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Abstract

The intraerythrocytic malaria parasite Plasmodium falciparum exports hundreds of proteins into
the host red blood cell (RBC). Most are targeted to the ER by a stretch of hydrophobic amino
acids and cleaved further downstream at a conserved motif called the Protein Export Element
(PEXEL) by the ER protease plasmepsin V (PM V). The mature effectors then travel through the
secretory pathway to the parasitophorous vacuole (PV) that surrounds the parasite. There,
PEXEL proteins are somehow recognized as export-destined proteins, as opposed to PV-
resident proteins, and are selectively translocated out into the RBC. The mature N terminus
appears to be important for export. There is conflicting data on whether PM V cleavage is
needed for proper export, or whether any means of generating the mature N terminus would
suffice. We replaced the PEXEL-containing N-terminal sequence of an exported GFP reporter
with a signal peptide sequence and showed that precise cleavage by signal peptidase,
generating the proper mature N terminus, yields export competence. Expressing a construct
with only the native ER targeting signal without the PM V cleavage site dramatically decreased

the amount of a mature PEXEL reporter, indicating that the hydrophobic stretch lacks an
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efficient cleavage signal. Therefore, the PEXEL motif functions as a specialized signal cleavage
site when appropriately located after an ER targeting sequence. Our data suggest that PM V
cleavage and RBC export are two independent events for PEXEL proteins. We also tested and

rejected the hypothesis that an alpha-helical mature N terminus is necessary for export.

Importance

Malaria parasites export hundreds of proteins to the cytoplasm of the host red blood cells for
their survival. A five amino acid sequence, called the PEXEL motif, is conserved among many
exported proteins and is thought to be a signal for export. However, the motif is cleaved inside
the endoplasmic reticulum of the parasite and mature proteins starting from the fourth PEXEL
residue travel to the parasite periphery for export. We showed that the PEXEL motif is
dispensable for export as long as identical mature proteins can be efficiently produced via
alternative means in the ER. We also showed that the exported and non-exported proteins are
differentiated at the parasite periphery based on their mature N termini, however, any
discernible export signal within that region remained cryptic. Our study resolves a longstanding

paradox in PEXEL protein trafficking.

Introduction

The malaria parasite Plasmodium falciparum asexually replicates in the human Red Blood Cell
(RBC). An infected RBC is extensively modified by the parasite to make it compatible for
growth. Hundreds of parasite proteins are exported into the RBC for this purpose and as such,

protein export is critical for parasite survival (1, 2).

Exported proteins are first loaded into the parasite endoplasmic reticulum (ER) and then
progress along the secretory pathway by vesicular trafficking to be released outside the parasite
plasma membrane (PPM) (3-7). A membrane-bound space called the parasitophorous vacuole

(PV) surrounds the PPM throughout the parasite’s replication cycle (8-11). To reach the RBC
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cytoplasm and beyond, exported proteins, as opposed to PV-resident proteins, must translocate
through a multiprotein complex in the PV membrane called Plasmodium translocon of exported

proteins (PTEX) (12-16).

In eukaryotic cells, secretory proteins generally have a hydrophobic signal peptide at their N
terminus, which targets the protein to the ER membrane. It is then cleaved by the ER protease
signal peptidase (SP) to release the secretory protein into the ER lumen. The mature protein
can reside in the ER or travel to other organelles depending on the presence of diverse
organelle-targeting signals in its sequence. The absence of any such signal generally takes the
protein to the plasma membrane to be released outside the cell (17). Similarly, Plasmodium
proteins with a signal peptide travel to the PV, and for further export into the RBC, an additional

signal is necessary (18-20).

A pentameric motif was found to be conserved in most exported proteins of Plasmodium and
was named the Plasmodium Export Element (PEXEL)/Host Targetting motif (21, 22). These
proteins are cotranslationally loaded into the ER by a stretch of hydrophobic residues
resembling a signal peptide, and the PEXEL motif is generally located after a non-conserved
“spacer” region following that signal (5, 23, 24). Minimal constructs capable of export must
include around 10 residues downstream of the PEXEL motif as well. However, there is very little
primary sequence conservation in these critical residues, and replacing them with a stretch of

alanine suffices for export (6, 23, 25).

