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Abbreviations1 

 

1AOP  Adverse outcome pathway 

CI  Confidence interval 

DNEL  Derived no-effect level 

EFSA  European Food Safety Authority 

EPA  Environmental Protection Agency 

FC  Fold change 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.17.541082doi: bioRxiv preprint 

mailto:takeda@vmas.kitasato-u.ac.jp
https://doi.org/10.1101/2023.05.17.541082
http://creativecommons.org/licenses/by-nd/4.0/


2 

Abstract 

Per- and poly-fluoroalkyl substances (PFAS) have been utilized extensively for various 

applications owing to their distinctive chemical properties. They exhibit high persistence in 

the environment and accumulate within the human body, necessitating toxicity assessments. 

However, the consequences of prolonged, low-level exposure to PFAS and concurrent 

exposure to multiple PFAS have not been explored. In this study, male C57BL/6J mice (aged 

8 weeks) were exposed to a composite of nine PFAS, which include long-chain PFAS (e.g. 

perfluorooctanoic acid and perfluorooctanesulfonic acid) and short-chain PFAS (e.g. 

perfluorobutanoic acid and perfluorobutanesulfonic acid) at concentrations equivalent to the 

estimated daily human intake in the composition reported (1 µg/L [sum of the nine 

 

FDR  False discovery rate 

HE  Hematoxylin and eosin 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

MHLW  Ministry of Health, Labour and Welfare 

PAS  Periodic acid-Schiff 

PFAS  Poly-fluoroalkyl substances 

PFBA  Perfluorobutanoic acid 

PFBS  Perfluorobutanesulfonic acid 

PFHpA  Perfluoroheptanoic acid 

PFHxA  Perfluorohexanoic acid 

PFHxS  Perfluorohexanesulfonic acid 

PFNA  Perfluorononanoic acid 

PFOA  Perfluorooctanoic acid 

PFOS  Perfluorooctanesulfonic acid 

PFPeA  Perfluorovaleric acid 

PPAR  Peroxisome proliferator-activated receptor 

PCR  Polymerase chain reaction 

PXR  Pregnane X receptor 

QC  Quality control 

QTOF-MS Quantitative time-of-flight mass spectrometry 

UPLC  Ultra-performance liquid chromatography 
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compounds], the maximum reported exposure concentration) via drinking water. Histological 

examination revealed vacuolization of hepatocytes and irregular arrangement of hepatocyte 

cords, suggesting that exposure to low levels of the PFAS mixture causes morphological 

changes in liver tissues. Transcriptome analysis revealed that PFAS exposure mainly altered a 

group of genes related to metabolism and chemical carcinogenesis. Machine learning analysis 

of the liver metabolome showed a typical concentration-independent alteration upon PFAS 

exposure, and in addition to known substances such as glutathione, a compound with 

unknown biological function; 2,5-dihydro-2,4-dimethyloxazole was found. This study 

demonstrates that daily exposure to PFAS leads to morphological changes in liver tissues and 

alters the expression of metabolism- and cancer-related genes as well as phospholipid 

metabolism. Future studies are required to evaluate the chronic toxicity of prolonged, 

low-level exposure to PFAS mixtures and to investigate the health effects of PFAS. 

 

1. Introduction 

Per- and poly-fluoroalkyl substances (PFAS) include thousands of chemical 

compounds containing the perfluoroalkyl moiety CnF2n+1– (Buck et al., 2011). It is estimated 

that more than 1,000,000 tons of PFAS including hydrofluorocarbons are produced annually 

worldwide (Evich et al., 2022). Their exclusive chemical properties, such as resistance to heat 

and chemicals, water and oil repellency, emulsifying characteristics, and light absorption, 

accredit a broad spectrum of applications. However, PFAS are exceedingly persistent in the 

environment and bioaccumulate easily in the body; they are therefore referred to as “Forever 

Chemicals,” raising concerns about their health implications (David Kempisty and Racz, 

2021). Consequently, PFAS contamination has gained global attention, with McDonald’s 

Corporation pledging to eradicate PFAS from food packaging within the next 5 years and 

Amazon Corporation announcing in December of the same year a prohibition on using PFAS 

in food containers (Stohler, 2020). 
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Among the different classes of PFAS, perfluorooctanoic acid (PFOA) and 

perfluorooctanesulfonic acid (PFOS) are of significant concern owing to their high 

bioaccumulation potential. The geometric mean human serum elimination half-life of PFOS 

is 4.8 years (95% confidence interval [CI], 4.0–5.8) and that of PFOA is 3.5 years (95% CI, 

3.0–4.1) (Olsen et al., 2007). The production and use of these substances are regulated 

internationally. PFOS was included in Annex B of the Stockholm Convention on Persistent 

Organic Pollutants in 2009, and its production, use, import, and export are generally 

restricted. PFOA and its related compounds were listed in Annex A in 2019 and 

perfluorohexane sulfonic acid (PFHxS) was listed in Annex A in 2022 (Stockholm 

Convention, 2022). Safety thresholds have been set for major PFAS. The European Food 

Safety Authority (EFSA) has set the derived no-effect level (DNEL) for PFOA and PFOS at 

1.5 µg/kg/day and 0.15 µg/kg/day, respectively (Alexander et al., 2008). In contrast, the U.S. 

