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Summary 

 

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular 

rhythms in non-cancerous and cancerous human breast tissues are largely unknown. We reconstructed 

rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For non-

cancerous tissue, the inferred order of core-circadian genes matches established physiology. Inflammatory, 

epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian 

modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian 

organization. Luminal A organoids and informatic ordering of Luminal A samples exhibit continued, albeit 

disrupted rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely 

among Luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude 

Luminal A tumors. Patients with high-magnitude tumors had reduced 5-year survival. Correspondingly, 3D 

Luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-

specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis. 

 

Keywords 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2023. ; https://doi.org/10.1101/2023.05.17.540386doi: bioRxiv preprint 

mailto:ron.anafi@pennmedicine.upenn.edu
mailto:qing-jun.meng@manchester.ac.uk
https://doi.org/10.1101/2023.05.17.540386
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Breast Cancer, Informatics, Circadian Data Ordering, Metastasis, Estrogen Receptor, Rhythm Strength, 

Prognosis, Circadian Medicine 

 

Highlights 

 

● Breast cancers exhibit subtype-specific and estrogen-dependent clock disorganization.  

● Luminal A tumors show dysregulated rhythmic pathways and varied rhythm strength. 

● Higher rhythm strength in Luminal A tumors was correlated with reduced 5-year survival.  

● Reducing rhythm strength in Luminal A cells in vitro slows cell invasion. 

 

Introduction 

 

Worldwide, breast cancer is the most common cancer among women1-3. Over the last decades, the 

introduction of early detection programs, combined with improvements in systemic therapies, have reduced 

breast cancer mortality2-4. Despite these improvements, resistance and subsequent relapse remain major 

issues3. Among women, those with breast cancer lose more disability-adjusted life years than with any 

other cancer5. Adverse effects frequently compromise quality of life3,6-8. There remains a clear need to 

improve the therapeutic index for breast cancer treatments.  

 

Over the last two decades, research has highlighted the critical roles of cell-intrinsic circadian rhythms in 

disease (including cancer) and medicine9-12. The circadian (~24-hourly) clock is evolutionarily ancient and 

highly conserved, permitting cells to anticipate daily environmental changes through temporally coordinated 

metabolic and gene expression profiles13-15. A series of transcription-translational feedback loops form the 

molecular circadian clock13-16. The positive arm of the central loop includes the transcriptional activators 

Circadian Locomotor Output Cycles Kaput (CLOCK) and Brain and Muscle ARNT-Like 1 (BMAL1)13-16. The 

negative arm, which includes the Cryptochrome (Cry1/Cry2) and Period (Per1/Per2) genes, later represses 

translation13-16. 

 

The influence of circadian time on cell division, and, by extension, cancer, is particularly strong. In 

yeast and mammals, evolutionary pressures acted to gate DNA replication and cell division, shielding 

the dividing cell from solar radiation and toxic metabolites12,17,18. The cell cycle and circadian clocks 

share components and signaling molecules and show reciprocal regulation19-24. In addition, several 

oncogenes have been causally linked to circadian clock dysfunctions and may directly hijack clock 

mechanisms22,25. 
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Epidemiological and animal studies have proposed that night shift work that disrupts circadian rhythms may 

increase the risk of developing breast and other cancers26-28. This has prompted the WHO to classify night 

shift work as a probable carcinogen26-28. Previously we demonstrated that the extracellular 

microenvironment modulates functional, cell-intrinsic circadian clocks in mouse mammary gland tissue and 

human breast epithelial cells29-32. Time series transcriptomic analysis revealed hundreds of rhythmic genes 

in the mouse mammary gland. Rhythmic transcripts included critical molecules implicated in cell cycle 

regulation, epithelial/progenitor cell function, and hormone responsiveness. Acting, in part, through an 

immunosuppressive shift in the tumor environment, chronic circadian disruption increases mammary 

cancer cell dissemination and metastasis in a mouse model of tumorigenesis33. 

 

Beyond this basic biology, the molecular circadian clock regulates thousands of genes in a cell and tissue-

specific manner. Half of the 100-best-selling-drugs target molecules that oscillate in different mouse 

tissues16. In 1973, Halberg and colleagues initiated a series of studies with the underlying hypothesis that 

dosage time could influence chemotherapeutic pharmacokinetics, limit toxicity, and improve efficacy34. 

Decades of clinical experience show that time-of-day can influence chemotherapeutic activity35. However, 

the widespread translation of circadian biology in oncology remains slow and serendipitous. Mechanistic 

knowledge about the unique molecular rhythms in distinct tumors and normal human tissues must be 

improved. Repeated biopsies or time course sampling from large numbers of human patients is neither safe 

nor practical. As a result, clinically relevant molecular rhythms still need to be discovered, and opportunities 

for targeted circadian therapies are unrealized. In addition, while some in vitro and in vivo cancer models 

demonstrate a complete lack of rhythms, other models (like U2OS cells) show continued rhythms19. Indeed, 

informatic analysis of intact hepatocellular carcinoma has shown disrupted yet persistent transcriptional 

rhythms36. 

