

1 **The mature N termini of *Plasmodium* effector proteins confer specificity of export**

2 Muhammad M. Hasan, Alexander J. Polino, Sumit Mukherjee, Barbara Vaupel, Daniel E.

3 Goldberg

4 Division of Infectious Diseases, Department of Medicine, and Department of Molecular

5 Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

6 Address correspondence: Daniel E. Goldberg

7 Email: dgoldberg@wustl.edu

8

9 **Abstract**

10 The intraerythrocytic malaria parasite *Plasmodium falciparum* exports hundreds of proteins into
11 the host red blood cell (RBC). Most are targeted to the ER by a stretch of hydrophobic amino
12 acids and cleaved further downstream at a conserved motif called the Protein Export Element
13 (PEXEL) by the ER protease plasmepsin V (PM V). The mature effectors then travel through the
14 secretory pathway to the parasitophorous vacuole (PV) that surrounds the parasite. There,
15 PEXEL proteins are somehow recognized as export-destined proteins, as opposed to PV-
16 resident proteins, and are selectively translocated out into the RBC. The mature N terminus
17 appears to be important for export. There is conflicting data on whether PM V cleavage is
18 needed for proper export, or whether any means of generating the mature N terminus would
19 suffice. We replaced the PEXEL-containing N-terminal sequence of an exported GFP reporter
20 with a signal peptide sequence and showed that precise cleavage by signal peptidase,
21 generating the proper mature N terminus, yields export competence. Expressing a construct
22 with only the native ER targeting signal without the PM V cleavage site dramatically decreased
23 the amount of a mature PEXEL reporter, indicating that the hydrophobic stretch lacks an

24 efficient cleavage signal. Therefore, the PEXEL motif functions as a specialized signal cleavage
25 site when appropriately located after an ER targeting sequence. Our data suggest that PM V
26 cleavage and RBC export are two independent events for PEXEL proteins. We also tested and
27 rejected the hypothesis that an alpha-helical mature N terminus is necessary for export.

28 **Importance**

29 Malaria parasites export hundreds of proteins to the cytoplasm of the host red blood cells for
30 their survival. A five amino acid sequence, called the PEXEL motif, is conserved among many
31 exported proteins and is thought to be a signal for export. However, the motif is cleaved inside
32 the endoplasmic reticulum of the parasite and mature proteins starting from the fourth PEXEL
33 residue travel to the parasite periphery for export. We showed that the PEXEL motif is
34 dispensable for export as long as identical mature proteins can be efficiently produced via
35 alternative means in the ER. We also showed that the exported and non-exported proteins are
36 differentiated at the parasite periphery based on their mature N termini, however, any
37 discernible export signal within that region remained cryptic. Our study resolves a longstanding
38 paradox in PEXEL protein trafficking.

39 **Introduction**

40 The malaria parasite *Plasmodium falciparum* asexually replicates in the human Red Blood Cell
41 (RBC). An infected RBC is extensively modified by the parasite to make it compatible for
42 growth. Hundreds of parasite proteins are exported into the RBC for this purpose and as such,
43 protein export is critical for parasite survival (1, 2).

44 Exported proteins are first loaded into the parasite endoplasmic reticulum (ER) and then
45 progress along the secretory pathway by vesicular trafficking to be released outside the parasite
46 plasma membrane (PPM) (3-7). A membrane-bound space called the parasitophorous vacuole
47 (PV) surrounds the PPM throughout the parasite's replication cycle (8-11). To reach the RBC

48 cytoplasm and beyond, exported proteins, as opposed to PV-resident proteins, must translocate
49 through a multiprotein complex in the PV membrane called Plasmodium translocon of exported
50 proteins (PTEX) (12-16).

51 In eukaryotic cells, secretory proteins generally have a hydrophobic signal peptide at their N
52 terminus, which targets the protein to the ER membrane. It is then cleaved by the ER protease
53 signal peptidase (SP) to release the secretory protein into the ER lumen. The mature protein
54 can reside in the ER or travel to other organelles depending on the presence of diverse
55 organelle-targeting signals in its sequence. The absence of any such signal generally takes the
56 protein to the plasma membrane to be released outside the cell (17). Similarly, *Plasmodium*
57 proteins with a signal peptide travel to the PV, and for further export into the RBC, an additional
58 signal is necessary (18-20).

59 A pentameric motif was found to be conserved in most exported proteins of *Plasmodium* and
60 was named the *Plasmodium* Export Element (PEXEL)/Host Targetting motif (21, 22). These
61 proteins are cotranslationally loaded into the ER by a stretch of hydrophobic residues
62 resembling a signal peptide, and the PEXEL motif is generally located after a non-conserved
63 "spacer" region following that signal (5, 23, 24). Minimal constructs capable of export must
64 include around 10 residues downstream of the PEXEL motif as well. However, there is very little
65 primary sequence conservation in these critical residues, and replacing them with a stretch of
66 alanine suffices for export (6, 23, 25).

67 The PEXEL motif is composed of arginine and leucine in the first and third positions and
68 aspartate, glutamine or glutamate in the fifth position, often expressed as RxLxE/Q/D.
69 Interestingly, the motif is cleaved between the third and the fourth residues by an ER resident
70 aspartic protease called plasmepsin V (PM V), and the mature proteins starting with a
71 comparatively less unique signal of xE/Q/D are then exported (26-28). This raises the question
72 that if the PEXEL motif's most conserved part (RxL) is cleaved off in the ER, how can it convey

73 export-specificity at the PV? Multiple hypotheses have been offered in this regard. One model is
74 that PM V hands over the cleaved PEXEL proteins to specific chaperones that guide them in the
75 secretory pathway till their delivery to PTEX (27). A recently published study proposed that
76 HSP101, a component of the PTEX translocon, binds to nascent PEXEL proteins at the ER and
77 takes them to the PTEX following PM V cleavage (29). Another model is that PEXEL proteins
78 enter the ER through a PM V-containing translocon that is distinct from the SP-containing
79 translocon, which specifies a selective route to the PTEX complex (4). Mature PEXEL proteins
80 are N-terminally acetylated, which has also been speculated to be a postmark for their eventual
81 export, though acetylation alone is insufficient to achieve export (30, 31). None of these theories
82 has been validated convincingly.

83 Taking a step back, several experiments have tested the assumption that the PEXEL motif
84 confers export capacity to *Plasmodium* proteins with disparate conclusions. Mutating the
85 conserved R and L, or deleting the PEXEL motif altogether in reporter constructs inhibited their
86 export to the RBC (23, 26, 32). However, these alterations affected the cleavage by PM V, and
87 thus only verified the requirement of the PEXEL motif for cleavage at the ER and not for RBC
88 export per se. More pertinent experiments in this regard would be to check the exportability of
89 mature reporters that are identical to PEXEL-cleaved reporters, albeit in the absence of the
90 PEXEL motif itself. One such construct was designed by removing the region following the
91 hydrophobic stretch to the RxL sequence of a PEXEL protein so that the mature reporter started
92 with the sequence xE after the cleavage by SP at the end of the hydrophobic stretch (27). It did
93 not get exported into the RBC, indicating that the PEXEL motif is required in nascent PEXEL
94 proteins for export. On the other hand, another study tested reporter constructs where the
95 mature parts of PEXEL proteins were preceded by a signal anchor (an ER loading signal,
96 similar to a signal peptide but without the signal cleavage site) and a self-cleaving viral capsid
97 protease sequence that cleaves the reporter right before the xE/Q/D sequences (33).

98 Interestingly, these reporters were exported into the RBC, suggesting that the signal for export
99 resides downstream of the PEXEL cleavage site and the motif itself is not required for export.
100 Reporters starting with mature N terminal residues of PEXEL proteins were also exported when
101 targeted to the ER by an internal transmembrane domain, supporting the later proposition (34).
102 In this study, we tested the essentiality of the PEXEL motif for *Plasmodium* protein export with
103 reporter constructs that generate identical mature proteins in the ER, albeit differing in the
104 presence or absence of a PEXEL motif. Our data support a model where the PEXEL motif is
105 required for the cleavage of a protein in the ER but is irrelevant for export to the RBC. Rather,
106 the mature N-terminal domain of PEXEL proteins alone determines their localization once they
107 reach the PV.

108 **Results**

109 **Serial fractionation can differentiate the localization of PV-resident and RBC-exported
110 protein.**

111 We expressed minimal constructs (containing the hydrophobic stretch, spacer, PEXEL motif and
112 short mature N termini of variable lengths) of three PEXEL proteins as well as a construct
113 containing the first 62 residues of the known PV-resident protein SERA5 whose signal peptide
114 cleavage site was previously determined (35). All were tagged C-terminally with eGFP (Fig. 1A,
115 S1). We integrated them for expression at the *attB* locus in the *P. falciparum* NF54^{attB} strain (36).
116 To determine their localization, we harvested 30h old parasite-infected RBCs and carried out a
117 cell fractionation/anti-GFP western blot strategy (Fig. 1B).

118 Cells were treated with tetanolysin, a bacterial toxin that selectively perforates the RBC
119 membrane (32, 37). Following centrifugation, we collected the supernatant as the infected RBC
120 cytoplasm fraction and further treated the pellet with saponin. Saponin permeabilizes the PV
121 membrane more efficiently than the PPM (38, 39). Supernatant from this treatment was

122 collected as the PV fraction and the pellet was then fully lysed in RIPA lysis buffer as the
123 intracellular parasite fraction. Western blotting of these fractions revealed the efficient export of
124 the mature PEXEL reporters into the RBC and the retention of the SERA5 reporter in the PV
125 (Fig 1C). We also probed the fractions with an anti-SERA5 antibody that does not recognize the
126 reporter fragment (40). It revealed an enrichment of the native protein in the PV. The ER protein
127 PM V was only detected in the intracellular parasite fraction (Fig 1C). These two proteins were
128 also probed in subsequent experiments as markers of consistent fractionation. In our blots, we
129 saw substantial free GFP in the intracellular parasite and PV fractions (marked with asterisks in
130 Fig. 1C). This steered us away from using fluorescent microscopy and cautioned against the
131 quantitative overinterpretation of previous studies.

