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Summary

Cortical dynamics underlie many cognitive processes and emerge from complex multi-
scale interactions, which are challenging to study in vivo. Large-scale, biophysically de-
tailed models offer a tool which can complement laboratory approaches. We present a
model comprising eight somatosensory cortex subregions, 4.2 million morphological and
electrically-detailed neurons, and 13.2 billion local and mid-range synapses. In silico tools
enabled reproduction and extension of complex laboratory experiments under a single pa-
rameterization, providing strong validation. The model reproduced millisecond-precise
stimulus-responses, stimulus-encoding under targeted optogenetic activation, and selec-
tive propagation of stimulus-evoked activity to downstream areas. The model’s direct
correspondence with biology generated predictions about how multiscale organization
shapes activity; for example, how cortical activity is shaped by high-dimensional connec-
tivity motifs in local and mid-range connectivity, and spatial targeting rules by inhibitory
subpopulations. The latter was facilitated using a rewired connectome which included spe-
cific targeting rules observed for different inhibitory neuron types in electron microscopy.
The model also predicted the role of inhibitory interneuron types and different layers in
stimulus encoding. Simulation tools and a large subvolume of the model are made avail-
able to enable further community-driven improvement, validation and investigation.
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1 Introduction

Neuroscience aims to characterize the dynamics of the brain and understand how they
emerge as a product of anatomy and physiology. This is challenging however, due to the
complexity of the brain’s multi-scale organization and its study in situ. Large-scale, data-
driven, biophysically-detailed models (Markram et al., 2015; Billeh et al., 2020) offer a tool
which can complement laboratory investigation. This “bottom-up” approach combines
detailed constituent models into a 3D model of a given brain volume, thus consolidating
disparate, multi-scale data sources. Such models aim to provide a general tool for multi-
scale investigation; access and manipulation of any model component enables predictions
about how these components combine to shape emergent dynamics. With increasing bi-
ological data, model refinement and validation must be continuous. This necessitates 1)
open sourcing of models with high quality software tools for iterative, community-driven
refinement and validation, and 2) rigorous methodology for model parameterization and
validation, such that model iterations can be meaningfully compared. Here and in our
companion paper (Reimann et al., 2024) we present our methodology for parameterizing
the anatomy and physiology of a cortical model, and validating its emergent dynam-
ics. This enabled predictions about how cortical activity is shaped by high-dimensional
connectivity motifs in local and mid-range connectivity, and spatial targeting rules by
inhibitory subpopulations. Elsewhere, this has allowed the presented model to be used to
study the formation of cell assemblies (Ecker et al., 2024b), functional synaptic plasticity
(Ecker et al., 2024a), propagation of activity between cortical areas (Bolaños-Puchet and
Reimann, 2024) the role of non-random connectivity motifs on network activity (Pokorny
et al., 2024) and reliability (Egas Santander et al., 2024), the composition of high-level
electrical signals such as the EEG (Tharayil et al., 2024), and how spike sorting biases
population codes (Laquitaine et al., 2024).

Specifically, we built and validated a model of the entire non-barrel primary so-
matosensory cortex (nbS1) comprising eight subregions. Whilst our previous data-driven,
biophysically detailed model (Markram et al., 2015) provided insights at the scale of a
single cortical column (Reimann et al., 2013, 2017, 2022; Nolte et al., 2019, 2020; Newton
et al., 2021), the new model is ∼140 times larger and to our knowledge offers the first
simulations of in vivo-like spontaneous and stimulus-evoked activity in a biophysically de-
tailed cortical model with interregion connectivity. In the companion paper, we introduce
the anatomical model (Fig. 1, Step 1), describing how neuron morphologies were placed
within an atlas-based geometry and connected through local and mid-range synapses.
Here, we describe our improved techniques to model and validate the electrical properties
of neurons and synapses (Figure 1, Steps 2 & 3 (Reva et al., 2023; Barros-Zulaica et al.,
2019)), and to compensate for input from missing brain areas (Figure 1, Steps 4). These
improvements enabled enhanced validation of emerging in vivo-like activity (Figure 1,
Steps 5), including the reproduction and extension of five published studies in rodent
sensory cortex under a single in vivo-like regime (Figure 1, Steps 6).

Validating that network activity emerges from the same interactions driving in vivo
dynamics, requires 1) an approach to tackle the large parameter space without overfitting
and 2) comparison of emerging dynamics with laboratory experiments. With respect to
1), we strongly prefer parameterization with directly measured quantities over fitting pa-
rameters to yield the correct emerging activity. Additionally, where fitting is applied, we
adhere to a principle of compartmentalization of parameters. That is, once a parameter
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has been parameterized at one biological level, it is no longer a free parameter at a higher
level. For example, the maximal conductance of a synapse is fit to biological amplitudes
of postsynaptic potentials, but is then never updated in the process of reaching in-vivo
like population activity. If a connection is valid on the single-cell level, its contribution at
the population level should be equally valid. As a result, the emerging in-vivo like activity
is the consequence of only 10 free parameters representing the strength of extrinsic input
from other brain regions into 9 layer-specific excitatory and inhibitory populations, and a
parameter controlling the noise structure of this extrinsic input. These parameters were
fitted using a novel methodology presented here and were in accordance with the mean
number of missing synapses for each population (Felleman and Van Essen, 1991; Harris
et al., 2019; Gao et al., 2022).

With respect to 2), we conducted the following validations: Spontaneous activity re-
produced layer-wise in vivo firing rates (or a specified proportion of in vivo firing rates
to account for in vivo recording bias (Wohrer et al., 2013)), varied along a spectrum
of asynchronous to synchronous activity, exhibited spatially structured fluctuations and
produced long-tailed firing rate distributions with sub 1 Hz peaks as in vivo (Wohrer
et al., 2013; Buzsáki and Mizuseki, 2014). Under the same parameterization, the model
reproduced precise millisecond dynamics of layer-wise populations in response to simple
stimuli. These initial validations demonstrated that the model was in a more accurate
regime compared to Markram et al. (2015) – an essential step before testing more com-
plex or larger-scale validations. For example, under the same parameterization we then
observed selective propagation of stimulus-evoked activity to downstream areas, and re-
produced and extended more complex experiments through accurate modeling of targeted
optogenetic stimulation and lesions. Importantly, we highlight where emergent activity
shows discrepancies with in vivo activity, to guide future data-driven model refinement.

The model generated a number of predictions (Table S1), including about the role of
different layers in driving layer 2/3 stimulus responses and how inhibitory interneuron
types encode contrast, synchronous and rate-coded information. Additionally, with ac-
cess to the full structural connectome and tools for precisely editing it (Pokorny et al.,
2024), we were able to make predictions about the relationship between structure and
function. For example, we predict that an increase in the prevalence of non-random
connectivity motifs towards deeper layers leads to a matched increase in spiking corre-
lations, and that subregions more strongly innervated by mid-range connectivity have
higher correlated activity locally. Additionally, we generated a new connectome which
captured recently characterized spatially-specific targeting rules for different inhibitory
neuron types (Schneider-Mizell et al., 2023) in the MICrONS electron microscopy dataset
(MICrONS-Consortium et al., 2021), such as increased perisomatic targeting by PV+
neurons, and increased targeting of inhibitory populations by VIP+ neurons. Comparing
activity to the original connectome gave predictions about the role of these additional
targeting rules. For example, inhibitory populations were more strongly inhibited (in-
creasingly towards central layers) and required more non-local drive to reach the firing
rates observed in vivo. Evoked responses increased and decreased in superficial and deeper
excitatory populations respectively, suggesting layer-specific roles of the more specific in-
hibitory targeting.

To provide a framework for further studies and integration of experimental data, the
full model is made available with simulation tools, as well as a smaller subvolume with the
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optional new connectome capturing inhibitory targeting rules from electron microscopy.
(Figure 1, Step 7). The detailed modeling approach provides a one-to-one correspon-
dence with most types of experimental data, allowing different datasets to be readily
integrated. Due to the incredible speed of discovery in neuroscience an integrative model
will always be lagging behind the latest available data. We believe the solution is to
provide a scientifically solid, validated model with clearly characterized strengths and
weaknesses, along with the tools to advance or customize it for individual projects. We
have therefore also made our tools for building and improving the model openly available:
www.github.com/BlueBrain.

2 Results

The companion paper describes the full anatomical nbS1 model containing 4.2M mor-
phological neuron models, connected through 9.1B local synapses and 4.1B mid-range
synapses (Reimann et al., 2024). Each neuron is modeled as a multi-compartmental
model belonging to one of 60 morphological types (m-types; Figure 2A1), and is either
an instance or statistical variant of an exemplar in a pool of 1,017 morphological recon-
structions. Neurons were placed (orientated towards the surface) within an atlas-based
geometry (Figure 2A2) based on estimated layer-wise density profiles of different mor-
phological types. Local connectivity is based on axo-dendritic overlap with neighbouring
neurons, whilst mid-range connectivity combines data on interregion connectivity and
laminar innervation profiles. Thalamocortical afferents were also modeled based on lami-
nar innervation to the barrel cortex. To simulate emergent activity it is necessary to model
and validate the electrical properties of these neurons and synapses (Figure 1 Steps 2 &
3). These modeling steps are based on published methods and data sources (Table 1),
and are summarized first. The method for compensating for missing synapses and the
remaining results are then described (Figure 1 Steps 4-6).

2.1 Improved modeling and validation of neuron physiology

Similarly to Markram et al. (2015), electrical properties of single neurons were modeled
by optimizing ion channel densities in specific compartment-types (soma, axon initial
segment (AIS), basal dendrite, and apical dendrite) (Figure 2B) using an evolutionary
algorithm (IBEA; Van Geit et al., 2016) so that each neuron recreates electrical features
of its corresponding electrical type (e-type) under multiple standardized protocols. Com-
pared to Markram et al. (2015), electrical models were optimized and validated using 1)
additional in vitro data, features and protocols, 2) ion channel and electrophysiological
data corrected for the liquid junction potential, and 3) stochastic channels (StochKv3)
now including inactivation profiles. The methodology and resulting electrical models are
described in Reva et al. (2023) (see Methods), and generated quantitatively more accurate
electrical activity, including improved attenuation of excitatory postsynaptic potentials
(EPSPs) and back-propagating action potentials. Electrical features included firing prop-
erties (e.g. spike frequency, inter-spike interval), action potential waveforms (e.g. fall and
rise time, width) and passive properties (e.g. input resistance). The optimization was per-
formed for a subset of neuron models. The resulting ion channel densities were generalized
to other neuron models of the same e-type. For excitatory neurons such generalization
was only made to neurons within the same layer. The resulting electrical activity of each
neuron was validated against the corresponding electrical features, including the charac-
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Figure 1: Overview of the physiology and simulation workflow. 1. Anatomical model:
Summary of the anatomical nbS1 model described in the companion paper. 2. Neuron physi-
ology: Neurons were modeled as multi-compartment models with ion channel densities optimised
using previously established methods and data from somatic and dendritic recordings of membrane
potentials in vitro. 3. Synaptic physiology: Models of synapses were built using previously
established methods and data from paired recordings in vitro. 4. Compensation for missing
synapses: Excitatory synapses originating from outside nbS1 were compensated with noisy so-
matic conductance injection, parameterized by a novel algorithm. 5. In vivo-like activity: We
calibrated an in silico activity regime compatible with in vivo spontaneous and stimulus-evoked
activity. 6. In silico experimentation: Five laboratory experiments were recreated. Two
were used for calibration and three of them were extended beyond their original scope. 7. Open
Source: Simulation software and a seven column subvolume of the model are available on Zenodo
(see data availability statement). Data generalisations: Three data generalisation strategies
were employed to obtain the required data. Left: Mouse to rat, middle: Adult to juvenile (P14)
rat, right: Hindlimb (S1HL) and barrel field (S1BF) subregions to the whole nbS1. Throughout
the figure, the corresponding purple icons show where these strategies were used.
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Figure 2: Modeling and validation of neuron physiology. A1: Example excitatory neuron
morphologies. See companion paper for exemplar morphologies of all morphological types. A2:
Example morphologies placed within the atlas-based volume. Axons shown in grey. B: Optimized
conductance densities for two exemplary e-types. B1: cADpyr e-type on L5 TPC:A m-type, B2:
bSTUT and cSTUT e-types on L5 NBC m-type. (The L5 NBC m-type is combined with more
e-types than the two shown, see panel D.) Morphologies were visualized with NeuroMorphoVis
(Abdellah et al., 2018). Neurite diameters are enlarged (x3) for visibility. Soma and dendrites in
black, axon in red. C: e-types used in the model. As used in Markram et al. (2015) and similar
to the Petilla terminology (Ascoli et al., 2008)).
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Table 1: Previously published modeling techniques and data to parameterize them that were
combined in this work to model the physiology of nbS1 and conduct in silico experimentation.

Data
Stage Topic Reference

Neuron physiology E-type composition Markram et al. (2004, 2015)
Electrophysiological recordings Markram et al. (2015)

Larkum et al. (2001)
Nevian et al. (2007)

Ion-channel models Reva et al. (2023)
Synaptic physiology Synaptic pathway physiology Markram et al. (2015)

Barros-Zulaica et al. (2019)
Gupta et al. (2000)

13 additional sources in
Tables S5, S6, S7

In vivo-like activity In vivo spont. firing rates Reyes-Puerta et al. (2015b)
De Kock et al. (2007)

In vivo evoked responses Reyes-Puerta et al. (2015b)
Yu et al. (2019)

In vivo thalamic spiking Diamond et al. (1992)
Yu et al. (2019)

In silico experimentation L4 - L2/3 pathway Varani et al. (2022)
Visual contrast Shapiro et al. (2022)
Coding in inhibitory subpopulations Prince et al. (2021)

Modeling methods
Stage Topic Reference

Neuron physiology E-model building Van Geit et al. (2016)
Reva et al. (2023)

Synaptic physiology Synapse model building Ecker et al. (2020)
Model of multi-vesicular release Barros-Zulaica et al. (2019)

In vivo-like activity Missing input compensation *New, original methods based on
Destexhe et al. (2001)

In silico experimentation *New, original methods

teristic firing properties of the 11 e-types (Figure 2C). Model neurons with a mean zscore
(over the electrical features) further than two standard deviations from the experimental
mean were discarded. The new neuron models saw a 5-fold improvement in generalizabil-
ity compared to Markram et al. (2015) (Reva et al., 2023).

For each of the 60 morphological types (m-types), the corresponding fractions of e-
types were determined from experimental data as in Markram et al. (2015), resulting in
208 morpho-electrical types (me-types; Figure 2D). Correspondence with predominant
expression of biological markers PV (parvalbumin), Sst (somatostatin) or 5HT3aR (sero-
tonin receptor 3A) was determined based on me-type, as previously done in Markram
et al. (2015) (Figure 2D). Finally, for layer five thick-tufted pyramidal cell (L5 TTPC)
morphologies, we found that dendritic electrical features, namely the attenuation of back
propagating action potentials and EPSPs, reproduced experimental measurements (Fig-
ure 2E, Reva et al., 2023).

The required data to constrain region-specific me-type distributions was not available
when building the model; to our knowledge Yao et al. (2023) is the first study that explored
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D: me-type composition. Heatmap shows the proportion of e-types for each m-type. Each me-type
is assigned to one of the three I subpopulations. Assignments depending not only on m-type are
highlighted by a green box. Particularly, for BTC and DBC m-types, the cACint e-type belongs to
the Sst+ subpopulation. E: Validation of dendritic physiology of all L5 TTPCs. Panel reproduced
from Reva et al. (2023). E1: Validation of back-propagating action potential (bAP) amplitude
(i.e., the dependence of bAP amplitude on distance from the soma) for basal (green) and apical
(blue) dendrites. Reference data (in red) comes from Stuart and Sakmann (1994); Larkum et al.
(2001) (apical) and Nevian et al. (2007) (basal). Lines show exponential fits for the in silico (green
and blue) and in vitro (red) data. Color bar indicates dendritic diameter. E2: Validation of EPSP
attenuation. Reference data (in red) comes from Berger et al. (2001) (apical) and Nevian et al.
(2007) (basal). Lines and colorbar same as in E1.

the question systematically (in mouse cortex). The atlas-based geometry does however
impose heterogeneity in morphologies that e-types are paired with: only morphologies
that are in line with the region-specific local curvature of the region are used throughout
the volume. We demonstrate the effect of geometry on morphological composition in the
companion paper.

2.2 Improved modeling and validation of synaptic physiology

The biological realism of synaptic physiology was improved relative to Markram et al.
(2015) using additional data sources and by extending the stochastic version of the
Tsodyks-Markram model (Tsodyks and Markram, 1997; Markram et al., 1998; Fuhrmann
et al., 2002; Loebel et al., 2009) to feature multi-vesicular release, which in turn improved
the accuracy of the coefficient of variations (CV; std/mean) of postsynaptic potentials
(PSPs) as described in Barros-Zulaica et al. (2019) and Ecker et al. (2020). The model
assumes a pool of available vesicles that is utilized by a presynaptic action potential,
with a release probability dependent on the extracellular calcium concentration ([Ca2+]o;
Ohana and Sakmann, 1998; Rozov et al., 2001; Borst, 2010). Additionally, single vesicles
spontaneously release as an additional source of variability with a low frequency (with
improved calibration relative to Markram et al. (2015)). The utilization of vesicles leads
to a postsynaptic conductance with bi-exponential kinetics. Short-term plasticity (STP)
dynamics in response to sustained presynaptic activation are either facilitating (E1/I1),
depressing (E2/I2), or pseudo-linear (I3). E synaptic currents consist of both AMPA
and NMDA components, whilst I currents consist of a single GABAA component, except
for neurogliaform cells, whose synapses also feature a slow GABAB component. The
NMDA component of E synaptic currents depends on the state of the Mg2+ block (Jahr
and Stevens, 1990), with the improved fitting of parameters to cortical recordings from
Vargas-Caballero and Robinson (2003) by Chindemi et al. (2022).

The workflow for determining a dense parameter set for all synaptic pathways, start-
ing with sparse data from the literature, is described for the use case of hippocampal
CA1 in Ecker et al. (2020) and briefly in the Methods. We combined data sources used
in Markram et al. (2015), with a large number of recent data sources (Qi and Feldmeyer,
2016; Barros-Zulaica et al., 2019; Yang et al., 2020, 2022). The resulting pathway-specific
parameters are listed in Tables S2, S3, S4, the most common short-term dynamics are
depicted in Figure 3A1-2, and the assignment of STP profiles to different pathways are
shown in Figure 3A3. Postsynaptic potential amplitudes and their CV closely matched
their biological counterparts (r = 0.99, n = 27; Figure 3B1; Table S5 and r = 0.63, n = 10;
Figure 3C1; Table S6, respectively). The dense parameter set also allowed prediction of
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Figure 3: Modeling and validation of synaptic physiology. Caption on the following page.
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A1: Exemplary pair of L5 TTPCs (visualized with NeuroMorphoVis (Abdellah et al., 2018)).
Presynaptic cell in gray, postsynaptic cell in red, synapses between them in purple. Neurite
diameters are enlarged (x3) for visibility and axons were cut to fit into the figure. Pre- and
postsynaptic voltage traces on the top right. A2: Exemplary postsynaptic traces with different
STP profiles. A3: Assignment of STP profiles to viable pathways. (Pathways were considered
viable if there were at least 10 connections in all eight subregions of the model.) B1: Validation of
first PSP amplitudes (see also Table S5). Dashed gray line represents perfect correlation between
experimental and model values. Error bars show one standard deviation (also for C1, D and
F). B2: Predicted PSP amplitudes of all viable pathways in the circuit. Postsynaptic cells were
held at -70 mV using an in silico voltage-clamp. Means were calculated over 100 pairs of neurons
with 35 repetitions each. C1 and C2: same as B1 and B2, but showing the CV of the first PSP
amplitude (corresponding Table is S6). D: Validation of mPSC frequencies (see also Table S7).
E: Location of synapses from VPM fibers (purple) and POm fibers (red) on 38 neurons (dark
gray) in a 5µm radius column (visualized with BioExplorer). F: Validation of thalamocortical
EPSP amplitudes as in B1. The four pathways used for the validation are marked with a black
rectangle on H1 to its right. G: EPSP latencies (time from presynaptic spike to the rise to 5% of
peak EPSP amplitude in the postsynaptic trace). H1 Left: mean VPM evoked EPSP amplitudes
on postsynaptic cell types (over 50 pairs). Right: Comparison of normalized in silico amplitudes
(normalized by L4 E as in Sermet et al., 2019) to in vitro reference data from Sermet et al. (2019).
Heatmap shows model minus reference values, thus positive values indicate a higher normalized
EPSP amplitude in our model than in the reference experimental dataset. H2: same as H1 but
for POm (normalized by L5 E as in Sermet et al., 2019).

PSP amplitudes and CVs for all cortical pathways (Figure 3B2, C2). The frequency of
miniature postsynaptic currents (mPSCs) were also in line with in vitro measurements
(r = 0.92, n = 5; Figure 3D; Table S7).