The PEXEL motif is composed of arginine and leucine in the first and third positions and
aspartate, glutamine or glutamate in the fifth position, often expressed as RxLxE/Q/D.
Interestingly, the motif is cleaved between the third and the fourth residues by an ER resident
aspartic protease called plasmepsin V (PM V), and the mature proteins starting with a
comparatively less unique signal of XE/Q/D are then exported (26-28). This raises the question

that if the PEXEL motif's most conserved part (RxL) is cleaved off in the ER, how can it convey
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export-specificity at the PV? Multiple hypotheses have been offered in this regard. One model is
that PM V hands over the cleaved PEXEL proteins to specific chaperones that guide them in the
secretory pathway till their delivery to PTEX (27). A recently published study proposed that
HSP101, a component of the PTEX translocon, binds to nascent PEXEL proteins at the ER and
takes them to the PTEX following PM V cleavage (29). Another model is that PEXEL proteins
enter the ER through a PM V-containing translocon that is distinct from the SP-containing
translocon, which specifies a selective route to the PTEX complex (4). Mature PEXEL proteins
are N-terminally acetylated, which has also been speculated to be a postmark for their eventual
export, though acetylation alone is insufficient to achieve export (30, 31). None of these theories

has been validated convincingly.

Taking a step back, several experiments have tested the assumption that the PEXEL motif
confers export capacity to Plasmodium proteins with disparate conclusions. Mutating the
conserved R and L, or deleting the PEXEL motif altogether in reporter constructs inhibited their
export to the RBC (23, 26, 32). However, these alterations affected the cleavage by PM V, and
thus only verified the requirement of the PEXEL motif for cleavage at the ER and not for RBC
export per se. More pertinent experiments in this regard would be to check the exportability of
mature reporters that are identical to PEXEL-cleaved reporters, albeit in the absence of the
PEXEL motif itself. One such construct was designed by removing the region following the
hydrophobic stretch to the RxL sequence of a PEXEL protein so that the mature reporter started
with the sequence xE after the cleavage by SP at the end of the hydrophobic stretch (27). It did
not get exported into the RBC, indicating that the PEXEL motif is required in nascent PEXEL
proteins for export. On the other hand, another study tested reporter constructs where the
mature parts of PEXEL proteins were preceded by a signal anchor (an ER loading signal,
similar to a signal peptide but without the signal cleavage site) and a self-cleaving viral capsid

protease sequence that cleaves the reporter right before the xE/Q/D sequences (33).
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Interestingly, these reporters were exported into the RBC, suggesting that the signal for export
resides downstream of the PEXEL cleavage site and the motif itself is not required for export.
Reporters starting with mature N terminal residues of PEXEL proteins were also exported when

targeted to the ER by an internal transmembrane domain, supporting the later proposition (34).

In this study, we tested the essentiality of the PEXEL motif for Plasmodium protein export with
reporter constructs that generate identical mature proteins in the ER, albeit differing in the
presence or absence of a PEXEL motif. Our data support a model where the PEXEL motif is
required for the cleavage of a protein in the ER but is irrelevant for export to the RBC. Rather,
the mature N-terminal domain of PEXEL proteins alone determines their localization once they

reach the PV.
Results

Serial fractionation can differentiate the localization of PV-resident and RBC-exported

protein.

We expressed minimal constructs (containing the hydrophobic stretch, spacer, PEXEL motif and
short mature N termini of variable lengths) of three PEXEL proteins as well as a construct
containing the first 62 residues of the known PV-resident protein SERA5 whose signal peptide
cleavage site was previously determined (35). All were tagged C-terminally with eGFP (Fig. 1A,
S1). We integrated them for expression at the attB locus in the P. falciparum NF542® strain (36).
To determine their localization, we harvested 30h old parasite-infected RBCs and carried out a

cell fractionation/anti-GFP western blot strategy (Fig. 1B).

Cells were treated with tetanolysin, a bacterial toxin that selectively perforates the RBC
membrane (32, 37). Following centrifugation, we collected the supernatant as the infected RBC
cytoplasm fraction and further treated the pellet with saponin. Saponin permeabilizes the PV

membrane more efficiently than the PPM (38, 39). Supernatant from this treatment was
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122 collected as the PV fraction and the pellet was then fully lysed in RIPA lysis buffer as the

123  intracellular parasite fraction. Western blotting of these fractions revealed the efficient export of
124  the mature PEXEL reporters into the RBC and the retention of the SERAS5 reporter in the PV
125  (Fig 1C). We also probed the fractions with an anti-SERAS antibody that does not recognize the
126 reporter fragment (40). It revealed an enrichment of the native protein in the PV. The ER protein
127  PM YV was only detected in the intracellular parasite fraction (Fig 1C). These two proteins were
128  also probed in subsequent experiments as markers of consistent fractionation. In our blots, we
129  saw substantial free GFP in the intracellular parasite and PV fractions (marked with asterisks in
130  Fig. 1C). This steered us away from using fluorescent microscopy and cautioned against the

131  quantitative overinterpretation of previous studies.