132

133 **Mature N-terminal sequences of PEXEL proteins are sufficient for their export into the**
134 **RBC.**

135 To test the necessity of the PEXEL motif for export, we constructed fusion reporters of SERA5
136 and KAHRP, in which modules N-terminal to the cleavage site are combined with modules C-
137 terminal to the cleavage site (Fig. 2A, S1). The mature KAHRP reporter was efficiently cleaved
138 (presumably by SP) and exported when placed after the SERA5 signal peptide (Fig. 2B). This
139 suggests that its export signal resides C-terminal to the cleavage site and that neither the
140 PEXEL motif nor processing specifically by PM V is required for export. On the other hand, the
141 mature SERA5 reporter placed after the KAHRP RxL was cleaved (presumably by PM V), yet
142 the conserved PEXEL residues were not sufficient to turn a PV resident reporter into an
143 exported reporter. Therefore, a properly placed RxL is sufficient for cleavage in the ER but not
144 for export. Taken together, these results demonstrate that if a protein travels to the PV from the
145 ER, its mature N terminus determines its export capacity and not the pre-cleavage sequence.

146 It can be argued from the above experiments that mature PEXEL reporters were exported due
147 to the remnant part of the PEXEL, i.e. the xE/Q/D sequence at their N termini and the mature
148 SERA5 reporter (starting with TG) was not exported because it did not have this signature at its
149 N terminus (Fig. S1). We tested the importance of the semi-conserved 5th residue of PEXEL by
150 substituting it with alanine in both KAHRP and GBP-130 reporters. These substitutions did not
151 inhibit their export, indicating that the 5th residue of PEXEL is not required for RBC export (Fig.
152 2C).

153 **Substituting the hydrophobic stretch of the EMP3 reporter with the SERA5 signal peptide
154 restores export.**

155 Previously, a case was made in favour of the essentiality of the PEXEL motif for export with the
156 observation that the export of the minimal mature EMP3 reporter was abrogated when residues
157 between the hydrophobic stretch and the mature N terminus of EMP3, including the RxL, were
158 replaced with a single alanine. From this construct, the same mature reporter was produced,
159 presumably by the action of SP after the alanine at the end of the hydrophobic stretch, yet the
160 reporter was not exported (26). As this result is paradoxical to our conclusion, we decided to
161 test a similar EMP3 reporter ourselves (Fig. 3A(ii), S1) and found, as previously observed, that
162 the reporter did not pass the PV (Fig. 3B). Interestingly though, the level of the total mature
163 reporter in this deletion construct was significantly lower compared to the original reporter (Fig.
164 3C). We then fused the mature EMP3 reporter after the SERA5 signal peptide (Fig. 3A(iii)). The
165 total quantity and the export of the mature reporter from this construct were comparable to those
166 of the full EMP3 reporter (Fig. 3C). Using mass spectrometry, we confirmed that the N termini of
167 all three of these mature reporters were identical (Fig. S2).

168 Efficient export of the SERA5¹⁻²²-EMP3⁶³⁻⁸²-eGFP fusion reporter again confirmed that the
169 PEXEL motif is not essential for export and we hypothesized that the perplexing lack of export
170 of the EMP3¹⁻³⁶-A-EMP3⁶³⁻⁸²-eGFP construct had arisen from an inefficient cleavage after the

171 hydrophobic stretch by the SP, which led to the degradation of the reporter. Protein level and
172 export of the mature reporter were maintained when the nascent N-terminal residues of SERA5
173 were replaced with those from EMP3 (Fig. 3A (iv), B, C). When we did the same replacement in
174 the full-length, PEXEL-containing EMP3 reporter (fig 3A(v)), in addition to the exported mature
175 reporter, we also observed a higher molecular weight band in the parasite fraction whose size
176 corresponds to an alternative mature reporter starting from the SP cleavage site (Fig. 3B, C).
177 Because we do not observe this higher molecular weight band in the original full-length reporter,
178 it supports the argument that the signal cleavage site of EMP3 is non-functional. In any case, it
179 was clear from our tested EMP3 reporters that the export deficiency of the mature reporter from
180 the EMP3¹⁻³⁶-A-EMP3⁶³⁻⁸²-eGFP construct could be reversed by changing the hydrophobic
181 stretch of EMP3 without reintroducing the PEXEL motif.

182 **Putative structures of PEXEL protein mature N-termini resemble each other and are
183 different than those of PV-resident proteins.**

184 As the RBC-export signal of the PEXEL proteins seemingly resides at their mature N terminus,
185 we searched for commonalities in the first 10 amino acids following the cleavage sites of several
186 PEXEL proteins for which there was experimental proof of RBC export (Fig. 4A, Table S1). As
187 expected, there was barely any primary sequence conservation, except for the semi-conserved
188 second position, which we already found to be not essential for export (Fig. 2C). We then looked
189 at the AlphaFold structural predictions for that region of the selected proteins. Interestingly, most
190 of them are predicted to form an alpha-helical structure (Fig. 4B, Table S1), albeit with low
191 confidence scores. On the other hand, when we looked at the structures of the cognate residues
192 following the signal peptide cleavage sites of a few known soluble PV resident proteins (Fig. 4C,
193 Table S1), the majority of them had predicted random coil structures (Fig. 4D, Table S1). Based
194 on this, we hypothesized that an alpha-helical structure at the mature N terminus of the PEXEL
195 proteins is required for their export.

196 **Helix-breaking proline insertion did not abrogate the export of reporters to the RBC.**

197 To test this hypothesis, we designed minimal reporter constructs of KAHRP and EMP3 where
198 we inserted proline at the 3rd or 6th position of the mature reporters (Table S1). However, these
199 insertions did not abrogate the export of the reporter constructs (Fig. 5A). Although proline is
200 known to break alpha-helical structures, it might not work as such in the context of the KAHRP
201 and EMP3 mature N terminal sequences (41-44). Therefore, we tested two other reporters, one
202 where we placed a known alpha-helical sequence after the PEXEL cleavage site and another
203 where a proline insertion has been experimentally determined to break the alpha helix
204 conformation (Fig. S1) (45, 46). Using CD spectrometry, we verified the supposed
205 conformations of these two peptides in vitro (Fig. 5B). However, *in vivo*, both of these reporters
206 were exported into the RBC with similar efficiency (Fig. 5C, S1).

207

208 **Discussion**

209 In this study, we have reevaluated the function of the PEXEL motif as the signal for the export of
210 *Plasmodium* proteins into the RBC and found that it is not a direct prerequisite for export. We
211 tested two PEXEL reporter constructs that conferred export as long as their export-competent
212 mature N termini were exposed either by SP cleavage or by PEXEL cleavage. On the other
213 hand, introducing a PEXEL cleavage site in a PV resident reporter allowed proper cleavage
214 without altering its PV localization.

215 We also tested a previously published reporter (Fig. 3A(ii)) whose export was blocked upon
216 removal of the PEXEL motif. We made variants of this reporter to test if the absence of the
217 PEXEL motif was the cause of its export deficiency and found that replacing its ER targeting
218 signal remedied the defect. The addition of the SERA5 signal peptide before the mature part of
219 this reporter (Fig. 3A(iv)) possibly directed it to the SP-containing ER translocon, whereas the

220 EMP3¹⁻¹³-SERA5³⁻²²-EMP3³⁷⁻⁸²-eGFP ((Fig. 3A(v)) construct was likely targeted to both PM V
221 and SP-containing translocons, maturing into two alternative reporters. In the absence of both
222 SP and PM V cleavage sites, the EMP3¹⁻³⁶-EMP3⁶³⁻⁸²-eGFP (Fig. 3A(ii)) construct was likely
223 degraded by Endoplasmic Reticulum Associated Protein Degradation (ERAD) or proteasomal-
224 degradation pathway. It is not completely clear why the small amount of the mature reporter
225 liberated from this construct was not exported despite having an export-competent mature N
226 terminus. We suspect that it might be related to the ER entry of the reporter because the knock-
227 down of PfSPC25 and PfSec62, two components of the ER translocon required for protein
228 import into the ER, also exhibited a decrease in protein levels for some native PEXEL proteins
229 (4). Overall, more pertinent to the scope of this study, we showed that export could be re-
230 established by introducing a functional SP cleavage site in this PEXEL-less reporter.

231 In light of these observations, two obvious questions emanate. One, if the PEXEL motif is not
232 directly involved in protein export to RBC, what is its function and why is it conserved in so
233 many exported proteins? And two, what is the real signal for export in the PEXEL proteins? The
234 experiments presented here and other published experiments indicate that the PEXEL motif
235 serves as a very potent cleavage signal at the ER of the parasite (26, 27, 30). We have shown
236 that the hydrophobic stretch of the PEXEL protein EMP3 lacks a strong signal cleavage site,
237 and that is also the case for several other PEXEL proteins tested before. For example, removing
238 the RxL from PEXEL protein KAHRP results in more full-length reporter accumulation than for
239 reporters cleaved after the hydrophobic stretch (5, 32). Another PEXEL protein HRPII
240 accumulated as the full-length protein when PM V activity was inhibited (27). Pharmacological
241 inhibition of PM V resulted in the accumulation of full-length EMP3 reporters, which strongly
242 supports our conclusion (47, 48). Therefore, we think the PEXEL motif can be considered as a
243 specialized signal cleavage site located distally from a hydrophobic signal anchor sequence of
244 the PEXEL proteins and PM V acts as a non-canonical signal peptidase in *Plasmodium*. As the

245 exported proteins are first loaded into the ER, it is unsurprising that a lot of them possess this
246 motif.

247 In our attempt to address the second question, we searched for commonalities at the mature N
248 terminus of several experimentally validated exported PEXEL proteins by analyzing their
249 AlphaFold structure. We found an abundance of alpha-helical conformational predictions, which
250 were absent from the corresponding sequences of several PV-resident proteins. A huge caveat
251 of this analysis is that this structural prediction is based on the whole protein sequence where
252 the mature N terminus is not yet liberated. Though the alpha helix is a very common secondary
253 structure in proteins and not all the exported N termini had alpha-helical predictions, we decided
254 to test its worth as the export signal because it is clear from the nonconserved nature of the
255 primary sequences of exported N-termini that the export signal would not be a very unique one.
256 Our results argue against the hypothesis that a simple alpha-helical structure at the mature N
257 terminus would suffice as an export signal. However, this approach needs further refinements,
258 and the experimental determination of the structure of the mature N termini of multiple PEXEL
259 proteins could be enlightening. N termini of several PEXEL-negative exported proteins (PNEPs)
260 also function as efficient export signals, indicating a common mechanism of selection of
261 exported proteins (34). The role of N terminal acetylation is another interesting potential export
262 signal. However, there are also examples of N terminally acetylated PV resident reporters (33),
263 which indicates that it is not sufficient in itself as an export signal. Our data also supports this
264 view as our export-deficient mature EMP3 reporter was acetylated. For now, the real signal for
265 export is still unknown except that it is very promiscuous at the level of primary sequence and
266 functions as an export signal only in the context of the N-terminal end of a protein.