Improved modeling and validation of thalamocortical projections

The anatomical model includes fibers from the thalamus, based on fibers projecting to
the barrel cortex from the ventral posteriomedial (VPM) and posteriormedial (POm)
thalamic nuclei. These fibers make synaptic contacts within a radius of the fiber proba-
bilistically based on laminar innervation profiles (see Reimann et al., 2024; Figure 3E).
Compared to the previous model (Markram et al., 2015), POm projections are added and
the physiology of synapses from VPM improved (see Methods; Figure 3E, F). Latencies
of layer-wise EPSPs increase with distance from the thalamus (Figure 3G). Additionally,
thalamocortical EPSP amplitudes normalized relative to a single population were com-
pared to normalized EPSPs in response to optogenetic stimulation targeting bundles of
thalamic fibers (Sermet et al., 2019). This provided contrasting insights, however. For
example, whilst VPM to L6 I EPSPs match the initial validation data (Figure 3F), VPM
to L6 PV+ responses appear too strong relative to other populations (Figure 3H1). The
results suggest that the model’s POm to L5 E pathway is too weak, when compared to
other POm to E and all POm to PV+ pathways (Figure 3H2, right).

2.3 Defining subvolumes and populations

To enable smaller simulations and targeted analyses, we defined standardized partitions
comprising all neurons (and their connections) contained in a subvolume of the full nbS1
model. We decomposed the model into full-depth hexagonal prisms of a certain diameter
that we call hexagonal subvolumes. These are slightly curved, following the geometry of
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the cortex, and have an intact layer structure. When the diameter of the hexagons is
520µm, comparable to the size of the single cortical column model from (Markram et al.,
2015), we call these subvolumes columns. Taken together, a central column and the six
columns surrounding it define a seven column subvolume (Figure 4A). Additionally, when
we separately analyze the E and I neurons in different layers, we refer to them as neuron
populations of the model or a subvolume. Groups of I neurons that predominantly express
either PV, Sst or 5HT3aR markers, are referred to as inhibitory subpopulations.

2.4 Compensating for non-modeled brain regions

Algorithm efficiently finds spectrum of network regimes compatible with in vivo whilst ac-
counting for unknown in vivo recording bias

Initial simulations produced no activity, and it was necessary to compensate for missing
excitatory input from neurons external to the model. We estimated that the number of
missing synapses for the full nbS1 and seven hexagon subvolume as ∼ two and seven times
the number of internal synapses, based on Oh et al. (2014). We model the effect of these
missing synaptic inputs explicitly as time-varying and statistically independent somatic
conductance injections, using Ornstein-Uhlenbeck (OU) processes that mimic aggregated
random background synaptic inputs (Destexhe et al., 2001; Figure 4B1; see also Discus-
sion). The mean (OUµ) and standard deviation (OUσ) are defined as a percentage of an
individual cell’s input conductance at its resting membrane potential. The choice of OUµ

and OUσ for different populations and [Ca2+]o (Figure 4B2), determine the model’s emer-
gent dynamics and mean firing rates (Figure 4B3). Initial simulations showed that using
the same value of OUµ and OUσ for all neurons makes some populations highly active
whilst others are silent, or produces network-wide bursts. Finding population-specific OU
parameters which produce stable in vivo-like activity is challenging, however, due to the
non-linearity and computational cost of simulations.

We developed an algorithm that efficiently calibrates population-specific OU param-
eters, for different values of [Ca2+]o, which affects the strength and reliability of synaptic
transmission (see “Synaptic Physiology”). Additionally, it fixes the ratio OUσ/OUµ, de-
noted ROU , across all neurons to specific values representing the amount of noise in the
extrinsic inputs (Figure 4B2). As extracellularly-derived firing rates are known to be
severely overestimated to an unknown degree (Olshausen and Field, 2006; Wohrer et al.,
2013; Buzsáki and Mizuseki, 2014), the algorithm finds parameters which produce real-
istic inter-population firing rate ratios at different global levels of activity (Figure 4B3).
Specifically, to account for uncertainty in the firing rate bias during spontaneous activity
from extracellular spike sorted recordings it targets mean spontaneous firing rates of neu-
ron populations that are a constant fraction PFR of in vivo reference values, for 10 PFR

values between 0.1 and 1. We refer to [Ca2+]o, ROU and PFR as meta-parameters. The
initial calibration was made for the seven hexagonal subvolume, and later generalised to
the full nbS1 model.

The algorithm was first run for [Ca2+]o = 1.1 mM, ROU = 0.4. Target firing rates for
the 10 PFR values were reached (Figure 4C) after five iterations of 10 simulations of 6.5
seconds (Figure 4D, left upper). Only three iterations were needed when calibration began
using previously calibrated parameters for different ROU and [Ca2+]o (Figure 4D, right
upper). This allowed us to parameterize extrinsic input for a range of combinations of the
three meta-parameters (Figure 4D, lower & 4E, left) within biologically relevant ranges
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Figure 4
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Spontaneous activity: calibration, in vivo-like dynamics, linking structure to func-
tion. A: Seven column subvolume. B: OUµ and OUσ of somatic conductance injection (B1)
parameterized by population (B2) determine FRs (B3). Target FRs equal to in vivo firing rates
multiplied by PFR. Inset: Table summarising meta-parameters. C: Target PFR (x-axis) plotted
against the observed PFR (y-axis) for each E (red) and I (blue) population after calibration. The
number of sides of the shape indicates the layer (triangle used for L2/3). D: Euclidean distance
between target and observed PFR values (over populations) decreases over iterations for two meta-
parameter combinations (upper). Values after final iteration shown for all meta-parameter com-
binations (lower; dashed line shows termination condition). E: (left) Firing rates, (centre) mean
conductance injection and (right) OUµ by population for the non-bursting simulations (1 line per
simulation; E and I values separated). F: Estimated mean number of missing number synapses
per neuron by population vs. the mean conductance injection, averaged over all combinations,
for each population. Markers as in C. G1: Max normalised histograms for two meta-parameter
combinations (5 ms bin size, 1σ Gaussian smoothing). G2: Effect of meta-parameters on corre-
lation between E and I histograms (5 ms bin size, 1σ Gaussian smoothing; central column). G3:
Fourier analysis of spontaneous activity for the 59 non-bursting simulations. H: Activity in flat
space over seven consecutive 100 ms windows. Activity smoothed (Gaussian kernel, σ = 1pixel).
I: Left: Correlation r-value between the histograms of layer-wise E and I populations for the 59
non-bursting simulations. Right: RC/U by population for the 59 non-bursting simulations. J:
Top: The mean node participation of E and I populations in each layer for dimension one (left)
and six (right) vs. RC/U for the parameter combination [Ca2+]o = 1.05 mM, ROU = 0.4 and
PFR = 0.3. Markers as in C. Line shows linear fit. Bottom: Correlation r-values between mean
node participation and RC/U when neurons with highest node participation are not included in
the calculation of mean node participation (via a sliding threshold).

([Ca2+]o: 1.05 mM - 1.1 mM (Jones and Keep, 1988; Massimini and Amzica, 2001; Amzica
et al., 2002; Gonzalez et al., 2022); PFR: 0.1 - 1.0; ROU : 0.2 - 0.4 (Destexhe et al., 2001)).
We found that the resulting mean conductance injections were highly population-specific
(Figure 4E, centre). The range of OUµ values between populations was on average 5.2
times higher than the range of OUµ values for a single population across meta-parameter
combinations (Figure 4E, right). This was expected, as the missing mid-range innervation
is known to have specific and heterogeneous laminar profiles (Felleman and Van Essen,
1991; Harris et al., 2019; Gao et al., 2022).

Population-wise input compensation correlates with estimated number of missing synapses

We estimated the number of missing synapses per neuron assuming a total density of E
synapses of 1.1 synapses/µm, based on mean spine densities (Larkman, 1991; Datwani
et al., 2002; Kawaguchi et al., 2006), and subtracting the number of synapses present
in the model (Figure S3). We confirmed a strong correlation between this measure and
required conductance injection (Figure 4F). Heterogeneity in synaptic density within and
across neuron classes and sections makes estimating the number of missing synapses chal-
lenging (DeFelipe and Fariñas, 1992). Changing the assumed synaptic density value of
1.1 synapses/µm would only change the slope of the relationship, however. Estimates of
mean number of existing and missing synapses per population were within reasonable
ranges; even the larger estimate for L5 E (due to higher dendritic length; Figure S3)
was within biological estimates of 13,000 ± 3,500 total afferent synapses (DeFelipe and
Fariñas, 1992).
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2.5 In vivo-like spontaneous activity

PFR, ROU and [Ca2+]o determine the properties of correlative spontaneous activity

Rasters and histograms of spontaneous activity for two meta-parameter combinations are
shown in Figure 4G1 (and for all combinations in Video 1). The first simulation uses
a higher ROU , lower PFR and lower synaptic transmission reliability ([Ca2+]o). In the
second simulation, we found larger fluctuations, correlated between E and I populations
across layers. Overall, increasing [Ca2+]o and PFR, and decreasing ROU , increases the
amplitude of correlated fluctuations (Video 1; Figure 4G2) and increases power at lower
frequencies (Figure 4G3). This supports the notion that decreasing ROU or increasing
[Ca2+]o shifts the model along a spectrum from externally (noise) driven to internally
driven correlated activity. Note that the most correlated meta-parameter combination
[Ca2+]o: 1.1mM, ROU : 0.2, PFR: 1.0 produced network-wide “bursting” activity, which
we define as highly synchronous all or nothing events (Video 1). Such activity, which may
be characteristic of epileptic activity, can be studied with the model but is not the focus
of this study.

We reemphasize that the [Ca2+]o, ROU and PFR meta-parameters account for un-
certainty of in vivo extracellular calcium concentration, the nature of inputs from other
brain regions and the bias of extracellularly recorded firing rates. Whilst estimates for
[Ca2+]o are between 1.0 - 1.1mM (Jones and Keep, 1988; Massimini and Amzica, 2001;
Amzica et al., 2002; Gonzalez et al., 2022) and estimates for PFR are in the range of
0.1 - 0.3 (Olshausen and Field, 2006), combinations of these parameters supporting in
vivo-like stimulus responses in later sections will offer a prediction for the true values of
these parameters. Both these later results and our recent analysis of spike sorting bias
using this model (Laquitaine et al., 2024) predict a spike sorting bias corresponding to
PFR ∼ 0.3, confirming the prediction of Olshausen and Field (2006).

Long-tailed population firing rate distributions with means ∼ 1Hz

To study the firing rate distributions of different subpopulations and m-types, we ran 50s
simulations for the meta-parameter combinations: [Ca2+]o: 1.05 mM, ROU : 0.4, PFR:
0.3, 0.7 (Figure S4). Different subpopulations showed different sparsity levels (propor-
tion of neurons spiking at least once) ranging from 6.6 to 42.5%. Wohrer et al. (2013)
considered in detail the biases and challenges in obtaining ground truth firing rate distri-
butions in vivo, and discuss the wide heterogeneity of reports in different modalities using
different recording techniques. They conclude that most evidence points towards long-
tailed distributions with peaks just below 1Hz. We confirmed that spontaneous firing
rate distributions were long-tailed (approximately lognormally distributed) with means
on the order of 1Hz for most subpopulations. Importantly the layer-wise means were
just below 1Hz in all layers for the PFR = 0.3 meta-parameter combination. Moreover,
our recent work applying spike sorting to extracellular activity using this meta-parameter
combination found spike sorted firing rate distributions to be lognormally distributed and
very similar to in vivo distributions obtained using the same probe geometry and spike
sorter (Laquitaine et al., 2024).

Spatially-coordinated fluctuations and increase in correlative and recurrent activity from supra-
to infragranular layers
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In the horizontal dimensions, under higher correlation regimes, fluctuations are spatially
coordinated and global within the central hexagon of the simulated subvolume (Figure
4H; Video 2). In depth, the size of fluctuations and level of correlated activity increases
from supragranular to infragranular layers (Figure 4G1, I, left; Video 1), suggesting that
activity in deeper layers of the model is more internally driven. We characterized the ef-
fect of recurrent connectivity by measuring the layer-specific decrease in firing rates when
neurons in the model are disconnected from each other. As expected, we found that the
effect (quantified by the ratio between connected and disconnected firing rates: RC/U )
increased from supra- to infragranular layers (Figure 4I, right).

High-dimensional connectivity motifs predict layer-wise spontaneous activity

By analysing the underlying network structure, we observed a corresponding gradient
in the topology of intra-layer synaptic connectivity from supra- to infragranular layers.
We calculated the mean node participation of neuron populations in various dimensions
(see Methods; Figure 4J, top). For dimension one, this is simply the degree of a neuron;
for dimensions above one, this generalizes the notion to counting participation in dense,
directed motifs of increasing size (directed simplices; Reimann et al., 2017). We found
that correlations of this measure with the ratio of connected and disconnected firing rates
increased with dimension (Figure 4J, bottom, 100% of data), indicating the importance
of large directed simplices in shaping activity. Curiously, the correlations for higher di-
mensions were driven by a small number of neurons with very high node participation.
This was indicated by a sharp drop in correlation when neurons above a given value were
excluded (Figure 4J, bottom). Additionally, we studied the structural effect on the firing
rate (here measured as the inverse of the inter-spike interval, ISI, which can be thought
of as a proxy of non-zero firing rate). We found that for the connected circuit, the firing
rate increases with simplex dimension; in contrast with the disconnected circuit, where
this relationship remains flat (see Figure S6 red vs. blue curves and Methods).

This also demonstrates high variability between neurons, in line with biology, both
structurally (Towlson et al., 2013; Nigam et al., 2016) and functionally (Wohrer et al.,
2013; Buzsáki and Mizuseki, 2014). We next identified the cell types that are overex-
pressed in the group of neurons that have the 5% highest values of node participation
across dimensions (Figure S7). This could inform theoretical point neuron models with
cell-type specificity, for example. We found that while in dimension one (i.e., node degree)
this consists mostly of inhibitory cells, in higher dimensions the cell types concentrate in
layers 4, 5 and 6, especially for TPC neurons. This is in line with our structural layer-wise
findings in Figure 8B in Reimann et al. (2024).

2.6 Stimulus-responses reproduce in vivo dynamics with millisecond-scale precision

Recreating simple whisker deflection experiments

We compared stimulus-responses with in vivo barrel cortex responses to both single
whisker deflections and active whisker touches under anaesthetized (Reyes-Puerta et al.,
2015b) and awake states (Yu et al., 2019) respectively. While the model is of non-barrel
somatosensory regions, this nevertheless provides validations of overall excitability and
the laminar structure of responses reflecting general trends of cortical processing. We ac-

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2023.05.17.541168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541168
http://creativecommons.org/licenses/by-nc/4.0/


tivated a percentage (FP ) of the VPM fibers projecting to the central column of the seven
column subvolume (Figure 5A1). For each selected thalamic fiber, spike times were drawn
from VPM PSTHs (peristimulus time histogram) recorded in vivo for the two stimulus
types (Figure 5A2; Methods). For both stimulus types, a single thalamic stimulus was
presented 10 times at 1 s intervals at three intensities (FP : 5%, 10%, 15%).

Validation of millisecond precise in vivo population responses and corresponding prediction of
in vivo spontaneous firing rates

For the parameter combination [Ca2+]o = 1.05 mM, ROU = 0.4, PFR = 0.3 and FP =
10%, E and I populations in each layer show clear responses on each trial (Figure 5B; three
trials shown), except for L1. Videos 3 and 4 show all simulated combinations of the four
meta-parameters. Out of 72 parameter combinations, 21 passed an initial assessment of
in vivo similarity to the in vivo data based on latencies and decays (see Methods, Figure
5C, S5). Responses remained localized to within 600µm of the stimulus location (Figure
5D, Video 5). In vivo, layer-wise I populations precede the corresponding E populations
and response latencies increase with distance from thalamus, except for the fast response
of L4 I. The latencies and decays are matched by criteria passing simulations (Figure 5C,
E, left), except for a longer L4 I latency, and shorter and longer sustained responses of
L2/3 E and L4 E. PV+ and Sst+ subpopulations respond reliably in layers 2-6, but the
5HT3aR+ subpopulation responses are weaker and less reliable (Figure S5). Under the
active whisker touch paradigm, PV+ latencies precede Sst+ latencies in vivo, and either
precede or are simultaneous with Sst+ latencies in silico (Figure 5E, right).

The passing parameter combinations form a contiguous region in the parameter space
(Figure 5F), characterized by combinations of low PFR, [Ca2+]o and FP with higher ROU ,
which displayed weakly correlated spontaneous activity (compare Figure 5F with Figure
4G2). This offers a prediction that true in vivo firing rates are within the range of these
lower FRs. Specifically, simulations with PFR from 0.1 to 0.5 robustly support realistic
stimulus responses, with the middle of this range (0.3) corresponding with estimates of in
vivo recording bias; both the previous estimates of Olshausen and Field (2006) and from a
spike sorting study using this model (Laquitaine et al., 2024). The remaining results apply
to the criteria passing simulations. We characterized the magnitude of responses by RE ,
the ratio between the peak of the evoked response and the pre-stimulus baseline activity
level. Assuming that extracellular sampling biases are similar during spontaneous and
evoked activity, RE provides a bias-free metric for comparing response magnitude with in
vivo. Decreasing ROU and PFR, and increasing [Ca2+]o and FP led to a global increase of
RE , and results matched in vivo closely for a large part of the parameter space (Figure 5F).

Interestingly, the parameter combination closest to in vivo was central in the param-
eter space of criteria passing simulations (Figure 5G, left). Values of RE , normalized by
the mean RE across populations, were remarkably constant (Figure 5G, right), indicating
that variation of the parameters provides a global scaling of response magnitude. More-
over, I populations matched the in vivo reference closely, while the responses of L2/3 E
were slightly greater, and for L4 E and L5 E slightly weaker. The region of the parameter
space where responses match in vivo for the active whisker touch stimulus was the same
as for single whisker deflections (Figure S8). Latencies were also similar to in vivo, with
the main discrepancy being slower responses in L4 (E and I). With respect to the meta-
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Figure 5: Layer-wise population responses to single whisker deflection and active
whisker touch stimuli closely match in vivo millisecond dynamics and response am-
plitudes. A1: Stimuli are simulated by activating a proportion (FP ) of fibers projecting to the
central hexagon of the seven column subvolumne. A2: Each fiber is assigned a spike time from a
PSTH of VPM activity recorded in vivo for either a single whisker deflection or active whisker touch
paradigm. B: Spiking activity and histograms (baseline and max normalised) for each layer-wise
E and I population for the parameter combination [Ca2+]o = 1.05 mM, ROU = 0.4, PFR = 0.3
and FP = 10% for a 2.5s section of the 10 whisker deflection test protocol. C: Trial-averaged
PSTHs (baseline and max normalised) in response to the single whisker deflection stimulus for
all of the parameter combinations which passed the initial criteria, and the in vivo references.
D: Spatiotemporal evolution of the trial-averaged stimulus response in flat space for the same
parameter combination in B. E: Left: Latencies of different layer-wise E and I populations for all
criteria passing combinations in response to single whisker deflection stimuli. Right: Latencies for
inhibitory interneuron subpopulations in response to active whisker touch stimuli. Correponding
in vivo references are shown. F: Heatmap showing the effect of the meta-parameters on the dif-
ference of RE for the entire central column from the corresponding in vivo reference. Parameter
combinations which failed the criteria tests are masked. G: Left: Ratio RE between maximum
evoked response and spontaneous baseline activity by population. One line per simulation. Simu-
lation line colour shows the difference of RE for the entire central column from the corresponding
in vivo reference (color values shown in G). Thick black line shows median of in silico values.
White shows in vivo reference. Right: Normalised ratios of each simulation by dividing by RE for
the entire central column.

parameters, we found that the best match for the anesthetized state was characterized by
lower firing rates (PFR) and reduced external noise levels (lower ROU ) compared to the
awake active whisker touch paradigm (white areas in Figures 5F and S8B). These results
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fit expectation for anaesthetized and awake states respectively, and provide predictions
of their spontaneous firing rates, noise levels and corresponding in silico regimes.

Prediction of 2-9% population response sparsity

Response sparsity (i.e. the proportion of neurons spiking at least once following a stim-
ulus) varied across populations and meta-parameter combinations, but was around the
range of 10-20% reported in vivo in the barrel cortex (Barth and Poulet (2012); Figure
S5D). Interestingly, excitatory population responses were sparser than the corresponding
inhibitory layer-wise populations across layers. The observed heterogeneous layer-wise
population sparsities offer a prediction for in vivo. Moreover, the majority of responding
cells spike only once to single whisker whisker deflections (Figure S5E), as reported in
vivo (Isbister et al., 2021).

2.7 Validation and prediction through reproduction and extension of complex labora-
tory experiments using a single model parameterization

Building upon the in vivo-like activity states, we combined various simulation techniques
to recreate laboratory experiments from the literature (see Methods). For these experi-
ments, we use the parameter combination: [Ca2+]o = 1.05 mM,ROU = 0.4 and PFR = 0.3,
as this combination supports realistic in vivo-like responses to the two stimulus types over
a range of fiber percentages (FP ).