132

133  Mature N-terminal sequences of PEXEL proteins are sufficient for their export into the

134 RBC.

135  To test the necessity of the PEXEL motif for export, we constructed fusion reporters of SERA5
136 and KAHRP, in which modules N-terminal to the cleavage site are combined with modules C-
137  terminal to the cleavage site (Fig. 2A, S1). The mature KAHRP reporter was efficiently cleaved
138  (presumably by SP) and exported when placed after the SERAS5 signal peptide (Fig. 2B). This
139  suggests that its export signal resides C-terminal to the cleavage site and that neither the

140  PEXEL motif nor processing specifically by PM V is required for export. On the other hand, the
141  mature SERADS reporter placed after the KAHRP RxL was cleaved (presumably by PM V), yet
142  the conserved PEXEL residues were not sufficient to turn a PV resident reporter into an

143  exported reporter. Therefore, a properly placed RxL is sufficient for cleavage in the ER but not
144  for export. Taken together, these results demonstrate that if a protein travels to the PV from the

145 ER, its mature N terminus determines its export capacity and not the pre-cleavage sequence.
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It can be argued from the above experiments that mature PEXEL reporters were exported due
to the remnant part of the PEXEL, i.e. the XxE/Q/D sequence at their N termini and the mature
SERAS reporter (starting with TG) was not exported because it did not have this signature at its
N terminus (Fig. S1). We tested the importance of the semi-conserved 5" residue of PEXEL by
substituting it with alanine in both KAHRP and GBP-130 reporters. These substitutions did not
inhibit their export, indicating that the 5™ residue of PEXEL is not required for RBC export (Fig.

2C).

Substituting the hydrophobic stretch of the EMP3 reporter with the SERAS signal peptide

restores export.

Previously, a case was made in favour of the essentiality of the PEXEL motif for export with the
observation that the export of the minimal mature EMP3 reporter was abrogated when residues
between the hydrophobic stretch and the mature N terminus of EMP3, including the RxL, were
replaced with a single alanine. From this construct, the same mature reporter was produced,
presumably by the action of SP after the alanine at the end of the hydrophobic stretch, yet the
reporter was not exported (26). As this result is paradoxical to our conclusion, we decided to
test a similar EMP3 reporter ourselves (Fig. 3A(ii), S1) and found, as previously observed, that
the reporter did not pass the PV (Fig. 3B). Interestingly though, the level of the total mature
reporter in this deletion construct was significantly lower compared to the original reporter (Fig.
3C). We then fused the mature EMP3 reporter after the SERAS signal peptide (Fig. 3A(iii)). The
total quantity and the export of the mature reporter from this construct were comparable to those
of the full EMP3 reporter (Fig. 3C). Using mass spectrometry, we confirmed that the N termini of

all three of these mature reporters were identical (Fig. S2).

Efficient export of the SERA5"-22-EMP363-82-.e GFP fusion reporter again confirmed that the
PEXEL motif is not essential for export and we hypothesized that the perplexing lack of export

of the EMP3'-36 -A-EMP383-82.e GFP construct had arisen from an inefficient cleavage after the
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171  hydrophobic stretch by the SP, which led to the degradation of the reporter. Protein level and
172 export of the mature reporter were maintained when the nascent N-terminal residues of SERA5
173 were replaced with those from EMP3 (Fig. 3A (iv), B, C). When we did the same replacement in
174  the full-length, PEXEL-containing EMP3 reporter (fig 3A(v)), in addition to the exported mature
175  reporter, we also observed a higher molecular weight band in the parasite fraction whose size
176  corresponds to an alternative mature reporter starting from the SP cleavage site (Fig. 3B, C).
177  Because we do not observe this higher molecular weight band in the original full-length reporter,
178 it supports the argument that the signal cleavage site of EMP3 is non-functional. In any case, it
179  was clear from our tested EMP3 reporters that the export deficiency of the mature reporter from
180 the EMP3'-36 -A-EMP3%3-82-.e GFP construct could be reversed by changing the hydrophobic

181  stretch of EMP3 without reintroducing the PEXEL maotif.

182  Putative structures of PEXEL protein mature N-termini resemble each other and are

183  different than those of PV-resident proteins.