 

We recently optimized CYClic Ordering by Periodic Structure (CYCLOPS) to overcome this problem. This 

machine learning algorithm has allowed us to reconstruct circadian rhythms in samples where sampling 

time is unknown36-38. We adapted CYCLOPS to better account for the non-circadian variation inherent to 

large-scale data in clinical databases (CYCLOPS 2.0). We then adopted a hybrid study design (Fig 1A). 

We combined deep sequencing of a small number of time-stamped, paired clinical samples with data from 

large RNASeq datasets—the Tissue Cancer Genome Atlas39 (TCGA) and the Genotype-Tissue 

Expression40 (GTEx)  project—where the circadian time of sample collection is unknown. Both the modified 

CYCLOPS algorithm and experimental validation reveal clear cancer-subtype-dependent changes in 

molecular clocks and their rhythmic targets. Notably, we uncover a key role of molecular timekeeping in 

Luminal A tumors linking circadian rhythms to epithelial-mesenchymal transition (EMT), cell invasion, and 

prognosis. Our studies also provide mechanistic insights into the role of estrogen receptors (ER) in 

regulating breast cancer clocks.  
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Results 

 

Profound changes in clock gene expression and circadian organization in time-recorded breast 

cancer biopsies  

To assess and improve the accuracy of informatic predictions and to enable direct comparisons of 

transcriptional changes in circadian genes, we collected 43 pairs of fresh human breast samples (non-

cancerous and paired tumors from the same individuals) from patients undergoing mastectomy at the 

Nightingale Breast Centre, Manchester, UK (Patient demographics on Table. 1). Non-cancerous tissues 

were collected at least 4 cm away from tumors (Fig. 1A). Tumor samples included Luminal A (N=29), 

Luminal B (N=3), HER2 (N=2) and Triple-negative breast cancers (TNBC, N=9) (Fig. 1B). Resection times 

of all samples were recorded (Fig. 1C). To identify non-cancerous and tumor areas we employed 

Hematoxylin and Eosin-Y staining (H&E staining) and immunohistochemistry using epithelial and stromal 

markers (Cytokeratin 8 and Vimentin, respectively) (Fig. 1D). Normal breast contains organized acinar and 

lobular structures, whereas tumor regions lack regular glandular structures. We performed RNA sequencing 

following RNA isolation. Based on these RNAseq data, the expression of most clock genes is significantly 

altered in breast cancer tissues. Compared to the paired non-cancerous samples, we observed significant 

downregulation of PER1, PER2, CRY2, HLF, TEF, and NFIL3 (Fig. 1E; Fig. S1). In contrast, CLOCK, 

NPAS2, CIART/CHRONO, BHLHE40, RORA, and RORC were significantly upregulated in these breast 

tumors (Fig. 1E; Fig. S1). 

 

To examine core clock organization in these breast tumors, we performed Spearman’s correlation 

coefficient analysis38,41-43 using RNAseq data from time-stamped paired breast tumors and non-cancerous 

samples with a sequencing depth of >20 million reads. As expected, the non-cancerous breast tissues 

demonstrate core-clock correlation patterns mirroring those seen in mice16. The expression levels of clock 

activators positively correlate with each other across samples. The same is true for the canonical 

repressors. In contrast, the two groups negatively correlate with each other (Fig. 1F). The strong similarity 

between the clock correlation patterns seen in the non-cancerous tissue (Fig. 1F, Zstat score of 20.71) and 

the mouse model suggests a functional clock network. In contrast, a weaker overall correlation in breast 

tumors (Fig. 1F, Zstat score of 9.28) suggests a weakening of core circadian organization in these samples. 

 

Transcriptional circadian rhythms are evolutionarily conserved in non-cancerous human breast and 

mouse mammary tissue 

We adopted a hybrid study design38 to evaluate circadian time order in human non-cancerous breast 

tissues. We used informatic tools to integrate RNAseq data from newly collected time-stamped breast 

samples (N=26, with non-cancerous samples with > 20 million reads) with RNAseq data from female breast 

samples in public databases. We incorporated data from TCGA39 and GTEx40 (Table S1). We did not 
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include samples collected in centers where only a small number (n<5) of non-cancerous samples were 

processed. 

 

Systematic differences between sample collection sites, processing methods, and patient populations 

complicate the use of aggregate data. These differences may be particularly problematic when different 

centers have different biases in collection time. We modified the CYCLOPS36 neural network to 

accommodate explicit confounding variables, simultaneously learning confounder adjustments and a 

common circular structure that explains the variance of the combined data: CYCLOPS 2.0 (Fig. S2A). We 

benchmarked CYCLOPS 2.0 on actual, semi-synthetic, and fully-synthetic data with different temporal 

biases (Fig. S2B-D). CYCLOPS 2.0 demonstrates improved accuracy with realistic levels of non-circadian 

noise. Finally, we allowed the ordering process to use information from a subset of time-stamped samples. 

We performed 10-fold cross-validation to determine the relative weight given to predicting time in these 

samples and identify a common circular structure for all samples. 