2.7.1 Exploring the canonical model: layer-wise contributions to L2/3 stimulus-responses

In the canonical model of the cortex (reviewed e.g., in Lübke and Feldmeyer, 2007; Feld-
meyer, 2012) information from the thalamus arrives to L4, then propagates to L2/3, from
there to L5 (which serves as the main cortico-cortical output layer) and lastly to L6 (which
projects back to the thalamus). The coordinated action of all layers of S1 is required for
high-level behavioral tasks (Park et al., 2020). As the canonical model is based on the
highest layer-wise density of axons, it cannot describe all interactions in the cortex. For
example VPM does not only innervate L4, but also the border of L5 and L6, as well as the
bottom of L2/3 (Meyer et al., 2010; Constantinople and Bruno, 2013; Sermet et al., 2019).

Recreating modulation of L2/3 PCs during optogenetic inactivation of L4 PCs during whisker
deflection

To study how L4 contributes to the stimulus preference of L2/3 PCs, Varani et al. (2022)
used optogenetic inactivation of L4 PCs during whisker stimulation and quantified the
changes in the subthreshold response of L2/3 PCs. They found, that the early phase of
the subthreshold response significantly differed from the control condition, if the whisker
was deflected in either the most or the least preferred direction (see the top and bottom
rows of their Figure 5B, C). From this they concluded that both L4 and VPM contribute
to the direction tuning of L2/3 PCs. After reproducing their experimental conditions in
silico (Figure 6A,B; Figure S9; see Methods) we confirmed that we can reproduce their
results, i.e., subthreshold responses of L2/3 PCs decreased, when L4 PCs were inhibited
(Figure 6C for preferred direction whisker stimulation; see Methods).
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Figure 6: Reproducing and extending detailed experiments exploring the canonical
model and encoding of contrast, rate-coded and synchronous information.
First experiment: Reproducing the effect of optogenetic inactivation of L4 pyramidal cells on L2/3
stimulus responses and predicting the role of other pathways through circuit lesions. A: Schematics
of whisker kinetics and VPM fiber rates during 500 ms long whisker hold stimulus. Fraction of
VPM fibers coding for each kinetic feature are taken from Petersen et al. (2008). B: Mimicking the
effect of activation of the Halo inhibitory opsin in silico. Injected somatic hyperpolarizing current
mimicking opsin activation (top), and the resulting somatic voltage trace from a combination of
injected conductance, current, and synaptic PSPs from the network (bottom).
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C: Comparison of average traces from selected L2/3 PCs (see Methods) in control (black) and
optogenetically inhibited (green) conditions. D: Same as C, but instead of mimicking the optoge-
netic inhibition of L4 PCs, only the connections to L2/3 PCs are “cut” (compare inset with the
one in C). The right part depicts connections systematically cut from PCs in all layers, while the
left shows L4 only for a better visual comparison with the conditions of Varani et al. (2022) in C.
Second experiment: Contrast tuning modulation by optogenetic activation of PV+ interneurons.
E: Spatial distribution of firing rates of VPM fibers projecting to a single simulated column at
different points in time, corresponding to linear drifting gratings with a temporal frequency of
ftemp = 2 Hz and a spatial frequency of fspat = 0.001 cycles/µm. F: Firing rate signal of a sin-
gle VPM fiber corresponding to a random sequence of drifting grating patterns with different
contrast levels C, as indicated by the legend. All optogenetic stimuli targeting PV+ (or Sst+)
interneurons were completely overlapping with the grating stimulus intervals, as indicated by the
blue bars. G1: Spiking activity and PSTH of an exemplary PV+ interneuron over 10 repetitions
(trials) in response to a grating stimulus at maximum contrast (C = 1.0) without (control) and
with medium strength (150%) optogenetic stimululation. H1: Contrast tuning modulation of an
exemplary PV+ interneuron by different levels of PV+ optogenetic stimulation, ranging from 0%
(control) to 300%. The individual markers denote actual data points (mean ± SD over 10 repeti-
tions, normalized to baseline response at maximum contrast) while curves illustrate sigmoidal fits
to these data points. G2/H2: Same as C1/D1, but for exemplary PCs. H2 inset: Illustration
of sigmoidal parameters m, n, Rmax, and c50.
Third experiment: Encoding of synchronous and rate-coded signals by interneuron subtypes. I: A
binary signal is encoded either through changes in the rate or synchronicity of optogenetic pulses
applied to a set of PCs. We define a direct correspondence between single optogenetic pulses and
single spikes. Spiking activity is measured in PV+, Sst+ and 5HT3aR+ cells, and the mutual
information between the binned activity of individual cells and the original binary signal is mea-
sured. J: Visualization of the rate (upper) and synchronous (lower) coded stimulus experiments
stimulating 1000 PCs, showing the binary signal (top), input neuron spike trains for 40 neurons
(middle), and responses of the three L2/3 neuron types (bottom). K: Upper: Results for the rate
coded stimulus experiment. Left: Mutual information between spiking activity and the binary
signal (one point for each cell that spiked at least once). Only activity in the 50 ms following
the change of the binary signal is considered. Cells with mutual information not significantly
different from that of a shuffled control are coloured grey. Centre: Same as left but considering
all time bins. Right: The effect of the number of stimulus neurons on the mean single cell mutual
information for each subpopulation. Lower: The same as upper but for the synchronous stimulus
type.

Prediction that L4 PCs enhance L2/3 PC responses directly, not through disynaptic inhibition

We then leveraged our in silico setup to study what Varani et al. (2022) could not, be-
cause of methodological limitations. In our reading, the authors aimed to test how direct
E connections from L4 PCs to L2/3 PCs influence the stimulus representation in L2/3.
This connection can not specifically be blocked in vivo, instead (95% of) the L4 PC pop-
ulation is inhibited (as well as some lower L3 PCs). In our setup we could selectively
block the connection and found almost the same result (compare Figure 6C and D, left).
This extends the conclusion of Varani et al. (2022): L4 PCs contribute to the stimulus
preference of L2/3 PCs via direct E connections, and not via disynaptic inhibition.

Prediction of the contribution of different layer-wise populations to L2/3 PC response

The authors also discussed studying L5 PCs’ contribution to L2/3 responses (as a large
fraction of L5 PC axons terminate in L2/3), but this is infeasible with current mouse
lines. Leveraging our model, we found that L5 contributes much less to subthreshold
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L2/3 traces than L4 (Figure 6D, right). Extending to other presynaptic layers, we found
that the contribution of L2/3 is similar to that of L4, whereas inputs from L6 are negli-
gible (Figure 6D, right). Whilst mouse lines targeting L5 PCs might arrive soon (which
could validate our prediction), blocking L2/3 connections between L2/3 cells without hy-
perpolarizing the same L2/3 population seems only achievable in silico.

2.7.2 Recreation of contrast tuning modulation by optogenetic activation of PV+ interneu-
rons

Shapiro et al. (2022) compared the modulatory effects of optogenetic activation of in-
terneuron subtypes on contrast tuning of neurons in V1. Whilst visual regions differ from
somatosensory regions, the study provided an opportunity to explore the generality of
interactions between E and I subpopulations. We therefore created a version of the study
in silico, presenting spatio-temporally modulated patterns with various contrast levels
through the VPM inputs (Figure 6E,F; see Methods).

Overall, we found within the single simulated column 228 PCs and 259 PV+ in-
terneurons with robust contrast tuning of their responses (see Methods). Within spike
detection range of a vertically penetrating extracellular electrode (50µm; Henze et al.
(2000); Buzsáki (2004)), we found 15 PCs and 13 PV+ interneurons with robust tuning,
which is roughly comparable to the original study (average of 8.2 tuned PCs and 3.0
PV+ neurons per mouse Shapiro et al., 2022). Unlike the original study we found no
Sst+ neurons with robust tuning.

Additionally, we found the following results, all in line with (Shapiro et al., 2022):
The firing rates of both PCs and PV+ neurons were affected by optogenetic activation of
the PV+ subpopulation (Figure 6G), resulting in changes to the contrast tuning curves
of these populations (Figure 6H, S12A). The main effect of the optogenetic manipulation
was an increase in contrast tuning for PV+ and a decrease for PCs. However, at high
contrasts, we observed a paradoxical effect of the optogenetic stimulation on L6 PV+
neurons, reducing their activity with increasing stimulation strength (Figure S12B; cf.
Mahrach et al. (2020)). This effect did not occur under grey screen conditions (i.e., at
contrast 0.0) with a constant background firing rate of 0.2 Hz or 5 Hz respectively (not
shown). The individual tuning curves could be accurately fit by sigmoidal functions
(r2PV+ = 0.995 ± 0.008; r2PC = 0.990 ± 0.012), and consequently the effect of optogenetic
activation could be quantified in terms of changes to the fitted parameters (Figure 6H2
inset, S13; Methods). We found great variability between neurons with increasing trends
for parameter m in PV+ and c50 in PCs, and decreasing trends for Rmax in PV+ and both
m and Rmax in PCs. Unlike in (Shapiro et al., 2022), we found in addition an increasing
trend of c50 also in PV+ interneurons (Figure S13).

Comparing three abstract mathematical models (Shapiro et al., 2022; Methods), we
found that the saturation additive model best captured the effect of the optogenetic ma-
nipulation for PV+ neurons (Figure S14A, B1), as in the reference study. The relative
contributions of saturation and addition varied strongly between individual neurons (Fig-
ure S14C1). At low intensities of the optogenetic manipulation, this distribution matched
qualitatively the results of Shapiro et al. (2022), but at higher intensities we observed a
shift towards stronger saturation. Combining the saturation additive model with a simpli-
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fied, population-level model of PC firing (Shapiro et al., 2022; Methods) provided a good
description of the observations (Figure S14B2) with relative contributions of saturation
and addition that qualitatively match the reference (Figure S14C2).

2.7.3 Encoding of synchronous and rate-coded signals by inhibitory subpopulations

Prince et al. (2021) studied how different I subpopulations represent signals that are en-
coded as changes in the firing rate or synchronicity of PCs (Figure 6I). We repeated their
study in silico (Figure 6J), but using in vivo-like conditions as the authors have suggested
in their Discussion. The original study pointed out the importance of membrane prop-
erties and short-term dynamics of synaptic inputs onto the subpopulations in shaping
the results. Note, that the lower synaptic reliability in vivo weakens synaptic depression
(Borst, 2010), and the ongoing background input leads to higher membrane conductance
(Destexhe et al., 2001); therefore our results are expected to differ substantially, and pro-
vide an independent prediction for a different dynamic state. While in the original in
vitro study stimulation of 10 PCs was sufficient to find a decodable signal, we expected a
larger number to be required under our in vivo-like conditions, due to the lower [Ca2+]o,
and the higher level of noise (see Methods).

Indeed, we found little discernible mutual information in I spiking for the activation
of 10 PCs, but that mutual information increased with the number of activated neurons
(Figure 6K, right). For 1000 activated neurons each of the three I subpopulations in L2/3
showed clear but qualitatively unique modulation for both encoding schemes (Figure
6J). As in (Prince et al., 2021) we found differences in the encoding capabilities of the
I subpopulations (Figure 6K). We found strongest encoding in PV+ neurons for both
schemes, and overall low encoding strength in Sst+ neurons. Further, we found overall
low amounts of mutual information for the synchronous stimulus, which is in line with
Prince et al. (2021), as they linked encoding of that stimulus to depressing synaptic
dynamics, which would be weakened in vivo.

2.8 Exploring the effect of inhibitory targeting trends observed in electron microscopy
(EM)

Additional targeting rules recreate quantitative EM-connectivity trends

We next explored how certain trends in inhibitory targeting observed in a recent mouse
electron microscopic connectome (Schneider-Mizell et al., 2023; Figure 7A) affect sponta-
neous and evoked activity. Consequently, an alternative connectome which quantitatively
recreates these trends has been built (Reimann et al., 2024). We refer to this as the
Schneider-Mizell compatible connectome (SM-connectome). It ensures that PV+ neu-
rons target the perisomatic region, VIP+ neurons target other inhibitory neurons, and
cells in L1 connect predominantly monosynaptically. Consequently, inhibition onto E
neurons is sparser and closer to the soma (Figure 7A2). After validating the presence
of these trends, we characterized how this affects the dynamics of the spontaneous and
evoked states (Figure 7A3). Note, that individual synapses were recalibrated to preserve
the pathway specific reference PSP amplitudes. As expected, the largest change was for
PV+ neurons where the average number of vesicles in the release-ready pool NRRP was
increased by 2.4 times.
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Figure 7: The effect of inhibitory targeting trends observed in electron microscopy
on spontaneous and stimulus-evoked activity. A1: Panel illustrating interneuron synaptic
targeting features and caption taken from Schneider-Mizell et al. (2023) (under CC-BY 4.0 license).
i) For determining inhibitory cell subclasses, connectivity properties were used such as an axon
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(green) making synapses (green dots) the perisomatic region of a target pyramidal cell (purple).
ii) Dendritic compartment definitions for excitatory neurons. iii) Cartoon of a multisynaptic con-
nection (left) and the synapses within the multisynaptic connection considered ”clumped” along
the presynaptic axon (right). A2: Exemplar neurons showing the synapse locations from different
inhibitory m-type groupings in the original and SM connectome respectively: Distal targeting
(DistTC: martinotti, bipolar, double bouquet cells), Perisomatic targeting (PeriTC: large basket,
nest basket cells), Sparse targeting (SparTC: descending axon, neurogliaform, horitzontal axon
cells), Inhibitory targeting (InhTC: bitufted, small basket cells). A3: Heatmaps showing the mean
fraction of efferent synapses from the inhibitory m-type groupings onto inhibitory neurons, somas,
proximal dendrites, apical dendrites, distal dendrites, or that are part of clumped or multisynap-
tic connections. Heatmaps show mean fractions (left to right) for the original, Schneider-Mizell
et al. (2023) characterization of the MICrONS dataset ((MICrONS-Consortium et al., 2021)),
SM-connectome, and the change between the original and SM-connectome. B1: Proportional
change in mean conductance injection between original and SM-connectome by population. B2:
Distribution of ratios between connected and disconnected firing rates (RC/U ) by population over
non-bursting meta-parameter combinations for original and SM-connectome. B3: Comparison of
correlation (r-values) between E and I histograms (5 ms bin size, 1σ Gaussian smoothing; central
column) between original and SM-connectome (each point represents a specific meta-parameter
combination). C: Scatter plot showing the change in the mean number of afferent inhibitory
synapses onto each E (red) and I (blue) population after calibration versus the proportional change
in mean conductance injection. The number of sides of the shape indicates the layer (triangle used
for L2/3). D1: Proportional change in the the ratio between the peak of the evoked response and
the pre-stimulus baseline activity level (RE) between the original and SM-connectome. Plot shows
distribution over meta-parameter combinations which passed the the initial assessment of in vivo
similarity to the in vivo data based on latencies and decays (see Methods). D2: Change in the
latencies of populations peak responses between original and SM-connectome (distribution over
same meta-parameter combinations shown in D1). E: Mean membrane potential responses for
layer-wise subpopulations for the meta-parameter combination [Ca2+]o = 1.05 mM, ROU = 0.4,
PFR = 0.3 and FP = 10%. Responses averaged over 20 stimulus repetitions with an inter-trial-
interval of 500ms.

EM targeting trends increase inhibition of inhibitory populations enabling increased long-range
excitation

Inspite of this, the change in connectivity affected the activity sufficiently that recalibra-
tion of missing synaptic compensation was needed to attain the target firing rates for the
original meta-parameter combinations (Figure S15). Mean conductances onto I neurons
had to be increased, indicating the efficacy of the newly introduced I-I targeting by VIP+
neurons (Figure 7B1). On the other hand, conductances for E neurons remained roughly
the same, except for L6. Curiously, we found that the firing rates of I populations were
reduced when the internal connectivity was activated compared to when it was inactive,
further highlighting the efficacy of the I-I targeting (Figure 7B2, S15). For E neurons in
L2-5, activating internal connectivity increased firing rates, but less than in the original
connectome. As the number of inhibitory synapses innervating them decreased (Figure
7A2), this indicates that the placement of PV+ synapses closer to the soma increased
the efficacy of inhibitory as expected. Taken together, this indicates that in the SM-
connectome, I populations are more externally driven and more internally inhibited (as a
function of proximity to L4), and L6 E more internally driven during spontaneous activ-
ity. Over the different meta-parameter combinations, correlation in the network decreased
relative to the original circuit with some exceptions (Figure 7B3, S15). This indicates,
that activity in the SM-connectome is shifted slightly towards a more asynchronous state.
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By correlating the structural and functional changes we concluded that the increased
conductance injection into the I populations can be explained by the increased inhibitory
synapse count (Figure 7C). Conversely, the mostly decreased synapse counts for E popula-
tions did not lead to a decrease of conductance injection, further indicating that the more
perisomatic positioning of PV+ synapses compensates for the reduced synapse counts.

EM targeting trends affect population-wise stimulus-evoked response magnitudes and latencies

The lack of effect onto most of the E populations disappeared in the evoked state (Figure
7D). Overall, responses increase strongly in L23 and slightly decreased in L5 and L6
(Figure 7D1), while latencies of responses increased in every layer (Figure 7D2), suggesting
different roles of the more specific inhibitory targeting in different layers.

EM targeting trends hyperpolarize Sst+ and HT3aR+ late response, and disinhibit L5/6 E

Studying somatic membrane potentials for different subpopulations in response to whisker
deflections shows that PV+, L23E and L4E subpopulations are largely unaffected in the
SM-connectome (Figure 7E). Interestingly, Sst+ and 5HT3aR+ subpopulations show a
strong hyperpolarization in the late response that isn’t present in the original connectome.
Interestingly, this corresponds with a stronger late response in L5/6 E populations, which
could be caused by disinhibition due to the Sst+ and 5HT3aR+ hyperpolarization. This
could be explored further in follow up studies using our connectome manipulator tool
(Pokorny et al., 2024).

2.9 Mid-range connectivity determines independent functional units and selective prop-
agation of stimulus-responses at larger spatial scales

Stable spontaneous activity only emerges in nbS1 at predicted in vivo firing rates

After calibrating the model of extrinsic synaptic input for the seven column subvolume, we
tested to what degree the calibration generalizes to the entire nbS1. Notably, this included
the addition of mid-range connectivity (Reimann et al., 2024). The total number of local
and mid-range synapses in the model was 9138 billion and 4075 billion, i.e., on average
full model simulations increased the number of intrinsic synapses onto a neuron by 45%.
Particularly, we ran simulations for PFR ∈ [0.1, 0.15, ..., 0.3] using the OU paramaters
calibrated for the seven column subvolume for [Ca2+]o = 1.05 mM and ROU = 0.4. Each
of these full nbS1 simulations produced stable non-bursting activity (Figure 8A), except
for the simulation for PFR = 0.3, which produced network-wide bursting activity (Video
6). Activity levels in the simulations of spontaneous activity were heterogeneous (Figure
8B, Video 7). In some areas, firing rates were equal to the target PFR, whilst in others
they increased above the target (Figure 8C). In the more active regions, mean firing
rates (averaged over layers) were on the order of 30-35% of the in vivo references for the
maximum non-bursting PFR simulation (target PFR : 0.25). This range of firing rates
again fits with the estimate of firing rate bias from our paper studying spike sorting
bias (Laquitaine et al., 2024) and the meta-parameter range supporting realistic stimulus
responses in the seven column subvolume. This also predicts that the nbS1 cannot sustain
higher firing rates without entering a bursting regime.
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Independent functional subunits emerge during spontaneous activity with accurate layer and
distance-dependence of noise correlations

The subregion with consistently higher firing rates was the upper-limb representation
(S1ULp), separated from subregions of lower activity by the dysgranular zones (S1DZ,
S1DZO). This demonstrates that the larger spatial scale of the model supports several in-
dependently acting functional units. Locations with higher firing rates were accompanied
by higher spiking correlations of the local population (Figure 8B2, Video 7), indicating
activity that was more driven by intrinsic excitation. Unlike in the simulations of smaller
volumes, the correlation emerged mostly from short, transient packets of activity in L6
(Figure 8A). Consequently, deviation from the target PFR in those cases was largest in L6
(Figure 8C). Taken together, it appears as if the additional synapses from mid-range con-
nectivity moved the model along the spectrum from extrinsically vs. intrinsically driven,
but further for some regions than for others. We confirmed a divergence into two popu-
lations: one with correlation slightly increased from the simulations of smaller volumes,
and one with almost maximal correlations (Figure 8D). This distinction was determined
mostly in L6 with increases of correlations in other layers remaining small.

The distance dependence of correlations followed a similar profile to that observed in
a dataset characterizing spontaneous activity in the somatosensory cortex (Reyes-Puerta
et al., 2015a) (compare red line in Figure 8I with Figure S16). In the in vivo dataset
spiking correlation was also low but highest in lower layers, with short “up-states” in
spiking activity constrained to L5 & 6 (see Figure 1E,F in (Reyes-Puerta et al., 2015a)).
In the model, they are constrained to L6.