184  As the RBC-export signal of the PEXEL proteins seemingly resides at their mature N terminus,
185  we searched for commonalities in the first 10 amino acids following the cleavage sites of several
186  PEXEL proteins for which there was experimental proof of RBC export (Fig. 4A, Table S1). As
187  expected, there was barely any primary sequence conservation, except for the semi-conserved
188  second position, which we already found to be not essential for export (Fig. 2C). We then looked
189  at the AlphaFold structural predictions for that region of the selected proteins. Interestingly, most
190 of them are predicted to form an alpha-helical structure (Fig. 4B, Table S1), albeit with low

191 confidence scores. On the other hand, when we looked at the structures of the cognate residues
192  following the signal peptide cleavage sites of a few known soluble PV resident proteins (Fig. 4C,
193  Table S1), the majority of them had predicted random coil structures (Fig. 4D, Table S1). Based
194  on this, we hypothesized that an alpha-helical structure at the mature N terminus of the PEXEL

195  proteins is required for their export.
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196  Helix-breaking proline insertion did not abrogate the export of reporters to the RBC.

197  To test this hypothesis, we designed minimal reporter constructs of KAHRP and EMP3 where
198  we inserted proline at the 3™ or 6" position of the mature reporters (Table S1). However, these
199 insertions did not abrogate the export of the reporter constructs (Fig. 5A). Although proline is
200 known to break alpha-helical structures, it might not work as such in the context of the KAHRP
201  and EMP3 mature N terminal sequences (41-44). Therefore, we tested two other reporters, one
202  where we placed a known alpha-helical sequence after the PEXEL cleavage site and another
203  where a proline insertion has been experimentally determined to break the alpha helix

204  conformation (Fig. S1) (45, 46). Using CD spectrometry, we verified the supposed

205  conformations of these two peptides in vitro (Fig. 5B). However, in vivo, both of these reporters

206  were exported into the RBC with similar efficiency (Fig. 5C, S1).

207

208 Discussion

209 In this study, we have reevaluated the function of the PEXEL motif as the signal for the export of
210 Plasmodium proteins into the RBC and found that it is not a direct prerequisite for export. We
211 tested two PEXEL reporter constructs that conferred export as long as their export-competent
212 mature N termini were exposed either by SP cleavage or by PEXEL cleavage. On the other

213  hand, introducing a PEXEL cleavage site in a PV resident reporter allowed proper cleavage

214  without altering its PV localization.

215  We also tested a previously published reporter (Fig. 3A(ii)) whose export was blocked upon
216  removal of the PEXEL motif. We made variants of this reporter to test if the absence of the

217  PEXEL motif was the cause of its export deficiency and found that replacing its ER targeting
218  signal remedied the defect. The addition of the SERAS5 signal peptide before the mature part of

219  this reporter (Fig. 3A(iv)) possibly directed it to the SP-containing ER translocon, whereas the
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220 EMP3"13-SERA5322-EMP3%7-82-eGFP ((Fig. 3A(Vv)) construct was likely targeted to both PM V
221  and SP-containing translocons, maturing into two alternative reporters. In the absence of both
222  SP and PM V cleavage sites, the EMP3'-3 -EMP3%3-82.e GFP (Fig. 3A(ii)) construct was likely
223 degraded by Endoplasmic Reticulum Associated Protein Degradation (ERAD) or proteasomal-
224  degradation pathway. It is not completely clear why the small amount of the mature reporter
225 liberated from this construct was not exported despite having an export-competent mature N
226 terminus. We suspect that it might be related to the ER entry of the reporter because the knock-
227  down of PfSPC25 and PfSec62, two components of the ER translocon required for protein

228  import into the ER, also exhibited a decrease in protein levels for some native PEXEL proteins
229  (4). Overall, more pertinent to the scope of this study, we showed that export could be re-

230  established by introducing a functional SP cleavage site in this PEXEL-less reporter.

231 In light of these observations, two obvious questions emanate. One, if the PEXEL motif is not
232 directly involved in protein export to RBC, what is its function and why is it conserved in so

233  many exported proteins? And two, what is the real signal for export in the PEXEL proteins? The
234  experiments presented here and other published experiments indicate that the PEXEL motif
235  serves as a very potent cleavage signal at the ER of the parasite (26, 27, 30). We have shown
236  that the hydrophobic stretch of the PEXEL protein EMP3 lacks a strong signal cleavage site,
237  and that is also the case for several other PEXEL proteins tested before. For example, removing
238  the RxL from PEXEL protein KAHRP results in more full-length reporter accumulation than for
239  reporters cleaved after the hydrophobic stretch (5, 32). Another PEXEL protein HRPII

240  accumulated as the full-length protein when PM V activity was inhibited (27). Pharmacological
241 inhibition of PM V resulted in the accumulation of full-length EMP3 reporters, which strongly
242 supports our conclusion (47, 48). Therefore, we think the PEXEL motif can be considered as a
243  specialized signal cleavage site located distally from a hydrophobic signal anchor sequence of

244  the PEXEL proteins and PM V acts as a non-canonical signal peptidase in Plasmodium. As the


https://doi.org/10.1101/2023.05.17.541120
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.17.541120; this version posted May 17, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

245  exported proteins are first loaded into the ER, it is unsurprising that a lot of them possess this

246 motif.

