017),
ggExtra (Attali and Baker, 2016), cowplot (Wilke, 2016)
and pdftools (Ooms) 2020). We fit linear mixed models
using the R package Imer (Bates et al., [2015) and obtain
emeans estimates using the R package eemeans (Lenth,
2020). We additionally used smacof (Mair et al.,2022) and
phangorn (Schliep)} 2011) to perform MDS and to calculate
RF and KF distances. Citations for R packages were gen-
erated with RefManageR (McLean, 2014).

Results and Discussion

Convergence

Our full dataset contains 76 chronograms from multicel-
lular organisms, with 31 —4161 extant tips, root ages of 4.9
- 349.8 MYA, and 0.014% — 100% of extant species sam-
pled (Fig. and Table[SI). All methods converged for
43 trees (the “complete subset”; Fig. [S1B). Of the methods
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Figure 1: Three representative phylogenies with Z-transformed (mean centering and scaling to unit variance) posterior median estimate of net
diversification painted on the branches. Columns show estimates from BAMM (A FK), LSBDS (B,G,L), PESTO (C,H,M), MTBD (D,],N) and CLaDS2

(EJ,O). (A-E) Phylogeny of Lindsaeaceae (necklace ferns;[Testo and Sundue} 2016), (F-J) Phylogeny of Ruminants (tetrapod; [Toljagié et all, 2018),

and (K-O) Phylogeny of Odonates (dragonflies and damselflies;|Waller and Svensson, |2017). The rate values are in units of events per lineage per

million years.

tested, LSBDS had the most difficulty achieving MCMC
convergence (it converged for 46 trees). All methods ex-
cept LSBDS converged in 65 trees (the “partial subset”;
Fig. [ST[C); PESTO directly computes the posterior mean
and thus “convergence” does not apply. Trees that did

not converge have poorer taxon sampling (i.e. the ra-
tio of sampled species to total species richness; P-value
= .039), older root ages (P-value = 0.0001), and greater
branch length variance (P-value = .00006) than the con-
verged trees, but sample size (number of tips) was not an

329

330

331

332

333


https://doi.org/10.1101/2023.05.17.541228
http://creativecommons.org/licenses/by-nc-nd/4.0/

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.17.541228; this version posted May 21, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Comparing diversification rate methods

important factor (P-value = .076; Fig. [S2C-F). The branch
length variance is consistent with the degree of spread
between the KF and RF MDS analyses (Fig. [S2A-B); the
KF MDS—which accounts for branch lengths as well as
topology—has a larger spread then the RF MDS. Over-
all these results fit with our intuitive understanding of
the challenges in inferring shifts in diversification rates.
We expect that older trees and trees with greater varia-
tion in branch lengths should undergo more rate shifts
than younger trees and those with less variation in branch
lengths. Thus inferring the diversification rates of these
trees should be generally more challenging. These re-
sults suggest that users should be particularly attentive
to MCMC convergence if their chronogram(s) are poorly
sampled, old, or have a lot of branch-length variation,
and especially so if they are using LSBDS. In these cases,
even more so than usual, it is important to run each
MCMC multiple times independently, to assess both sta-
tionarity and convergence.

Comparison of Methods

Visualizing rates on trees

None of the 43 phylogenies in our “complete subset”
had concordant estimates among all methods given our
evaluation criteria (Fig. [I). For some phylogenies, the
methods inferred similar shifts in net diversification (e.g.,
Fig. [[JA-E), whereas for others the inferred shifts differed
slightly (e.g., Fig[lF-J) or strongly (e.g., Fig. [IK-O).We
would expect some differences when comparing differ-
ent modeling approaches, as there are patterns to the dif-
ferences in our results that can be attributed to the fun-
damental differences between the models. We illustrate
these patterns using a few example phylogenies, which
are representative of the patterns one will find when pe-
rusing the full set of trees in the supplemental materials
(Supplemental Section [S5).