 

We identified the human orthologues of transcripts that cycle in mouse mammary gland tissue29. Combining 

these with the human orthologues of transcripts that cycled in >75% of mouse tissues16, we constructed a 

circadian "seed gene" list appropriate for ordering human breast tissue. Ordering the combined dataset 

using these seed genes and including temporal information from the 26 time-stamped human samples, the 

CYCLOPS smoothness and ordering metrics for the entire dataset meet previously established standards 

(Statsmooth=0.75, Staterror=0.015). The CYCLOPS-predicted sample phases show a significant 

correlation with the known sample collection times of the 26 subjects (Corrcirc=0.7, p<0.005) (Fig. 2A). As 

expected, the clinical biopsies available in TCGA show a temporal bias in inferred sample collection phase 

(Fig. 2B). In contrast, the distribution of inferred sample phases assigned to the GTEx samples (autopsy 

collection) was more uniform (Fig. 2B). After ordering, we used modified Cosinor regression36,44 to identify 

cycling transcripts and estimate their amplitude and acrophase (time of peak expression) (Fig. 2C, D). The 

expanded Cosinor model explicitly accounted for differences in expression due to sequencing sites or 

source databases. At a BHq threshold of 0.05, we identified ~2,000 genes as rhythmic. When we imposed 

a relative cycling amplitude (amplitude/MESOR (Midline Estimating Statistic of Rhythm)) greater than 1/3—

as a measure of likely biological significance—we reduced the number of identified cycling transcripts to 

~650 (File. S2). As observed in other tissues, there are clear circadian "rush hour periods" where many 

rhythmic transcripts peaked16,37,45. With the notable exception of RORC, the relative acrophases of core-

clock transcripts reconstructed from non-cancerous human breast tissue are in good accord with the well-

established ordering of these transcripts in other mouse and human tissues (Fig. 2E). 

 

To put these cycling results in a broader biological context, we used phase set enrichment (PSEA)46 to 

identify annotated gene sets and biological pathways where the constituent cycling transcripts exhibited 

circadian concentration and were not uniformly distributed across the circadian day. Pathways related to 
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adipogenesis, EMT, and estrogen responsiveness, show circadian orchestration, similar to reports from 

mouse mammary gland (Fig. 2F). Using both gene set enrichment47 and over-representation approaches48-

50, we also labeled pathways that were enriched for cycling genes. In addition to the abovementioned 

pathways, various immune and cell cycle pathways show marked circadian orchestration (Fig. 2G, H). 

 

ER activity correlates with circadian organization and function in breast cancer subtypes 

Our clock correlation analysis on locally collected cancer samples combined data from biologically distinct 

breast tumor types. We applied clock gene correlation analysis38,41-43 to TCGA breast tumor data to evaluate 

cancer-subtype-dependent changes in clock organization—the expression of the PAM50 panel genes 

defined cancer subtypes51,52. Consistent with the non-cancerous time-stamped samples, the non-

cancerous breast tissues from the database show an intact core circadian organization that closely mirrors 

the established consensus with a Zstat score of 20.86. The Luminal A samples demonstrate weaker but 

still considerable evidence of intact circadian organization with a Zstat score of 11.04. On the other hand, 

Luminal B and Triple Negative breast cancers exhibit disrupted correlation patterns with Zstat scores of 

6.93 and 4.98, respectively (Fig. 3A). The relatively small number of HER2 samples in the TCGA database 

prevented evaluation of clock organization in this tumor type. 

 

Given these findings, we hypothesized that circadian function in breast tumor tissues, like core clock 

organization, varies among cancer subtypes - with Luminal A samples showing reasonably good clocks. 

We assessed molecular circadian rhythms in breast tumors and paired non-cancerous tissues from the 

same individuals to confirm these predictions. We derived organoids from primary mammary epithelial cells. 

This model more closely mimics in vivo physiological functions of mammary epithelia31,32,53. The organoid 

cultures from normal breast tissues showed typical acinar structures. In contrast, breast tumor organoids 

showed disrupted cell polarity (Fig. 3B). After lentiviral transduction of a BMAL1-Luc circadian reporter, we 

imaged bioluminescence signals using an LV200 imaging system (Olympus). Non-cancerous human 

mammary organoids showed robust circadian rhythms. Patient-derived Luminal A tumor organoids showed 

persistent but weakened rhythms (Fig. 3C, Video. S1, N=4). However, we did not observe sustained 

circadian rhythms in BMAL1-Luc activity in TNBC tumor organoids (Fig. 3D, Video. S2, N=3), Luminal B 

organoids, or HER2 organoids (data not shown). Using either a BMAL1-Luc reporter or time course western 

blot studies of clock factors, we also observed corresponding clock changes in established breast cancer 

cell lines representing various tumor subtypes (Fig. S3A-C). The MCF-7 cell line (representative of ER+ 

Luminal A) continues to exhibit circadian rhythms, while the MDA-MB-231 (TNBC) and SKBR3 (HER2+) 

cell lines do not (Fig. S3B, C). In unsynchronized cells, we observed altered average expression levels of 

core clock genes among the three cell lines. (Fig. S3D). 