247  In our attempt to address the second question, we searched for commonalities at the mature N
248  terminus of several experimentally validated exported PEXEL proteins by analyzing their

249  AlphaFold structure. We found an abundance of alpha-helical conformational predictions, which
250  were absent from the corresponding sequences of several PV-resident proteins. A huge caveat
251  of this analysis is that this structural prediction is based on the whole protein sequence where
252  the mature N terminus is not yet liberated. Though the alpha helix is a very common secondary
253  structure in proteins and not all the exported N termini had alpha-helical predictions, we decided
254  to test its worth as the export signal because it is clear from the nonconserved nature of the

255  primary sequences of exported N-termini that the export signal would not be a very unique one.
256  Our results argue against the hypothesis that a simple alpha-helical structure at the mature N
257  terminus would suffice as an export signal. However, this approach needs further refinements,
258  and the experimental determination of the structure of the mature N termini of multiple PEXEL
259  proteins could be enlightening. N termini of several PEXEL-negative exported proteins (PNEPSs)
260 also function as efficient export signals, indicating a common mechanism of selection of

261  exported proteins (34). The role of N terminal acetylation is another interesting potential export
262  signal. However, there are also examples of N terminally acetylated PV resident reporters (33),
263  which indicates that it is not sufficient in itself as an export signal. Our data also supports this
264  view as our export-deficient mature EMP3 reporter was acetylated. For now, the real signal for
265  export is still unknown except that it is very promiscuous at the level of primary sequence and

266  functions as an export signal only in the context of the N-terminal end of a protein.

267  As discussed in the introduction, multiple models have been proposed to connect two events in
268  PEXEL protein trafficking, the cleavage by Plasmepsin V at the ER and the export through the

269 PTEX channel at the PV membrane. Our conclusion indicates that these two events are
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270  independent of each other. Therefore, at least theoretically, there is no need for special sorting
271 or chaperoning of the export-destined proteins from the ER; the selection can take place at the
272  PVinits entirety. In the simplest scenario, an export-competent N terminus is recognized and
273 differentiated from the export-incompetent N termini of PV-resident proteins by the PTEX

274  complex (Fig. 6).

275  Another important implication of our conclusion is that there might be PEXEL proteins that do
276  not get exported into the RBC, but rather travel to other compartments from the ER. Examples
277  of such proteins are rare but not nonexistent. For example, RESA is a dense granule protein
278  thatis cleaved by PM V in vitro and in vivo (23, 49, 50). Plasmepsin IX has an appropriately
279  located PEXEL motif but localizes to the rhoptries (51). Therefore, it is important to

280  experimentally determine the localization of PEXEL proteins rather than assuming that they are

281  exported.
282  Materials and Methods
283  Maintenance of parasite cultures.

284  P. falciparum strain NF542t® was cultured in RPMI1640 (Gibco) media supplemented with

285  0.25% (w/v) Albumax (Gibco), 15 mg/I hypoxanthine, 110 mg/l sodium pyruvate, 1.19 g/l Hepes,
286  2.52 g/l sodium bicarbonate, 2 g/l glucose, and 10 mg/I gentamicin. Hematocrit concentration
287  was maintained at 2%. Parasites expressing the reporters were maintained in 5nM WR99210.
288  Human RBCs were collected from St Louis Children’s Hospital blood bank. Cultures were kept

289  inside gas (5% 02, 5% CO2, and 90% N2) chambers at 37°C.
290 Plasmid construction and transfection.

291 A donor plasmid containing an attP site integrates into the cg6 attB locus of the NF542t8 strain

292  when co-transfected with the pINT plasmid coding for Bxb1 integrase (52). All our reporter
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constructs were integrated into the genome using this strategy. They were expressed under the

control of HSP86 (PF3D7_0708400) promoter and 3'UTR.

We first cloned the eGFP sequence between the Avrll and Eagl sites of the pEOE-attP vector
(53) using In-Fusion cloning (Clontech). KAHRP, GBP130, EMP3 and SERA5 minimal regions
were amplified from NF54 mRNA isolated with TRIzol (ThermoFisher) using the SuperScript
RT-PCR kit (Invitrogen). They were cloned into the Xhol-Avrll site of the pEOE-attP-eGFP
vector using In-Fusion cloning. All the fusion constructs were made from the appropriate
backbone vector with the QuikChange Lightning Multi Site Directed Mutagenesis kit (Agilent
Technologies). Reporters were sequenced from Genewiz before transfecting the parasites. All
the primers used for cloning and sequencing were purchased from IDT and their sequences are

listed in Table S2.