Occasionally two methods generally identified similar
patterns. For example, BAMM and LSBDS identified a simi-
lar shift of about the same magnitude in speciation rates
for some clades, e.g., the Lindsaeaceae (necklace ferns,
clade i; Fig. ,B). Nonetheless, there are still differences
between the two methods, e.g., a second nested rate shift
in the LSBDS and PESTO estimates (clade ii).

In the ruminants (tetrapods) phylogeny (Fig. [1| F-J),
we find that even for results that overall appear similar
between methods, there are meaningful differences be-
tween their estimates. For example, BAMM, LSBDS, and
PESTO inferred a shift around the ancestor of clade i, but
LSBDS and PESTO also find approximately two more shifts
(Fig. 1] G, clades ii and iii). Likewise, MTBD differs from
the latter two as it infers several shifts in the largest clade
and low net diversification rates on the backbone of that
lineage (Fig. [1]I). Similarly, CLaDS2 infers a slightly dif-

ferent history from all of them, including multiple slow
downs as well as an increase in net-diversification within
clade i. BAMM, LSBDS, and PESTO identify a shift in approx-
imately the same node (indicated by i) while MTBD infers
many replicated increases in rate within clade i. LSBDS
and PESTO infer the same shift, which is expected as they
are based on the same underlying model and assump-
tions.

Multiple diversification shifts across a phylogeny is
common to many of the MTBD trees (Fig. ,N; Barido-
Sottani et al., |2020). This pattern is caused by the bi-
modal posterior distribution commonly inferred by this
method (Barido-Sottani et al.,[2020). Point-estimate sum-
mary statistics (e.g., posterior median) of these types of
distributions are susceptible to small variation between
the ancestor-descendant branches, which causes point es-
timates to switch between the two optima producing the
rapid switching pattern (Fig. [I[,N).

Likewise, CLaDS2 is the only time-dependent model in
our analysis and thus is capable of detecting time-varying
diversification patterns. Furthermore, the inherited spe-
ciation rate («) only changes at cladogenic events, which
results in many small changes at cladogenetic events,
rather than the few large changes that characterize the
other methods (Maliet et al., 2019; Maliet and Morlon),
2022). When « < 1 evolutionary slowdowns occur where
the ancestral lineages have higher net diversification rates
than the descendant lineages, a pattern observed in our
data (Fig. [1]O;[Moen and Morlon) 2014).

On the other hand, BAMM, LSBDS, and PESTO are similar
models and therefore we may expect them to infer simi-
lar diversification rates and shifts (Ronquist et al., 2021).
While this is sometimes true (Figure [1| K,L), other times
there are pronounced differences (FigureF,G). This may
be due to the well-known differences between these two
models, namely assuming either rate shifts can (LSBDS
and PESTO) or cannot (BAMM) occur on extinct lineages or
unsampled lineages (Moore et al.,2016).

Comparisons of rate estimates by method

To gain a global perspective of the differences between
these models, we calculated two tree-wide summary
statistics and distance metrics in order to compare these
methods across the entire dataset (Fig. [2} [S3).

We ran all comparisons on the complete subset (the 43
trees that converged for all methods) and on the partial
subset (the 65 trees that converged for all methods except
LSBDS). Comparisons between these two subsets reveal
only one small difference (compare BAMM vs. MTBD -
Fig. 2C vs. Supplemental Fig. [S4C) and the most signifi-
cant differences did not change. Given the large number
of datasets that did not converge for LSBDS but converged
for all other methods (unconverged datasets = 22) as well
as the theoretical similarities between PESTO and LSBDS,
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Comparing diversification rate methods

Table 1: Post-hoc pairwise comparisons of inference methods using the tree-wide average of summary statistics: speciation, extinction, and
net-diversification rates. Columns contain the summary statistics, contrasts of inference methods, the ratios of geometric means, standard errors,
degrees of freedom, t-ratios, Tukey-adjusted p-values, significances, and the percent variances explained by the random effect.