Environmental Protection Agency (EPA) has set the DNEL for PFOA and PFOS at 0.1 

µg/kg/day and 0.03 µg/kg/day, respectively. These limits have been regulated more tightly in 

recent years, and EFSA set a new total weekly tolerable intake of 4.4 ng/kg BW/week for 

PFOA, PFOS, perfluorononanoic acid (PFNA), and PFHxS in 2020 (Schrenk et al., 2020). 

Furthermore, the EPA’s lifetime health advisory level, the level at which no health effects are 

expected after 70 years of drinking 2 L of water per day, was set at 70 ng/L for PFOA and 

PFOS combined in 2016. However, it was lowered to 0.024 ng/L in June 2022 (US EPA, 

2022). In Japan, the Ministry of Health, Labour and Welfare (MHLW) listed PFOS and PFOA 

as water quality management targets in April 2020 and set a preliminary target of 50 ng/L for 

both compounds combined (Japanese Ministry of the Environment, 2020). However, 

regulatory levels for PFOA and PFOS vary widely among countries and organizations. The 

MHLW has set the standard levels for PFOS and PFOA as provisional guideline levels; 

therefore, no conclusion based on sufficient scientific evidence has been reached as to 

whether these limits are appropriate. 
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Although the complete extent of the adverse outcome pathway (AOP) of PFAS has 

not been comprehensively understood, the detrimental effects of PFAS are known to be 

characterized by hepatotoxicity, lipid metabolism disruption, hypothyroidism, 

immunosuppression, reproductive toxicity, and carcinogenicity (Fenton et al., 2021). A 

previous study reported that one of the mechanisms of PFAS toxicity involves the activation 

of nuclear receptors, such as peroxisome proliferator-activated receptor (PPAR) α, PPARγ, 

PPARδ, constitutive androstane receptor, and pregnane X receptor (PXR) (Bjork et al., 2011). 

Additionally, activation of PXR and other receptors has been found to contribute to disease 

pathogenesis (Rosen et al., 2017). The liver, where these nuclear receptors are active, is the 

primary target for toxicity. In mice, dose-dependent liver weight increase, hepatocyte 

hypertrophy with vacuole formation, and increased (or loss of) peroxisome proliferation were 

observed at high body burdens of long-chain PFAS (Blake et al., 2020). Studies using 

cultured cells have indicated a link between PFAS and cancer; for example, PFOA, PFOS, 

and PFHxS have been reported to induce cell proliferation and malignant transformation in 

human mammary epithelial cells (Pierozan et al., 2022, 2020). Although short-chain PFAS 

such as perfluorobutanoic acid (PFBA) and perfluorobutanesulfonic acid (PFBS) have been 

used as alternatives to long-chain PFAS, drinking water exposure studies of PFBS in mice 

have found that it alters the liver and intestinal metabolome (Chen et al., 2023, 2022). 

However, most of these prior studies were conducted based on exposure to relatively high 

concentrations of single compounds. 

The long half-lives of PFAS in the environment and in vivo suggest that people are 

exposed to a wide range of PFAS at lower concentrations and in more diverse forms over 

prolonged periods. There is relatively limited evidence from animal studies that replicate 

such real-world exposure conditions. Exposure to a PFAS mixture that mimicked an 

environment contaminated with PFAS in ski wax altered dopamine levels in mice 

(Grønnestad et al., 2021). Moreover, exposure to PFOS at 2 ng/g resulted in stunted embryos 
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in bovine cumulus oocytes (Hallberg et al., 2021). However, little is known about the toxic 

effects of PFAS at concentrations that humans may ingest daily. 

Mixed exposure is expected to occur in actual exposure situations as multiple PFAS 

remain in the environment. As the sources of exposure are diverse, including drinking water, 

food, and dust, it is challenging to estimate the exact amount of exposure. Pérez et al. (2014) 

assessed PFAS concentrations in food in different regions worldwide and estimated the daily 

human intake of PFAS by region. The concentration range was broad, ranging 30–100 

ng/kg/day, with the highest estimate being that children around the Mediterranean Sea may 

have ingested nearly 100 ng/kg/day of PFAS. Therefore, herein, we set 100 ng/kg/day as the 

maximum anticipated daily intake in humans and evaluated the toxic effects of nine linear 

PFAS, including long-chain PFAS (25 ng/kg/day of PFOA and 15 ng/kg/day of PFOS) and 

short-chain PFAS (20 ng/kg/day of PFBA and 6 ng/kg/day of PFBS), in mice via drinking 

water exposure for 5 weeks. We hypothesized that toxic effects could occur in mixed 

exposures even if each individual substance is at a low concentration and includes a 

short-chain PFAS. Additionally, histological examination was performed to observe subtle 

toxic effects that cannot be confirmed at the organism level. Liver, where significant 

histological changes occurred, was subjected to multi-omics (transcriptome and metabolome) 

analysis to elucidate the mechanism of toxicity. This study provides scientific insight into the 

toxic effects of low-concentration mixtures of PFAS to which humans can actually be 

exposed. 

 

2. Material and Methods 

2.1. Materials 

Nine major linear-chain PFAS were tested in this study—PFOA, PFBA, PFOS, 

PFPeA, PFNA, PFHxA, PFBS, PFHpA, and PFHxS—and their exposure concentrations and 

compositions were in accordance with a rationale paper mentioned above (Pérez et al., 2014).  
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The composition of the compounds is listed in Table 1. PFOA, PFOS, and PFHxS were 

purchased from Sigma-Aldrich (St. Louis, MO), whereas others were obtained from Tokyo 

Chemical Industry Co., Ltd. (Tokyo, Japan). 