 

As ER status is one of the key factors in differentiating these tumor subtypes, our informatic and 

experimental results suggest a possible link between ER responsiveness and clock functions in breast 
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cancer cells. Indeed, further stratification of breast tumor samples based on ER status indicates a strong 

correlation between ER expression and clock functionality (Fig. S4A). To more directly determine whether 

ER signaling regulates circadian rhythms in breast cancer cells, ERα was knocked out of BMAL1-Luc MCF-

7 cells using CRISPR-Cas9. Following co-transfection of sgRNA and Cas9 protein, single-cell colonies 

were isolated. We confirmed successful knockout by DNA sequencing, supported by the absence of ERα 

mRNA and protein (Fig. S4B, C). ERα-KO disrupted the expression of clock factors in MCF-7 cells 

compared to the control (Fig. S4 D, E). In contrast to the robust 24-hour rhythms in control MCF-7 cells, 

there was a complete loss of circadian BMAL1-Luc rhythms in all four clones of MCF-7 cells with ERα-KO 

(Fig. S5A). In addition, an ERα selective agonist PPT (Propyl Pyrazole Triol) synchronized circadian clocks 

in MCF-7 cells in a dose-dependent manner, further supporting a regulatory role of ER signaling in MCF-7 

cell circadian function (Fig. S5B). 

 

CYCLOPS 2.0 analysis revealed global changes in rhythmic gene expression patterns and pathways 

in Luminal A samples  

Guided by the experimental and informatic evidence for persistent rhythms in Luminal A tumors and the 

relative abundance of Luminal A samples in the TCGA database, we next used CYCLOPS 2.0 to order 

Luminal A tumors (Table S2). There is likely significant non-circadian heterogeneity among Luminal A 

samples. We projected the Luminal A data onto the eigengene space computed from the non-cancerous 

samples36 to emphasize the variation resulting from circadian time. Using the CYCLOPS 2.0 model, we 

included data from both non-cancerous and Luminal A samples in the ordering, now listing tumor status as 

a covariate. After ordering and applying cosinor regression to the Luminal A samples, seven core clock 

genes, including DBP, NR1D1, NR1D2, TEF, PER3, NFIL3, and CRY1, meet the initial criteria for cycling 

(Fig. 4A, B). At a BHq threshold of 0.05, we identified ~1,100 genes as rhythmic. When we imposed a 

relative cycling amplitude greater than 1/3, we reduced the number of identified cycling transcripts to ~675 

(File. S2). Of course, differences in sample size and non-circadian variability may have contributed to these 

changes. Thus, in addition to simply identifying genes that meet our statistical cutoffs in Luminal A, we used 

nested regression models as we36 and others54,55 have done previously, to directly test for changes in 

cycling between Luminal A and non-cancerous samples (File. S3). This nested modeling approach tests 

the importance of tumor-dependent cycling parameters while accounting for tumor-dependent differences 

in mean expression level. We observe changes in core clock gene and clock output gene rhythms in 

Luminal A samples (Fig. 4A, B). For example, while TEF shows decreased amplitude in the Luminal A 

samples, its partner and structural/functional paralogue56, DBP, shows increased amplitude. As in the non-

cancerous samples, Luminal A samples show "rush hours" of rhythmic transcription (Fig. 4C). However, 

here, the proportion of samples assigned to the window that precedes the ARNTL (BMAL1) acrophase 

(inferred early evening) is much higher. Using our nested regression models to compare the fit amplitude 

for transcripts that cycled in either Luminal A or non-cancerous samples, we find that more transcripts lose 

as opposed to gain amplitude in Luminal A samples (Fig. 4D). Of note, TCGA includes a limited number of 
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matched Luminal A tumors and non-cancerous samples from the same patient. The sample phases 

assigned to the tumors and their non-cancerous matches are poorly correlated (Fig. 4E). 

 

At a gene set level, many pathways demonstrate continued circadian orchestration in the Luminal A 

samples (Fig. 4F). Phase set enrichment analysis reveals cycling in EMT, androgen responsiveness, and 

numerous immune and inflammatory pathways. We used two complementary approaches to focus on 

pathway-level differences in Luminal A and non-cancerous output rhythms. To identify pathways with 

enhanced rhythmicity in Luminal A, we first ranked the full complement of genes that cycled in either 

Luminal A or non-cancerous tissue by the log fold change in amplitude. We then used GSEA to identify 

gene sets enriched for more marked amplitude increases in this ranked list. Alternatively, we used nested 

regression to identify transcripts that showed statistically significant differential cycling (BHq<0.05) between 

Luminal A and non-cancerous samples. Focusing on genes with a more than five-fold gain in amplitude in 

Luminal A samples, we used EnrichR to identify pathways overrepresented in this discrete set. Both 

methods yield similar results (Fig. 4G, H). EMT and angiogenesis pathways—critical to cell invasion and 

growth support—show increased cycling in Luminal A samples. We find that adipogenesis appears to have 

reduced cycling using the same two analyses (Fig. 4I, J). Pathways related to fatty acid metabolism and 

NFƙB signaling (among others) also show reduced cycling in Luminal A tumors using one or the other 

analysis (Fig. 4I, J). 