Plasmids were isolated from bacterial clones using Nucleobond Xtra Midi (MN) kit and
electroporated into the parasite as previously described (53). Successfully integrated clones
were selected with media containing 5nM WR99210 from 36h post-transfection onwards as the

donor plasmid codes for human dihydrofolate reductase (hDHFR) as the selection marker (54).

Culture synchronization.

An asynchronous parasite culture was washed in RPMI medium and then passed through a
MACS LD magnet column (Miltenyi Biotec). NF542%8 parasites complete a replication cycle in 44
to 48h under our culture condition and older parasites (>28h old) are captured on the column
due to the presence of paramagnetic hemozoin crystal (55). They were eluted in a prewarmed
2% hematocrit culture and incubated for 3 hours for egress and invasion. This culture was then
treated with 5% sorbitol at 37°C for 10 minutes to osmotically lyse older parasites (due to the

establishment of the new permeability pathway), leaving the newly invaded rings intact (56, 57).
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316  Synchronized parasites were thereafter maintained by constantly shaking at 80 RPM under 5%

317  parasitemia to maintain the synchrony.

318 Compartment fractionation.

319  Around 30h old synchronous parasite cultures were passed through the magnetic columns to
320 harvest only infected RBCs. This step was critical because otherwise, haemoglobin from

321 uninfected RBCs mask the western blot signals from a sample. Infected RBCs were washed
322 twice in PBS and then treated with 50HU tetanolysin (Biological Laboratory Inc) in 60ul PBS

323  plus HALT-Protease Inhibitor (Pl) Cocktail (Thermo Fisher Scientific) for 10 minutes at room

324  temperature. Following centrifugation at 1500g for 2 minutes, the supernatants were collected
325 as the RBC fractions. The pellets were washed twice in PBS before treating with 60ul of 0.035%
326  saponin in PBS-PI for 5 minutes on ice. Supernatants were collected as PV fractions and the
327  pellets were washed twice before adding 60ul RIPA lysis buffer with Pl. These were rapidly

328 frozen and thawed using liquid nitrogen and a 42°C water bath three times and the supernatants
329  were collected as the parasite fractions after 15 minutes of centrifugation at 4°C for 10 minutes.
330 20ul of 4X sample buffer with B-mercaptoethanol as the reducing agent was mixed with each

331 sample and boiled for 5 minutes before storage at -20°C.

332 SDS PAGE and western blotting.

333 15 yl samples from each fraction were run in a 4-15% gradient gel (Biorad) and then transferred
334  to a PVDF membrane for western blotting. We used mouse anti-GFP (Takara) at 1:1000
335  dilution, mouse anti-PM V (58) at 1:250 dilution and rabbit anti-SERAS (40) at 1:1000 dilution as
336  primary antibodies and IRDye conjugated goat secondary antibodies (LICOR) at 1:15000
337  dilution. Blots were incubated with primary antibodies O/N at 4°C and with secondary antibodies
338  for 1 hour at room temperature. Licor Odessey blocking buffer was used for blocking and

339  primary antibody dilutions and PBS plus 1% tween-20 was used to prepare secondary antibody
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340 dilutions as well as in all the washing steps. Blots were imaged in a Licor Odyssey imager and
341 images were prepared (and quantified when required) using Image Studio Lite 5.2 (Licor). The
342  protein level of EMP3 reporters was calculated by adding the intensities of reporter GFP bands
343  (excluding the free GFP or any higher molecular weight band) from all three fractions and then
344  normalizing that value for the PM V band intensity from the parasite fraction. Statistical analyses

345  were performed in GraphPad Prism.

346  Preparation of samples for mass spectrometry.

347 Infected RBCs were harvested using magnetic columns from 300ml 5% parasitemia cultures
348  and then directly lysed with 500ul GFP-trap lysis buffer (10 mM Tris/Cl pH 7.5, 150 mM NacCl,
349 0.5mM EDTA, 0.5 % Nonidet™ P40 Substitute) by freeze-thaw. Supernatants were incubated
350 with GFP-trap magnetic agarose (ChromoTek) at 4°C for 1 hour with continuous rotation. The
351  beads were washed 3 times with wash buffer (10 mM Tris/Cl pH 7.5, 150 mM NacCl, 0.05 %

352  Nonidet™ P40 Substitute, 0.5 mM EDTA) and then 50 ul 2x sample buffer with -

353  mercaptoethanol was added to the beads and boiled for 5 minutes for elution. All the eluted