Stable propagation of evoked activity through mid-range connectivity only emerges in nbS1
at predicted in vivo firing rates

We repeated the previous single whisker deflection evoked activity experiment in the full
model, providing a synchronous thalamic input into the forelimb sub-region (S1FL; Figure
8E; Video 8 & 9). Responses in S1FL were remarkably similar to the ones in the seven
column subvolume, including the delays and decays of activity (Figure 8F). However, in
addition to a localized primary response in S1FL within 350µm of the stimulus, we found
several secondary responses at distal locations (Figure 8E; Video 9), which was sugges-
tive of selective propagation of the stimulus-evoked signal to downstream areas efferently
connected by mid-range connectivity. The response of the main activated downstream
area (visible in Figure 8E) was confined to L6 (Figure 8G). In a follow up study using
the model to explore the propagation of activity between cortical regions (Bolaños-Puchet
and Reimann, 2024), it is described how the model contains both a feedforward projection
pattern, which projects to principally to synapses in L1 & L23, and a feedback type pat-
tern, which principally projects to synapses in L1 & L6. On visualizing the innervation
profile from the stimulated hexagon to the downstream hexagon we can see that we have
stimulated a feedback pathway (Figure S16).

Membership in mid-range connectivity rich club predicts correlation of spontaneous activity

As the model is homogeneous across the different subregions in terms of neuronal mor-
phologies and physiology, we expected the differences in spontaneous and evoked activity
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Figure 8: Full nbS1 simulations: independent functional units, millisecond-precise
stimulus-responses, selective propagation of stimulus-evoked activity through mid-
range connectivity, linking structure to function. Caption on following page.

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2023.05.17.541168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541168
http://creativecommons.org/licenses/by-nc/4.0/


A: Spiking activity and max normalised histograms for layer-wise E and I populations for the
meta-parameter combination [Ca2+]o: 1.05 mM, ROU : 0.4, PFR: 0.15, and the 0th (upper) and
39th (lower) hexagonal subvolumes (shown in B). B1: Mean FRs across the model. Columns
0 and 39 (subsequently used) are highlighted. B2: Spiking correlations of E/I populations in
240 hexagonal subvolumes (diameter: ≈ 460µm). C: Target vs. observed PFR values for the
four non-bursting simulations. The number of sides of each marker corresponds to the layer
(triangle represents L2/3). Red: E, blue: I.. D: Correlations between E and I populations by
layer for the four non-bursting simulations for the two hexagons (top and bottom). Color of line
from light to dark represents PFR. Middle: Distributions of spiking correlations of layer-specific
populations in columns (520µm) of the nbS1 model (black dots; mean values: grey). Compared
to the central column when the seven column subvolume is simulated in isolation (green). E:
Trial-averaged activity in flatspace following single whisker deflections. Lower: Subset of time
windows shown with only the top 2% of bins for each time window after baseline activity level
subtracted. F: Trial-averaged PSTHs (baseline and max normalised) for column 0. For FP = 15%
and FP = 25% respectively, the evoked responses passed and failed the latency and decay-based
criteria tests for similarity to in vivo. Response for FP = 20% passed the tests for all populations
except L5 E which showed a more sustained response. G: Trial-averaged response of column 39.
H: Correlations of mid-range inputs. Upper: Distribution of spiking correlations of inputs into 240
subvolumes. Calculated at reduced spatial resolution, based on connection counts and correlations
between the subvolumes (see Methods). Subvolumes are sorted by the E/I correlation of neurons
within them. Lower: Mean of the correlations of inputs into 240 subvolumes vs internal spiking
correlation for all subvolumes during spontaneous activity. Black line: linear fit. Calculated
based on connection counts and correlations between 50µm hexagonal subvolumes (see Methods).
Data for evoked activity is shown in Figure S16. I: Upper: Spiking correlations of subvolumes
against their distances in spontaneous (red) and evoked (orange: Fp = 0.15%, blue: Fp = 0.2%,
green: Fp = 0.25) activity. For increased spatial resolution, smaller (58µm) subvolumes were
used, hence correlation values are not comparable to values in B. Lower: Distribution of soma
distances of neuron pairs connected by local (orange) or mid-range (blue) connectivity. Green:
distances of all pairs, independent of connectivity. J: Upper: Classification of subvolumes based
on low or high internal correlation and membership in mid-range rich club Data for evoked activity
shown in Figure S16. Lower: E/I correlation of subvolumes for members of the rich club (red)
and non-members (blue). K: FRs of subvolumes following a stimulus with FP = 0.15% (top)
and FP = 0.2% (bottom). Mean (lines) and SEM (shaded area) over 10 repetitions shown for
subvolumes directly innervated by the VPM stimulus (black), strongly innervated by directly
innervated subvolumes (with over 106 synapses, red), or by medium strength (over 105 synapses,
yellow) or weak (over 104 synapses) indirect innervation. Dashed lines indicate locations of peaks.

across the model to be explained by the topology of synaptic connectivity (Reimann et al.,
2024). While the extrinsic input from the OU injections was uncorrelated by design,
synaptic input from local connectivity would feature at least some degree of correlation.
This led to asking, how correlated was the input from mid-range connections? We esti-
mated for each pair of mid-range connections innervating a 460µm hexagonal subvolume
its spiking correlation and compared the resulting distribution to the correlation within
the subvolume itself (see Methods; Figure 8H, upper). We found low correlations for
most pairs, but with a significant number of high-correlation outliers for subvolumes with
high internal correlations. Moreover, when we considered the mean of the measure, we
found that it explains most of the variability in internal correlations, for both spontaneous
(Figure 8H, lower) and evoked states (Figure S16).

This led to the following tentative explanation: Local connectivity provides inputs
from within 500µm, which is virtually guaranteed to be correlated to some degree (Fig-
ure 8I upper vs. lower, orange). This is a result of connections being locally dense, as
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they are concentrated within a small neighborhood (Figure 8 lower, green vs. orange).
mid-range connectivity originates from further away, sampling from different functional
units that may or may not be correlated, and being more diluted (Figure 8I lower, green
vs. blue). Consequently, mid-range inputs are likely to act not much different from the
uncorrelated OU process, unless this is overcome by a non-random topology of mid-range
connectivity.

Specifically, we considered the mid-range connectivity at meso-scale in terms of the
graph of synapse counts between 460µm subvolumes. When the graph was thresholded at
eight million synapses, most subvolumes lacked connections at that strength completely,
but others formed a single connected component, indicating the formation of a rich club
(Colizza et al., 2006; Figure 8J, upper, red and orange). We found that subvolumes with
high internal correlation were part of the rich club, or directly adjacent to one of its mem-
bers (Figure 8J). In the presence of strong thalamic inputs, this could be overcome, as
the increased activity level spread along sufficiently strong mid-range connections (Figure
8K), albeit with substantial delays between 60 and 100 ms. This could induce high corre-
lations in strongly connected parts of the model, outside the rich club as well (Figure S16)
and shows that the model supports selective propagation of activity to areas efferently
connected with mid-range connectivity.

3 Discussion

We presented novel methods to build, simulate and validate models of cortical tissue that
correspond directly with 3D digitised brain atlases. As demonstrated, this enables labora-
tory experiments to have a simulatable in silico counterpart, and vice versa: predictions
made by the model automatically have a precise correspondence in biology. By recreat-
ing and extending five laboratory experiments under a single model parameterization, we
provided strong model validation and demonstrated the model’s natural versatility. To
our knowledge the simulations of the full nbS1 represent the first simulations of stable in
vivo-like spontaneous and stimulus-evoked activity in a large-scale biophysically detailed
model of multiple cortical subregions connected through local and mid-range connectivity.
The model generated an initial set of predictions about the relationship between cortical
structure and function, and provides a basis for future studies and predictions. Table
S1 describes each quantitative prediction made in this manuscript, and how it might be
tested in vivo. Additionally, all assumptions are listed in Table S8. We made the model
and simulation tools available for use, enabling community driven testing, exploration
and refinement.

Excitation from non-modeled brain regions is modeled by injecting somatic conduc-
tances and is calibrated for specific populations. For the purpose of calibration, we pre-
sented a novel technique, which allows rapid and methodical characterisation and valida-
tion of emergent model activity. The efficiency of the technique allows rapid recalibration
after changes to the model such as adding new brain regions or changing anatomical de-
tails. Connected divided by unconnected firing rates measured during the process are also
a prediction of the degree to which the activity of a population is determined by incoming
connections from local vs extrinsic sources. We found an increase of the importance of
local connectivity from superficial to deeper layers, in line with the canonical view of the
cortex (Lübke and Feldmeyer, 2007; Feldmeyer, 2012), which places layers 5 and 6 at the
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end of local information flow.

Although abstract relative to the model, the injection amplitudes could be predicted
from the number of missing synapses, suggesting it provides a functional representation
of their anatomical counterparts. The modular model of extrinsic connectivity can be
refined or replaced in the future, or when larger fractions of the brain are modeled. The
calibration framework could optimize per population parameters for other compensation
methods, whilst still offering an interpretable spectrum of firing rate regimes at differ-
ent levels of PFR. For example, more realistic compensation schemes could be explored
which introduce a) correlations between the inputs received by different neurons and b)
compensation distributed across dendrites, as well as at the soma. We predict that such
changes would make spontaneous activity more correlated at the lower spontaneous firing
rates which supported in vivo like responses (PFR : 0.1 − 0.5), which would in turn make
stimulus-responses more noise correlated.

Our approach to obtaining in vivo-like activity contrasts with a recent approach in
a large-scale biophysical model of primary visual cortex of similar scale to our smaller
subvolume (Billeh et al., 2020). There, extrinsic inputs were delivered through dendritic
synapses instead of somatic injection, which is more anatomically realistic, and intrin-
sic recurrent weights were adjusted to match extracellularly recorded firing rates. They
find a single activity state, instead of the in vivo-compatible spectrum here that allowed
us to contrast anesthetized and awake states. The model in general differs from hybrid
models, which jointly use biologically-detailed models and point neuron models (Billeh
et al., 2020; Dura-Bernal et al., 2023), and also from the work of Egger et al. (2020) who
modeled activation of L5 pyramidal cells by constraining patterns of synaptic input based
on receptive fields and predicted anatomical innervation.

Given the complexity of the model, how can we be confident that its activity is in
vivo-like? First, we demonstrated correlated spontaneous dynamics in the form of global
and local fluctuations and dynamic E-I balance, as found experimentally (Renart et al.,
2010). Second, population firing rate distributions were long-tailed with sub 1 Hz peaks,
and were similar for spontaneous and stimulus-evoked activity, as reported (Wohrer et al.,
2013). Moreover, mean firing rates below 1 Hz are required by metabolic constraints (At-
twell and Laughlin, 2001; Lennie, 2003). In response to simple whisker stimuli, response
sparsity, spike counts, and the temporal profile and amplitudes of layer-wise populations
were similar to in vivo under anesthetized and awake conditions, for different regions of
the meta-parameter space. The effect of the spontaneous meta-parameters on evoked
responses, also shows that the networks spontaneous state affects stimulus-responses, as
observed in vivo (Isbister et al., 2021). Although from the barrel system, these stim-
uli offer some of the simplest stimulus-response paradigms, enabling principles of neural
dynamics and information processing to be studied; in particular, the correspondence
between atomic units of sensory information and neural representations. The model also
predicts the number of thalamic fibers stimulated for whisker-flick stimuli. Such valida-
tions are crucial for complex models, as they provide context for more complex validations.
Moreover, in a rich and complex nonlinear system, the source of discrepancies with in vivo
activity are simpler to ascertain under simpler protocols.

For more complex validations, we reproduced protocols from three laboratory exper-
iments. These experiments used a wide array of techniques, which could be accurately
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recreated due to the model’s close correspondence with biological tissue. Additionally,
we could go beyond the original experiments. For example, we predicted an increased
number of neurons would be required to have a decodable effect on postsynaptic activity
under in vivo conditions over the in vitro conditions of the original experiment. This can
be explained by lower synaptic reliability under in vivo conditions. Also, we predicted a
paradoxical effect of optogenetic stimulation on L6 PV+ interneurons, namely a decrease
in firing with increased stimulus strength. This is reminiscent of the paradoxical responses
found by Mahrach et al. (2020) in the mouse anterior lateral motor cortex (in L5, but not
in L2/3) and barrel cortex (no layer distinction) respectively. While Mahrach et al. (2020)
conducted their recordings in awake mice not engaged in any behavior, we observed this
effect only when drifting grating patterns with high contrast were presented. Neverthe-
less, consistent with their findings, we found the effect only in deep but not in superficial
layers, and only for PV+ interneurons but not for PCs. Our model could therefore be
used to improve the understanding of this paradoxical effect in follow up studies. These
examples demonstrate that the approach of modeling entire brain regions can be used
to further probe the topics of the original articles and cortical processing. This could
be continued in the future using paradigms that take advantage of the multiple regions
offered by the model to study processing in cortical hierarchies.

Responses to whisker flick stimuli were closer to biology for values of the PFR meta-
parameter between 0.1 and 0.5, according with the known inflation of mean firing rates
stemming from the bias of extracellular spike sorting techniques towards larger and more
active neurons (Olshausen and Field, 2006). Supporting our estimates, patch-clamp ex-
periments show ubiquitous neuronal silence (Crochet and Petersen, 2006), and sponta-
neous and stimulus-evoked barrel cortex firing rates as much as 10 times lower than for
extracellular recordings (0.05-0.15 Hz vs. 0.8-1.5 Hz; Olshausen and Field, 2006). This is
also inline with our recent work using the model, which estimated a spike sorting bias cor-
responding to PFR = 0.3 using virtual extracellular electrodes (Laquitaine et al., 2024).
Each recording technique comes with challenges and biases (Shoham et al., 2006; Ol-
shausen and Field, 2006; Barth and Poulet, 2012; Wohrer et al., 2013). Calcium imaging
and patch-clamp experiments are less biased towards frequently spiking neurons (Wohrer
et al., 2013), yet the former can only infer spiking activity and may be biased towards
neurons that favor marker expression. Patch-clamp techniques can reduce firing rates,
be biased towards larger or more active neurons (Olshausen and Field, 2006); and are
limited to recording a few neurons simultaneously, preventing characterizations of single
trial population dynamics. An earlier version of the model has been used to simulate
cortical extracellular potentials (Reimann et al., 2013). We can now simulate modern
extracellular electrodes and compare multi-unit activity and spike sorting results to the
in vivo-like ground truth to gain further insights into the potential over-estimation of
mean firing rates.

During simulations of the entire nbS1, we found emerging spatial inhomogeneities in
network activity. Specifically, we observed sharp transitions in firing rates and pairwise
correlations at disgranular zones. This highlights that the model supports several, inde-
pendently acting functional units. Analysis of spatial correlations suggests a radius of
approximately 400µm for a single unit. This property was not present in the previous
intra-regional scale model (Markram et al., 2015), but is rather an emergent property of
the interregional scale, demonstrating that we achieved our goal of building a model that
can be used to study mid-range interactions between regions. Analyzing the source of
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the inhomogeneities suggested a prominent role of a non-random rich-club structure of
mid-range connections at the meso-scale. Within functional units, we found that inho-
mogeneous increases of spiking correlations were confined to spontaneous packets of L6
activity.

In keeping with the philosophy of compartmentalization of parameters and continuous
model refinement (see Introduction), it was essential to improve validity at the columnar
scale (relative to Markram et al. (2015)) as part of demonstrating validity of the full
nbS1. Indeed, improved parametrization and validation at smaller scales was essential to
parameterizing background input which generated robust nbS1 activity within realistic
[Ca2+]o and firing rate ranges. We view this as a major achievement, as it was unknown
whether the model would achieve a stable and meaningful regime at the start of our
investigation. Whilst we would have liked to go further, our primary goal was to publish
a well characterized model as an open resource that others could use to undertake further
in-depth studies. In this regard, we are pleased that the parametrization of the nbS1
model has already been used to study EEG signals (Tharayil et al., 2024), as well as
propagation of activity between two subregions (Bolaños-Puchet and Reimann, 2024).
Investigation, improvement and validation must be continued at all spatial scales in follow
up papers with detailed description, figures and analysis, which cannot be covered in this
manuscript. Each new study increases the scope and validity of future investigations. In
this way, this model and paper act as a stepping stone towards more complex questions
of interest to the community such as perception, task performance, predictive coding and
dendritic processing. This was similar for Markram et al. (2015) where the initial paper
was followed by more detailed studies. Unlike the Markram et al. (2015) model, the new
model can also be exploited by the community and has already been used in a number
of follow up papers studying (Ecker et al., 2024a,b; Bolaños-Puchet and Reimann, 2024;
Pokorny et al., 2024; Egas Santander et al., 2024; Tharayil et al., 2024; Laquitaine et al.,
2024). We believe that the number of use cases for such a general model is vast, and is
made larger by the increased size of the model.

It is important to highlight where the model deviates from biological data. First, the
model omits several known anatomical elements, such as glia and the presence of gap
junctions between certain neuron-types, but the model’s spatial context provides a natu-
ral scaffold for them. Our modeling techniques assume generality of rules and parameters,
unless indicated by the data. Therefore, violations indicate that biological rules and data
may be more specific. For example, model thalamic inputs innervate any dendrite placed
in the targeted layers equally, but this did not reproduce the timing of inhibitory subpop-
ulation responses. Stronger innervation of PV+ neurons than other inhibitory neurons
may rectify this. However, it is unclear whether innervation should be anatomically or
physiologically stronger, as the best available data mixes structural and physiological
strength (Sermet et al., 2019).

In our previous work (Roussel et al., 2023) we linked mouse inhibitory me-models to
transcriptomic types (t-types) in a whole mouse cortex transcriptomic dataset (Gouwens
et al., 2019). This can provide a direct correspondence in future large-scale mouse mod-
els. As we model only a single electrical type for pyramidal cells there is no one-to-one
correspondence between our me-models and the 10 different pyramidal cell types identi-
fied there. We are not currently aware of any method which can recreate the electrical
features of different types of pyramidal cells using only generic ion channel models. To
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achieve the firing pattern behavior of more specific electrical types, usually ion channel
kinetics are tweaked, and this would violate the compartmentalization of parameters. In
future we hope to build morpho-electric-transcriptomic type (met-type) models by select-
ing gene-specific ion channel models (Ranjan et al., 2019, 2024) based on the met-type’s
gene expression. Data specific to different neuron sections (i.e. soma, AIS, apical/basel
dendrites) of different met-types, such as gene expression, distribution of ion channels,
and voltage recordings under standard single cell protocols would be particularly useful.

Finally, when required, we generalized data from different animals and brain regions
to build our rat nbS1 model. This is the accepted state-of-the-art in computational
neuroscience, e.g., all 19 data-driven models of rodent microcircuitry listed in Figure 2
of the recent review of Ramaswamy (2024) conduct some sort of mixing, including the
advanced mouse V1 model of the Allen Institute (Billeh et al., 2020). Whilst a first truly
single species model would be a great advance, it is not required to be the basis of in
silico research. Our model (and previous ones) can be used to study the many cortical
mechanisms that are common to the closely related organisms rat and mouse. This
paper and its companion paper serve to present a methodology for modeling micro- and
mesoscale anatomy and physiology, which can be applied for other cortical regions and
species. With the rapid increase in openly available data, efforts are already in progress to
build models of mouse brain regions with reduced reliance on data mixing thanks to much
larger quantities of available atlas-based data. This also includes data for the validation
of emergent network level activity. Here we chose to compare network-level activity to
data mostly from the barrel cortex, as well as a single study from primary visual cortex.
Whilst a lot of the data used to build the model was from the barrel cortex, the barrel
cortex also represents a very well characterized model of cortical processing for simple and
controlled sensory stimuli. The initial comparison of population-wise responses in response
to accurate thalamic input for single whisker deflections was essential to demonstrating
that the model was closer to in vivo, and we were unaware of similar data for non-
barrel somatosensory regions. Moreover, our optogenetic & lesion study demonstrated
the capacity to compare and extend studies of canonical cortical processing in the whisker
system.