 

CYCLOPS magnitude as a measure of global circadian rhythm strength 

While we understand the amplitude of a single rhythmic waveform, meaningful, global measures of 

transcriptional rhythm strength still need to be well established. For example, it is generally unknown if high 

amplitude circadian expression in some genes predicts high amplitude circadian expression of others. 

CYCLOPS operates on eigengenes—global descriptors of expression that summarize the behavior of many 

cycling genes. CYCLOPS projects these data onto a plane where a circular structure is apparent. We use 

the angular position of any sample on this circle to infer its internal molecular phase. We also calculate the 

radial distance of each sample from the circle's center. Geometrically, we interpret CYCLOPS magnitude 

(CMag) (Fig. 5A) as a weighted sum of the amplitudes of the individually cycling seed genes. This concept 

resembles the PCA plots of cycling gene expression in Brooks et al.57. The distribution of CYCLOPS 

magnitudes obtained from the Luminal A samples is broad with a long tail (Fig. 5B). Dividing samples into 

equal thirds based on CMag, we find that across all transcripts cycling in Luminal A samples, the amplitude 

of cycling is generally greater in high magnitude samples as compared to low magnitude samples (Fig. 5C, 

D). Unlike Luminal A samples as a whole (Fig. 4E), the circadian molecular phases assigned to high CMag 

Luminal A samples generally match the phases assigned to their non-cancerous pair (Fig. 5E). This 

suggests that higher CMag in Luminal A samples is indicative of a more robust clock.   
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Circadian rhythm strength predicts prognosis and modulates metastatic potential 

We investigated if rhythm strength influenced tumor biology and prognosis. Patients with Luminal A tumors, 

as assessed by the PAM50 panel52, were stratified into three equally sized groups based on the CMag of 

their tumors (low, medium, and high CMag). Using TCGA outcome data, we evaluated these patients' 5-

year survival. Retrospectively, the risk of death increases among patients with high-magnitude Luminal A 

tumors (Fig. 5F). This difference is statistically significant (p=0.047, ANOVA). The increased risk in the high-

magnitude tumor group remains statistically significant when we tested its influence in a generalized 

(logistic regression) model that also included patient age and the presence of known metastases at 

diagnosis (p<0.05). A high-magnitude tumor increased the relative risk by ~1.5x, over and above the risk 

established by the other covariates. Indeed, the predictive value of tumor magnitude remains significant in 

a model that includes MKI67 transcript expression (p<0.05). Of some note, while the same trend appears 

examining a broader outcome of death OR new cancer event (Fig. S6), this trend is not statistically 

significant. 

 

CYCLOPS magnitude is broadly associated with the cycling amplitude of many genes. Given its prognostic 

importance, we next identified rhythmic pathways that showed the most marked differences in high-

magnitude samples. For each transcript that showed statistically significant cycling in Luminal A samples, 

we compared the amplitude estimated from the high-magnitude samples (top third) to the amplitude 

estimated from lower-magnitude samples (bottom two-thirds). Again, we leveraged both enrichment and 

overrepresentation approaches to analyze these results at the pathway level. When we compare high- and 

lower-magnitude samples, our analyses show that EMT-related genes exhibit the most pronounced 

changes in cycling (Fig. 5G, H). Given the well-established role of EMT in tumor biology and, in particular, 

metastatic potential, we hypothesized that high amplitude rhythms might modulate Luminal A tumor cell 

behavior and the potential for invasion.   

 

Most core circadian clock genes have paralogues that can functionally compensate for molecular 

knockdown58. Only BMAL1 is essential for circadian locomotor function59. To establish the role of circadian 

clocks in regulating breast cancer cell behavior, we used lentiviral shRNA for BMAL1 to disrupt cellular 

clock functions in rhythmic MCF-7 cells. As expected, the lack of BMAL1 abolished circadian reporter 

rhythms in MCF-7 cells (Fig. 6A). We used hanging drop and cell invasion assays to evaluate the invasion 

of MCF-7 cells through a 3D collagen I matrix microenvironment. We assessed invasiveness by measuring 

the distance from the center of the spheroid (initial droplet) to the edge of the furthest cell. Circadian 

disruption through BMAL1 deficiency inhibited the rate of cell invasion in both MCF-7 cells (p< 0.001, Fig. 

6B, C) and primary Luminal A breast tumor cells (Fig. S7A). When we disrupted the molecular clock with 

KL001, which stabilizes both CRY1/CRY2, we observed a similar suppression of cell invasiveness (Fig. 

6D-F). Next, MCF-7 cell proliferation was assessed by expression of Ki-67 and real-time quantitative live 

cell imaging using IncuCyte. BMAL1 knockdown increased levels of Ki-67 (Fig. S7B) and cell proliferation 
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(p< 0.0001) (Fig. S7C, Video. S3) in MCF-7 cells. As such, the loss of molecular clock rhythm in MCF-7 

cells compromises breast cancer cell invasion into the 3D matrix, despite increasing cell proliferation. 