 

2.2. Animal experiment 

Seven-week-old male C57BL/6J mice were purchased from CLEA Japan, Inc. 

(Tokyo, Japan). They were housed under a 12/12 hour light/dark cycle at 20°C–23°C. Food 

(CE-2; CLEA) and water gel (HydroGel, ClearH2O, Westbrook, ME) were provided ad 

libitum and the mice were not fasted before or during the experiments. Health observations 

were made thrice per week, and cages, food, and HydroGel were changed once per week. 

Following 1 week of adaptation, the mice were randomly divided into three groups, with five 

individuals in each group. 

One group was treated with clean HydroGel (control group), while the other two 

were treated with HydroGel containing nine mixtures of PFAS at total concentrations of 1 

µg/L and 50 µg/L (PFAS-Low and PFAS-High groups, respectively). The average daily 

intake of each mouse in the 1 µg/L of PFAS mix- and 50 µg/L of PFAS mix-treated groups 

was estimated at approximately 100 ng/kg/day and 5,000 ng/kg/day, respectively, since the 

average body weight at the beginning of the experiment was 30 g and the average daily 

drinking volume was 3 mL. After the 5-week exposure period, mice were euthanized by 

inhalation of an excess amount of isoflurane and laparotomized. The organs were harvested 

after complete blood sampling from the posterior vena cava. All animal care and 

experimental procedures were approved by the Animal Care Committee of Kitasato 

University School of Veterinary Medicine (Approval No. 21-012) and were conducted in 

accordance with this committee and national regulations. 

 

2.3. Tissue histology 
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Four organs (liver, spleen, kidney, and heart) were immersed and fixed in 10% 

neutral formalin phosphate buffer solution for at least 1 month and then embedded in 

Pathoprep568 (Fujifilm Wako Pure Chemical Corporation, Tokyo, Japan), following routine 

methods. The paraffin blocks were cut into thin sections (4 µm) and stained with hematoxylin 

and eosin for morphological observation or with periodic acid-Schiff (PAS) with/without 

amylase digestion for glycogen detection in liver sections according to the method of Kovac 

et al. (2015). 

 

2.4. Liver transcriptome analysis 

A small piece of liver immersed in RNAlater™ solution (Sigma-Aldrich) was used 

for RNA extraction. RNA extraction was performed using TRI reagent (Cosmo Bio Co., Ltd., 

Tokyo, Japan) and the Monarch Total RNA Miniprep Kit (New England BioLabs Inc., 

Ipswich, MA) according to the manufacturer’s instructions. The concentration of RNA in the 

extract was quantified by measuring the absorbance at 260 nm using the BioSpectrometer 

kinetic (Eppendorf, Hamburg, Germany). Subsequent RNA sequence analysis (RNA-seq) of 

the purified RNA was performed by GenScript Biotech Corp. (Piscataway, NJ). Briefly, RNA 

was randomly fragmented and reverse transcribed into cDNA, and adapter sequences were 

attached to both ends of the fragments. The fragments were amplified using polymerase chain 

reaction (PCR), and those with a size of 200–400 base pairs were selected and sequenced 

using the NovaSeq 6000 system (Illumina Inc., San Diego, CA). Detected changes in gene 

expression levels were analyzed using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway (Kanehisa et al., 2023). 

 

2.5. Real-time quantitative PCR 

Gene expression levels of eight genes representing pathways that varied in the 

transcriptome analysis were confirmed by quantitative PCR (qPCR) according to our 
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previous report (Kamata et al., 2022). Briefly, reverse transcription from mRNA was 

performed using the LunaScript® RT SuperMix Kit (New England BioLabs) following 

standard protocols. The cDNA was amplified using Luna® Universal qPCR Master Mix and 

corresponding primers for RT-qPCR. The primers were designed using the National Center 

for Biotechnology Information Primer designing tools. The primer information is shown in 

Table S1. The PCR conditions were as follows: initial denaturation, 95°C for 60 s; 40 cycles 

of denaturation, 95°C for 15 s; and annealing and extension, 60°C for 30 s. Real-time PCR 

was performed for each sample using the StepOnePlus™ Real-Time PCR System (Thermo 

Fisher Scientific). β-actin (Actb) was used as the internal control, and the fold change was 

calculated using the 2−∆∆Ct method. 

 

2.6. Metabolome analysis of liver 

Metabolome analysis was performed with liver samples following a previous report 

with slight modifications (Saigusa et al., 2016). Briefly, 400 μL of methanol containing 

internal standards (25 nM N,N-diethyl-2-phenylacetamide and d-camphor-10-sulfonic acid) 

and 400 μL of ultrapure water were added to 100 mg of liver sample and homogenized using 

BioMasher® II equipped with PowerMasher® II (Nippi, Incorporated, Tokyo, Japan) to 

extract the metabolome. The homogenates were centrifuged at 14,000 × rpm for 5 min after 

adding 100 μL of methanol containing internal standards (100 nM of 

N,N-diethyl-2-phenylacetamide and d-camphor-10-sulfonic acid). After centrifuging, the 

supernatant was transferred to Amicon® Ultra-0.5 3 kDa filter columns (Merck Millipore) 

and centrifuged at 14,000 × rpm for 1 hour. The filtrates were transferred to glass vials for 

ultra-performance liquid chromatography quantitative time-of-flight mass spectrometry 

(UPLC/QTOF-MS) analysis. This analysis was performed using an ExionLC AD UPLC 

system interfaced with an X500R QToF-MS system (SCIEX, Framingham, MA) with 

electrospray ionization (ESI) operated in positive and negative ion modes. The LC conditions 
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and MS parameters employed were in accordance with the previous report (Saigusa et al., 

2016). A serum quality control (QC) sample for metabolome analysis was prepared by 

pooling and mixing the same volume of all serum samples. The QC and blank samples 

(ultrapure water + internal standard) were injected at an interval of 6–7 sample injections to 

identify the sample carryover and check for stability during the entire analytical sequence. 