However, we cannot always predict the effect caused by mixing data sources. An
interesting example of this is described in the companion paper (Reimann et al., 2024),
stating that certain rules of inhibitory connectivity found in a mouse electron-microscopic
(EM) connectome (Schneider-Mizell et al., 2023) cannot be explained by an non-selective
pruning axo-dendritic appositions. We demonstrated the utility of the model to explore
the effect of any connectivity rule, using the example of a mouse EM-compatible “SM-
connectome”. After rewiring, and refitting synaptic, and conductance injection parame-
ters, we found that the purely perisomatic targeting by PV+ neurons and the increased
inhibitory targeting by VIP+ neurons shifted how much individual layers were driven by
intrinsic and extrinsic excitation. This could not be explored with current techniques
in vivo and highlights a strength of in silico experimentation. On the other hand, this
data source contradicts some of our rat nbS1 parameters, e.g., the number of synapses
per connection from light microscopy (Markram et al., 2015) do not match with the ones
obtained from mouse V1 EM. Thus we used the rat data sources for building our baseline
model, but make both models available in a simulatable format (see Data Availability).
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4 Methods

Key resources table

REAGENT or RESOURCE SOURCE LOCATION

Final simulatable models
Anatomical and physiological model

This paper doi.org/10.7910/DVN/HISHXN
(Full model)
Anatomical and physiological model

This paper doi.org/10.5281/zenodo.7930276
(7 column subvolume)
SM-connectome reproducing

This paper doi.org/10.5281/zenodo.10677883inhibitory trends from MICrONS
(7 column subvolume)

Deposited data
Raw neuron recordings Reva et al., 2023 bbp.epfl.ch/nmc-portal/downloads.html

Neuron morphology reconstructions Reimann et al., 2024 doi.org/10.5281/zenodo.6906785

Raw paired recordings Markram et al., 2015 bbp.epfl.ch/nmc-portal/downloads.html

PSP amplitudes Sources as listed in Table S5
CV of PSP amplitudes Sources as listed in Table S6
mPSC frequencies Sources as listed in Table S7
Spont. and evoked spiking freq. Reyes-Puerta et al., 2015b From original authors on request
VPM spike trains Diamond et al., 1992 Digitized from Figure 8

Yu et al., 2019 From original authors on request
Volumetric atlases Bolaños-Puchet et al., 2024 doi.org/10.5281/zenodo.7930276

Ion channel models Reva et al., 2023 doi.org/10.5281/zenodo.7930276

Anatomical model Reimann et al., 2024 doi.org/10.5281/zenodo.6906785

Models of neuron electrical types Reva et al., 2023 doi.org/10.5281/zenodo.7930276

Software and algorithms
Electrical model optimization Reva et al., 2023 github.com/BlueBrain/singlecell-emodel-suite

Simulation software This paper doi.org/10.5281/zenodo.8075202

Model loading and interaction This paper doi.org/10.5281/zenodo.8026852

Model and simulation analysis This paper doi.org/10.5281/zenodo.8016989

Specific simulation configurations This paper doi.org/10.5281/zenodo.7930276

Connectome-Manipulator Pokorny et al., 2024 github.com/BlueBrain/connectome-manipulator

Resource availability

Lead contact

Further information and requests for data and code should be directed to and will be
fulfilled by the lead contact: Michael W. Reimann (sscx@reimann.science)

Materials availability

No materials were used in this computational work.

Data and code availability

• Both the full nbS1 model and smaller seven hexagon subvolume are available on
Harvard Dataverse and Zenodo respectively in SONATA format (Dai et al., 2020)
with simulation code. DOIs are listed under the heading “Final simulatable models”
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in the Key resources table. An additional link is provided to the SM-Connectome
with instructions on how to use it with the seven hexagon subvolume model.

• Neuron morphology reconstructions, ion channel models, neuron electrical models,
volumetric atlases have been deposited at Zenodo and are publicly available as of
the date of the publication. The DOI is listed in the key resources table. Raw single
cell recordings and paired synaptic recordings have been deposited in the Blue Brain
portal and are publicly available as of the date of publication. The links are listed
in the key resources table.

• All original code has been deposited at Zenodo and is publicly available as of the
date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

4.1 Method details

4.1.1 Optimisation of ion channel conductance densities

Neuron models from Reva et al. (2023) were made as follows. Ion channel conductance
densities were optimised for a pool of reconstructed neurons, for which in vitro recordings
had previously been made. Ion channel densities were then generalised to other neuron
models of the same e-type. Resulting neuron models were only used in the construction
of the model if the value of the cost function was within 5 standard deviations of the
experimental mean.

4.1.2 AIS Adjustment

For some electrical models, further adjustments were made to AIS sections to handle the
large input currents present under conditions of high network activity. In short, for certain
pyramidal cell morphologies, the AIS was replaced by a cylinder with a length of 60µm.
Its diameter was manually calibrated such that the ratio of the AIS input resistance over
the input resistance of somato-dendritic compartments was equal to 2. Afterwards, it was
confirmed that the cost function of their electrical models remained below the threshold.

4.1.3 Parametrization of synaptic physiology

The Tsodyks-Markram synaptic model (Tsodyks and Markram, 1997; Markram et al.,
1998; Fuhrmann et al., 2002; Loebel et al., 2009), upgraded to feature multi-vesicular
release (Barros-Zulaica et al., 2019; Ecker et al., 2020) comprises the following parame-
ters: peak conductance ĝ, depression and facilitation time constants D, F , the decay time
constant of the PSC τdecay, the release probability USE , the average number of vesicles
in the release-ready pool NRRP , the Hill coefficient of the nonlinear [Ca2+]o dependent
scaling of release probability UHill, and finally ĝratio: the NMDA/AMPA ratio for excita-
tory synapses, and the GABAB/GABAA ratio for inhibitory synapses. Where possible,
pathway and synapse-type specific parameter values were taken from the literature, and
after eventual corrections (for differences in the temperature and solutions used in the
experiments), were put directly into the model using the technique described for the use
case of hippocampal CA1 in Ecker et al. (2020). For example, parameters USE , D, F ,
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and UHill have previously been fitted for a number of pathways using data acquired from
paired-recording experiments. Furthermore, ĝratio parameter has been previously deter-
mined from outside-out patch recording experiments.

The remaining parameters (ĝ and NRRP ) were iteratively calibrated using an in silico
setup reproducing the paired-recordings experiments detailed below. For this parameter-
ization, all paired-recording data sources from Markram et al. (2015) were re-used. To
further constrain the variance of EPSP amplitudes in L5 TTPCs, fitted parameters from
Barros-Zulaica et al. (2019) were used. The dataset was also enriched with recent record-
ings from L6 (Qi and Feldmeyer, 2016; Yang et al., 2020, 2022). Instead of generalizing L4
E peak synaptic conductances for all thalamic fibers (as in Markram et al., 2015), synaptic
conductances were constrained using EPSP amplitude measurements from thalamocorti-
cal slices (Beierlein and Connors, 2002; Beierlein et al., 2003). Fibers originating from
POm were not present in Markram et al. (2015). Due to the lack of in vitro measurements,
physiological parameters from VPM synapses were generalized to describe POm synapses.

Not all synaptic peak conductances can be measured with paired recordings due to
the space-clamp artifact (Markram et al., 2015; Ecker et al., 2020), and estimating the
number of release-ready vesicles is also challenging experimentally (Loebel et al., 2009;
Barros-Zulaica et al., 2019). Thus, for synaptic pathways for which there was in vitro
reference data, these two parameters were determined in a simulation-driven iterative
process. Firstly, 50 pairs of in silico neurons were randomly sampled. Second, the post-
synaptic cell was current-clamped, and the PSP at the soma of the postsynaptic cell in
response to a presynaptic action potential was measured. This was repeated 35 times for
each pair as in Ecker et al. (2020). Thridly, the mean and the CV of these amplitudes
were extracted and compared with reference in vitro data. Finally, peak conductance (ĝ),
and the average number of vesicles in the release-ready pool (NRRP ) were adjusted to
match the amplitude and CV of the in vitro reference (Ecker et al., 2020). In some cases,
this resulted in reaching the lower bound of univesicular release (Barros-Zulaica et al.,
2019).

Where experimental data was not available, mean synaptic physiology parameters
from similar pathways were used (Markram et al., 2015; Ecker et al., 2020). For the VPM
to L5 E pathway, the maximum of VPM to L4 E and VPM to L6 E conductances (instead
of the mean) were used, based on resulting evoked firing rates found in a later modeling
step (Figure S5C). To calibrate the mPSC frequencies of different pathways, single cell
simulations with different values of the spontaneous release frequency for all synapses of a
set of 1000 cells in a given pathway were run. In these simulations, in silico voltage-clamp
recordings were performed to measure the resulting mPSC frequency at the soma. This
data was then fitted with a logarithmic function and the value of the spontaneous release
frequency matching the in vitro reference value for the mPSC frequency was interpolated.
As in vitro paired recording data is sparse, all available sources to determine synaptic
parameters were re-used for validation.

4.1.4 Datasets used for validation of in vivo-like dynamics

Activity in the model is compared with spike-sorted extracellular recordings from the bar-
rel cortex of anaesthetised rats (Reyes-Puerta et al., 2015b). The dataset contains single
unit spike times for both spontaneous activity and responses to single whisker deflections,
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across 6 layer-wise neuron populations (L2/3 E, L2/3 I, L4 E, L4 I, L5 E & L5 I). We
extend the dataset using the average of L2/3 I, L4 I and L5 I as a reference for L1 I and
L6 I, and an alternative reference for L6 E (De Kock et al., 2007). The spontaneous firing
rates of the 9 neuron populations are collected in the vector of reference firing rates, VFR.

As a secondary comparison, we use a dataset of in vivo juxtacellular and whole-
cell recordings of barrel cortex responses in awake mice during an active whisker touch
paradigm (Yu et al., 2019). While the animal model is different, using this data enables
comparison to awake responses of layer-wise E populations and I subpopulations (VIP+
(vasoactive intestinal peptide, a part of our 5HT3aR+ subpopulation), Sst+, FS (fast
spiking, corresponding to our PV+ subpopulation)). Moreover, this allows validating the
model against properties of cortical responses across similar but different paradigms, re-
ducing the risk of over fitting.

4.1.5 Somatic conductance injection

Random background synaptic inputs, representing uncorrelated inputs from other brain
regions not present in the model, are modelled as a conductance-based somatic injec-
tion (Figure 4B1). Specifically, we inject conductance signals described by an Ornstein-
Uhlenbeck (OU) process (similar to Destexhe et al. (2001)), given by the following equa-
tion:

dg(t)

dt
= −1

τ
[g(t) − g0] +

√
D (1)

where g(t) is the conductance signal, g0 its mean value, τ is the decay time constant,
D is the diffusion coefficient, and χ(t) is a Gaussian white noise process. The diffusion co-

efficient can also be expressed in terms of the standard deviation σ of the signal: D = 2σ2

τ .
Note that we only consider an excitatory conductance signal representing mid-range exci-
tatory drive, whereas local inhibitory input is deemed sufficient within the circuit model.
As we are modeling a non-specific random background noise, we use a different, uncorre-
lated OU process for each cell.

Given the diversity of morphologies and electrical behaviors of cells in our circuit,
we scale the mean and standard deviation of the injected signal based on individual cell
properties. Specifically, we compute the input resistance Rin of each cell at its resting
potential, then take its reciprocal value Gin = 1/Rin (units of conductance). The mean
g0 and standard deviation σ of the injected conductance signal are then expressed as
percentages OUµ and OUσ of this input conductance Gin:

g0 =
OUµ

100
∗Gin (2)

σ =
OUσ

100
∗Gin (3)

The OUµ and OUσ percentage values are used in the calibration technique described
in the following sections. To reiterate, OUµ and OUσ scale the mean of the injected
conductance and the size its fluctuations respectively.
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4.1.6 Details of spontaneous activity calibration

OUµ and OUσ are parameterised separately for each of 9 populations (layer-wise E and
I combinations; Figure 4B2), leading to 18 parameters, grouped into two 9-dimensional
vectors OUµ and OUσ. Spontaneous firing rates across populations, denoted by the vec-
tor CFR, are then determined by the vectors OUµ and OUσ, and [Ca2+]o. The objective
of the calibration procedure is to determine a mapping that outputs the OUµ and OUσ

required to achieve a particular set of firing rates CFR, for a given [Ca2+]o.

This requires two simplifications: First, we reduce the space of possible OUµ and
OUσ values by fixing OUσ = OUµ ∗ ROU , where ROU is a pre-specified constant that
controls the level of noise assumed to be present in the external synaptic input. Second,
we learn the mapping only for dynamical states where the firing rates of the 9 populations
are a proportion of reference in vivo firing rates, i.e. CFR = PFR ∗VFR, with PFR ∈ [0, 1]
(Figure 4B2). This is based on the assumption that extracellular spike detection sam-
pling biases (Olshausen and Field, 2006; Wohrer et al., 2013) affect all populations equally.

The mapping can be written as ΨCa2+,ROU
: CFR 7→ OUµ and is simplified into two

separate mappings which are determined separately and then combined (Figure S1). The
first mapping finds values of the 9 output parameters OUµ, for a given ROU , which pro-
duce particular unconnected firing rates UFR (i.e., where the neurons in the network are
not connected to each other). The second then maps between UFR and CFR.

The first mapping χ : (ROU ,UFR) 7→ OUµ, is attained by running 1 second simula-
tions over various combinations of OUµ and OUσ (Figure S1). ROU constrains OUµ and
OUσ to a line of possible combinations in the 2D space. We generate an approximation
of χ based on linear interpolation between the results of simulations along the line. Note
in particular, that χ is independent of [Ca2+]o.

Given the mapping χ, the remaining problem is to determine the values of UFR that
achieve certain target firing rates given by PFR ∗VFR, for PFR ∈ [0, Pmax] and each com-
bination of [Ca2+]o and ROU , i.e., to determine the mapping ϕCa2+,ROU

: UFR 7→ CFR.
This is done by measuring values of CFR produced for given values of UFR in a num-
ber of simulations. However, instead of exploring the whole parameter space of pos-
sible UFR values, we only explore a small number of values of UFR which we expect
to produce the target CFR values. This is done by iteratively learning the mapping
ϕCa2+,ROU

: UFR 7→ CFR and in each iteration using ϕ to predict UFR values that
bring the dynamics closer to the target firing rate, i.e., by sampling values given by
UFR = ϕ−1(CFR) = ϕ−1(PFR ∗ VFR) for 10 equidistant values of PFR ∈ [0, Pmax]. The
initial guess of ϕ is simply the identity, i.e., assuming no effect of connecting the network,
with Pmax = 0.5. All other iterations use Pmax = 1.0.

We update ϕ by fitting an exponential: CFR = α ∗ eβUFR + κ to the values of UFR,
CFR measured on the latest iteration (Figure S1). In a recurrently connected network
such as our model, the connected firing rate of a population depends on the firing rates
of all other populations in complex and nonlinear ways. This is addressed by our sim-
plification to restrict the compatible dynamic states, where by definition the target firing
rate of one population determines the target firing rates of all others.

The firing rates of the L2/3 I, and L4 I and L6 I populations could not be sufficiently
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lowered for PFR < 0.2 and PFR < 0.1 respectively, as they spontaneously fired even at
their resting potentials (Figure S1D).

4.1.7 Generalization to other network states

We first approximated ϕ for [Ca2+]o = 1.1 mM and ROU = 0.4. To reduce the num-
ber of iterations steps needed for other combinations of [Ca2+]o and ROU , we initialized
the optimization process with the mapping ϕ obtained for this parameter pair instead of
basing it on the identity (Figure S1D, lower; Figure S1). Only for PFR above 0.8 and
[Ca2+]o = 1.1 mM did we have to slightly relax our acceptance criteria (Figure 4D, lower).
Additionally [Ca2+]o = 1.1 mM, PFR = 1.0, and ROU = 0.2 led to bursting activity un-
characteristic of in vivo activity and was excluded from further study.

4.1.8 Evoked activity comparison and validation

The spike times of single whisker deflection stimuli were drawn from a PSTH of VPM neu-
rons in response to 3 ms mechanical single whisker deflections made at 1 Hz in urethane
anesthetized rats (Diamond et al., 1992; Figure 5A2). Since the in vivo data for cortical
responses to single whisker deflections was from responses to 2 ms mechanical whisker
deflections, we compressed the tail of the VPM PSTH to allow a direct comparison with
in silico responses (Figure 5A2). A VPM PSTH for the active whisker touch stimulus
was used from the same dataset as the corresponding cortical responses (Yu et al., 2019).

Firstly, in silico responses were compared to data from the C2 barrel of the anaes-
thetized rat in response to single whisker deflections made at < 1Hz. For the active
whisker touch stimulus, in vivo activity was used from aggregated over principal barrels
corresponding to the untrimmed whisker.

As an initial test of similarity with the corresponding in vivo dataset, trial-averaged
PSTHs were first calculated for each parameter combination, both for all neurons, and
for each of the layer-wise E and I populations. We then tested whether the latencies, 50%
and 25%-decay points of the trial-averaged PSTHs were respectively no more than 10 ms,
10 ms and 40 ms later than those of the corresponding in vivo populations, and that there
was no secondary rise in the PSTHs after the initial decay (by testing that none of the
PSTHs for individual populations were more than 35% above baseline after 75 ms). L1 I
was excluded from these tests, as it showed little or no response to the stimulus and we
had no in vivo reference. These tests allowed us to split the 4D parameter space into two
regions, one where in silico responses are consistent with in vivo responses, and another
where they are not (see Results).

4.1.9 In-silico experimental methods

Simulation of a morphologically detailed model first requires specifying the conditions
(parameters and inputs) under which to perform the simulation. Given the correspon-
dence between variables in the model and properties of biological systems, we are able
to mimic to a certain extent the conditions and protocols of experimental studies. These
are combinations of existing techniques, or even techniques that cannot or have not yet
been performed experimentally. On top of the compensation for missing external input
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and different [Ca2+]o, we implemented further mechanisms to simulate specific experi-
mental conditions. On a technical level, these comprise somatic current or conductance
injections, adjustment of synaptic connectivity parameters, and selective activation of
thalamic fibers. These are static conditions, however, in that their time course must be
determined before the simulation is run. Somatic injections and connectivity adjustments
can be targeted with single neuron or single pair resolution, respectively. To each thalamic
fiber or neuron in the model, we can assign an arbitrary spike train, triggering synaptic
release from all of its synapses with anatomically determined delays (from axonal con-
duction speed and path length). These mechanisms can target specific groups of neurons,
e.g. based on neuron properties, such as location, layer, m-type or e-type, or inhibitory
subpopulation (determined based on me-type as in Markram et al. (2015); Figure 2B).
We combined mechanisms to simulate various in vitro or in vivo experimental paradigms.
Pathway lesions, for example, are simulated by selecting sets of pre- and postsynaptic
neurons and removing all synaptic connections between them (Figure S2A). Simulated
optogenetic stimulation, in addition to being targeted at specific groups of neurons, took
into account the attenuation of light with depth for the wavelength being used. Neurons
were then inhibited or excited according to the intensity of light reaching them (Figure
S2B). Finally, sensory stimuli were simulated by generating instances of stimulus-specific
stochastic spike trains activating the thalamic input fibers (Figure S2C).

4.1.10 Optogenetic inhibition or activation

We model optogenetic inhibition or activation of a neuron population through a current
injection at the soma of each cell in the population, with an intensity proportional to the
cell’s threshold current (see Reva et al. (2023); but with the technical caveat that we did
not apply a hyperpolarizing holding current at the same time). To mimic the conditions
of surface illumination, we considered the dependence of effective depolarization strength
on cortical depth using a modified Beer-Lambert law approximation for the exponential
attenuation of light intensity through scattering tissue (Al-Juboori et al., 2013; Azimipour
et al., 2014, Figure S2B):

I(d) = I0 exp(−µeff d) (4)

where I(d) describes the light intensity at depth d (in mm), with a maximum light in-
tensity I0 (on the surface of the cortex) and an effective attenuation coefficient given
by:

µeff =
√

3µa(µa + µ′s) (5)

Values for the absorption coefficient µa and the reduced scattering coefficient µ′s were
interpolated for the chosen wavelength from Mesradi et al. (2013). For implementation
reasons, the targeted cells were grouped into depth bins and for each group the intensity
at the center of the bin was used. Bins were equally distributed in terms of the injected
current, and not in terms of depth. The value of I0 was calibrated independently for each
experimental paradigm.

4.1.11 Modeling sensory inputs

Sensory inputs were simulated using a three step procedure (Figure S2C2): First, a
time series representing sensory stimulation is assigned to each selected thalamic fiber;
second, the time series is optionally transformed with a fiber-dependent transfer function;
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third, a spike train is generated from the time series through a stochastic spiking process.
Thalamic input fibers were associated with roughly columnar, overlapping volumes of the
model that they formed synaptic connections in (Reimann et al., 2024). Their centers
were projected into the plane using a flat map of the model (Bolaños-Puchet et al., 2024),
yielding [xζ , yζ ], the flat locations of each fiber ζ. A sensory stimulus was defined based on
fiber location as ρζ(t) = ρ(xζ , yζ , t). The stimulus function could be partially stochastic
and its value was evaluated for each time bin of the simulation (Figure S2C1). Next, a
fiber could be associated with a transfer function υζ that transforms the results of ρ. If
none is mentioned, identity was used as transfer function. Finally, a spiking process ψ
was used to instantiate a spike train for each fiber, based on its transformed time series.
That is, the spike train associated with ζ was Γζ = ψ(υζ(ρζ)). The processes used were
stochastic, leading to different spike trains for fibers associated with the same time series.
Different, specific ρ, υ and ψ were used for different experimental paradigms that will be
further described below.