354  samples were run in a Biorad gradient gel. Specific bands were visualized with Coomassie blue
355  staining and cut out of the gel for submission to the Mass Spectrometry Technology Access

356 Center.

357 Proteomics and data analysis.

358 The protein gel bands were subjected to in-gel digestion. Each gel band was washed in 100 mM
359  Ammonium Bicarbonate (AmBic)/Acetonitrile (ACN), reduced with 10 mM dithiothreitol, and
360 cysteines were alkylated with 100mM iodoacetamide. Gel bands were washed in 100mM
361 AmBIic/ACN prior to adding 1 g trypsin for overnight incubation at 37°C. The supernatant
362  containing peptides was saved into a new tube. Gel was washed at room temperature for ten

363  minutes with gentle shaking in 50% ACN/5% FA, and the supernatant was saved to peptide
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364  solution. The wash step was repeated each by 80% ACN/5% FA, and 100% ACN, and all
365 supernatant was saved and then subject to the speedvac dry. After lyophilization, peptides were
366  reconstituted with 0.1% FA in water. Peptides were injected onto a Neo trap cartridge coupled
367  with an analytical column (75 um ID x 50 cm PepMap™ Neo C18, 2 um). Samples were separated
368  using a linear gradient of solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in
369 ACN) using a Vanquish Neo UHPLC System coupled to an Orbitrap Eclipse Tribrid Mass

370  Spectrometer with FAIMS Pro Duo interface (Thermo Fisher Scientific).

371  The resulting tandem MS data was queried for protein identification against the custom database,
372  Plasmodium falciparum 3D7 database plus the 3 custom proteins (The cleaved form of EMP3(i),
373 (i), and (iii)), using Mascot v.2.8.0 (Matrix Science). The following modifications were set as
374  search parameters: peptide mass tolerance at 20 ppm, trypsin enzyme, 3 allowed missed
375 cleavage sites, carbamidomethylated cysteine (static modification), and oxidized methionine,
376  deaminated asparagine/glutamine, and protein N-term acetylation (variable modification). The
377  search results were validated with 1% FDR of protein threshold and 90% of peptide threshold
378 using Scaffold v5.2.1 (Proteome Software). Data are available via ProteomeXchange with
379 identifier PXD041451. Please use the following credential for review: Username:

380 reviewer_pxd041451@ebi.ac.uk Password: m25z5Zvm.

381 CD Spectrometry.

382  Custom peptides with N-terminal acetylation were purchased from Biomatik. Peptides were
383  dilutedin 10 nM potassium phosphate buffer with 40% TFE with a final concentration of 0.2 mg/ml.
384 CD spectra were recorded on a JASCO-J715 polarimeter (JASCO, Tokyo, Japan) over the
385  wavelength range 190-250 nm in a 1-mm path length quartz cuvette using a step size of 0.1 nm.
386 For each wavelength, three scans were performed. AVIV software was used for background
387  subtraction. Mean residual ellipticity [8] vs Wavelength plots were generated using CDtoolX (59)

388  and online server K2D3 (60) was used to determine the alpha-helical composition of the peptides.
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389  Analysis of PEXEL and PV-resident protein sequences.

390 Experimentally validated exported PEXEL proteins were selected from the list of the PEXEL

391  proteins from Jonsdottir TK et al. (1). If multiple proteins had the same primary sequence at their
392  mature N termini (mainly from exported protein families like RESA, RIFIN, STEVOR etc.), only
393  one sequence was included in the list. PV-resident proteins were manually selected by

394  reviewing several publications. The relevant part of their protein sequences and AlphaFold

395  structures were taken from the Plasmodb database (61). A, B and C were used as codes if a
396 particular residue was part of an alpha-helix, beta-sheet or random coil structure. Frequency

397 plots of the amino acids or structures were created using the Weblogo tool (62).
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405

406  Figure legends

407  Figure 1: Minimal reporter constructs and their localization. (A) Schematic representation
408  of minimal reporter constructs. (i) (ii) and (iii) are PEXEL reporters and (iv) is a PV resident

409 reporter. Different segments of PEXEL reporters are delineated by dashed lines and labelled at
410 the bottom for (iv). Residue numbers starting from the nascent N terminus are printed within
411  each segment and the PEXEL motif residues are highlighted in bold red. (B) Compartment

412  fractionation strategy. RBCM: Red blood cell membrane; PVM: Parasitophorous vacuole
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413  membrane; PPM: Parasite plasma membrane. (C) Representative western blots of different
414  fractions from RBCs infected with P. falciparum expressing the reporters from A. Primary

415  antibodies that were used to probe the blots are labelled at the left. The bottom band (marked
416  with asterisks) in the anti-GFP blots is the free GFP band devoid of mature reporter portions.