 

Discussion 

 

This work used informatic ordering (CYCLOPS 2.0) to integrate newly collected, time-stamped biopsies 

with public data. We reconstructed temporal rhythms in non-cancerous breast tissue and Luminal A breast 

tumors. In non-cancerous tissue, our approach reveals the cycling of inflammatory, EMT, and estrogen 

response pathway genes. Experiments with Luminal A organoids show continued, albeit dampened 

rhythms. Disrupted rhythms are also evident in our informatic circadian reconstruction of Luminal A tumors. 

Strikingly, retrospective analysis shows that Luminal A cancer patients with high rhythm strength tumors 

had increased 5-year mortality. EMT pathway genes show the most marked increase in cycling when 

comparing tumors with higher and lower rhythm strength. Given the importance of EMT in cell invasion, we 

hypothesized that tumors with high rhythm strength might show increased metastatic potential. Accordingly, 

3D culture experiments using established Luminal A cancer cell lines and primary Luminal A cells show 

reduced invasion following molecular clock disruption. As such, our study links subtype-specific circadian 

disruption in breast cancer to EMT, metastatic potential, and prognosis. 

 

A bi-directional web of transcription factors and direct protein-protein interactions couples the cell-intrinsic 

circadian clocks and the cell cycle. Core circadian clock genes include the likely tumor suppressors PER1 

and PER260-62. More recently, researchers have shown that the master clock activators BMAL1 and CLOCK 

have anti-apoptotic roles, promoting liver cell proliferation through the cell cycle regulator Wee-14063. On 

the other hand, oncogenes such as c-MYC or KRAS interfere with circadian pacemaking24,25.  

 

The circadian-cancer connection may be vital in breast cancer. Several epidemiologic studies have now 

linked night shift work with breast cancer risk26-28. In mouse models bearing primary mammary tumors or 

breast cancer xenografts, the efficacies of Doxorubicin and Celecoxib are time-of-day dependent64,65. 

However, the difficulty of obtaining time-course clinical samples across multiple circadian cycles in a large, 

clinically informative cohort hinders our understanding of circadian biology and its translation in human 

breast cancer. 

 

Several supervised learning algorithms (e.g., BodyTime, TimeSignature, TimeTable, and ZeitZeiger)  

predict internal clock time from time-unknown human samples66-69. These approaches require “training 

data” that spans the tissues and conditions covered in later applications. BodyTime, for example, uses a 

small set of transcriptomic biomarkers from blood monocytes to predict the melatonin phase67. These 

approaches show promise when applied to the specific tissue for which they were trained. However, they 
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are not designed for application to new tissues or disease states (such as solid tumors) without specific 

training data. 

 

In contrast, CYCLOPS36 uses global descriptors of expression structure and unsupervised machine 

learning that identifies more general signatures of rhythmic processes. CYCLOPS does not require exact 

knowledge of the particular cycling genes in a tissue or the specific temporal relationship between those 

rhythmic genes. Instead, CYCLOPS requires a list of “seed genes” likely to cycle in a given tissue. It 

assumes a fixed relative phase relationship between the cycling seed genes across subjects (e.g., BMAL1 

precedes NR1D1 by a relatively fixed amount in the oscillations in each sample). More recently, other 

unsupervised and semi-supervised approaches have emerged. Most notably, Talamanca et al.45 aimed to 

increase the power of this approach, focusing on GTEx data, where many sample tissues were taken from 

the same individuals. Their approach assumes that tissues obtained from the same individual at the same 

time are at the same molecular phase.  

 

In our work, however, the limitations of having a single tissue type are compounded by the need to 

aggregate data from several sources. We specifically tailored our modifications to CYCLOPS for these 

issues. In this context, non-circadian covariates and batch effects in processing can likely overwhelm 

circadian variation. As we demonstrate in our benchmarking, batch-correcting approaches like COMBAT 

that attempt to “normalize away” these differences are unlikely to overcome this obstacle. If different centers 

have different biases in collection time, that approach may remove much of the circadian signal. This 

challenge is particularly relevant when combining clinical biopsy and autopsy-based collections. CYCLOPS 

2.0 explicitly accommodates these issues, finding batch and covariate adjustments to utilize a common 

underlying periodic structure for all datasets. 

 

While our CYCLOPS 2.0 ordering of non-cancerous breast tissue is consistent with well-established 

circadian physiology (i.e., the relative phase relationships between core clock genes) and meets various 

informatic quality checks, it is always reasonable to question informatic results. We cannot dismiss the 

influence of non-circadian variability on the ordering process. Our hybrid experimental design lends 

considerable reassurance. This design required only a small number of newly collected time-stamped 

samples to guide our efforts and demonstrate that the informatic ordering reflects natural temporal variation. 