4.1.12 Recreating Varani et al., 2022

To study how input from L4 contributes to L2/3 subthreshold responses Varani et al.
(2022) used a 500 ms long whisker hold paradigm, while patch-clamping PCs in L2/3 in
anesthetized and awake mice. We encoded the whisker hold stimulus as a step function
(ρζ(t) = 1, if 2000 ms ≤ t < 2500 ms, 0 otherwise) in 10% of the VPM fibers within
the seven column subvolume. One of four transfer functions were assigned to each fiber,
based on the types of kinetic response properties of thalamic neurons identified in (Pe-
tersen et al., 2008). The types were selective for whisker position (υpos), velocity (υvel),
acceleration (υacc), or direction (υdir), and were implemented as:

υpos(t) = rmax · ρ(t)

υvel(t) = rmax · (ρ(t+ 1) − ρ(t))

υacc(t) = rmax · (ρ(t+ 1) − 2ρ(t) + ρ(t− 1))

υdir(t) = rmax · |ρ(t+ 1) − ρ(t)|+

where rmax = 150 Hz denotes the firing rate of a thalamic fiber when its associated feature
property is at the fiber’s preferred value. Transfer functions were randomly assigned to
fibers with the fractions identified in Petersen et al. (2008) (Figure 6A, 11% coding for
position and acceleration, 58% for velocity and 20% for direction). The spiking process ψ
was an adapting Markov process (Muller et al., 2007) with an adaptation time constant
of 100 ms. As the whisker movements were short lasting, rates were evaluated at submil-
lisecond (0.1) resolution.

Similarly to before, only the seven column subvolume (210k neurons) was used for the
simulations, and the in vivo-like state was realized as Ca2+ = 1.05 mM, ROU = 0.4, and
PFR = 0.3.

The optogenetic inhibition in this experiment targeted 95% (in line with Varani et al.
(2022)) of excitatory cells in layer 4. The authors found a few cells which also tested pos-
itive for Halo at the bottom of L3 as well, but as they did not quantify it, we decided not
to target any lower L3 PCs in the in silico version of the experiment. Based on the 595 nm
wavelength (yellow light) parameters were set to µa ≈ 0.49mm−1 and µ′s ≈ 4.12mm−1.
For the depth-based spatial binning of cells, 5 bins were used in L4. After scanning several
values, I0 was set to -200% as that reproduced the ≈ 10 mV hyperpolarization of L4 PCs
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observed in vivo. In line with the in vivo experiment, the optogenetic stimulus ended in
a (100 ms long) ramp to avoid rebound spikes (Figure 6B).

When going beyond reproducing the same experimental conditions and instead lever-
aging the in silico nature of our setup, synaptic pathways were lesioned by selecting the
excitatory population in a given layer as the pre-synaptic population and the excitatory
population in L2/3 as the post-synaptic population and not instantiating the connecting
synapses during the simulation.

L2/3 PCs had to meet three criteria to be included in the subsequent analysis. Firstly,
their activity was required to remain subthreshold during the 500 ms long whisker hold
stimulus and in 200 ms long time windows before and after the stimulus, both in control
and in silico optogenetic runs. Second, they had to be innervated by at least one (active)
VPM fiber. Third, the derivative of their voltage trace had to cross the 1 mV/ms threshold
in a 20 ms time window after stimulus onset in the control simulation. The last two were
motivated by comparing subthreshold voltages to voltage traces from Varani et al. (2022)
that showed large, stimulus evoked EPSPs. Around 8% of L2/3 PCs in the central
column met all the above criteria and their voltages were averaged to arrive to the traces
shown in Figure 6C-D. Thus, unlike in the original analysis, cells rather than trials were
averaged. The motivation for this approach is that while in vivo it is easier to repeat the
same paradigm after establishing stable recording conditions in a given cell, in silico it is
quicker to record from all cells in a single simulation, instead of repeating the stimulus
several times.

4.1.13 Recreating Shapiro et al., 2022

Since our model comprises the nbS1 and not the V1 brain area, we modelled visual drifting
gratings in a more abstract way, without taking specifics of the visual system into account.
In particular, we defined ρ(xζ , yζ , t) as a spatio-temporal rate pattern corresponding to
linear sinusoidal drifting gratings for a fraction FP of 937 VPM fibers projecting to a
single simulated column (30k neurons, 520µm diameter). For all other VPM fibers ρ was
zero. The gratings had a temporal frequency of ftemp = 2 Hz and a spatial frequency of
0.03 cycles/degree which we translated to fspat = 0.001 cycles/µm by assuming a cortical
magnification factor in rat of 30 µm/degree (Gias et al., 2005). In Figure 6E, the spatial
grating patterns are illustrated at different points in time.

As in Shapiro et al. (2022), we used five contrast levels C ∈ [0.06, 0.12, 0.24, 0.5, 1.0]
which were defined as the Michelson contrast given the minimum and maximum luminance
values Lmin and Lmax:

C(Lmin, Lmax) =
Lmin − Lmax

Lmin + Lmax
(6)

Since the physical quantity of luminance does not have a clear correspondence in our
model, we used normalized luminance values Lmin and Lmax between 0.0 and 1.0 by
computing the inverse Michelson contrast centered around a mean normalized luminance
of 0.5. The resulting values of Lmin and Lmax where then scaled and shifted to the
minimum and maximum rates of the sinusoidal modulation Rmin and Rmax respectively
such that the peak firing rate at contrast 1.0 was given by Rpeak and the mean of the
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modulation corresponding to the background firing rate at contrast 0.0 was given by Rbk.
The resulting sinusoidal input rate signal can be written as:

ρζ(t) = R(t, lζ) = Rmin + 0.5(Rmax −Rmin)
[
1 + sin(2π ftemp t− 2π fspat lζ)

]∣∣∣∣
+

(7)

where t is the time in seconds, lζ the linear position of ζ within the grating, and |+ denotes
that firing rates are truncated to positive values only. Figure 6F illustrates a random series
of rate signals corresponding to different contrasts. No transfer function was used, and
spiking process ψ was an adapting Markov process (Muller et al., 2007) with an adaptation
time constant of 100 ms. Values for FP , Rpeak, and Rbk were determined beforehand
by a parameter optimization so that the resulting grating responses were qualitatively
comparable with the ones reported by Shapiro et al. (2022), see next subsection for details.

Calibration of drifting grating stimulus We ran a parameter scan to determine optimal
values for FP (fraction of 937 VPM fibers projecting to the central column of our model
to apply grating stimulus to), Rpeak (peak firing rate at contrast 1.0), and Rbk (back-
ground firing rate at contrast 0.0). This calibration was done by running 45 simu-
lations using all combinations of parameter values in the ranges FP ∈ [0.5, 0.75, 1.0],
Rpeak ∈ [5.0, 10.0, 15.0, 20.0, 25.0] Hz and Rbk ∈ [0.05, 0.1, 0.2] Hz, and selecting the op-
timal combination amongst them. Each simulation lasted 40 s during which 20 contrast
stimuli were presented for 1 s, followed by a 1 s (blank) inter-stimulus interval. Four con-
trast levels C ∈ [0.06, 0.12, 0.5, 1.0] were presented five times each in random order, which
was sufficient to fit sigmoidal tuning functions with four parameters (see Eq. 9).

We observed that especially under strong stimulus conditions the response rates of PCs
to the first and second cycle of the sinusoidal grating pattern (1 s stimulus at ftemp = 2 Hz)
were quite different, with the second response largely attenuated due to synaptic depletion.
Therefore, we extracted first and second peak firing rates r1 and r2 respectively from the
peristimulus time histograms (PSTHs) computed with 1 ms resolution and 20 ms Gaussian
smoothing (Figure S10). We defined a measure of the normalized peak difference as the
Michelson contrast of the peak rates r1 and r2, given by

r̂diff =
r1 − r2
r1 + r2

(8)

Additionally, we extracted average firing rates for each contrast level of the whole
population of PCs within the full (1 s) as well as the first and second halves (0.5 s each)
of the stimulation intervals. We then fitted sigmoidal tuning functions with parameters
c50, m, n, and Rmax (see Eq. 9) to these average tuning responses (Figure S11). Finally,
as summarized in Figure S10 and S11, we selected the best combination of parameters
based on the following selection criteria:

• The peak firing rates in response to the grating stimulus should be sufficiently strong,
covering a range of values including the one reported in (Shapiro et al., 2022, cf.
Figure 1D). So we imposed the constraint that the maximum peak rates over the
whole population of PCs of the first and second peaks r1 and r2 respectively should
be at least rth = 30 Hz at maximum contrast.

• The peak responses to the first and second cycle of the grating stimulus should not
be too different. So we aimed for a low peak difference r̂diff at maximum contrast.
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• The overall tuning response of the PCs should be in a regime where the tuning curve
would have a sigmoidal shape, meaning that it should be increasing but saturating
with increasing contrasts. To fulfill this constraint, we aimed for

– Low c50, i.e., the inflection point of the tuning curve would be at low contrasts

– High n, i.e., a steep non-linear increase of the tuning curve until saturation

In order to combine these criteria independent of the actual scales of r̂diff , c50 and
n, we computed their individual rank scores in decreasing (r̂diff , c50: lower is better) or
increasing (n: higher is better) order. We then selected the parameter combination with
the highest product of rank scores, excluding the ones with peak firing rates r1 and r2
below rth and the ones with c50 values close to 1.0 (border cases). We found an optimal
parameter combination of FP = 1.0, Rpeak = 10.0 Hz, and Rbk = 0.20 Hz which we used
throughout this in-silico experiment.

Optogenetic stimulation Optogenetic stimulation was targeted at either 1654 PV+ or
822 Sst+ interneurons in a single column. We used parameters µa ≈ 0.46 mm−1 and
µ′s ≈ 5.38 mm−1, based on the wavelength of 470 nm (blue light; see Figure S2). I0 was
increased from 0% to 300% in steps of 50%.

Quantification of contrast tuning responses by sigmoidal functions We quantified contrast
tuning responses in the same way as described by Shapiro et al. (2022), by least-squares
fitting sigmoidal functions to the normalized tuning curves. Normalized tuning curves
were obtained by computing the time-averaged firing rates of all 1 s stimulus intervals
and dividing them by the mean baseline firing rate (i.e., w/o optogenetic stimulation) at
the highest contrast level. The sigmoidal function was given by

R(c) =
Rmax c

n

cn + cn50
+m (9)

where R(c) describes the response amplitude at contrast c, m is the baseline response at
minimum contrast, Rmax is the maximum increase above baseline, n defines the steepness
of the curve, and c50 is the contrast at half Rmax. We used the coefficient of determination
(r2 score) as a measure of the goodness of fit.

Detection of neurons with robust contrast tuning We identified PV+, Sst+, and pyramidal
neurons with robust contrast tuning behavior under all conditions. In the experimental
study of Shapiro et al. (2022), tetrode recordings were used together with spike sorting.
Correspondingly, we only considered neurons firing at rates above 0.5 Hz under all stimulus
conditions, meaning they could potentially be detected by spike sorting (Pedreira et al.,
2012). In addition, we considered neurons as being robustly tuned if they had strictly
monotonically increasing tuning curves.

Modelling the effects of optogenetic stimulation of interneurons Direct photostimulation
effects on interneurons were modelled by a divisive scaling model Rdiv(c), a subtractive
shifting model Rsub(c), or a saturation additive model Rsat(c) (Shapiro et al., 2022).
For fitting these models, the parameters c50, m, n, and Rmax of the underlying contrast
tuning function R(c) were kept constant at values obtained from baseline fits (i.e., w/o
optogenetic stimulation). The divisive scaling model was defined as

Rdiv(c) = R(c)/g (10)
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with a scaling term g. The subtractive shifting model was given by

Rsub(c) = R(c) − h
∣∣∣
+

(11)

with a shifting term h and rectification to rates equal or above zero. The saturation
additive model was defined as

Rsat(c) = R(c) +
S c−n

c−n + c−n
50

+A (12)

with a saturation term S and an additive term A. We used the r2 score to measure the
goodness of model fits.

Indirect effects on PCs receiving inhibitory input from optogenetically activated in-
terneurons were modelled by a conductance-based model Rcond(c), assuming a saturating
additive model description of interneurons (Shapiro et al., 2022). Response rates under
this conductance-based model were given by

Rcond(c) =
[
∆V (c) − Vth

]3∣∣∣∣
+

(13)

with a spike threshold Vth = 3.4 mV and rectification to rates equal or above zero. The
membrane potential ∆V (c) as a function of contrast was given by

∆V (c) =
gLRL + gE(c)RE + gI(c)RI

gL + gE(c) + gI(c)
− Vr (14)

with values for leak conductance gL = 6 nS, leak reversal potential RL = −50 mV, ex-
citatory reversal potential RE = 0 mV, inhibitory reversal potential RI = −65 mV, and
resting potential Vr = −50 mV as reported by Shapiro et al. (2022). The excitatory
synaptic conductance was given by

gE(c) =
gE max c

n

cn + cn50
+ gE min (15)

with the excitatory conductances at low/high contrast given by gE min and gE max re-
spectively. The inhibitory synaptic conductance was given by

gI(c) = gE(c) +
S c−n

c−n + c−n
50

+ ∆gIE min +A (16)

with an inhibitory conductance offset ∆gIE min = 2 nS at low contrast relative to gE min.

In a first step, parameters S and A were set to zero and the model parameters c50,
gE min, gE max, and n were fit to baseline responses of PCs. In a second step, those
parameter values were kept constant and the model parameters S and A were fit to PC
responses under photostimulation conditions. Again, we used the r2 score to measure the
goodness of model fits.

4.1.14 Recreating Prince et al., 2021

We also compared the in vivo state of our model with the results of a recent in vitro study
(Prince et al., 2021), which explored how neurons with different biophysical properties
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encode different types of signals. The in vitro study optically activated groups of 10 PCs
in slices of L2/3 barrel cortex from mouse lines labelling fast-spiking (FS) and regular-
spiking (RS) interneurons. Each PC was targeted individually and a binary signal was
encoded either through changes in the rate of optical pulses applied to the 10 stimulus
neurons, or through changes in the synchronicity of the pulses. The mutual information
shared between the binary signal (when encoded either as changes in firing rate or syn-
chronicity) and the firing rate of different inhibitory sub-types (recorded using whole-cell
patch clamping in vitro) was analysed.

While the in vitro stimuli used optical pulses targeted at single neurons with timings
drawn from Poisson processes, it was not necessary to explicitly model such an optical
stimulus in silico, as we can instead elicit spikes directly in the model. In the original
study, the 10 stimulus neurons were uniformly separated in a grid-like pattern at hori-
zontal and vertical distances of ∼50µm. The binary signal alternated between two states
at random intervals of 2-7 s. For the rate coding paradigm, the timings of the optical
pulses for the 10 stimulus neurons were drawn from 10 independent inhomogeneous Pois-
son processes, with the rates of optical activation varying between 5 Hz and 0.5 Hz for the
up and down states respectively (average firing rate: 2.7 Hz). For the synchronous case,
the timings of the optical pulses for the 10 stimulus neurons were drawn from a single
inhomogeneous Poisson process during the up state, or 10 independent inhomogeneous
Poisson processes during the down state. For the synchronous case, the firing rates of
the up and down state were both 2.7 Hz. We therefore tested stimulus encoding using a
range of stimulus neuron counts: from 10 to 1,000.

In our interpretation of the study, mutual information was measured between the bi-
nary signal and neural activity during a 0-5 ms and 5-50 ms window following a change
in the signal. These represented ‘early’ and ‘late’ stimulus encoding windows following
the change in the signal, respectively. As the synchronous up state activated synchronous
patterns at a rate of 2.7 Hz, we calculated that a synchronous pattern would only be
activated during the early and late windows with probability 0.0135 (= 2.7 ∗ 5/1000) and
0.1125 (= 2.7 ∗ 45/1000) respectively. We therefore chose to use higher FR of 20 Hz for
the synchronous up and down states, and to analyse mutual information between the
binary signal and all 50 ms bins. To afford comparison with the rate code experiment
type, we used 30 Hz and 10 Hz as the FRs of the up and down states respectively. We also
compare stimulus coding during the first 50 ms following the stimulus change for both the
synchronous and rate stimulus types.

4.1.15 Analyzing mid-range connectivity & correlations

Neurons were split into hexagonal subvolumes of a specified diameter d considering their
locations in a flattened view (Bolaños-Puchet et al., 2024).Then, the number of mid-
range connections within and between the hexagonal subvolumes were counted, yielding
in S, the adjacency matrix of the resulting directed graph. Distances between hexagonal
subvolumes were calculated by considering the centers of the hexagons in the flattened
view. Furthermore, correlations of spiking activity of pairs of hexagonal subvolumes were
also calculated. To that end, all spikes within a hexagonal subvolume were pooled and
their number in 5 ms time bins; and lastly the Pearson correlations of the resulting time
series were calculated. The correlation within a hexagonal subvolume was calculated
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similarly, but using the separate time series of the E and I populations. Together, this
yielded F , the matrix of correlations of subvolumes. Based on S and F , the expected
correlations of mid-range inputs was calculated as follows: Let i be a hexagonal subvolume
and Si the column of S associated with input counts into i. Then P = Si · S⊤

i is in the
matrix of counts of pairs of inputs for all pairs of hexagonal subvolumes. Combining P
and F allows one to estimate the distribution of correlations of mid-range inputs into i,
albeit at the population rather than single-cell level. For the correlation in Figure 8A2,
H, J1 a hexagon size of 400µm was used, while in Figure 8I2 a smaller size of only 50µm
was used.

4.1.16 Node participation

Given a connectivity graph G, a directed n-simplex in G is a set of n+ 1 nodes which are
all all-to-all connected in G in a feed-forward fashion, i.e., such that any subset of these
has a unique source and a unique sink (see Reimann et al. (2017) for more details). The
n-node participation of a node v in G is the number of directed n-simplices this node is
part of. In particular, for n = 1, this is the total degree of the node in G. Thus, this
can be though of a generalization of the notion of degree that takes into account account
higher order interactions and has been shown to strongly correlate with other node cen-
trality metrics Sizemore et al. (2018).

For any numeric property of neurons, e.g., firing rate, we evaluate the effect of dimen-
sion on it by taking weighted averages across dimensions. That is for each dimension k,
we take the weighted average of the property across neurons where the weights are given
by node participation on dimension k. More precisely, let N be the number of neurons

and
−→
V ∈ RN , be a vector of a property on all the neurons e.g., the vector of firing rates.

Then in each dimension k we compute

meank =
1

N ∗
∑

(
−−−→
Park)

−→
V ·

−−−→
Park,

where
−−−→
Park is the vector of node participation on dimension k for all neurons and · is the

dot product.

To measure the over and underexpression of the different m-types among those with
the highest 5% of values of node participation, we used the hypergeometric distribution
to determine the expected distribution of m-types in a random sample of the same size.
More precisely, for each dimension k and m-type m, let Ntotal be the total number of neu-
rons in the circuit, Nm be the number of neurons of m-type m in the circuit, Ctop be the
number of neurons with the highest 5% values of node participation in dimension k, Cm

the number of neurons of mtype m among these, and let P = hypergeom(Ntotal, Nm, Ctop)
be the hypergeometric distribution.

By definition, P (x) describes the probability of sampling x neurons of m-type m
in a random sample of size Ctop. Therefore, using the cumulative distribution F (x) =
P (Counts ≤ x), we can compute the p-values as follows:

underexpression: P (Counts ≤ Cm) = F (Cm),

overexpression: P (Counts ≥ Cm) = 1 − P (Counts < Cm − 1) = 1 − F (Cm − 1).

Small values indicate under and over representation respectively.
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4.2 Quantification and statistical analysis

Details of all statistical analyses can be found in figures and figure legends.

4.3 Additional Resources

No other additional resources.
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Videos

1. Layer-wise E and I population rasters and max-normalised histograms of sponta-
neous activity for the central column of the seven column subvolume for each of the
60 meta-parameter combinations. Meta-parameter values are shown in brackets in
the following order: Ca2+, PFR, ROU .

2. Visualisation of spontaneous activity for the seven column subvolume for the param-
eter combination Ca2+ = 1.1 mM, PFR = 0.9, ROU = 0.2 after collapsing activity
to flatspace (activity binned and smoothed).

3. Layer-wise E and I population rasters and max-normalised histograms of evoked
activity during the 10 single whisker deflection protocol for each of the simulated
meta-parameter combinations. Meta-parameter values are shown in brackets in the
following order: Ca2+, PFR, ROU , FP .

4. Trial-averaged max-normalised histograms of evoked activity during the 10 single
whisker deflection protocol for each of the simulated meta-parameter combinations.
Rasters of spiking activity shown for the first of 10 trials activity. Dashed lines show
in vivo single whisker deflection reference data. Meta-parameter values are shown
in brackets in the following order: Ca2+, PFR, ROU , FP .

5. Visualisation of trial-averaged response of the seven column subvolume over the 10
single whisker deflection protocol for the parameter combination Ca2+ = 1.1 mM,
PFR = 0.3, ROU = 0.4, FP = 20% after collapsing activity to flatspace (activity
binned and smoothed).

6. Layer-wise E and I population rasters and max-normalised histograms of spon-
taneous activity for (a) hex0 and (b) hex39 for meta-parameter combinations:
Ca2+ = 1.05 mM, ROU = 0.4 and PFR = 0.05 − 0.3.