In this study, metabolomes were detected in at least 50% of the analyzed samples. 

The coefficient of variation values of 30% of metabolomes and annotation level 2 proposed 

by Schymanski et al. (2014) were used for data analysis. Peak heights were normalized by 

peak heights of internal standards and locally weighted least-square regression (locally 

estimated smoothing function) and cubic spline with QC samples. The metabolome data was 

analyzed using Mass Spectrometry-Data Independent AnaLysis (MS-DIAL) software version 

4.90 (Tsugawa et al., 2015) and R statistical environment Ver 4. 2. The mass spectra were 

searched against a RIKEN library, MS-bank North America, NIST20 tandem mass 

spectrometry library, and human metabolome database (Wishart et al., 2018). From 

candidates with the total scores based on the isotope ratio and accurate mass MS/MS 

similarity calculated, the annotation was made for the candidate with the highest score, and 

the identification cutoff score was set at 80. 

 

2.7. Molecular docking 

One of the possible mechanisms of PFAS toxicity is binding to the nuclear receptors 

PPARα, PPARγ, and PPARδ (Bjork et al., 2011; Fenton et al., 2021). Molecular docking 

simulations were performed to evaluate the binding affinity between the nine PFAS and the 

three PPARs. The 3D molecular structures of the small molecules and each known PPAR 

ligand were obtained from PubChem. Their PubChem CIDs are listed in Table 1. They were 

further preprocessed by adding partial atomic charges for their structures determined by 

molecular mechanics minimization calculated using the Gasteiger method (Gasteiger and 
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Marsili, 1978). The 3D structures of murine PPARα, PPARδ, and PPARγ were constructed 

using the protein 3D structure modeling algorithm Alphafold2 (Jumper et al., 2021). The 

protein structure was preprocessed by adding hydrogen atoms and energy minimization using 

the CHARMM force field (Brooks et al., 1983). The binding pocket of each PPAR was 

determined using the coordinates of the pocket with the largest volume identified by 

GHECOM (Grid-based HECOMi finder) (Kawabata, 2010). Molecular docking was 

performed using AutoDock Vina to determine the best docking poses and docking scores 

(Trott and Olson, 2010). The search area was a 25 Å × 25 Å × 25 Å grid box, and each 

calculation was performed 5000 times. The 3D structures obtained above were converted to 

2D structures using LIGPLOT+ v.2.2.5 to compare the respective amino acid binding modes 

(Laskowski and Swindells, 2011). 

 

2.8. Biomarkers of liver injury 

Liver injury and lipid metabolism biomarkers were measured using plasma samples 

collected after euthanasia at the end of PFAS exposure. Alkaline phosphatase (ALP) and 

cholesterol levels were measured colorimetrically using LabAssay™ (FUJIFILM Wako Pure 

Chemical Corporation, Osaka, Japan) according to standard protocols. Aspartate 

aminotransferase (AST) level was measured colorimetrically using a method established by 

Sigma-Aldrich (MAK055). 

 

2.9. Data analysis 

Statistical analysis was performed using JMP Pro 16 (SAS Institute, Cary, NC, USA). 

Tukey’s HSD test was used to compare measurements between all groups; a p-value of <0.05 

was considered statistically significant. For omics analysis, the false discovery rate (FDR) 

was applied to adjust p-values. R packages in R v.4.2 were used to analyze the results of the 

omics analysis. MetaboAnalyst R was used for enrichment analysis of the metabolome (Xia 
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et al., 2009). To characterize the metabolomics after PFAS exposure, Random Forests, a 

machine learning classification method, was utilized. PFAS-Low and PFAS-High were 

grouped together as PFAS-exposed groups, and a binary classification model was constructed 

to discriminate between the control and PFAS-exposed groups based on metabolomics. The 

implementation was based on the scikit-learn decision tree library with 5-fold 

cross-validation. n_estimator was set to 1000 and max_depth was set to 3. 

 

3. Results 

3.1. Histological examination 

Histological examination was performed on four organs (liver, spleen, kidney, and 

heart) to detect histological changes upon PFAS exposure. The most remarkable changes 

were observed in the liver, with an irregular alignment of the hepatic lamina in all 

PFAS-exposed individuals. The cytoplasm was vacuolated, granular, and pale (Fig. 1A). 

Other symptoms like inflammation or apoptosis were not observed in all samples. Glycogen 

degeneration is one of the causes of such granular degeneration. To confirm whether the 

granular degeneration was caused by glycogen, a PAS reaction with amylase digestion was 

performed. The results showed that before the amylase digestion test, the control group was 

diffusely positive for the PAS reaction and that the PFAS-exposed group had a decreased 

degree of reaction; however, after the amylase digestion test, all groups were negative for the 

PAS reaction (Fig. 1B). No distinct histological changes were observed in the spleen, kidney, 

and heart (Fig. S1). There were also no significant changes in body weight, clinical 

symptoms before euthanasia, or gross organ abnormalities. 