This informatics-guided approach reflects a practical compromise, allowing us to infer molecular rhythms 

without exhaustive time course sampling more confidently. It should also be noted that CYCLOPS, like 

other ordering methods, infers time as a function of gene expression. Therefore, using time as an 

independent variable for cycling analysis is somewhat fraught. We have attempted to address this, as we 

did previously36, by implementing a more stringent modified cosinor regression and imposing strict 

numerical thresholds. 
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Clock gene correlation analysis from breast cancer samples showed subtype-dependent changes in the 

core-clock organization, supported by our in vitro data showing subtype-dependent clock functionality in 

tumor organoids. Both approaches revealed a critical role in estrogen responsiveness in regulating breast 

cancer clocks. Previous work using microarray data to study the correlation between clock genes in node-

negative breast cancer patients supports this concept of breast cancer subtype-dependent clock changes. 

Pairwise correlations between functionally related clock genes (e.g., PER2-PER3 and CRY2-PER3) were 

more robust in ER+/HER2- and weaker in ER-/HER2+ tumors70. 

 

Among breast cancer subtypes, Luminal A tumors had the most robust evidence for persistent rhythms, 

prompting our interest in ordering these tissues along circadian time. We find marked changes in the 

informatically reconstructed cycling in Luminal A tumors; many genes and pathways, including 

chemotherapeutic targets, gained or lost rhythmicity. Using CYCLOPS magnitude as a measure of the 

global rhythm strength in each sample, we identify marked variations in the rhythm strength of Luminal A 

tumors. The global magnitude of rhythmic oscillation in Luminal A tumors negatively correlates with five-

year mortality and positively correlates with cycling in EMT pathway genes. Our in vitro experimental 

evidence casually links molecular clock disturbance with cancer cell invasion in a 3D model, thus supporting 

our informatic result. The work of De et al., who observed MCF-7 cells and noted circadian rhythms in EMT-

associated changes in cell morphology71, also buttresses our results. 

 

Our results also agree with a previous analysis of TCGA data comparing paired tumor and non-tumor 

samples in 14 cancer types. Specifically, in breast cancer, they report a similar downregulation of PER1, 

PER2, CRY2, and HLF, while CLOCK, ARNTL(BMAL1), and BHLHE40 levels remained relatively 

unchanged72. However, by including a temporal ordering component in the analysis of Luminal A tumors, 

we observe changes in rhythmic patterns. For example, we observe that ARNTL(BMAL1) loses rhythmicity 

in addition to a change in basal expression. Similarly, while HLF cycling shows increased amplitude, its 

functional paralogue73 DBP shows decreased cycling amplitude. This data will allow cancer researchers to 

identify chemotherapeutic targets with temporal properties which differ between cancer and non-cancerous 

tissue, opening a potential chronotherapeutic opportunity. For example, we note cycling in BRAF and other 

kinase pathway target genes (File. S4-S8). We hypothesize that highly rhythmic Luminal A tumors, which 

have the worst prognosis, likely due to increased invasiveness despite the reduced proliferative potential, 

will also be most responsive to time-aware therapies. 

 

These new insights bring us one step closer to personalized circadian medicine. Our results also 

underscore vital outstanding questions. Comparing rhythms in non-tumor and luminal A samples, the EMT 

pathway genes stood out for demonstrating increased cycling in tumor samples. Comparing cycling 

between Luminal A tumors with high/low global rhythm strength again highlights the EMT pathway. Our 

repeated identification of EMT as a rhythmically coordinated pathway in Luminal A tumors is particularly 
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intriguing, given recent reports that the metastatic spread of breast cancer accelerates during sleep74. 

Although our experimental results show that Luminal A tumors have cell-autonomous rhythms, our 

informatic study design cannot distinguish clinically relevant direct clock outputs from rhythms imparted 

from cycling hormones or other physiological signals. Tumors with high rhythm magnitudes may be more 

responsive to host signals. Using mouse models, Hill and colleagues previously identified nocturnal light 

exposure and the corresponding change in host melatonin rhythms as influencing EMT75. While the 

association between tumor rhythm strength, EMT cycling, and patient prognosis is important regardless of 

mechanism, distinguishing these possibilities is likely essential for targeted therapy. 

 

Further investigations are needed to evaluate the relative contributions of host and tumor rhythms in 

modulating human disease. Our experimental results showing a change in tumor invasiveness following 

clock disruption suggest that tumor-autonomous rhythms causally influence metastatic potential. However, 

it is also possible that circadian fitness or responsiveness is a marker of other features that contribute to an 

aggressive phenotype. In addition, we cannot be sure these disrupted tumor rhythms retain a ~24-hour 

period in vivo. As CYCLOPS does not explicitly measure time but rather an ordering relative to an internal 

molecular cycle, it is possible that in vivo tumor-autonomous rhythms have a longer or shorter period. 

 

Of particular note, our result suggesting tumor rhythm strength is a potential prognostic marker requires 

significant follow-up and prospective verification in an independent cohort before any clinical application 

should be considered. Currently, CYCLOPS uses the complete list of ~70 “seed genes” to compute the 

magnitude score. A smaller cohort of transcripts could likely suffice for this purpose. While circadian 

magnitude offers prognostic value beyond PAM50 tumor type and MKI67 levels, we do not have 

immunostained Ki-67 levels in these TCGA samples. While MKI67 transcript and Ki-67 protein levels 

correlate, they are clearly different. However, we predict that the mechanistic insights our results suggest 

and the awareness that high-magnitude tumors are better candidates for circadian medicine approaches 

may prove most useful. 