7. Visualisation of spontaneous activity for the full nbS1 model for the parameter
combination Ca2+ = 1.05 mM, PFR = 0.15, ROU = 0.4 after collapsing activity to
flatspace (activity binned and smoothed).

8. Layer-wise E and I population rasters and max-normalised histograms of stimulus
evoked activity for (a) hex0 and (b) hex39 for each meta-parameter combination
Ca2+ = 1.05 mM, ROU = 0.4, PFR = 0.15 and FP = 0.1 − 0.25.

9. Visualisation of trial-averaged response of the full nbS1 model over the 10 single
whisker deflection protocol for the parameter combination Ca2+ = 1.1 mM, PFR =
0.15, ROU = 0.4, FP = 20% after collapsing activity to flatspace (activity binned
and smoothed).
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Ramaswamy, S. (2024). Modeling and simulation of neocortical micro- and mesocircuitry. Part
I: Anatomy. eLife.

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., D lotko, P.,
Levi, R., Hess, K., and Markram, H. (2017). Cliques of neurons bound into cavities provide a
missing link between structure and function. Frontiers in Computational Neuroscience, 11(48).
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Table S1: Predictions

(1)
Prediction Correlation between excitatory and inhibitory populations increases

exponentially from supra to infragranular layers; the power of low
frequency oscillations also increases towards deeper layers.

Importance Charazterizing the correlation between excitatory and inhibitory populations is
critical for our understanding of the neural code and is of high interest to the-
oretical point neuron modellers and experimentalists (Vogels and Abbott, 2009;
Vogels et al., 2011). Particularly, such correlations are thought to govern home-
ostasis (“E/I balance”) and in turn the dynamics of populations during resting
and evoked activity. Moreover, such correlations can give clues towards the level
of recurrent processing within a neural population. Despite its perceived im-
portance in the field, a laminar characterization of such correlations over a full
spectrum of temporal frequencies is beyond existing techniques for spiking ac-
tivity. Spike sorting usually only finds a small handful of neighbouring E and I
neurons within each cortical layer, which is insufficient to quantify local intra-
layer inter-population correlations. Calcium imaging does not have the required
temporal resolution for such a characterization and is limited at deeper layers.
Unfortunately, only proxies of such correlated neuronal activity can currently be
studied, although this still has high impact appeal, due to the described relevance
of this question. For example, a recent study analyzed the local field potential
(LFP) to demonstrate “a ubiquitous spectrolaminar motif of local field potential
power across the primate cortex” (Mendoza-Halliday et al., 2024). Particularly,
the authors found a decrease in the frequency of the dominant LFP power, from
supra- to infra-granular layers. Although this piece of evidence was demonstrated
only for noise in the extracellular space (LFP), which was generated by neural
activity, this piece of evidence excitingly supports the more detailed prediction
of our model where we observed an increase in low frequency oscillations towards
deeper layers. The presence of such a hetero-laminar effect also demonstrates the
utility of our model: point neuron modellers can now explore the role of different
neruon types and connectivity motifs in excitatory/inhibitory balance within a
calibrated and detailed model.

Novelty Our model allows access to the spiking activity of all neurons across layers, for
a well calibrated activity state. The detail of our model allow us to explore the
correlation and interaction between different morphoelectric neuron types with
full spatiotemporal resolution.

Experiment Beyond the recent LFP study, the quantitative predictions which our model
makes will be able to be tested once recording techniques provide suffient clar-
rity of neuronal population activity. For example, the rapid improvement of
extracellular recording devices and spike sorting techniques will hopefully make
it possible to soon measure sufficient numbers of E and I neurons within each
layer.

Extension 1. Fit exponentials to the data in Figure 4I to predict the precise layer depen-
dence. 2. Extend to look at the cortical depth dependence of spiking correlations.
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(2)
Prediction Specific spatial targeting rules observed for different inhibitory sub-

populations in electron microscopy act to more strongly self-inhibit in-
hibitory populations and inhibit excitatory populations. This changes
E/I balance for inhibitory populations from an excitation dominated
state to an inhibition dominated state, whilst overall excitatory pop-
ulations became less dominated by excitation. Specifically, increased
perisomatic targeting by PV+ neurons, increased VIP+ targeting of
other inhibitory neurons, neurons in L1 connecting more monosynap-
tically, and I connections onto E neurons being sparser and closer to
the soma. This increased self-inhibition towards central layers with
the greatest effect in L4. As a result, inhibitory populations require
increased non-local drive.

Importance Highly specific targeting rules and self-inhibition by inhibitory populations are
likely to play important roles in cortical function. However, it is currently chal-
lenging to manipulate the connectivity of inhibitory subpopulations as a way of
probing their causal effect. The fact that the firing rates of inhibitory popula-
tions increased upon connection of the network in the original connectome but
decreased upon connection in the SM-connectome shows that the more specific
targeting rules act to make inhibitory populations more inhibited overall by local
connectivity, rather than excited.

Novelty To our knowledge this is the first comparison of two models where one includes
spatially specific targeting rules and one that does not. The new calibration
technique allowed methodical comparison of the two networks over a 60 different
regimes in which the firing rates of the two networks were matched.

(3)
Prediction Quantitative prediction of extracellular recording bias.
Importance It has commonly been discussed that extracellular recording and spike sorting

are likely to bias our view of in vivo spiking activity (Wohrer et al., 2013). This
has serious consequences for our interpretation of sorted spike trains, which we
plan to investigate further.

Novelty Whilst synthetic datasets have been used to benchmark spike sorting algorithms
before, this model is the first to capture the variety of M-types and E-types,
combined with realistic in vivo dynamics.

Experiment This would require large-scale unbiased patch-clamping combined with extracel-
lular recording and spike sorting.
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(4)
Prediction The degree of participation in high-dimensional simplices predicts the

level of correlation between inhibitory and excitatory populations in
a cortical layer.

Importance Internal “recurrent” processing is of great interest to theoretical modellers be-
cause such recurrent processing is thought to underlie many cognitive functions.
To study the factors underlying such recurrent processing, theoretical modellers
commonly use networks of abstract point neurons with random or all-to-all con-
nectivity. It is important to study how three-dimensional biological design influ-
ences the spatiotemproal dynamics of recurrent processing to better understand
complex cortical function. Our prediction suggests that pairwise connectivity
statistics are insufficient to predict the level of correlation within a cortical layer,
and that specific high-dimensional local connectivity motifs drive internal spon-
taneous activity.

Novelty Such an analysis is currently unattainable in vivo because: 1. consistent electron
micropscopy datasets across cortical layers are not available, and 2. the spiking
activity over large intra-layer populations is limited (as described for the previous
prediction). To our knowledge our analysis represents the most biophysically-
constrained in silico comparison between high-dimensional connectivity motifs
and emergent activity.

Experiment Larger electron-microscopy datasets which are currently being collected will en-
able direct comparisons with the dimensionality of the connectivity motifs within
a cortical layer. Quantifying E/I spiking correlations at the population level will
require better tools for measuring in vivo spiking activity, as described for the
previous prediction.

(5)
Prediction Higher order structure has functional implications
Importance The higher order network metrics that have been found relevant in describing

the non-random complexity of the network and detailed in the accompanying
manuscript have been linked to function. The importance is two-fold: First,
it gives relevance to the many ways in which the structure of connectivity has
been characterized as non-random before. We now know that this is no mere
epiphenomenon, but a mechanism of cortical processing. Second, it provides
useful metrics for the description of how structure shapes function. More specific
predictions of the link between higher-order network structure and function:

• E/I correlations can be predicted from higher order centrality metrics.

• The strength of a connection can be predicted from how it is embedded in
the whole network in a higher order sense. This finding has been further
verified in MICrONS-Consortium et al. (2021) (see Ecker et al. (2024b))

• Higher order interactions shape the correlation of activity. This has also
been verified in MICrONS-Consortium et al. (2021) (see Egas Santander
et al. (2024)).

Novelty In all these structure-function predictions highlighted, the use of higher-order
structures was crucial.
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(6)
Prediction Layer-wise populations receive external drive from non-local connec-

tivity within a precise and specific range. Moreover, input from non-
local connectivity is essential for stable non-zero activity at resting.

Importance To our knowledge, the amount of conductance that a neuron receives from non-
local vs local connectivity is unknown, as it is unknown how a cortical brain
region would behave when disconnected from other brain regions. These two
factors are important for the constraint of biophysically-detailed models, and
the insights they can make. Although it seems trivial that a cortical area should
be silent under in vivo conditions when disconnected from other areas, we have
received questions from experimentalists about whether this is the case, and to
our knowledge it is unknown.

Novelty This was only possible to test with a model at the level of an entire cortical
subregion, which incorporated both local and non-local connectivity.

Experiment This could be estimated in vivo by measuring the frequency of synaptic activa-
tions across dendrites during resting state activity. To test the need for afferent
input from non-local connections for non-zero resting state activity, one would
need to ablate incoming connections to a cortical region and measure spiking
activity.

(7)
Prediction Cortical curvature does not predict level of correlative activity in a

cortical column (negative result not shown).
Importance The cortex is a highly and heterogeneously curved structure, especially in hu-

mans. To our knowledge there have been no studies of the effect of such curvature
on spiking activity, for example in terms of the level of correlated activity. If
such an effect exists in rodent, it is likely to play out even stronger in human.
Even in our model of a single cortical region we observed high heterogeneity in
curvature, which we quantified in the first manuscript. However, we found that
activity metrics were remarkably unaffected by the resulting differences in con-
nectivity.

Novelty We are not aware that this potential aspect of cortical function has been consid-
ered before.

Experiment As with the previous point, this could be confirmed or rejected by specifically
generating co-registered connectome and activity dataset for regions with differ-
ent curvature.

(8)
Prediction Single whisker deflections activate 5-10% of thalamic fibres in a single

barreloid. Excitatory populations respond more sparsely to whisker
deflections than inhibitory populations. Stimulus response sparsity is
heterogeneous across layers.

Importance These predictions are about unknowns of cortical processing within the canonical
barrel system.

Novelty This highlights that critical details about basic cortical processing remain un-
known but can be predicted by well constrained cortical models.

Experiment Testing these predictions would require calcium imaging over VPM barreloids
and different layers of cortex.
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(9)
Prediction L4 PCs contribute to L23 PC response through direct excitatory con-

nections rather than disinhibition. L2/3 PCs and L4 PCs make similar
contributions to L2/3 PC responses, L5 PCs have a smaller effect, L6
PCs’ have a negligible effect.

Importance This relates to the mechanisms underlying canonical cortical processing.
Novelty This demonstrates the model’s capacity for experiments that are currently lim-

ited by existing in vivo techniques as described in the manuscript.
Experiment These predictions are grounded in techniques which could become available in

the near future (markers for the optogenetic tagging of different cell types).

(10)
Prediction Encoding of synchronous and rate-code signals by inhibitory subpop-

ulations is strongest for PV+, followed by 5HT3aR+, and then SSt+.
Importance Encoding by different inhibitory neuron-types is likely to play a key role in how

the cortex processes and represents information in vivo.
Novelty The study which inspired this work could only be performed in vitro. That is, to

our knowledge, stimulating precise multi-neuron patterns of spikes and measuring
spiking responses from different inhibitory sub-types would be challenging to
perform in vivo.

Experiment Voltage-imaging may soon make such a study simpler to perform in vivo.

(11)
Prediction Quantitative predictions about the nature and connectivity underly-

ing correlated activity. Particularly, we predict 1) that correlations between
afferent regions, increases internal correlations, 2) local correlation is predicted
by participation in (or vicinity to) a rich club of cortical columns connected by
dense non-local connectivity, 3) the distance dependence of spiking correlations.

Importance The importance, novelty and means of testing predictions about correlated ac-
tivity have been discussed in other points.

(12)
Prediction Specific targeting rules by inhibitory subpopulations increase stimulus-

evoked responses in L23, decrease responses in L5 and L6, and slightly
increase stimulus response latencies.

Importance As discussed for prediction (2) the role of specific targeting rules are important
to understand but difficult to study in vivo.
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Table S2: Excitatory synaptic pathways. Average class parameters are marked in bold and are used predictively
(in lack of reference in vitro data) for the remaining pathways belonging to the same class. Physical dimensions are as
follows: peak conductance ĝ: nS, depression and facilitation time constants D, F , and the EPSC τdecay: ms, the Hill
coefficient of the nonlinear [Ca2+]o dependent scaling of release probability UHill: mM, the release probability USE ,
the average number of vesicles in the release-ready pool NRRP , and the NMDA/AMPA ratio ĝratio are dimensionless.

Pre Post ĝ USE D F NRRP τdecay ĝratio UHill

PC to Sst+IN (E1)

PC MC 0.2±0.1 0.09±0.12 138±211 670±830 1.5 1.74±0.18 0.8 2.79
PC PT 0.6±0.5 0.02±0.00 194±18 507±37 4.5 1.74±0.18 0.8 1.09
PC DT 0.2±0.1 0.02±0.00 194±18 507±37 1.5 1.74±0.18 0.8 2.79

PC to PC (E2)

L23 PC L23 PC 1.0±0.5 0.46±0.26 671±17 17±5 2.6 1.74±0.18 0.7 2.79
L4 PC L4 PC 0.6±0.3 0.86±0.09 671±17 17±5 1.0 1.74±0.18 0.9 2.79
L4 SSC L23 PC 0.2±0.1 0.79±0.04 671±17 17±5 1.8 1.74±0.18 0.5 2.79
L5 STPC L5 STPC 0.9±0.3 0.39±0.03 690±90 44±21 1.0 1.74±0.18 0.7 2.79
L5 TTPC L5 TTPC 1.9±1.0 0.38±0.10 365±100 25±45 2.8 1.74±0.18 0.7 2.79
L23 PC L5 TTPC 0.5±0.2 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.7 2.79
L4 SSC L5 STPC 0.6±0.3 0.50±0.02 671±17 17±5 1.2 1.74±0.18 0.7 2.79
L4 SSC L6 PC 0.4±0.2 0.50±0.02 671±17 17±5 1.0 1.74±0.18 0.7 2.79
L6 TPC:A L6 TPC:A 1.0±0.5 0.37±0.11 280±90 90±80 1.0 1.74±0.18 0.7 2.79
L6 TPC:C L6 TPC:C 0.5±0.2 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 IPC L6 IPC 0.9±0.3 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 PC to same L6 PC 0.8±0.2 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 TPC:A L6 TPC:C 1.2±0.5 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 TPC:A L6 BPC 0.3±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 TPC:C L6 IPC 0.2±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 IPC L6 BPC 0.4±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 BPC L6 TPC:A 0.2±0.1 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
L6 PC to diff. L6 PC 0.5±0.4 0.23±0.06 420±340 200±130 1.0 1.74±0.18 0.7 2.79
PC PC 0.7±0.4 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.7 2.79

PC to Sst-IN (E2)

PC NBC 0.6±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
PC PT 0.6±0.5 0.50±0.02 671±17 17±5 4.5 1.74±0.18 0.8 1.09
PC L1 GABAB- 0.3±0.1 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.8 1.94
L6 TPC:A L6 BC 0.4±0.1 0.58±0.13 240±80 70±90 1.5 1.74±0.18 0.8 1.09
L6 TPC:C L6 BC 0.4±0.1 0.36±0.21 380±310 280±340 1.5 1.74±0.18 0.8 1.09
L6 IPC L6 BC 0.3±0.1 0.51±0.20 440±300 100±50 1.5 1.74±0.18 0.8 1.09
L6 PC L6 BC 0.4±0.1 0.47±0.21 370±290 155±215 1.5 1.74±0.18 0.8 1.09
PC IN 0.4±0.1 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.8 1.94

Proximal Targeting inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cACint, cIR, bAC, bIR, cNAC have E1,
while the rest of etypes; and SBC and CHC mtypes have E2 short-term dynamics.
Distal Targeting inhibitory mtypes: BP, DBC, BTC. L1 GABAB- comprise all non NGC mtypes in L1
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Table S3: Inhibitory synaptic pathways. Average class parameters are marked in bold and are used predictively
(in lack of reference in vitro data) for the remaining pathways belonging to the same class. Physical dimensions are as
follows: peak conductance ĝ: nS, depression and facilitation time constants D, F , and the IPSC τdecay: ms, the Hill
coefficient of the nonlinear [Ca2+]o dependent scaling of release probability UHill: mM, the release probability USE , the
average number of vesicles in the release-ready pool NRRP , and the GABAB/GABAA ratio ĝratio are dimensionless.

Pre Post ĝ USE D F NRRP τdecay ĝratio UHill

IN to PC (I1)

L6 BC L6 BC 2.3±0.5 0.16±0.10 45±21 376±253 1.0 10.40±6.20 0.0 1.94
SBC (cACint) PC 1.9±1.0 0.16±0.10 45±21 376±253 3.3 10.40±6.20 0.0 1.94

IN to PC and IN (I2)

MC PC 3.0±1.5 0.30±0.08 1250±520 2±4 1.0 8.30±2.20 0.0 1.94
DT PC 3.0±1.5 0.25±0.13 706±405 21±9 1.0 8.30±2.20 0.0 1.94
NBC PC 1.9±1.0 0.14±0.05 875±285 22±5 3.3 8.30±2.70 0.0 1.94
NGC PC 0.2±0.1 0.25±0.13 706±405 21±9 1.0 36.50±1.30 0.8 1.94
L1 GABAB- PC 0.3±0.1 0.25±0.13 706±405 21±9 1.0 8.30±2.20 0.0 1.94
SBC (dNAC) PC 1.9±1.0 0.25±0.13 706±405 21±9 3.3 8.30±2.20 0.0 1.94
IN * 2.3±0.5 0.25±0.13 706±405 21±9 1.0 8.30±2.20 0.0 1.94

IN to PC (I3)

L6 BC L6 PC 1.9±1.0 0.44±0.25 195±190 200±320 1.0 10.40±6.20 0.0 1.94
PT PC 1.9±1.0 0.32±0.14 144±80 62±31 3.3 6.40±1.70 0.0 1.94

Proximal Targeting inhibitory mtypes: N/L/SBC, CHC. N/LBC etypes: cNAC, dSTUT, cSTUT, bSTUT have I3,
while the rest of etypes; and SBC (except: cACint and dNAC) and CHC mtypes have I2 short-term dynamics.
Distal Targeting inhibitory mtypes: BP, DBC, BTC. L1 GABAB- comprise all non NGC mtypes in L1

Table S4: Thalamocortical synaptic pathways. Values taken from the internal connectivity (Table S2) are
marked in bold. Physical dimensions are the same as in Table S2.

Pre Post ĝ USE D F NRRP τdecay ĝratio UHill

VPM, POm to Sst+IN (E1)

* Sst+ 0.2±0.1 0.09±0.12 138±211 670±830 1.5 1.74±0.18 0.8 2.79

VPM, POm to PC (E2)

VPM L23 PC 1.7±0.6 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79
VPM L4 PC 1.1±0.4 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79
VPM L56 PC 2.4±0.9 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79
POm PC 1.7±0.6 0.75±0.1 671±17 17±5 1.5 1.74±0.18 0.7 2.79

VPM, POm to PV+IN (E2)

VPM L4 PV+ 1.4±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
VPM L6 PV+ 3.1±1.0 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
VPM L235 PV+ 2.2±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09
POm PV+ 2.2±0.4 0.72±0.12 227±70 13±24 4.5 1.74±0.18 0.8 1.09

VPM, POm to 5HT3aR+IN (E2)

* 5HT3aR+ 0.4±0.1 0.50±0.02 671±17 17±5 1.5 1.74±0.18 0.8 1.94

Sst+ inhibitory mtypes: MC and BP, DBC, BTC (cACint etype only). PV+ inhibitory mtypes: N/LBC, CHC.
5HT3aR+ mtypes: the rest of the mtypes not listed above (e.g. NGC, SBC, and everything in L1).
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Table S5: Validation of PSP amplitudes (see Figure 3B1)

Pre Post in vitro (mV) in silico (mV) Reference

L23 PC L23 PC 1.00±0.70 0.99±0.67 Feldmeyer et al. (2006)
L23 PC L5 TTPC 0.30±0.30 0.30±0.24 Reyes and Sakmann (1999)
L4 EXC L4 EXC 1.59±1.51 1.62±1.31 Feldmeyer et al. (1999)
L4 SSC L23 PC 0.70±0.60 0.66±0.34 Feldmeyer et al. (2002)
L4 SSC L5 STPC 0.60±0.40 0.59±0.33 Feldmeyer et al. (2005)
L4 SSC L6 PC 0.29±0.16 0.30±0.30 Qi and Feldmeyer (2016)
L5 TTPC L5 TTPC 1.30±1.10 1.24±0.73 Markram et al. (1997)
L5 STPC L5 STPC 0.80±0.20 0.75±0.40 Le Bé et al. (2007)
L6 BPC L6 TPC:A 0.21±0.00 0.22±0.15 Berger (2009)
L6 IPC L6 BPC 0.42±0.18 0.42±0.21 Berger (2009)
L6 IPC L6 IPC 1.05±0.31 1.09±0.81 Berger (2009)
L6 TPC:C L6 IPC 0.18±0.00 0.19±0.13 Berger (2009)
L6 TPC:C L6 TPC:C 0.43±0.22 0.43±0.29 Berger (2009)
L6 TPC:A L6 BPC 0.32±0.27 0.31±0.17 Berger (2009)
L6 TPC:A L6 TPC:C 1.19±0.15 1.10±0.63 Berger (2009)
L6 TPC:A L6 TPC:A 1.51±0.98 1.45±1.11 Berger (2009)

L23 PC L1 GABAB- 1.10±0.30 1.09±0.83 Wozny and Williams (2011)
L4 EXC L4 FS 2.20±2.20 2.17±2.46 Beierlein et al. (2003)
L5 TTPC L5 MC 0.28±0.30 0.28±0.33 Silberberg and Markram (2007)
L6 IPC L6 BC 1.59±1.60 1.56±1.48 Berger (2009)
L6 TPC:A L6 BC 2.20±3.28 2.02±1.44 Berger (2009)
L6 TPC:C L6 BC 1.29±1.65 1.28±0.84 Berger (2009)
L6 PC L6 MC 0.20±0.12 0.15±0.14 Berger (2009)

L1 NGC L23 PC 0.58±0.10 0.54±0.41 Wozny and Williams (2011)
L1 GABAB- L23 PC 0.27±0.04 0.26±0.13 Wozny and Williams (2011)
L4 FS L4 EXC 1.10±0.80 1.14±0.81 Beierlein et al. (2003)
L5 MC L5 TTPC 0.50±0.40 0.47±0.25 Silberberg and Markram (2007)

VPM L4 EXC 2.40±2.00 2.51±2.10 Beierlein et al. (2003)
VPM L4 FS 4.10±3.20 4.09±2.52 Beierlein et al. (2003)
VPM L6 EXC 1.20±0.80 1.28±1.96 Beierlein and Connors (2002)
VPM L6 FS 3.90±3.50 3.11±2.57 Beierlein and Connors (2002)

Thick-tufted mtypes: L5 TPC:A, L5 TPC:B. Slender-tufted mtypes: L5 TPC:C, L5 UPC.