Summary Statistic Contrasts Means SE DF T- Adj. P- Sig. % Var.
Ratio Ratio Value
Speciation BAMM / ClaDS2 1.0114 0.0336 189 0.3402  0.986 N.S. 94.57
BAMM / PESTO 0.8833  0.0294 189 -3.7326  0.001 **
BAMM /MTBD  1.0352  0.0344 189 1.041 0.726 N.S.
ClaDS2 / PESTO 0.8733  0.029 189 -4.0728  0.000 o
ClaDS2 / MTBD  1.0236  0.034 189 0.7009  0.897 N.S.
PESTO / MTBD  1.172 0.039 189 4.7736  0.000 ot
Extinction BAMM / ClaDS2 1.2616  0.3006 189 09752  0.764 N.S. 58.65
BAMM / PESTO 3.0505 0.7268 189 4.6808  0.000 i
BAMM / MTBD  1.119 0.2666 189 04718  0.965 N.S.
ClaDS2 / PESTO 2418 0.5761 189 3.7056  0.002 **
ClaDS2 / MTBD  0.887 0.2113 189 -0.5034 0.958 N.S.
PESTO / MTBD  0.3668  0.0874 189 -4.209  0.000 ot
Net Diversification BAMM / ClaDS2 0.6467  0.0406  188.067 -6.9392 0.000 o 81.83
BAMM / PESTO 0.6666  0.0419  188.067 -6.4555 0.000 o
BAMM / MTBD  0.8278  0.052 188.067 -3.0073 0.016 *
ClaDS2 / PESTO 1.0309 0.0644  188.0003 0.4863  0.962 N.S.
ClaDS2 / MTBD 12802  0.08 188.0003 3.9523  0.001 ot
PESTO / MTBD 12419 0.0776  188.0003 3.466 0.004 **

we report the following results for the partial dataset (see
Fig. [S4A-F for summaries from the complete dataset).

We recover consistent differences in rate estimates
among methods, particularly between PESTO (which is
additionally standing-in for LSBDS in these comparisons,
given that those two approaches share the same under-
lying model) and all other models; CLaDS2 also was an
outlier, albeit to a lesser extent (Table . In contrast, BAMM
and MTBD tended to infer similar speciation and extinction
rates. We find that tree-wide average speciation and ex-
tinction estimates of PESTO are statistically different from
all other methods (Fig. 2JA-B).

While PESTO inferred higher tree-wide average specia-
tion values, the magnitude of the differences is small (ra-
tio of means < 1.2 for all significant contrasts; Table [).
Conversely, PESTO inferred lower tree-wide averages of
extinction rates with larger magnitude changes (ratio of
geometic means > 1.2; Table[I). The significant difference
between PESTO and other methods holds for tree-wide av-
erage net-diversification as well, except for the compari-
son between PESTO and CLaDS2 (Fig. ), which is not
significant.

Additionally, = CLaDS2 tree-wide average net-
diversification estimates are significantly different
from BAMM and MTBD (Fig. ). A significant difference
in net-diversification could be driven by the CLaDS2
parameterization of extinction: extinction is not directly
estimated in CLaDS2. Therefore the net diversification

rates of CLaDS2 are scaled speciation rates. Alternatively,
the differences between methods could be due to the
wider variance of net diversification estimates that both
BAMM and MTBD have compared to CLaDS2 (Fig. [S3A-C).
However, similar to tree-wide average speciation, the
magnitude of difference between the contrast is not large
(Table [T). There is also a weakly significant difference
between speciation rates of BAMM and MTBD in our partial
subset that was not found in the smaller complete subset.