417 Each construct was tested at least 3 times.

418  Figure 2: Investigation of the role of the PEXEL motif in protein export to the RBC. (A)

419  Schematic representation of KAHRP and SERAS fusion reporters (ii and iii). Original reporters (i
420 andiv) are also shown for reference. (B) Representative western blots of different fractions from
421 RBCs infected with P. falciparum expressing the reporters from A. Primary antibodies that were
422  used to probe the blots are labelled at the left. The experiment was performed twice. (C)

423  Representative western blots of different fractions from RBCs infected with P. falciparum

424  expressing KAHRP and GBP130 reporters with alanine substituted semi-conserved 5" positions

425 of the PEXEL motif. Each construct was tested twice.

426  Figure 3: Processing, export and comparison of the protein level of different EMP3

427  reporters. (A) Schematic representation of the EMP3 reporter constructs. An alternative mature
428 N terminus for the last construct is marked at the bottom (B) Representative western blots of
429  different fractions from RBCs infected with P. falciparum expressing the reporters from A.

430 Primary antibodies that were used to probe the blots are labelled at the left. Note the presence
431  of an alternative mature form (marked with a purple arrow) for the last reporter in the parasite
432  fraction. (C) Normalized western blot quantification of the standard mature forms of the

433  reporters. Signals were combined from each fraction and then normalized to the PM V signal
434  from the parasite fraction. * denotes a P < 0.05 and ** denotes P < 0.01 in Fisher's LSD test.
435  The P-value for the one-way ANOVA was 0.0113. Mean and standard deviations from 2 or 3

436  biological replicates are shown along with individual data points.
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437  Figure 4: Primary sequences and putative structures of PEXEL and PV-resident proteins.
438  (A) Amino acid frequency plots of 59 experimentally validated exported PEXEL proteins starting
439  from the first position of the PEXEL motif to the 10 position of the mature N terminus. (B)

440  Frequency plot of AlphaFold structural predictions of the same residues shown in panel (A),

441  where “A” denotes alpha-helical, “B” denotes beta-sheet and “C” denotes random coil. (C)

442  Amino acid frequency plots of 13 experimentally validated PV-resident proteins starting from the
443 -3 position of the signal peptide cleavage site to the 10" position of the mature N terminus. (D)
444  Frequency plot of AlphaFold structural predictions of the same residues shown in panel (A), with

445  the letters denoting the same structural conformation as in panel (B).

446  Figure 5: Investigation of the role of alpha-helical mature N terminus in protein export. (A)
447  Representative western blots of different fractions of the KAHRP and EMP3 reporters with

448  proline insertions at the 3 or the 6™ position of their mature N terminal region. The experiment
449  was performed twice. (B) CD spectra of two small peptides, one of which takes an alpha-helical
450  conformation in vitro whereas the other one loses the conformation due to alanine to proline

451  substitution. (C)Representative western blots of different fractions from RBCs infected with P.
452  falciparum expressing two artificially designed PEXEL reporters with the mature N terminal

453  sequences shown in the construct name. The experiment was performed twice.

454  Figure 6: A model showing the trafficking of P. falciparum secretory proteins. Secretory
455  proteins are targetted to the ER by their hydrophobic stretch and then cleaved by PM V at the
456  PEXEL motif or by SP at the signal cleavage site, followed by acetylation. The cleavage

457  liberates mature N termini that can be export-competent (shown in red) or incompetent (shown
458 in black). There might be other organelle-targeting signals also in the mature proteins that direct
459  them to their respective target organelle. Mature proteins secreted into the PV are recognized
460 and loaded into the PTEX translocon based on the export competency of their mature N

461 terminus.
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Supplementary Figure 1: Full sequence of all the reporters in this study. eGFP sequence
is not shown as well as the first 29 residues of GBP130. Bold arrows denote cleavage sites.
Sequences from PEXEL proteins are printed in red. Substitutions and insertions are highlighted

in bold purple.

Supplementary Figure 2: Coverage map and most N terminal peptide spectrum of EMP3
reporters. Construct names are on top. The coverage map highlights detected peptides at the

95% threshold. Green shades in the coverage map denote post-translational modification.

Supplementary table 1: List of PEXEL proteins and PV resident proteins along with their
mature N terminal sequences and AlphaFold structural predictions. These sequences
were used to generate the frequency plots shown in Figure 4. For the AlphaFold structural

predictions, “a” denotes alpha-helical, “b” denotes beta-sheet and “c” denotes random coil.

Supplementary table 2: List of primers used in this study
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