Table S6: Validation of first PSP amplitudes’ CVs (see Figure 3B2)

Pre Post in vitro (mV) in silico (mV) Reference

L4 EXC L4 EXC 0.37±0.16 0.25±0.06 Feldmeyer et al. (1999)
L4 EXC L4 FS 0.27±0.13 0.38±0.25 Beierlein et al. (2003)
L4 FS L4 EXC 0.25±0.11 0.28±0.09 Beierlein et al. (2003)
L4 SS L5 STPC 0.33±0.20 0.43±0.06 Feldmeyer et al. (2005)
L4 SS L6 PC 0.50±0.11 0.51±0.06 Qi and Feldmeyer (2016)
L4 SS L23 PC 0.27±0.13 0.32±0.07 Feldmeyer et al. (2002)
L5 TTPC L5 TTPC 0.31±0.14 0.39±0.09 Barros-Zulaica et al. (2019)
L5 STPC L5 STPC 0.58±0.24 0.51±0.06 Le Bé et al. (2007)
L23 PC L23 PC 0.33±0.18 0.43±0.15 Feldmeyer et al. (2006)
L234 PC L234 NBC 0.32±0.08 0.21±0.08 Wang et al. (2002)

Thick-tufted mtypes: L5 TPC:A, L5 TPC:B. Slender-tufted mtypes: L5 TPC:C, L5 UPC.
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Table S7: Validation of mPSC frequency (see Figure 3E2)

Pre Post in vitro (Hz) in silico (Hz) Reference

E L23 PC 8.20±2.90 9.36±4.38 Brasier and Feldman (2008)
E L4 PC 11.90±2.40 15.64±7.84 Brasier and Feldman (2008)
E L6 CC 2.80±0.80 3.87±2.14 Yang et al. (2020)
E L6 CT 0.95±0.36 1.41±0.74 Yang et al. (2020)
I L5 PC 21.10±4.80 16.06±6.74 Ling and Benardo (1999)

Cortico-cortical mtypes: L6 UPC, L6 IPC, L6 HPC.
Cortico-thalamic mtypes: L6 TPC:A, L6 TPC:C.

Table S8: Assumptions. Additionally, we assume that various input data generalizations between
brain regions, organisms and animal ages do not affect validity. They are not listed again.

Anatomy
Inherited All assumptions about the model’s anatomy are inherited from the companion

paper (Reimann et al., 2024), where they are described in Section 5.2.

Neuron Physiology
Structuring We assume that me-types are sufficient to capture the diversity of neuron

dynamics. In particular, this includes a single firing type for pyramidal cells
and no met-types. See discussion for further details.

Generalization Optimization of ion channel densities to match somatic electrophysiological
features, creates accurate dendritic activity. Whilst we validated several den-
dritic properties, the battery of tests could be increased. Moreover, multi-
modal fitting approaches can now be used to construct single-neuron electri-
cal models with patch clamp and high-density microelectrode arrays (Buccino
et al., 2024).

The model assumes that electrical models optimized for a given me-type can
generalize to different m-types of the same e-type. Importantly, the quality of
generalization is tested, with poor generalizations rejected. As optimization
methods become more efficient and more data is available, such assumptions
can be relaxed. Future work would benefit from single cell protocols applied
to many different met-types.

Modeling 11 generic ion channels are sufficient to capture accurate neuronal dynamics.
We discuss how larger sets of ion channel models could be used in future.

The model assumes that ion channel densities are constant for each neurite
type (soma, axon initial segment, apical and basal dendrites), except for HCN
channels (which increase exponentially with distance from the soma in apical
and basal dendrites) and Na2+ channels (which decrease exponentially with
distance from the soma in apical dendrites). More data on the spatial dis-
tribution of ion channels for different neuron types would be very useful to
constraining future optimizations.

Data In vitro recordings of single cell protocols are sufficiently informative of in
vivo dynamics.
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Synaptic Physiology
Structuring The model assumes that synaptic physiology is specific to m-types, rather

than me-types or even more specific classes.

Generalization The model assumes that for the fitting of synaptic parameters, PSP data can
be generalized to pathways with missing data. New work in mouse presents
techniques for recording PSPs at larger scale.

Modeling Modeling the NMDA Mg2+ block is sufficient to capture the voltage-
dependent nature of NMDA currents.

Missing input compensation
Modeling Input compensation at the soma can capture the effect of missing input. This is

further considered in the Discussion. Comparing to glutamate uncaging studies
would test the dendritic processing characteristics of neurons under different
missing input compensation schemes.

Inputs from other brain regions are independent between neurons. In the future,
it is possible that temporal synchronization of different brain regions recorded
in openly available brain wide electrophysiology studies could be combined with
innervation patterns from other brain regions to better constrain the synchrony
of inputs.

Structuring Missing input is specific for layer-wise E/I populations. Input compensation
could be made more specific, e.g., for inhibitory subpopulations.

Data Spike sorting bias is constant across neuron populations. Our latest work
Laquitaine et al. (2024) predicts how biases could be different between subpop-
ulations. These predictions could be incorporated in future work.

Thalamic stimulus
Modeling We assume that thalamic neurons activated in a single whisker deflection are ran-

domly distributed in a barreloid of the VPM corresponding to a cortical barrel, and
that individual neuron spikes are drawn from a population PSTH. To our knowledge
there is little data about the spatial distribution of thalamic fibers activated during
a specific whisker stimulus. Combined intracellular recording of thalamacortical
projection neurons stimulated during a single whisker deflection and an anatomical
reconstruction of the stimulated fibers would improve the pattern of synaptic ac-
tivations innervating the cortex and allow more precise modeling of single neuron
and network integration. This goal is now much closer, given that the temporal
population response of our model is now accurate on the millisecond timescale.

Comparison of evoked activity to spike sorted recordings
Data We additionally assume that similarity with spike sorted PSTHs is sufficient for valida-

tion of stimulus evoked activity. As discussed through-out the paper, such recordings
contain bias, and also do not compare against the internal dynamics of single neurons.
We believe this paper sets the stage for meaningful comparisons to a large quantity of
existing analyses of intracellular recordings in the barrel cortex. Calcium imaging also
offers a useful measure of sparsity in L23 in both spontaneous and evoked settings, and
could simultaneously be compared alongside intracellular responses to active whisker
touch stimuli (O’Connor et al., 2010). The mouse barrel cortex would offer an excellent
model for reconciling a broad range of previous findings at these levels. Our model’s
evoked response can now also be compared directly to local field potential data as in
(Rimehaug et al., 2023).
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Figure S1: Spontaneous activity calibration: estimating χ and ϕ. A: Estimation of χ
and ϕ for L5 E (illustration). ΨCa2+,ROU

: CFR 7→ OUµ is estimated by dividing it into the two
functions χ and ϕ, which are determined separately. Left: χ : (ROU ,UFR) 7→ OUµ. The color of
each point shows the mean unconnected FR in a single column for L5E for different combinations
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of OUµ (x-axis) and OUσ (y-axis). For a given value of ROU interpolation is used over the
datapoints to estimate the predicted FRs along a line of gradient ROU starting at the origin.
As FRs increase monotonically with increasing OUµ and OUσ, the interpolation can be used to
estimate the OUµ and OUσ combination that will produce a given target unconnected FR. Right:
ϕCa2+,ROU

: UFR 7→ CFR. In each iteration, 10 simulations of the seven hexagon subvolume
are run for a range of target PFR values. For each population (i.e. L5 E) an exponential is fit
to unconnected vs. connected firing rates, and used to estimate unconnected firing rates which
will achieve target connected firing rates on the next iteration. B: Visualisation of the meta-
parameter space. The algorithm is run for a single combination of Ca2+ and ROU (blue), and is
then generalised for other combinations (red). C: Data for estimation of χ for each population.
Population FRs from unconnected simulations of a single column. Simulations vary by OUµ

and OUσ. Colour shows FR. Black circles show region where FRs are greater than 0 and less
than the population’s in vivo reference FR. The dependence of unconnected FR on OUµ and
OUσ is heterogeneous across populations. D: Final estimation of ϕ1.1,0.4 for each neuron group.
Exponential fit of unconnected vs connected FRs for each population after 5th iteration. The final
fits are heterogeneous across populations.

Pre Post

Pathway lesion Optogenetics B2

Sensory stimulus Transformed Spike train instances

Transfer
function

Spiking
model

Δy

Δx

A B1

Thalamic inputC1

C2

De-/hyper-polarization (%)

Figure S2: In silico experimental methods. A: Synaptic pathway lesions. After selecting
a pre- (green) and post-synaptic (blue) population of neurons, connections between them in the
specified direction are removed (red arrows). B: Optogenetic manipulations. B1: Decay with
depth of the strength of a stimulus applied to mimic the effect of optogenetic manipulations with
470 nm (blue) and 595 nm (yellow) light. Indicated for exemplary intensities (values of I0). B2:
Targeted neuronal populations in two in silico optogenetic experiments. Density of affected cells
(combination of expression level and light depth) indicated by the corresponding color of light.
Unaffected populations in grey. Left: Excitation of inhibitory populations. Right: Inhibition of
PCs in L4. C: Stimulation with thalamic inputs. C1: Each thalamic fiber in the model is assigned
a position in a flat coordinate system. Based on the coordinates, type of fiber (VPM vs. POm),
or randomly, time series of sensory stimulation are assigned to the fibers. C2: Sensory stimuli
are transformed by a transfer function capturing pre-thalamic processing. The transfer function
can simply be identity. The transformed signal is then used with a spiking model to generate
stochastic spike trains that serve as inputs into a simulation.
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A

B

Figure S3: Mean dendritic length and missing synapses by population. A: Mean
dendritic length by population. Error bars show ±SD. B: Mean estimated number of missing
synapses by population. Existing and missing synapses are stacked. Error bars show ±SD.
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Figure S4: Spontaneous activity firing rate distributions. Firing rate distributions of
different subpopulations colored by m-type for two meta-parameter combinations, each over 50
seconds of simulation. Neurons which spike zero or one times are excluded. Titles of each subplot
show the percentage of neurons spiking at least once, and the mean firing rate of neurons of
neurons spiking at least once.

73

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2023.05.17.541168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541168
http://creativecommons.org/licenses/by-nc/4.0/


Figure S5: Whisker deflection responses - supplementary. A: PSTHs in response to the
single whisker deflection stimulus for all parameter combinations. PSTHs of simulations which
passed the initial criteria are coloured green, whilst those which did not are coloured grey. B:
Layer-wise PV+ and Sst+ subpopulation PSTHs for simulations which passed the criteria. C:
Analysis of evoked responses of L5 E under two simulation cases. The first case uses the mean of
the VPM to L4 E and L6 E synaptic conductance for the VPM to L5 E conductance, whilst the
second uses the maximum of the two values (VPM to L6 E). C1: For the two simulation cases,
L5 E PSTHs for the criteria passing (green) and failing (grey) simulations. For the mean case,
some of the simulations that do not burst or do not have a secondary rebound, fail the criteria
because of low signal to noise ratio. C2: Ratios between evoked and spontaneous activity of L5
E population for criteria passing simulations. There are fewer criteria passing simulations for the
mean case, and those that do are much lower than the in vivo reference (40.2). D1: Proportion
of spiking cells by population in the central column over 100ms following stimulus onset. Each
line represents a different criteria passing simulation. D2: Heatmap showing the effect of the
meta-parameters on the proportion of spiking cells over the entire central column. E: Heatmap
showing the effect of the meta-parameters on the proportion of spiking cells which spike only once
over 100ms following stimulus onset.
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Figure S6: Firing rate statistics. A: Histograms of the inverse of inter-spike intervals (ISI)
(a proxy of non-zero firing rate) for three different meta parameter combinations of [Ca2+]o, ROU

and PFR for the connected (red) and unconnected (blue) circuits. B: For each dimension, the
markers show the weighted average of the inverse ISI for all neurons, where the weights are given
by node participation in the given dimension. Shaded regions show standard error of the mean.
Color scheme as in A. Inset, ratio of connected vs. unconnected means i.e., ratio of the red vs.
blue curves. Note that the minor dependence on the unconnected firing rate can be explained by
the correlation between dimension and the layer of a neuron, combined with different firing rates
in different layers. C: Same as B but additionally showing dimension 6.
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Figure S7: Over/under expression of neurons that maximize node participation. Neg-
ative logarithm of the probability of the over-/under expressions (see Methods), in red respectively
blue, for all mtypes, calculated for the top 5% of neurons that maximize node participation in
each dimension.
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Figure S8: Active whisker touch responses - supplementary: Same as Fig. 5 but using an
active whisker touch VPM stimulus and in vivo reference for the active whisker touch paradigm
(see Methods).
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Figure S9: Additional validations: reproducing the experiments of Varani et al.
(2022). A: Raster plots of the microcircuit’s activity and population firing rates below. A1:
Control conditions, A2: 95% of L4 PCs inhibited (by direct somatic current injection depicted in
B above, see Methods). B: Voltage traces of all L2/3 (top) and all L4 (bottom) PCs. Panels show
spiking traces (top), and subthreshold traces (bottom). B1 and B2 depict the same conditions
as C above.
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Figure S10: Calibration of the drifting grating stimulus based on peak firing rates.
The drifting grating stimulus was calibrated by running a parameter scan of 45 simulations to
determine optimal values for FP , Rbk, and Rpeak. The maximum (top) and average (middle) of the
first and second peak firing rates r1 and r2 (connected points) over the whole population of PCs,
together with the average of the normalized peak difference (Michelson contrast) r̂diff (bottom)
are summarized. Different colors indicate different contrast levels C ∈ [0.06, 0.12, 0.5, 1.0]. The
rate threshold rth = 30 Hz at maximum contrast, the calibration target values that were taken into
account for selecting the optimal parameter set, as well as the optimal parameter set (FP = 1.0,
Rbk = 0.2 Hz, and Rpeak = 10.0 Hz), are highlighted.
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Figure S11: Calibration of the drifting grating stimulus based on sigmodal parame-
ters. The drifting grating stimulus was calibrated by running a parameter scan of 45 simulations
to determine optimal values for FP , Rbk, and Rpeak. The values of the four parameters m, n,
Rmax, and c50 for fitting a sigmoidal function to the average firing rates of the whole population
of PCs within the full stimulation interval are summarized. Dashed lines indicate fitted parameter
values when considering only the first or second half of the response interval. Calibration target
values that were taken into account for selecting the optimal paramter set, as well as the optimal
parameter set (FP = 1.0, Rbk = 0.2 Hz, and Rpeak = 10.0 Hz), are highlighted.
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Figure S12: Contrast tuning by layer and paradoxical effect of optogenetic PV+
stimulation. A: Normalized contrast tuning functions of layer-wise PV+ (upper; blue) and PC
(lower; red) subpopulations for different levels of optogenetic PV+ stimulation ranging from 0 % to
300 %, as indicated by the legend. B: Same data as in A, but plotted dependent on the optogenetic
PV+ stimulation strength (x-axis) for the different contrasts, as indicated by the legend. At high
contrasts, the optogenetic stimulation has a paradoxical effect on L6 PV+ neurons, i.e., reducing
their activity (black arrows).

Figure S13: Sigmoidal parameter fits to contrast tuning functions. A1: Scatter plots
showing the fitted sigmoidal parameter values (see Figure 6H2 inset; Methods) in control condition
vs. PV+ optogenetic stimulation at lowest (50%) and highest (300%) level respectively for all 259
robustly tuned PV+ interneurons. Diamond markers indicate mean values over neurons, including
all optogenetic stimulation levels from 50% to 300%. Colors as in Figure 6H legend. A2: Same
as A1, but for all 228 robustly tuned PCs.
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Figure S14: Modelling the effects of optogenetic stimulation of interneurons. A1-
A3: Divisive scaling (Div), subtractive shifting (Sub), and saturation additive (SA) model fits
(dashed lines) to responses of an exemplary PV+ interneuron (solid lines) at different levels of
optogenetic PV+ stimulation, ranging from 0% (baseline) to 300%. B1: Goodness of Div/Sub/SA
model fits (µ±SEM of r2 score) for different depolarization levels over all 259 robustly tuned PV+
interneurons, showing that direct photostimulation effects on interneurons can be best described by
the saturation additive model. C1: Polar plot of S (saturation) and A (additive) parameter values
of the SA model fits to all 259 robustly tuned PV+ interneurons at different levels of optogenetic
PV+ stimulation. Diamond markers indicate mean values (in polar coordinates) over neurons,
colored arc lines the circular SD of the polar angles. B2: Same as B1, but for conductance-based
model fits describing indirect photostimulation effects on all 228 robustly tuned PCs, assuming a
saturating additive model description of interneurons. C2: Same as C1, but for the conductance-
based model fits to all robustly tuned PCs.
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Figure S15: Re-calibration of SM-Connectome. A: The SM-connectome took 6 iterations
to re-calibrate for the full 60 meta-parameter combinations. The mean conductance injections
found for the original connectome for the 60 meta-parameter combinations were used for the first
iteration of the re-optimisation and lead to decreases in firing rates for all inhibitory populations
except L1 I (A1). In A1 and A2 blue and yellow points refer to Ca2+ 1.05 and 1.1 respectively.
After 6 iterations the firing rates converged to the target firing rates (A2-A5) and there was
minimal difference in population firing rates over the 60 meta-parameter combinations between
the original and SM-connectome (A4). B Correlation r-values between the E and I populations,
as for the original connectome in the main text. C: Unconnected vs connected MFRs for the
different populations after the 6th iterations. Unlike for the original connetome, firing rates
decrease following connection of the network.
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Figure S16: Full nbS1 - supplementary: A: Distance dependence of spiking correlations.
Digitized from Reyes-Puerta et al. (2015a). B: Evoked responses of a single hexagonal subvolume
over 10 single whisker deflections. C: Trial-averaged activity of the full circuit for FP = 15%
following the single whisker deflection stimulus (top). Middle and bottom: trial-averaged activity
of the full circuit for FP = 15% following the single whisker deflection stimulus for FP = 15%
and FP = 20%, showing only the top 2% of bins for each time window after the baseline activity
level has been subtracted. D: Distribution of spiking correlations of inputs into 240 subvolumes.
Calculated at reduced spatial resolution, based on connection counts and correlations between
the subvolumes (see Supp. Methods). Subvolumes are sorted by the E/I correlation of neurons
within them. For evoked activity with FP = 20%. E: Mean of the correlations of inputs into 240
subvolumes (as in D) against internal spiking correlation for all subvolumes during spontaneous
activity. Black line: linear fit. Calculated based on connection counts and correlations between
50µm hexagonal subvolumes (see Supp. Methods).
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F: Classification of subvolumes based on low or high internal correlation and membership in the
mid-range rich club. Data from evoked activity with FP = 20%. G: Indegree from the subvolume
innervated by the VPM stimulus against correlation with that subvolume, indicated for all other
subvolumes. Color indicates the ∆t with maximum correlation. H: Depth dependent profile of
synaptic innervation from hex0 to hex39.
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