All methods generally had comparable tree-wide aver-
age extinction-rate estimates with the exception of PESTO,
which may infer much lower extinction rates for some
trees than the other methods (though, on average, it in-
fers higher extinction rates). The inference of extinction
rate has been the subject of substantial debate, particu-
larly in how failures to account for diversification shifts
along extinct branches can impact the likelihood function
(Moore et al) [2016; [Rabosky et al} [2017). Regardless of
the theoretical importance of correctly inferring extinc-
tion rates, we demonstrate that differences between ex-
tinction and speciation rates manifest in statistically dif-
ferent estimates of net diversification in empirical studies.
Therefore, our results indicate that method-dependent
tree-wide bias in diversification parameter inference may
influence the interpretation of evolutionary shifts in di-
versification rates.

We find discrepancies between results derived from
tree-wide summary statistics and our visual inspection
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Figure 2: Comparison of tree-wide summary statistics across methods for the partial subset (n=65). (A-C) Tree-wide mean of posterior median
estimates of the branch-specific rate parameters, plotted on a log scale. Asterisks correspond to the p-value of linear mixed model, calculated on
the natural log of the rates (*: 0.05 > P-value > 0.01; **: 0.01 > P-value > 0.001; ***: 0.001 > P-value). (D-F) Pairwise mean squared error (MSE)
between inference methods of phylogenies with branch lengths scaled by rates (speciation, extinction, and net diversification), plotted on a log
scale. Split colors correspond to inference method color in A-C. Distributions closer to zero indicate that the inference methods produced more
similar rate estimates, whereas higher values indicate greater dissimilarity. (D) MSE of speciation-scaled phylogenies; (E) MSE of extinction-scaled

phylogenies; (F) MSE of net-diversification-scaled phylogenies.

of trees (see section “Visualizing rates on trees”). For
example we find that CLaDS2 and PESTO show no statis-
tical difference in average net diversification (Fig. [2C).
However, visual inspection of many trees suggests that
CLaDS2 and PESTO often differ greatly in the number and
position of inferred rate shifts (e.g., Fig. . Conversely,
BAMM and LSBDS often look very similar when we as-
sess individual phylogenies and yet significantly differ
when we compare speciation, extinction, and diversifica-
tion averages[S3]A-C). This discrepancy reveals the diffi-
culty of summarizing diversification rate estimates across
phylogenies to reveal general patterns, and motivates

the topology-informed rate comparisons, discussed in the
following section.

Location and magnitude of rate shifts

We also test whether the models recover similar locations
and magnitudes of rate shifts by comparing the mean
squared error (MSE) of branch rates; this metric bridges
the discrepancies between the global metrics and the ob-
served patterns across the trees (both described above;
Fig. 2).

When quantifying differences in the location and mag-
nitude of shifts in speciation and net diversification rates,
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CLaDS2 differs the most (larger MSE), compared with the
other methods (Fig. 2D,F) and it is by far the biggest out-
lier across the models when visually inspecting the trees
(Fig. ,],O). This result indicates that CLaDS2 estimates
differ strongly from those of the other methods in the de-
gree of the shifts in infers, and in their location. This
result is in contrast to the tree-wide averages presented
above (see also Fig. PJA-C), where CLaDS2 is unexcep-
tional.

These results are also corroborated by analyses that
take into account uncertainty in rate estimates (see Sup-

plemental Section [S4).

Tools for Assessing Methods

Inferred rates generally differ depending on the analysis
method; how then should an empirical biologist choose
which method to use?

Our advice for empirical users is to take one of two
paths. The first path is to carefully select a method
based on the model assumptions. The methods presented
in this analysis have theoretical differences in their ap-
proach, which appear to produce corresponding differ-
ences in results. For example, methods differ in whether
shifts in diversification rates are allowed on extinct or
unsampled lineages (LSBDS, PEST0, and the “exact MTBD”
not tested here), whether diversification rates of each
regime are drawn from a continuous distribution (BAMM,
MTBD, and CLaDS2) or from a set of discrete rate cate-
gories (LSBDS and PEST0), and if shifts occur at clado-
genetic events (CLaDS2) or along lineages (BAMM, MTBD,
LSBDS, and PESTO). The models make additional assump-
tions, such as whether shifts in diversification rates af-
fect the process-intrinsic parameters (the speciation and
extinction rates) or transformations thereof (e.g., the net
diversification or turnover rate) and whether shifts affect
single parameters or combinations of parameters. These
assumptions lead to notably different interpretations of
how values change through time. Choice of method can
be supported by taxon-specific data such as species distri-
bution, fossil record, or phenotypic data (Morlon) 2014).
Thus, users should also familiarize themselves with how
these models parameterize and estimate diversification
rates and ensure that these modeling choices reflect the
user’s assumptions about biological processes.