267 As discussed in the introduction, multiple models have been proposed to connect two events in
268 PEXEL protein trafficking, the cleavage by Plasmepsin V at the ER and the export through the
269 PTEX channel at the PV membrane. Our conclusion indicates that these two events are

270 independent of each other. Therefore, at least theoretically, there is no need for special sorting
271 or chaperoning of the export-destined proteins from the ER; the selection can take place at the
272 PV in its entirety. In the simplest scenario, an export-competent N terminus is recognized and
273 differentiated from the export-incompetent N termini of PV-resident proteins by the PTEX
274 complex (Fig. 6).

275 Another important implication of our conclusion is that there might be PEXEL proteins that do
276 not get exported into the RBC, but rather travel to other compartments from the ER. Examples
277 of such proteins are rare but not nonexistent. For example, RESA is a dense granule protein
278 that is cleaved by PM V in vitro and in vivo (23, 49, 50). Plasmepsin IX has an appropriately
279 located PEXEL motif but localizes to the rhoptries (51). Therefore, it is important to
280 experimentally determine the localization of PEXEL proteins rather than assuming that they are
281 exported.

282 **Materials and Methods**

283 **Maintenance of parasite cultures.**

284 *P. falciparum* strain NF54^{attB} was cultured in RPMI1640 (Gibco) media supplemented with
285 0.25% (w/v) Albumax (Gibco), 15 mg/l hypoxanthine, 110 mg/l sodium pyruvate, 1.19 g/l Hepes,
286 2.52 g/l sodium bicarbonate, 2 g/l glucose, and 10 mg/l gentamicin. Hematocrit concentration
287 was maintained at 2%. Parasites expressing the reporters were maintained in 5nM WR99210.
288 Human RBCs were collected from St Louis Children's Hospital blood bank. Cultures were kept
289 inside gas (5% O₂, 5% CO₂, and 90% N₂) chambers at 37°C.

290 **Plasmid construction and transfection.**

291 A donor plasmid containing an attP site integrates into the *cg6 attB* locus of the NF54^{attB} strain
292 when co-transfected with the pINT plasmid coding for Bxb1 integrase (52). All our reporter

293 constructs were integrated into the genome using this strategy. They were expressed under the
294 control of HSP86 (PF3D7_0708400) promoter and 3'UTR.

295 We first cloned the eGFP sequence between the AvrII and EagI sites of the pEOE-attP vector
296 (53) using In-Fusion cloning (Clontech). KAHRP, GBP130, EMP3 and SERA5 minimal regions
297 were amplified from NF54 mRNA isolated with TRIzol (ThermoFisher) using the SuperScript
298 RT-PCR kit (Invitrogen). They were cloned into the Xhol-AvrII site of the pEOE-attP-eGFP
299 vector using In-Fusion cloning. All the fusion constructs were made from the appropriate
300 backbone vector with the QuikChange Lightning Multi Site Directed Mutagenesis kit (Agilent
301 Technologies). Reporters were sequenced from Genewiz before transfecting the parasites. All
302 the primers used for cloning and sequencing were purchased from IDT and their sequences are
303 listed in Table S2.

304 Plasmids were isolated from bacterial clones using Nucleobond Xtra Midi (MN) kit and
305 electroporated into the parasite as previously described (53). Successfully integrated clones
306 were selected with media containing 5nM WR99210 from 36h post-transfection onwards as the
307 donor plasmid codes for human dihydrofolate reductase (hDHFR) as the selection marker (54).

308 **Culture synchronization.**

309 An asynchronous parasite culture was washed in RPMI medium and then passed through a
310 MACS LD magnet column (Miltenyi Biotec). NF54^{attB} parasites complete a replication cycle in 44
311 to 48h under our culture condition and older parasites (>28h old) are captured on the column
312 due to the presence of paramagnetic hemozoin crystal (55). They were eluted in a prewarmed
313 2% hematocrit culture and incubated for 3 hours for egress and invasion. This culture was then
314 treated with 5% sorbitol at 37°C for 10 minutes to osmotically lyse older parasites (due to the
315 establishment of the new permeability pathway), leaving the newly invaded rings intact (56, 57).

316 Synchronized parasites were thereafter maintained by constantly shaking at 80 RPM under 5%
317 parasitemia to maintain the synchrony.

318 **Compartment fractionation.**

319 Around 30h old synchronous parasite cultures were passed through the magnetic columns to
320 harvest only infected RBCs. This step was critical because otherwise, haemoglobin from
321 uninfected RBCs mask the western blot signals from a sample. Infected RBCs were washed
322 twice in PBS and then treated with 50HU tetanolysin (Biological Laboratory Inc) in 60µl PBS
323 plus HALT-Protease Inhibitor (PI) Cocktail (Thermo Fisher Scientific) for 10 minutes at room
324 temperature. Following centrifugation at 1500g for 2 minutes, the supernatants were collected
325 as the RBC fractions. The pellets were washed twice in PBS before treating with 60µl of 0.035%
326 saponin in PBS-PI for 5 minutes on ice. Supernatants were collected as PV fractions and the
327 pellets were washed twice before adding 60µl RIPA lysis buffer with PI. These were rapidly
328 frozen and thawed using liquid nitrogen and a 42°C water bath three times and the supernatants
329 were collected as the parasite fractions after 15 minutes of centrifugation at 4°C for 10 minutes.
330 20µl of 4X sample buffer with β-mercaptoethanol as the reducing agent was mixed with each
331 sample and boiled for 5 minutes before storage at -20°C.

332 **SDS PAGE and western blotting.**

333 15 µl samples from each fraction were run in a 4-15% gradient gel (Biorad) and then transferred
334 to a PVDF membrane for western blotting. We used mouse anti-GFP (Takara) at 1:1000
335 dilution, mouse anti-PM V (58) at 1:250 dilution and rabbit anti-SERA5 (40) at 1:1000 dilution as
336 primary antibodies and IRDye conjugated goat secondary antibodies (LICOR) at 1:15000
337 dilution. Blots were incubated with primary antibodies O/N at 4°C and with secondary antibodies
338 for 1 hour at room temperature. Licor Odessey blocking buffer was used for blocking and
339 primary antibody dilutions and PBS plus 1% tween-20 was used to prepare secondary antibody

340 dilutions as well as in all the washing steps. Blots were imaged in a Licor Odyssey imager and
341 images were prepared (and quantified when required) using Image Studio Lite 5.2 (Licor). The
342 protein level of EMP3 reporters was calculated by adding the intensities of reporter GFP bands
343 (excluding the free GFP or any higher molecular weight band) from all three fractions and then
344 normalizing that value for the PM V band intensity from the parasite fraction. Statistical analyses
345 were performed in GraphPad Prism.

346 **Preparation of samples for mass spectrometry.**

347 Infected RBCs were harvested using magnetic columns from 300ml 5% parasitemia cultures
348 and then directly lysed with 500ul GFP-trap lysis buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl,
349 0.5 mM EDTA, 0.5 % Nonidet™ P40 Substitute) by freeze-thaw. Supernatants were incubated
350 with GFP-trap magnetic agarose (ChromoTek) at 4°C for 1 hour with continuous rotation. The
351 beads were washed 3 times with wash buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.05 %
352 Nonidet™ P40 Substitute, 0.5 mM EDTA) and then 50 µl 2x sample buffer with β-
353 mercaptoethanol was added to the beads and boiled for 5 minutes for elution. All the eluted
354 samples were run in a Biorad gradient gel. Specific bands were visualized with Coomassie blue
355 staining and cut out of the gel for submission to the Mass Spectrometry Technology Access
356 Center.

357 **Proteomics and data analysis.**

358 The protein gel bands were subjected to in-gel digestion. Each gel band was washed in 100 mM
359 Ammonium Bicarbonate (AmBic)/Acetonitrile (ACN), reduced with 10 mM dithiothreitol, and
360 cysteines were alkylated with 100mM iodoacetamide. Gel bands were washed in 100mM
361 AmBic/ACN prior to adding 1 µg trypsin for overnight incubation at 37°C. The supernatant
362 containing peptides was saved into a new tube. Gel was washed at room temperature for ten
363 minutes with gentle shaking in 50% ACN/5% FA, and the supernatant was saved to peptide

364 solution. The wash step was repeated each by 80% ACN/5% FA, and 100% ACN, and all
365 supernatant was saved and then subject to the speedvac dry. After lyophilization, peptides were
366 reconstituted with 0.1% FA in water. Peptides were injected onto a Neo trap cartridge coupled
367 with an analytical column (75 μ m ID x 50 cm PepMapTM Neo C18, 2 μ m). Samples were separated
368 using a linear gradient of solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in
369 ACN) using a Vanquish Neo UHPLC System coupled to an Orbitrap Eclipse Tribrid Mass
370 Spectrometer with FAIMS Pro Duo interface (Thermo Fisher Scientific).

371 The resulting tandem MS data was queried for protein identification against the custom database,
372 Plasmodium falciparum 3D7 database plus the 3 custom proteins (The cleaved form of EMP3(i),
373 (ii), and (iii)), using Mascot v.2.8.0 (Matrix Science). The following modifications were set as
374 search parameters: peptide mass tolerance at 20 ppm, trypsin enzyme, 3 allowed missed
375 cleavage sites, carbamidomethylated cysteine (static modification), and oxidized methionine,
376 deaminated asparagine/glutamine, and protein N-term acetylation (variable modification). The
377 search results were validated with 1% FDR of protein threshold and 90% of peptide threshold
378 using Scaffold v5.2.1 (Proteome Software). Data are available via ProteomeXchange with
379 identifier PXD041451. Please use the following credential for review: Username:
380 reviewer_pxd041451@ebi.ac.uk Password: m25z5Zvm.

381 **CD Spectrometry.**

382 Custom peptides with N-terminal acetylation were purchased from Biomatik. Peptides were
383 diluted in 10 nM potassium phosphate buffer with 40% TFE with a final concentration of 0.2 mg/ml.
384 CD spectra were recorded on a JASCO-J715 polarimeter (JASCO, Tokyo, Japan) over the
385 wavelength range 190-250 nm in a 1-mm path length quartz cuvette using a step size of 0.1 nm.
386 For each wavelength, three scans were performed. AVIV software was used for background
387 subtraction. Mean residual ellipticity $[\theta]$ vs Wavelength plots were generated using CDtoolX (59)
388 and online server K2D3 (60) was used to determine the alpha-helical composition of the peptides.