 

3.2. Liver transcriptome analysis 

Subsequent experiments focused on the liver, where significant histological changes 

were observed after PFAS exposure. Fig. 2A shows the number of genes with more than 
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2-fold changes in expression between each PFAS-exposed group detected by the RNA-seq. 

Clustering of these variations by Euclidean distance showed a similar pattern of gene 

variation in the PFAS-Low and PFAS-High groups compared with the control group (Fig. 

2B). The fluctuating gene groups were classified by function based on KEGG pathways, and 

enrichment analysis was performed to show the number of significantly fluctuating genes 

(Fig. 2C and D). Compared with the control group, a total of 70 metabolism-related and 30 

cancer-related genes were significantly altered in the PFAS-Low group and approximately 50 

metabolism-related and 20 cancer-related genes were significantly altered in the PFAS-High 

group, with metabolism-related genes accounting for the highest number of alterations in the 

PFAS-Low and PFAS-High groups, followed by cancer-related genes. 

 

3.3. qPCR 

Based on enrichment analysis of the transcriptome, chemical carcinogenesis, 

cholesterol metabolism, and fatty acid metabolism were selected as pathways with several 

genes whose expression levels were significantly different in the liver due to PFAS exposure. 

Six representative target genes of each pathway (Chrna4, Ccnd1, Pcsk9, Fasn, Cdc6, and 

Myc) were quantified and validated in all individuals (Fig. 3). Compared with the control 

group, the most upregulated gene was Chrna4, with a 6-fold and 10-fold increase in 

expression in the PFAS-Low and PFAS-High groups, respectively (Tukey’s HSD test). 

Significant increases were observed for Ccnd1, a cell cycle regulator contributing to 

tumorigenesis, and Fasn, a fatty acid synthase promoting obesity and tumorigenesis in 

PFAS-exposed mice. Pcsk9, an aggravating factor for blood cholesterol levels, was only 

upregulated in the PFAS-Low group. Conversely, Cdc6, an oncogenic gene acting as a 

regulator of DNA replication, was significantly upregulated in only the PFAS-High group. 

Expression levels of Myc (c-Myc), an oncogenic gene, did not differ significantly between the 

control and PFAS-exposed groups. 
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3.4. Metabolomics 

Metabolome analysis was performed because it is a sensitive biomarker detection 

method for assessing the toxic effects of chemicals. In this analysis, 189 compounds were 

detected and quantified. The heat map of all samples and the cluster analysis based on the 

heatmap is shown in Fig. 4A. The control and PFAS-exposed groups were found to bifurcate 

at the beginning, and the metabolite variation due to PFAS exposure was similar in the 

PFAS-Low and PFAS-High groups. Enrichment analysis was performed for 121 of the 189 

detected compounds listed in MetaboAnalyst R. Comparison of the PFAS-High and control 

groups revealed that the ether lipid pathway was the most significantly altered pathway, 

followed by the glycerophospholipid pathway. Comparison of the PFAS-Low and control 

groups showed different results, with the nucleotide glucose metabolism pathway being the 

most significantly altered pathway, followed by the glutathione metabolism pathway (Fig. 

4B). The glycerophospholipid pathway is a synthetic pathway for the major components of 

cell membranes, whereas the ether lipid pathway involves a group of lipids derived from the 

glycerophospholipid pathway and has more physiological activity. The nucleotide sugar 

pathway is a glycosyl and phosphoglycosyl donor in the biosynthesis of carbohydrates and 

glycoconjugates in all living organisms. However, none of the compounds showed significant 

differences when their concentrations were compared between each group (FDR adjusted p > 

0.05). 

Hence, to characterize the effects of PFAS exposure on the liver metabolome, a 

binary classification of PFAS-exposed and control groups based on the metabolome using 

random forests was performed. The random forest classifier is a machine learning algorithm 

that constructs multiple decision trees at training time and outputs the class that is the mode 

of the classification or mean prediction of the individual trees. The method is suitable for 

classification using many features and is also appropriate for this research application as it 

allows visualization of the importance of each feature in the classification. The random forest 
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classifier consisting of the decision tree shown in Fig. 4C discriminated PFAS-exposed and 

control groups from the metabolome with 100% accuracy for the training set and 90% 

accuracy for the test set. The importance of each feature (compound) in the classifier was 

calculated; 114 of the 189 compounds had a feature importance of 0, which means that they 

were not used in the classifier. The top 10 most important features are shown in Fig. 4D. The 

most important compound was 2,5-dihydro-2,4-dimethyloxazole. It is classified in the class 

of oxazolines and localizes to the cytoplasm, but there are almost no reports on its biological 

functions (Human Metabolome Database, 2021). Piracetam, the second most important 

substance, has been detected in the urine metabolome of patients with cancer, although its 

biological function as a metabolome remains unclear (Simón-Manso et al., 2019). The 

concentration profiles of these top 10 substances are shown in Fig. S2. 