The second path is to critically compare multiple meth-
ods when performing diversification analyses. We have
shown that—despite the difference in models—in some
cases multiple methods produce results with similar bi-
ological interpretations. To facilitate the adoption of this
practice, we provide R code to easily visualize the results
of multiple diversification-rate models across the same
phylogeny: |https://github.com/Jesusthebotanist/
CompDiv_processing_and_plotting.

10

The Future of Diversification Analyses

The rise of methods aiming to identify shifts in diversifi-
cation speaks to the importance of these analyses for un-
derstanding the drivers and impacts of important evolu-
tionary events. However, we advocate for caution, for
two reasons described below.

First, taking a cautious approach is especially im-
portant in light of the many potential problems with
these methods, including the controversy surrounding
the identifiability of birth-death models (Louca and Pen-
nell, 2020, but see also|Helmstetter et al.|2021}|Legried and
Terhorst||2022; Morlon et al.|2022; Kopperud et al.|2023b,
among others).

Louca and Pennell (2020) presented a class of birth-
death models that are unidentifiable if the rate func-
tions are time-varying (but homogeneous across lineages)
and allowed to take any continuous shape. Nonetheless,
hypothesis-driven approaches are not allowed to take
any arbitrary shape. Since the rate shapes are designed to
test diversification scenarios, defined a priori, it has been
argued that this approach is less prone to the identifiabil-
ity issue (Morlon et al.|[2022). Even time-varying models
that are more agnostic about prior hypotheses are not typ-
ically allowed to take any continuous rate shape. Among
the “agnostic” models, the piecewise-constant model is
the most eminent (Stadler} 2011; Magee et al., 2020), and
this model has been proven to be asymptotically identifi-
able provided there are not too many pieces (Legried and
Terhorst, 2022).

However, in spite of the non-identifiability, inferences
of rapidly changing speciation and extinction rates are
still typically robust (Kopperud et al.},2023b). The issue of
non-identifiability remains to be investigated thoroughly
in lineage-heterogeneous models. These models are more
parameter-rich than their homogeneous cousins, and so
we do not expect the issue of non-identifiability to be any
simpler here.

Second, we caution against relying too heavily on the
estimates from a single method without justifying the as-
sumptions encoded into the model’s choices regarding
parameterization and estimation, as we describe in detail
in "Tools for Assessing Methods”.

The methods investigated in this paper vary in their
underlying model and assumptions, but are theoretically
related (Ronquist et al [2021). Due to these model dif-
ferences, we expect differences in inferences which, in
turn, could translate into different biological interpreta-
tions. Using a set of empirically derived phylogenies,
we show that this is true (Fig. [I): no two methods in-
ferred the same shifts for any phylogeny. In some cases,
methods generally agreed upon the location and timing
of inferred shifts, but in other cases methods strongly
disagreed. Method-dependent differences of individual
trees were corroborated by tree-wide summary statistics,
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which indicated small but significant differences between
methods (Fig. [} Table [I). While these results hold up
when we take into account the uncertainty in rate es-
timates, we also urge caution in relying too heavily on
summary statistics and encourage users to carefully ex-
amine their posterior distributions, as 95% HPD intervals
vary among methods and distributions may be bimodal,
which may mislead common summary statistics (Fig.
see also [Barido-Sottani et al.,2020).

Regardless, it is clear there will be a continued interest
in using diversification analysis with a renewed apprecia-
tion for the complexities of these methods and the details
of how rates are parameterized and estimated.
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