389 **Analysis of PEXEL and PV-resident protein sequences.**

390 Experimentally validated exported PEXEL proteins were selected from the list of the PEXEL
391 proteins from Jonsdottir TK et al. (1). If multiple proteins had the same primary sequence at their
392 mature N termini (mainly from exported protein families like RESA, RIFIN, STEVOR etc.), only
393 one sequence was included in the list. PV-resident proteins were manually selected by
394 reviewing several publications. The relevant part of their protein sequences and AlphaFold
395 structures were taken from the Plasmodb database (61). A, B and C were used as codes if a
396 particular residue was part of an alpha-helix, beta-sheet or random coil structure. Frequency
397 plots of the amino acids or structures were created using the Weblogo tool (62).

398 **Acknowledgements**

399 Mass Spectrometry analyses were performed by the Mass Spectrometry Technology Access
400 Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of
401 Medicine. We thank the group of Dr Michael Blackman from The Francis Crick Institute for the
402 anti-SERA5 antibody and the group of Dr Sergej Djuranovic from the department of Cell Biology
403 & Physiology at Washington University School of Medicine for the eGFP construct. This work
404 was supported by NIH grant AI17106201.

405

406 **Figure legends**

407 **Figure 1: Minimal reporter constructs and their localization.** (A) Schematic representation
408 of minimal reporter constructs. (i) (ii) and (iii) are PEXEL reporters and (iv) is a PV resident
409 reporter. Different segments of PEXEL reporters are delineated by dashed lines and labelled at
410 the bottom for (iv). Residue numbers starting from the nascent N terminus are printed within
411 each segment and the PEXEL motif residues are highlighted in bold red. (B) Compartment
412 fractionation strategy. RBCM: Red blood cell membrane; PVM: Parasitophorous vacuole

413 membrane; PPM: Parasite plasma membrane. (C) Representative western blots of different
414 fractions from RBCs infected with *P. falciparum* expressing the reporters from A. Primary
415 antibodies that were used to probe the blots are labelled at the left. The bottom band (marked
416 with asterisks) in the anti-GFP blots is the free GFP band devoid of mature reporter portions.
417 Each construct was tested at least 3 times.

418 **Figure 2: Investigation of the role of the PEXEL motif in protein export to the RBC. (A)**
419 Schematic representation of KAHRP and SERA5 fusion reporters (ii and iii). Original reporters (i
420 and iv) are also shown for reference. (B) Representative western blots of different fractions from
421 RBCs infected with *P. falciparum* expressing the reporters from A. Primary antibodies that were
422 used to probe the blots are labelled at the left. The experiment was performed twice. (C)
423 Representative western blots of different fractions from RBCs infected with *P. falciparum*
424 expressing KAHRP and GBP130 reporters with alanine substituted semi-conserved 5th positions
425 of the PEXEL motif. Each construct was tested twice.

426 **Figure 3: Processing, export and comparison of the protein level of different EMP3**
427 **reporters.** (A) Schematic representation of the EMP3 reporter constructs. An alternative mature
428 N terminus for the last construct is marked at the bottom (B) Representative western blots of
429 different fractions from RBCs infected with *P. falciparum* expressing the reporters from A.
430 Primary antibodies that were used to probe the blots are labelled at the left. Note the presence
431 of an alternative mature form (marked with a purple arrow) for the last reporter in the parasite
432 fraction. (C) Normalized western blot quantification of the standard mature forms of the
433 reporters. Signals were combined from each fraction and then normalized to the PM V signal
434 from the parasite fraction. * denotes a $P \leq 0.05$ and ** denotes $P \leq 0.01$ in Fisher's LSD test.
435 The P-value for the one-way ANOVA was 0.0113. Mean and standard deviations from 2 or 3
436 biological replicates are shown along with individual data points.

437 **Figure 4: Primary sequences and putative structures of PEXEL and PV-resident proteins.**

438 (A) Amino acid frequency plots of 59 experimentally validated exported PEXEL proteins starting
439 from the first position of the PEXEL motif to the 10th position of the mature N terminus. (B)
440 Frequency plot of AlphaFold structural predictions of the same residues shown in panel (A),
441 where “A” denotes alpha-helical, “B” denotes beta-sheet and “C” denotes random coil. (C)
442 Amino acid frequency plots of 13 experimentally validated PV-resident proteins starting from the
443 -3 position of the signal peptide cleavage site to the 10th position of the mature N terminus. (D)
444 Frequency plot of AlphaFold structural predictions of the same residues shown in panel (A), with
445 the letters denoting the same structural conformation as in panel (B).

446 **Figure 5: Investigation of the role of alpha-helical mature N terminus in protein export.** (A)

447 Representative western blots of different fractions of the KAHRP and EMP3 reporters with
448 proline insertions at the 3rd or the 6th position of their mature N terminal region. The experiment
449 was performed twice. (B) CD spectra of two small peptides, one of which takes an alpha-helical
450 conformation in vitro whereas the other one loses the conformation due to alanine to proline
451 substitution. (C) Representative western blots of different fractions from RBCs infected with *P.*
452 *falciparum* expressing two artificially designed PEXEL reporters with the mature N terminal
453 sequences shown in the construct name. The experiment was performed twice.

454 **Figure 6: A model showing the trafficking of *P. falciparum* secretory proteins.** Secretory

455 proteins are targetted to the ER by their hydrophobic stretch and then cleaved by PM V at the
456 PEXEL motif or by SP at the signal cleavage site, followed by acetylation. The cleavage
457 liberates mature N termini that can be export-competent (shown in red) or incompetent (shown
458 in black). There might be other organelle-targeting signals also in the mature proteins that direct
459 them to their respective target organelle. Mature proteins secreted into the PV are recognized
460 and loaded into the PTEX translocon based on the export competency of their mature N
461 terminus.

462 **Supplementary Figure 1: Full sequence of all the reporters in this study.** eGFP sequence
463 is not shown as well as the first 29 residues of GBP130. Bold arrows denote cleavage sites.
464 Sequences from PEXEL proteins are printed in red. Substitutions and insertions are highlighted
465 in bold purple.

466 **Supplementary Figure 2: Coverage map and most N terminal peptide spectrum of EMP3**
467 **reporters.** Construct names are on top. The coverage map highlights detected peptides at the
468 95% threshold. Green shades in the coverage map denote post-translational modification.

469 **Supplementary table 1: List of PEXEL proteins and PV resident proteins along with their**
470 **mature N terminal sequences and AlphaFold structural predictions.** These sequences
471 were used to generate the frequency plots shown in Figure 4. For the AlphaFold structural
472 predictions, “a” denotes alpha-helical, “b” denotes beta-sheet and “c” denotes random coil.

473 **Supplementary table 2: List of primers used in this study**

474

475 **References:**

- 476 1. Jonsdottir TK, Gabriela M, Crabb BS, T FdK-W, Gilson PR. Defining the Essential Exportome of the
477 Malaria Parasite. *Trends in parasitology.* 2021;37(7):664-75.
- 478 2. Spillman NJ, Beck JR, Goldberg DE. Protein export into malaria parasite-infected erythrocytes:
479 mechanisms and functional consequences. *Annual review of biochemistry.* 2015;84:813-41.
- 480 3. Crabb BS, de Koning-Ward TF, Gilson PR. Protein export in Plasmodium parasites: from the
481 endoplasmic reticulum to the vacuolar export machine. *International journal for parasitology.*
2010;40(5):509-13.
- 483 4. Marapana DS, Dagley LF, Sandow JJ, Nebl T, Triglia T, Pasternak M, et al. Plasmepsin V cleaves
484 malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the
485 erythrocyte. *Nature microbiology.* 2018;3(9):1010-22.
- 486 5. Boddey JA, O'Neill MT, Lopaticki S, Carvalho TG, Hodder AN, Nebl T, et al. Export of malaria
487 proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-
488 phosphate binding. *Nature communications.* 2016;7:10470.
- 489 6. Knuepfer E, Rug M, Cowman AF. Function of the plasmodium export element can be blocked by
490 green fluorescent protein. *Molecular and biochemical parasitology.* 2005;142(2):258-62.
- 491 7. Wickham ME, Rug M, Ralph SA, Klonis N, McFadden GI, Tilley L, et al. Trafficking and assembly of
492 the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. *The EMBO journal.*
2001;20(20):5636-49.

494 8. Goldberg DE, Zimmerberg J. Hardly Vacuous: The Parasitophorous Vacuolar Membrane of
495 Malaria Parasites. *Trends in parasitology*. 2020;36(2):138-46.

496 9. Lingelbach K, Joiner KA. The parasitophorous vacuole membrane surrounding Plasmodium and
497 Toxoplasma: an unusual compartment in infected cells. *Journal of cell science*. 1998;111 (Pt 11):1467-
498 75.

499 10. Bannister LH, Hopkins JM, Fowler RE, Krishna S, Mitchell GH. A brief illustrated guide to the
500 ultrastructure of Plasmodium falciparum asexual blood stages. *Parasitology today* (Personal ed).
501 2000;16(10):427-33.

502 11. Garten M, Beck JR, Roth R, Tenkova-Heuser T, Heuser J, Istvan ES, et al. Contacting domains
503 segregate a lipid transporter from a solute transporter in the malarial host-parasite interface. *Nature communications*. 2020;11(1):3825.

504 12. Ho CM, Beck JR, Lai M, Cui Y, Goldberg DE, Egea PF, et al. Malaria parasite translocon structure
505 and mechanism of effector export. *Nature*. 2018;561(7721):70-5.

506 13. Chisholm SA, Kalanon M, Nebl T, Sanders PR, Matthews KM, Dickerman BK, et al. The malaria
507 PTEX component PTEX88 interacts most closely with HSP101 at the host-parasite interface. *The FEBS journal*.
508 2018;285(11):2037-55.

509 14. Elsworth B, Sanders PR, Nebl T, Batinovic S, Kalanon M, Nie CQ, et al. Proteomic analysis reveals
510 novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability
511 upon truncation of the core PTEX component, PTEX150. *Cellular microbiology*. 2016;18(11):1551-69.

512 15. Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, et al. PTEX is an essential
513 nexus for protein export in malaria parasites. *Nature*. 2014;511(7511):587-91.

514 16. Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates export of
515 diverse malaria effectors into host erythrocytes. *Nature*. 2014;511(7511):592-5.