 

3.5. Molecular docking 

The binding energy of each PFAS to PPAR, the receptor responsible for 

chemical-responsive hepatocyte hypertrophy, was evaluated by molecular docking. Known 

ligands for each PPAR were also docked for comparison (Jones et al., 2017; Oliveira et al., 

2007; Tang et al., 2014) (Fig. 5, Table S2). PFOS (C8) exhibited the highest binding energy to 

all PPARα, PPARγ, and PPARδ, followed by PFNA (C9), PFOA (C8). Compared with known 

ligands for PPARs, compounds with carbon chain lengths above PFHxA (C6) showed higher 

docking scores with those known ligands and showed docking scores equal to or higher than 

those of the known ligands for PPARs. The linear correlation between these PFAS carbon 

chain lengths and docking scores showed a positive correlation with high linearity with R2 

values of ≥0.80 (Fig. 5B). Comparing the binding poses of PFOA and known ligands of 

PPARs, PFOA was docked into the same binding pocket as the known ligands in all three 

PPARs (Fig. 5B). The number of amino acids in PPARs interacting with the ligands was 

fewer for PFOA than for the known ligands. However, the interacting amino acid species 
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were similar. The binding poses of eight compounds other than PFOA are listed in Fig. S3. 

 

3.6. Biomarkers for liver injury 

To evaluate whether the PFAS exposure caused liver damage, levels of ALP and 

AST (common liver biomarkers) and cholesterol (a lipid metabolism marker) were measured 

using mouse plasma. Although all parameters were within the reference range in all three 

groups (Otto et al., 2016; Quimby and Luong, 2006), ALP level was significantly higher in 

the PFAS-High group than in the PFAS-Low group. On the other hand, cholesterol level was 

significantly lower in the PFAS-High group than in the control group. 

 

4. Discussion 

PFAS are ubiquitous within the human population, raising concerns regarding their 

impact on human health. The concentrations of PFOA and PFOS in the human plasma are 

known to range 1–30 ng/mL (Hölzer et al., 2021). It is imperative to undertake a 

comprehensive risk evaluation of actual low-concentration mixed exposures occurring within 

the real-world environment. Herein, mice were orally exposed to 1 µg/L (adequate to 100 

ng/kg/day) of nine linear PFAS, including 25 ng/kg/day PFOA and 15 ng/kg/day PFOS, via 

drinking water for 5 weeks. 

Histological examination revealed significant alterations in the liver (Figs. 1A and 

S1). These alterations were observed in both PFAS-Low (100 ng/kg/day) and PFAS-High 

(5,000 ng/kg/day) groups and were characterized by vacuolar degeneration featuring 

eosinophilic granules and anomalous arrangement of hepatic sinusoids. Additionally, 

hepatocyte vacuolation was frequently observed in the hepatic lobule, especially near the 

hepatic portal vein. This suggests that PFAS is taken up via the gastrointestinal tract and 

directly affects hepatocytes proximal to the portal vein. The gross abnormalities could be 

attributed to glycogen denaturation or chemical-responsive acidophilic granular hepatic 
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hypertrophy. Given the findings of negative glycogen denaturation in PAS staining (Fig. 1B), 

chemical-responsive hepatic hypertrophy was presumed to be the etiology. Chen et al. (2022) 

postulated that inflammation and apoptosis of hepatocytes were demonstrable in response to 

PFOS exposure via drinking water at 500 µg/L, with Elcombe et al. (2012) positing that 

periportal hepatocellular vacuolation in rats could result from PFOS intake of 20 or 100 ppm. 

However, this study substantiated that even much lower mixed exposure doses could cause 

analogous histological alterations. 

Omics analysis was performed to evaluate molecular biological alterations in the 

liver. Transcriptome analysis revealed a similar pattern of genetic variation between the 

PFAS-Low and -High groups (Fig. 2B). The genes were categorized according to their 

function based on the KEGG pathway, and the genes related to metabolism and 

carcinogenesis were found to be predominantly modified by PFAS exposure (Fig. 2C and D). 

Quantitative PCR was performed to validate the changes in the expression levels within these 

pathways. Chrna4, the most highly expressed protein, was upregulated approximately 10-fold 

in the high-exposure group and 6-fold in the low-exposure group compared with the 

untreated control group (Fig. 3). Chrna4 is located upstream of Ccnd1, an oncogene in the 

KEGG chemical carcinogenesis pathway, suggesting that Chrna4 contributes to chemical 

carcinogenesis. Fasn, which encodes a fatty acid synthase, was also significantly upregulated. 

The overexpression of Fasn and enhanced lipid metabolism promote cancer cell growth and 

metastasis as cancer cells utilize fatty acids for tumor growth and metastasis (Fhu and Ali, 

2020). These results suggest that PFAS exposure enhances lipid metabolism and promotes 

tumorigenesis. Ccnd1 and Cdc6 are regulators of cell proliferation in the cell cycle. Ccnd1 

triggers the G1–S phase transition in the cell cycle by activating cyclin-dependent kinases 

(Cdk4 and Cdk6) and enhanced cancer cell proliferation (Valla et al., 2022). Cdc6, a cell 

growth regulator, is expressed in the quiescent phase (G1 phase) in normal cells but is 

expressed at all cell cycle stages in cancer cells and enhances cancer cell proliferation. The 
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increased expression of these genes in this study indicates that even low concentrations of 

PFAS mixture exposure might increase the risk of carcinogenesis. 