516 17. Viotti C. ER to Golgi-Dependent Protein Secretion: The Conventional Pathway. *Methods in
517 molecular biology* (Clifton, NJ). 2016;1459:3-29.

518 18. Cheresh P, Harrison T, Fujioka H, Haldar K. Targeting the malarial plastid via the parasitophorous
519 vacuole. *The Journal of biological chemistry*. 2002;277(18):16265-77.

520 19. Waller RF, Reed MB, Cowman AF, McFadden GI. Protein trafficking to the plastid of Plasmodium
521 falciparum is via the secretory pathway. *The EMBO journal*. 2000;19(8):1794-802.

522 20. Adisa A, Rug M, Klonis N, Foley M, Cowman AF, Tilley L. The signal sequence of exported
523 protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria
524 parasites. *The Journal of biological chemistry*. 2003;278(8):6532-42.

525 21. Marti M, Good RT, Rug M, Knueper E, Cowman AF. Targeting malaria virulence and remodeling
526 proteins to the host erythrocyte. *Science (New York, NY)*. 2004;306(5703):1930-3.

527 22. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estráño C, et al. A host-
528 targeting signal in virulence proteins reveals a secretome in malarial infection. *Science (New York, NY)*.
529 2004;306(5703):1934-7.

530 23. Boddey JA, Carvalho TG, Hodder AN, Sargeant TJ, Sleebs BE, Marapana D, et al. Role of
531 plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. *Traffic*
532 (Copenhagen, Denmark). 2013;14(5):532-50.

533 24. Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP, et al. Lineage-specific expansion
534 of proteins exported to erythrocytes in malaria parasites. *Genome biology*. 2006;7(2):R12.

535 25. Rhiel M, Bittl V, Tribensky A, Charnaud SC, Strecker M, Müller S, et al. Trafficking of the exported
536 P. falciparum chaperone PfHsp70x. *Scientific reports*. 2016;6:36174.

537 26. Boddey JA, Hodder AN, Günther S, Gilson PR, Patsiouras H, Kapp EA, et al. An aspartyl protease
538 directs malaria effector proteins to the host cell. *Nature*. 2010;463(7281):627-31.

539 27. Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE. Plasmepsin V licenses
540 Plasmodium proteins for export into the host erythrocyte. *Nature*. 2010;463(7281):632-6.

542 28. Osborne AR, Speicher KD, Tamez PA, Bhattacharjee S, Speicher DW, Haldar K. The host targeting
543 motif in exported Plasmodium proteins is cleaved in the parasite endoplasmic reticulum. Molecular and
544 biochemical parasitology. 2010;171(1):25-31.

545 29. Gabriela M, Matthews KM, Boshoven C, Kouskousis B, Jonsdottir TK, Bullen HE, et al. A revised
546 mechanism for how Plasmodium falciparum recruits and exports proteins into its erythrocytic host cell.
547 PLoS pathogens. 2022;18(2):e1009977.

548 30. Chang HH, Falick AM, Carlton PM, Sedat JW, DeRisi JL, Marletta MA. N-terminal processing of
549 proteins exported by malaria parasites. Molecular and biochemical parasitology. 2008;160(2):107-15.

550 31. Polino AJ, Hasan MM, Floyd K, Avila-Cruz Y, Yang Y, Goldberg DE. An essential endoplasmic
551 reticulum-resident N-acetyltransferase ortholog in Plasmodium falciparum. Journal of cell science.
552 2023;136(6).

553 32. Boddey JA, Moritz RL, Simpson RJ, Cowman AF. Role of the Plasmodium export element in
554 trafficking parasite proteins to the infected erythrocyte. Traffic (Copenhagen, Denmark).
555 2009;10(3):285-99.

556 33. Tarr SJ, Cryar A, Thalassinos K, Haldar K, Osborne AR. The C-terminal portion of the cleaved HT
557 motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host
558 cell. Molecular microbiology. 2013;87(4):835-50.

559 34. Grüring C, Heiber A, Kruse F, Flemming S, Franci G, Colombo SF, et al. Uncovering common
560 principles in protein export of malaria parasites. Cell host & microbe. 2012;12(5):717-29.

561 35. Debrabant A, Maes P, Delplace P, Dubremetz JF, Tartar A, Camus D. Intramolecular mapping of
562 Plasmodium falciparum P126 proteolytic fragments by N-terminal amino acid sequencing. Molecular
563 and biochemical parasitology. 1992;53(1-2):89-95.

564 36. Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, Eappen AG, et al. Quantitative assessment
565 of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by
566 methylene blue. Proceedings of the National Academy of Sciences of the United States of America.
567 2011;108(47):E1214-23.

568 37. Blumenthal R, Habig WH. Mechanism of tetanolysin-induced membrane damage: studies with
569 black lipid membranes. Journal of bacteriology. 1984;157(1):321-3.

570 38. Bhatnagar S, Nicklas S, Morrisey JM, Goldberg DE, Vaidya AB. Diverse Chemical Compounds
571 Target Plasmodium falciparum Plasma Membrane Lipid Homeostasis. ACS infectious diseases.
572 2019;5(4):550-8.

573 39. Elandalloussi LM, Smith PJ. Preparation of pure and intact Plasmodium falciparum plasma
574 membrane vesicles and partial characterisation of the plasma membrane ATPase. Malaria journal.
575 2002;1:6.

576 40. Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C, Baker DA, et al. Malaria parasite
577 cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and
578 egress. PLoS pathogens. 2013;9(5):e1003344.

579 41. O'Neil KT, DeGrado WF. A thermodynamic scale for the helix-forming tendencies of the
580 commonly occurring amino acids. Science (New York, NY). 1990;250(4981):646-51.

581 42. Woolfson DN, Williams DH. The influence of proline residues on alpha-helical structure. FEBS
582 letters. 1990;277(1-2):185-8.

583 43. Strehlow KG, Robertson AD, Baldwin RL. Proline for alanine substitutions in the C-peptide helix
584 of ribonuclease A. Biochemistry. 1991;30(23):5810-4.

585 44. Li SC, Goto NK, Williams KA, Deber CM. Alpha-helical, but not beta-sheet, propensity of proline
586 is determined by peptide environment. Proceedings of the National Academy of Sciences of the United
587 States of America. 1996;93(13):6676-81.

588 45. Chakrabarty A, Kortemme T, Baldwin RL. Helix propensities of the amino acids measured in
589 alanine-based peptides without helix-stabilizing side-chain interactions. *Protein science : a publication of*
590 the Protein Society. 1994;3(5):843-52.

591 46. Rohl CA, Chakrabarty A, Baldwin RL. Helix propagation and N-cap propensities of the amino
592 acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. *Protein science : a*
593 *publication of the Protein Society*. 1996;5(12):2623-37.

594 47. Gazdik M, Jarman KE, O'Neill MT, Hodder AN, Lowes KN, Jousset Sabroux H, et al. Exploration of
595 the P3 region of PEXEL peptidomimetics leads to a potent inhibitor of the Plasmodium protease,
596 plasmepsin V. *Bioorganic & medicinal chemistry*. 2016;24(9):1993-2010.

597 48. Sleebs BE, Lopaticki S, Marapana DS, O'Neill MT, Rajasekaran P, Gazdik M, et al. Inhibition of
598 Plasmepsin V activity demonstrates its essential role in protein export, PfEMP1 display, and survival of
599 malaria parasites. *PLoS biology*. 2014;12(7):e1001897.

600 49. Culvenor JG, Day KP, Anders RF. Plasmodium falciparum ring-infected erythrocyte surface
601 antigen is released from merozoite dense granules after erythrocyte invasion. *Infection and immunity*.
602 1991;59(3):1183-7.

603 50. Aikawa M, Torii M, Sjölander A, Berzins K, Perlmann P, Miller LH. Pf155/RESA antigen is localized
604 in dense granules of Plasmodium falciparum merozoites. *Experimental parasitology*. 1990;71(3):326-9.

605 51. Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, et al. Plasmepsins IX and X are
606 essential and druggable mediators of malaria parasite egress and invasion. *Science (New York, NY)*.
607 2017;358(6362):518-22.

608 52. Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, Jacobs WR, Jr., et al. Efficient site-
609 specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1
610 integrase. *Nature methods*. 2006;3(8):615-21.

611 53. Polino AJ, Miller JJ, Bhakat S, Mukherjee S, Bobba S, Bowman GR, et al. The nepenthesin insert
612 in the Plasmodium falciparum aspartic protease plasmepsin V is necessary for enzyme function. *The*
613 *Journal of biological chemistry*. 2022;298(9):102355.

614 54. de Koning-Ward TF, Fidock DA, Thaty V, Menard R, van Spaendonk RM, Waters AP, et al. The
615 selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the
616 Plasmodium berghei genome. *Molecular and biochemical parasitology*. 2000;106(2):199-212.

617 55. Egan TJ. Recent advances in understanding the mechanism of hemozoin (malaria pigment)
618 formation. *Journal of inorganic biochemistry*. 2008;102(5-6):1288-99.

619 56. Kutner S, Breuer WV, Ginsburg H, Aley SB, Cabantchik ZI. Characterization of permeation
620 pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium
621 falciparum: association with parasite development. *Journal of cellular physiology*. 1985;125(3):521-7.

622 57. Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in
623 culture. *The Journal of parasitology*. 1979;65(3):418-20.

624 58. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE. Four plasmepsins are active in
625 the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. *Proceedings*
626 *of the National Academy of Sciences of the United States of America*. 2002;99(2):990-5.

627 59. Miles AJ, Wallace BA. CDtoolX, a downloadable software package for processing and analyses of
628 circular dichroism spectroscopic data. *Protein science : a publication of the Protein Society*.
629 2018;27(9):1717-22.

630 60. Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C. Prediction of protein secondary structure
631 from circular dichroism using theoretically derived spectra. *Proteins*. 2012;80(2):374-81.

632 61. Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY, Bažant W, et al. VEuPathDB: the
633 eukaryotic pathogen, vector and host bioinformatics resource center. *Nucleic acids research*.
634 2022;50(D1):D898-d911.

635 62. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome
636 research. 2004;14(6):1188-90.

637

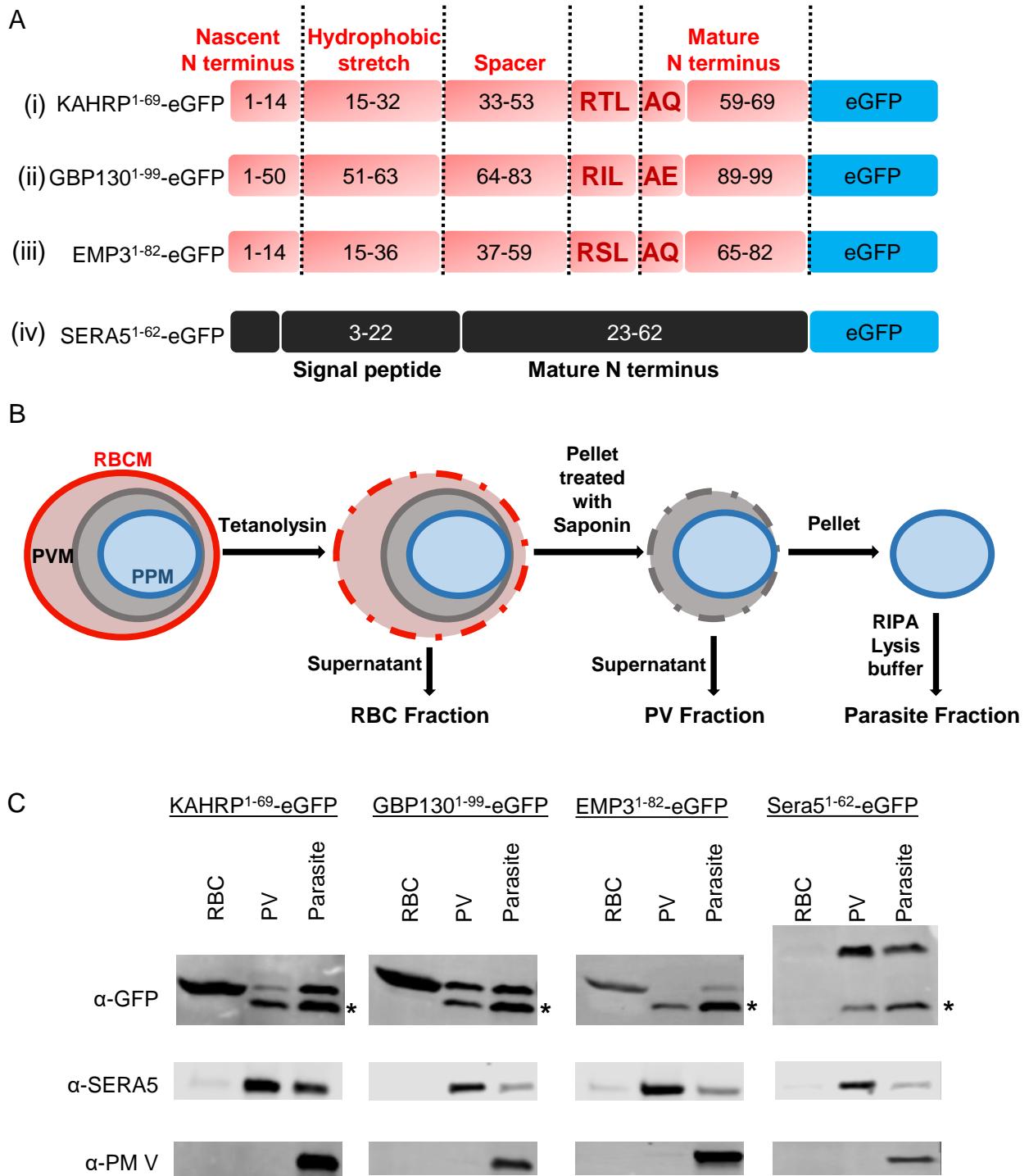
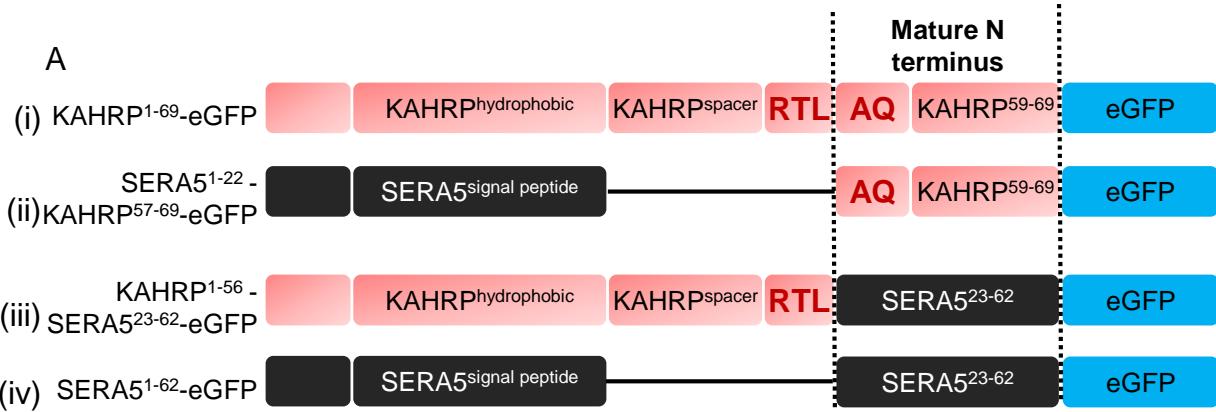
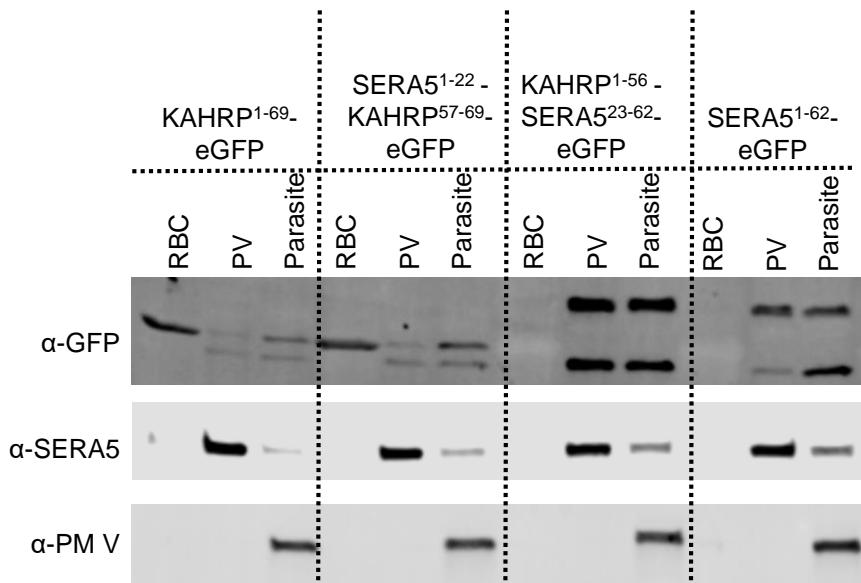
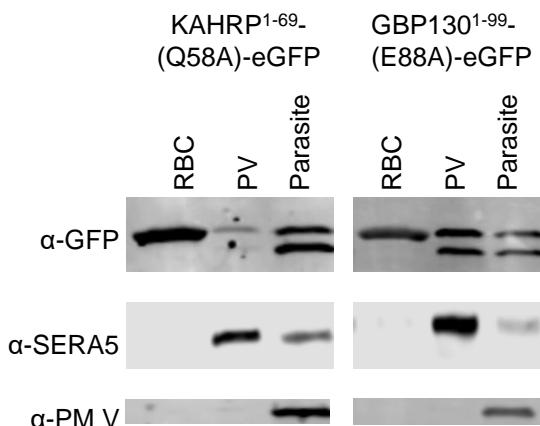