Metabolome analysis revealed similar patterns of metabolites altered by PFAS in the 

PFAS-Low and -High groups (Fig. 4A). On the other hand, enrichment analysis suggested 

that different pathways were altered in these groups, with the glycerophospholipid and ether 

lipid pathways being particularly affected in the PFAS-Low group. The main factor 

contributing to this is the decrease in glycerophosphocholine (α-GPC) levels in the 

PFAS-Low group (Fig. S4A). This suggests that following PFAS exposure, the decrease in 

acetylcholine precursor α-GPC levels may have led to an increase in the expression of the 

acetylcholine receptor Chrna4 (Fig. 3) to compensate for the initial decrease. The glutathione 

metabolic pathway, a defense mechanism against oxidative stress, was upregulated in the 

PFAS-High group. The nucleotide sugar pathway was upregulated in the both PFAS-exposed 

group owing to an increase in glucose 6-phosphate levels (Fig. S4B); G6P is the starting 

substrate for the pentose phosphate pathway, a NADPH-producing pathway in the liver. The 

increase may have occurred in response to the NADPH requirement of glutathione. On the 

other hand, the increase in reduced and oxidized glutathione levels (Fig. S2) suggests that the 

oxidative stress response was not disrupted and that the glutathione level increased adaptively. 

It should be noted that not all of the individual variations for each of these compounds were 

statistically significant. While the enrichment analysis showed different results among the 

exposure groups, the binary classification by machine learning, in addition to cluster analysis, 

could discriminate PFAS exposure from the metabolome with 90% accuracy, suggesting that 

there are exposure-specific effects. The substances that contributed most to the classification, 

2,5-dihydro-2,4-dimethyloxazole and piracetam, have unknown physiological significance. 

Further analysis of these substances may reveal the complete picture of the AOP of PFAS. 

The decision tree machine learning method to classify exposure groups effectively evaluated 

toxicity effects in a p-value-independent manner based on compounds with unknown 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.17.541082doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541082
http://creativecommons.org/licenses/by-nd/4.0/


19 

biological functions. On the other hand, the ether lipid pathway obtained by RNA-seq 

analysis did not show significant changes in gene expression (data not shown). These 

findings suggest that multi-omics analysis may be advantageous in detecting prepathological 

changes. 

One of the etiological factors underlying hepatic precancerous proliferative 

alterations is the activation of nuclear receptors, PPARs. In mammals, three types of PPARs 

have been identified, PPARα, PPARγ, and PPARδ, which participate in cell differentiation, 

energy metabolism, and cancer cell growth (Cheng et al., 2021). Molecular docking 

simulations were performed to evaluate the binding affinity between nine PFAS and mouse 

PPARα, PPARγ, and PPARδ. The results indicated a robust correlation between the length of 

the PFAS carbon chain and binding affinity for all three PPAR isotypes in mice (Fig. 5B). 

Notably, PFOS, PFNA, and PFOA had binding poses comparable to that of fenofibrate, a 

known PPARα ligand, and exhibited high binding potency exceeding that of fenofibrate 

(Table S2), suggesting that PFAS are PPARα agonists. Conversely, short-chain PFAS could 

also be bioactive, as docking scores equal to or above −7.0 generally exhibit high 

pharmacological activity in nanomolar order in drug discovery screening (Kuenemann et al., 

2018). A previous study reported that PFOA, PFOS, and short-chain PFAS could activate 

PPARα and PPARγ in vitro (Evans et al., 2022). Short-chain PFAS have relatively low 

toxicity but may contribute to PPAR-dependent hepatic hypertrophy. Although hepatocyte 

hypertrophy was observed, the RNA-seq results indicated that the expression levels of 

PPAR-responsive genes were not remarkably elevated (e.g., 2.0-fold increase in Cyp7a1 

expression in the PFAS-High groups). However, an increased expression of cell proliferative 

genes, including Ccnd1, in the oncogenic pathway indicated the presence of other 

receptor-binding-mediated cell proliferation signals. To accurately assess the toxicity of 

PFAS, key AOP events related to the hepatocyte hypertrophy require elucidation. 

In establishing regulatory limits, it is crucial to discern the indications of toxic 
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effects. Therefore, plasma ALP, AST, and cholesterol levels were measured as biomarkers of 

liver injury (Fig. 6). Although ALP levels increased significantly following exposure to high 

concentrations of PFAS, they remained within the normal range. AST and cholesterol levels 

were within the normal range and exhibited a decreasing trend correlated with increasing 

exposure. These findings suggest that PFAS exposure did not cause severe liver injury, even 

though histological alterations in the liver were evident. Hepatocytes transiently enlarge as an 

adaptive response to chemical exposure, whether adverse or nonadverse (Hall et al., 2012); 

therefore, the histological changes are considered adaptive hypertrophy. Because 

carcinogenic genetic changes were observed in this study, there remains a risk of liver 

damage with prolonged exposure. Therefore, chronic toxicity studies of mixed exposures are 

essential to elucidate the point. 

Although transient changes improve as PFAS are excreted, they are considered 

highly hazardous owing to their long half-lives. Moreover, species differences should be 

considered when extrapolating these findings to humans. This study utilized mice as test 

animals. A previous study showed that the sensitivity of PPARα to PFAS is higher in mice 

than in humans and that PFAS at levels that cause significant carcinogenicity in rodents may 

be insensitive or unresponsive in humans (Cheung et al., 2004). However, the half-lives of 

PFOA, PFOS, and other PFAS compounds are shorter in mice than in humans, and the same 

exposure may result in higher concentrations of residues in humans (Fenton et al., 2021). 