Figure 1

B

C



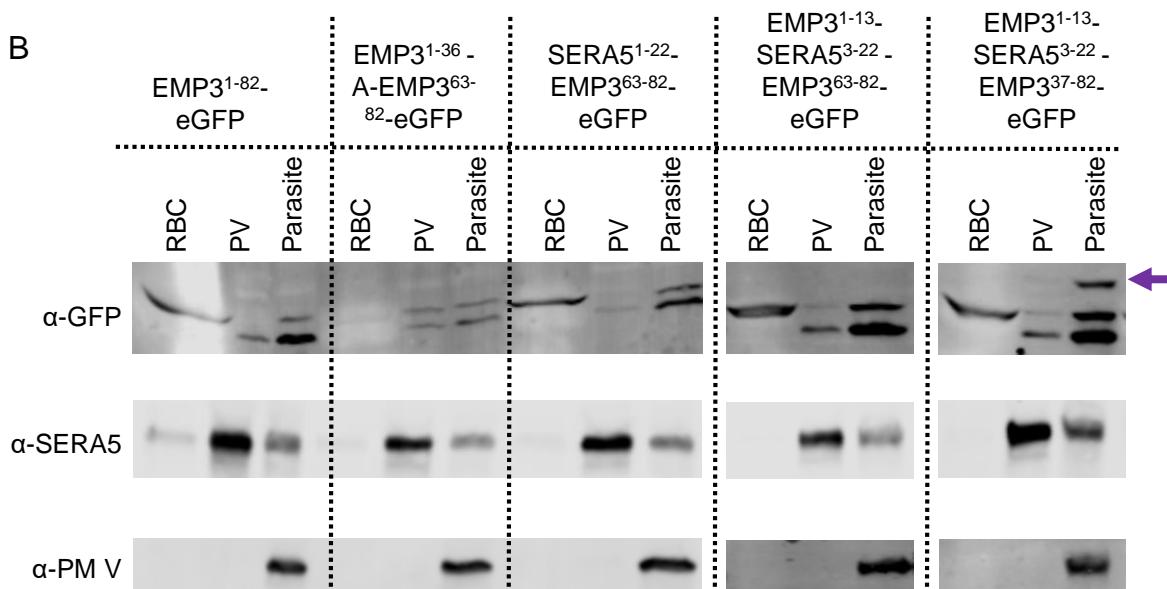


Figure 2

A

Alternative mature N terminus

B

C

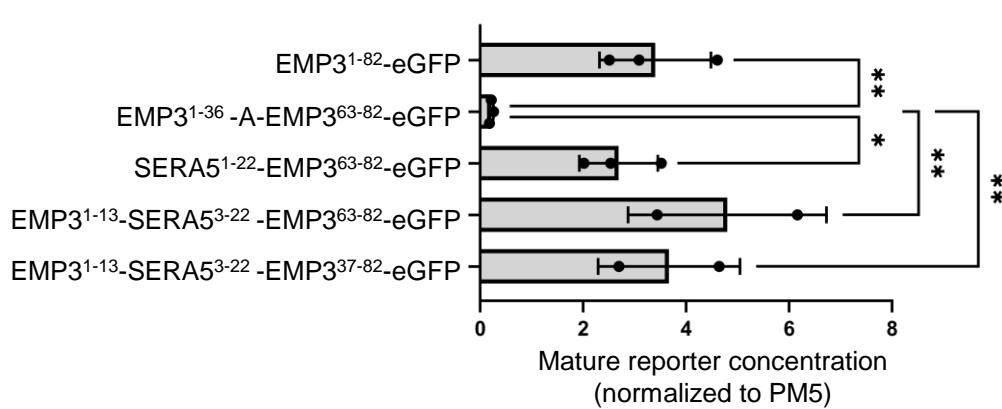


Figure 3

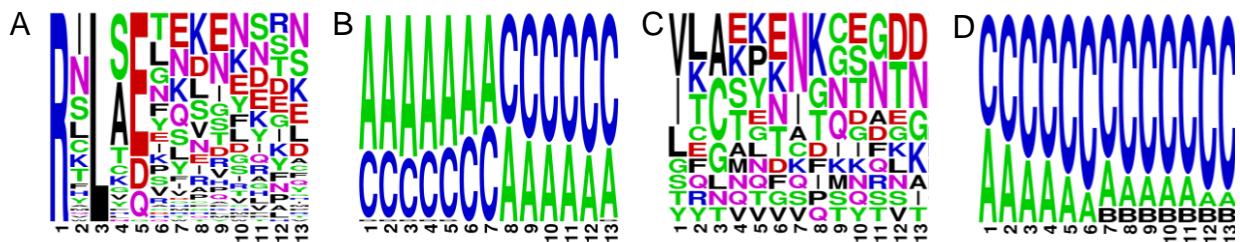


Figure 4

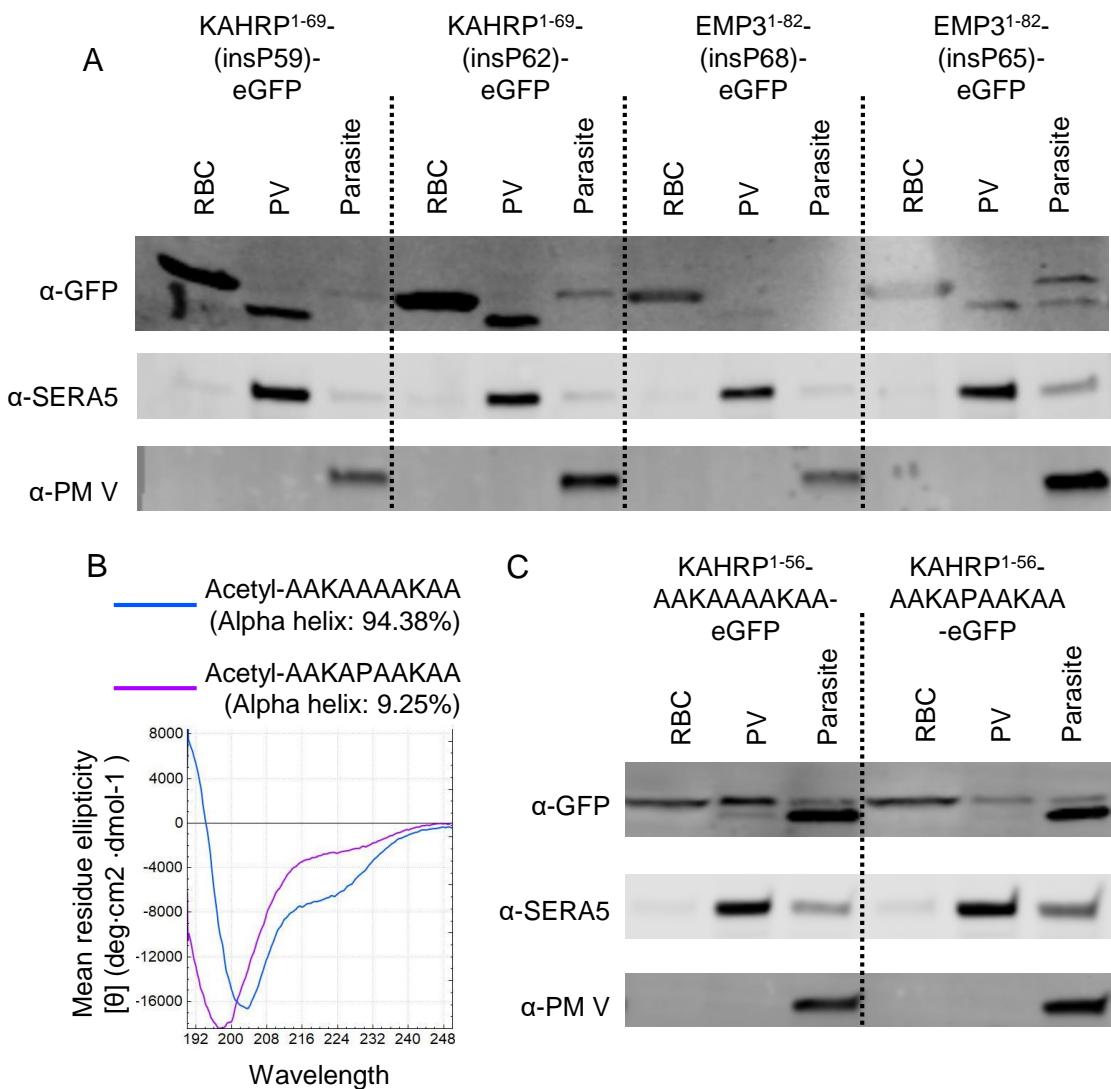


Figure 5

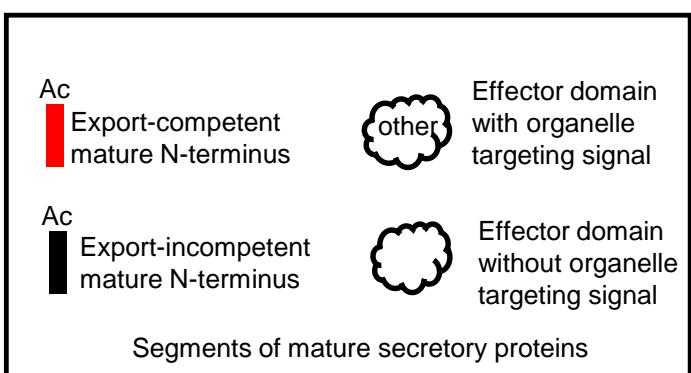
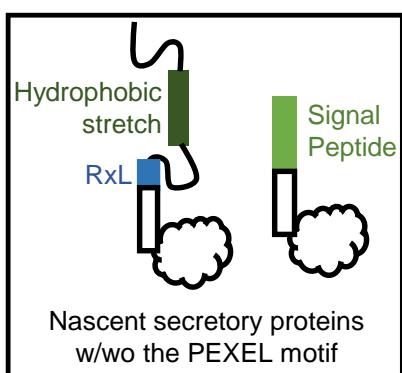
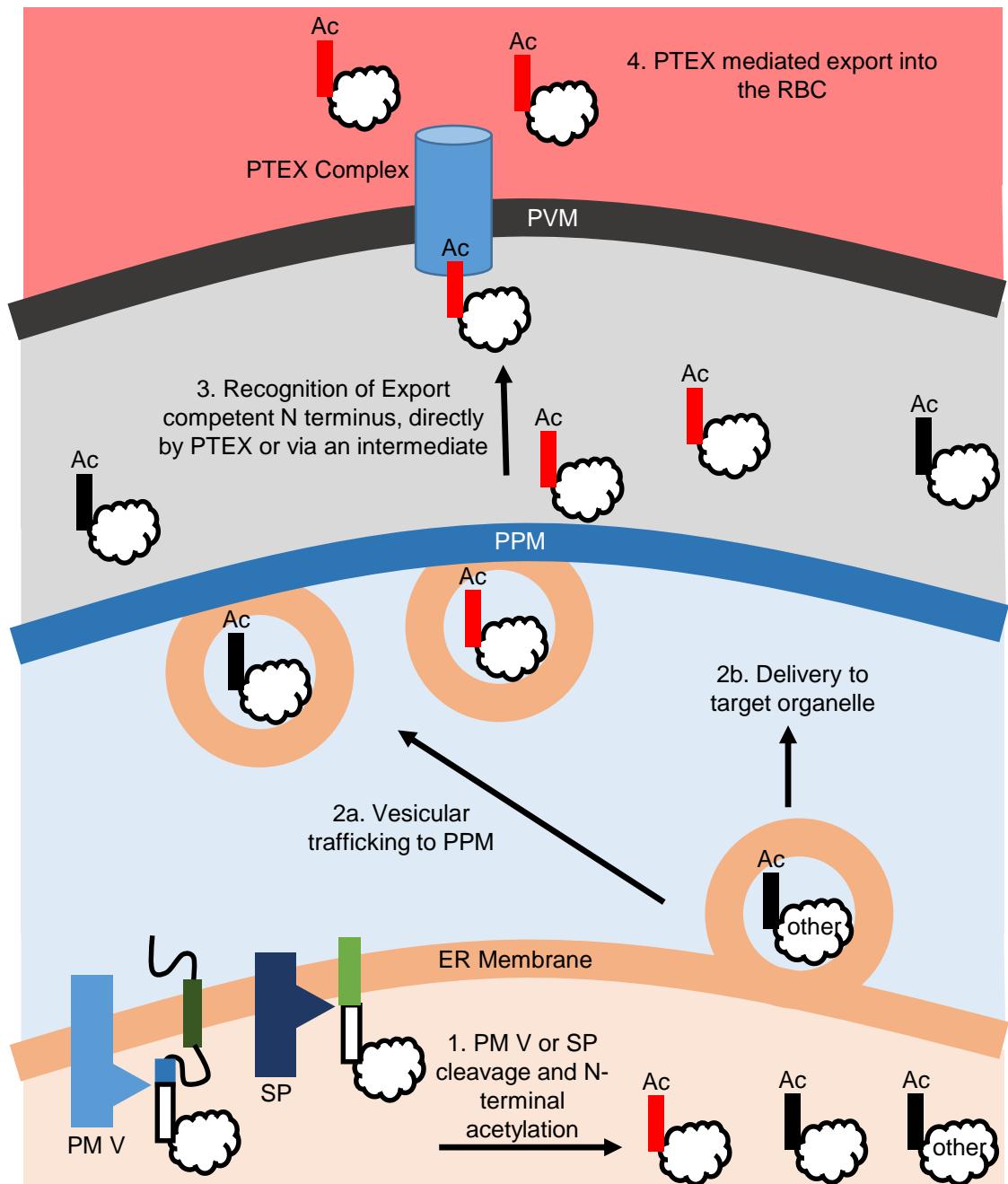
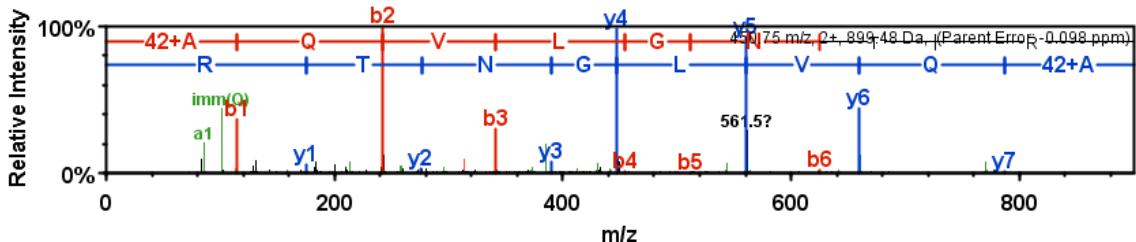




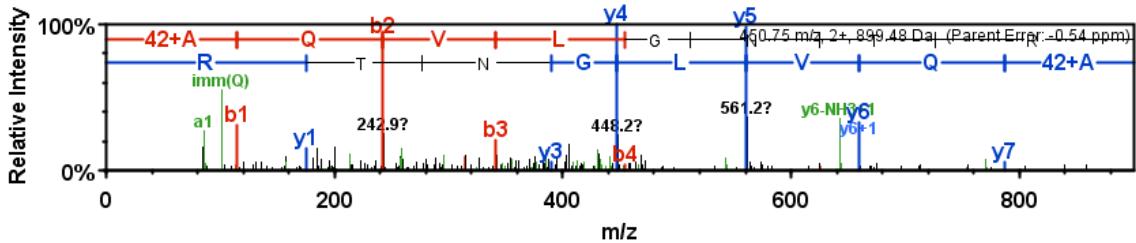
Figure 6


KAHRP1-69-eGFP MKSFKNKNLRRKKAFTPVFTKILLVSFLVWVLKCSNNCNGNGSGDSFDRNKRTL	.AQKQHEHHHHHHH-eGFP
SERA5 ¹⁻²² -KAHRP ⁵⁷⁻⁶⁹ -eGFP MKSYISLFFILCVIFNKNVIKC.....	.AQKQHEHHHHHHH-eGFP
KAHRP1-69-(Q58A)-eGFP MKSFKNKNLRRKKAFTPVFTKILLVSFLVWVLKCSNNCNGNGSGDSFDRNKRTL	.A A KQHEHHHHHHH-eGFP
KAHRP1-69-(insP59)-eGFP MKSFKNKNLRRKKAFTPVFTKILLVSFLVWVLKCSNNCNGNGSGDSFDRNKRTL	.AQ P KQHEHHHHHHH-eGFP
KAHRP1-69-(insP62)-eGFP MKSFKNKNLRRKKAFTPVFTKILLVSFLVWVLKCSNNCNGNGSGDSFDRNKRTL	.AQ QH P E HHHHHHH-eGFP
EMP3 ¹⁻⁸² -eGFP MATIKKYHIRGRKNILIFLLKIFLFSPLIWILIYSEYFTVVKNYNKIDNVYNIFEIRLKRS...AQVLGNTRLSSRGVRDPRTK-eGFP	
EMP3 ¹⁻³⁶ -A-EMP3 ⁶³⁻⁸² -eGFP MATIKKYHIRGRKNILIFLLKIFLFSPLIWILIYSE AAQVLGNTRLSSRGVRDPRTK-eGFP	
SERA5 ¹⁻²² -EMP3 ⁶³⁻⁸² -eGFP MKSYISLFFILCVIFNKNVIKC.....	.AQVLGNTRLSSRGVRDPRTK-eGFP
EMP3 ¹⁻¹³ -SERA5 ²² -EMP3 ³⁷⁻⁸² -eGFP MATIKKYHIRGRK S YISLFFILCVIFNKNVIKC.....AQVLGNTRLSSRGVRDPRTK-eGFP	
EMP3 ¹⁻¹³ -SERA5 ²² -EMP3 ³⁷⁻⁸² -eGFP MATIKKYHIRGRK S YISLFFILCVIFNKNVIKC Y FTVVKNYNKIDNVYNIFEIRLKRS...AQVLGNTRLSSRGVRDPRTK-eGFP	
EMP3 ¹⁻⁸² -(insP65)-eGFP MATIKKYHIRGRKNILIFLLKIFLFSPLIWILIYSEYFTVVKNYNKIDNVYNIFEIRLKRS...AQ P VLGNTLSSRGVRDPRTK-eGFP	
EMP3 ¹⁻⁸² -(insP65)-eGFP MATIKKYHIRGRKNILIFLLKIFLFSPLIWILIYSEYFTVVKNYNKIDNVYNIFEIRLKRS...AQ VLG PNTLSSRGVRDPRTK-eGFP	
SERA5 ¹⁻⁶² -eGFP MKSYISLFFILCVIFNKNVIKC.....GGSPQGSTGASPQGS-eGFP	.TGESQTGNTGGQAGNTGGDQAGST
KAHRP1-56-SERA5 ²³⁻⁶² -eGFP MKSFKNKNLRRKKAFTPVFTKILLVSFLVWVLKCSNNCNGNGSGDSFDRNKRTL	.TGESQTGNTGGQAGNTGGDQAGST
KAHRP1-56-AAKAAAAKAA-eGFP MKSFKNKNLRRKKAFTPVFTKILLVSFLVWVLKCSNNCNGNGSGDSFDRNKRTL	.AAKAAAAKAA-eGFP
KAHRP1-56-AAKAPAAAKAA-eGFP MKSFKNKNLRRKKAFTPVFTKILLVSFLVWVLKCSNNCNGNGSGDSFDRNKRTL	.AAKA P AAAKAA-eGFP
GBP130 ¹⁻⁹⁹ -eGFP 30LMEVSKNEKKNSLGAFHSKKILLIFGIIYVLLNAYICGDKYEKAVDYGFRSRL...	.AEGEDTCARKEKT-eGFP
GBP130 ¹⁻⁹⁹ -(E88A)-eGFP 30LMEVSKNEKKNSLGAFHSKKILLIFGIIYVLLNAYICGD K YEKAVDYGFRSRL...	.A E GEDTCARKEKT-eGFP

Supplementary Figure 1

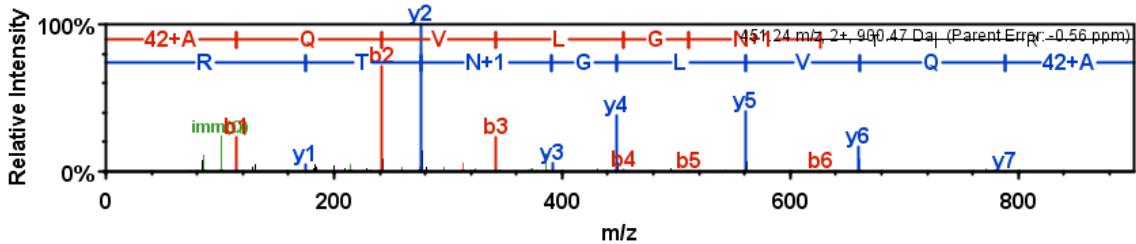
EMP3¹⁻⁸²-eGFP

12 exclusive unique peptides, 35 exclusive unique spectra, 275 total spectra, 156/260 amino acids (60% coverage)


A Q V L G N T R L S	S R G V R D P R T K	P R V S K G E E L F	T G V V P I L V E L
D G D V N G H K F S	V S G E G E G D A T	Y G K L T L K F I C	T T G K L P V P W P
T L V T T L T Y G V	Q C F S R Y P D H M	K Q H D F F K S A M	P E G Y V Q E R T I
F F K D D G N Y K T	R A E V K F E G D T	L V N R I E L K G I	D F K E D G N I L G
H K L E Y N Y N S H	N V Y I M A D K Q K	N G I K V N F K I R	H N I E D G S V Q L
A D H Y Q Q N T P I	G D G P V L L P D N	H Y L S T Q S A L S	K D P N E K R D H M
V L L E F V T A A G	I T L G M D E L Y K		

EMP3¹⁻³⁶-EMP3⁶³⁻⁸²-eGFP

10 exclusive unique peptides, 24 exclusive unique spectra, 161 total spectra, 111/260 amino acids (43% coverage)


A Q V L G N T R L S	S R G V R D P R T K	P R V S K G E E L F	T G V V P I L V E L
D G D V N G H K F S	V S G E G E G D A T	Y G K L T L K F I C	T T G K L P V P W P
T L V T T L T Y G V	Q C F S R Y P D H M	K Q H D F F K S A M	P E G Y V Q E R T I
F F K D D G N Y K T	R A E V K F E G D T	L V N R I E L K G I	D F K E D G N I L G
H K L E Y N Y N S H	N V Y I M A D K Q K	N G I K V N F K I R	H N I E D G S V Q L
A D H Y Q Q N T P I	G D G P V L L P D N	H Y L S T Q S A L S	K D P N E K R D H M
V L L E F V T A A G	I T L G M D E L Y K		

SERA5¹⁻²²-EMP3⁶³⁻⁸²-eGFP

12 exclusive unique peptides, 28 exclusive unique spectra, 120 total spectra, 154/260 amino acids (59% coverage)

A Q V L G N T R L S	S R G V R D P R T K	P R V S K G E E L F	T G V V P I L V E L
D G D V N G H K F S	V S G E G E G D A T	Y G K L T L K F I C	T T G K L P V P W P
T L V T T L T Y G V	Q C F S R Y P D H M	K Q H D F F K S A M	P E G Y V Q E R T I
F F K D D G N Y K T	R A E V K F E G D T	L V N R I E L K G I	D F K E D G N I L G
H K L E Y N Y N S H	N V Y I M A D K Q K	N G I K V N F K I R	H N I E D G S V Q L
A D H Y Q Q N T P I	G D G P V L L P D N	H Y L S T Q S A L S	K D P N E K R D H M
V L L E F V T A A G	I T L G M D E L Y K		

Supplementary Figure 2