Therefore, it is essential to consider more appropriate models to evaluate the health effects of 

PFAS in humans. One limitation of this study is that it involved mixed exposure; therefore, it 

is unknown whether there were individual effects of each substance or synergistic effects. 

Short-chain PFAS are alternatives to PFOA and PFOS because of their shorter half-lives. 

Their lower binding to each PPAR than long-chain PFAS suggest that they are less toxic. 

However, previous studies have shown that PFBS, a short-chain PFAS, can be toxic. For 

instance, a single administration of 300 mg/kg PFBS to mice caused PPAR-responsive 
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hepatic gene alteration (Lau et al., 2020). Drinking water exposure to 10 µg/L PFBS 

significantly decreased phospholipid levels in the murine liver (Chen et al., 2022). Therefore, 

short-chain PFAS can result in toxicity (like PFOA and PFOS) upon persistent exposure. 

 

5. Conclusions 

This study confirmed that low concentrations of PFAS mixtures can cause changes 

in gene expression (including cancer-related genes) and histology, even after a relatively 

short exposure period of 5 weeks. Thus, it is essential to conduct exposure studies for longer 

periods and at lower concentrations that reflect environmental exposure conditions. 
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Figure legends 

 

Fig. 1. A) Histology of the liver determined by hematoxylin and eosin (HE) staining 

(magnification ×400) of samples in the control, poly-fluoroalkyl substances (PFAS)-Low 

(100 ng/kg/day), and PFAS-High (5,000 ng/kg/day) groups. Diffuse vacuolation and 

hypertrophy of hepatocytes with eosinophilic granules were observed in all mice in the 

PFAS-Low and -High groups. B) Representative images of livers stained with periodic 

acid-Schiff (PAS) stain with/without amylase digestion (magnification ×400).  
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Fig. 2. Transcriptome analysis of the liver. A) Shows the number of upregulated and 

downregulated genes based on the comparison pair’s fold change (FC). B) The high 

expression similarities were grouped together using each sample’s normalized value. 

(Distance metric = Euclidean distance, Linkage method = Complete Linkage). C) Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis between the PFAS-Low 

and control groups. D) KEGG enrichment analysis between the PFAS-High and control 

groups.   
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Fig. 3. Real-time quantitative polymerase chain reaction. Representative genes of pathways 

with high variability in RNA sequencing were quantified. The y-axis shows the gene 

expression value relative to the control using β-actin (Actb) as the calibration gene. The data 

are represented as mean ± SEM (n = 5). All data were measured in duplicate. Asterisks (*) 

represent significant differences compared with control by Tukey–Kramer’s HSD test, *; p < 

0.05, **; p < 0.01, ***; p < 0.001.   
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Fig. 4. Metabolomics of the liver. A) Heatmap of all 189 metabolites detected in the liquid 

chromatography-mass spectrometry analysis and hierarchical clustering. B) Quantitative 

enrichment analysis compared with PFAS-High or PFAS-Low and control groups. C) An 

example of a decision tree in a random forest classifier. D) Top 10 feature importance for the 

random forest classifier (11 compounds were tied for the 10th place).  
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Fig. 5. A) Theoretical binding pose obtained by molecular docking simulation for peroxisome 

proliferator-activated receptor (PPAR) with perfluorooctanoic acid or their known ligands. 

The protein is shown in ribbon representation with the binding residues shown in stick 

representation, and orange dashed lines in the 3D diagram indicate ligand–protein 

interactions. These interactions are visualized as 2D figures using LigPlot+. B) Regression of 

docking scores and carbon chain length of PFAS. The known ligands are indicated by filled 

shapes. Linear regression was performed using GraphPad Prism 9. Dashed lines represent the 

95% confidence interval of the regression shown as colored lines. The docking scores are 

shown in Table S2.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.17.541082doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541082
http://creativecommons.org/licenses/by-nd/4.0/


35 

 

Fig. 6. Plasma concentration of hepatic biomarkers. The plasma concentrations of ALP 

(alkaline phosphatase), AST (aspartate aminotransferase), and cholesterol in plasma were 

measured colorimetrically. Data are presented in box-and-whisker plots, with boxes 

indicating each quartile and median, + denoting the mean value, and whiskers denoting the 

maximum and minimum values. All data were measured in duplicate. * represents significant 

differences detected by Tukey–Kramer’s HSD test (p < 0.05). 
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Tables 

Table 1. Composition of the nine poly-fluoroalkyl substances (PFAS) used in the study. 

Compound Abbrv. % 

Concentration (µg/L) Carbon 

chain 

length 

PubChem 

CID PFAS-Low  PFAS-High 

Perfluorooctanoic acid PFOA 25 0.25 12.5 8 9554 

Perfluorobutanoic acid PFBA 20 0.2 10 4 9777 

Perfluorooctanesulfonic acid PFOS 15 0.15 7.5 8 74483 

Perfluorononanoic acid PFNA 10 0.1 5 9 67821 

Perfluorovaleric acid PFPeA 6 0.06 3 5 75921 

Perfluorohexanoic acid PFHxA 6 0.06 3 6 67542 

Perfluorobutanesulfonic acid PFBS 6 0.06 3 4 67815 

Perfluoroheptanoic acid PFHpA 6 0.06 3 7 67818 

Perfluorohexanesulfonic acid PFHxS 6 0.06 3 6 67734 
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