 

Our results also emphasize the importance of subtype and patient-specific analysis of tumor rhythms. The 

interactions between cancer biology and circadian rhythms are multifaceted and tumor dependent. The 

biological differences between tumor subtypes extend far beyond the clock. Indeed, our screening analysis, 

like previously noted informatic studies, suggests that more aggressive HER2 and triple-negative tumors 

have weaker or absent rhythms. Nevertheless, we find that within Luminal A tumors, increasing rhythm 

strength appears to predict increased invasiveness. We believe it is ill-advised to make blanket statements 

based on a single tumor type or to compare rhythms in tumor types with vastly different biological features. 

Our results cannot be applied directly to other tumor types. Future studies could test the intriguing 

hypothesis that specific cancer cells “hijack” the clock mechanism to temporally organize metabolic 

programs, evade immune surveillance, suppress apoptosis, or facilitate intravasation and metastasis. 
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Some cancers may specifically disrupt the circadian check on cell division. Other cancer cells may have 

evolved to break loose from circadian control altogether to suit their needs best63,73. For Luminal A tumors, 

like most organisms, tumor rhythms may impart increased biological fitness – to the detriment of the patient. 

Taken as a whole, the biological insights from this study may help lay the groundwork for improved breast 

cancer prevention (e.g., lifestyle changes), new prognostic biomarkers, and more effective personalized 

breast cancer treatments. 
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Tables. 1 Patient demographics for 43 pairs of Manchester human breast samples 

Patient ID Gender Age 
Time of 

resection 
Type Grade ERa PRb HER2c Ki-67 

W005787 Female 72 17:10 IDC 3 0 0 3 40% 

W005805 Female 74 16:35 IDC 2 8 8 1 5% 

W005821 Female 62 15:06 IDC 3 0 0 0 70% 

W005830 Female 38 16:05 IDC 3 8 5 1 38% 

W005831 Female 78 12:55 IMC 3 0 0 0 38% 

W005859 Female 44 15:20 IDC 2 8 8 1 14% 

W005863 Female 51 16:40 IMC 2 8 5 1 36% 

W005925 Female 65 15:50 IDC 3 8 0 3 - 

W006024 Female 93 12:45 IDC 3 2 0 0 62% 

W006029 Female 54 13:10 ILC 2 8 7 1 25% 

W006034 Female 76 13:50 IDC 2 8 8 1 21% 

W006044 Female 60 12:30 IDC 2 8 8 1 28% 

W006045 Female 63 11:55 IDC 1 0 0 1 82% 

W006053 Female 47 16:00 IDC 3 8 8 0 50% 

W006055 Female 75 13:50 IDC 3 2 0 1 63% 

W006071 Female 45 13:00 IDC 2 7 7 2 27% 

W006074 Female 75 16:10 IDC + DCIS 2 8 7 1 17% 

W006077 Female 40 10:40 IDC 3 0 0 0 - 

W006078 Female 70 16:45 IDC 2 8 0 2 25% 

W006140 Female 77 10:25 IAC 2 0 0 1 12% 

W006147 Female 73 15:40 IDC 3 0 0 1 30% 

W006155 Female 68 11:18 IDC 3 8 3 1 21% 

W006161 Female 60 15:55 ILC 2 8 6 2 10% 

W006167 Female 85 10:54 IDC 2 8 7 1 30% 

W006193 Female 54 13:50 IDC + DCIS 2 8 7 2 36% 

W006195 Female 33 11:45 IDC 1 8 7 1 20% 

W006212 Female 42 12:55 IDC 2 8 0 3 - 

W006217 Female 48 10:45 IDC 2 7 8 2 20% 

W006218 Female 76 13:15 IDC 2 8 8 1 12% 

W006219 Female 71 12:20 ILC 2 8 4 1 5% 

W006226 Female 43 15:00 IDC 3 0 0 3 - 

W006238 Female 56 10:05 IDC 3 8 4 2 29% 

W006241 Female 80 16:45 IDC 3 8 7 2 35% 

W006267 Female 71 17:03 IPLC 3 7 5 1 30% 

W006268 Female 41 12:00 ILC 2 7 7 2 19% 

W006312 Female 63 15:58 IDC 2 8 7 1 13% 

W006314 Female 54 12:15 IDC 2 8 8 1 19% 

W006335 Female 45 11:40 IDC 3 8 7 0 10% 

W006506 Female 69 15:55 ILC 2 6 0 2 20% 

W006510 Female 49 16:20 IDC 3 8 3 0 33% 

W006511 Female 53 10:15 IDC 1 8 6 1 25% 

W006542 Female 39 13:50 ILC + DCIS 2 8 8 1 10% 

W006553 Female 72 14:40 IDC 3 0 0 1 18% 

 
a, estrogen receptor; b, progesterone receptor; c, human epidermal growth factor receptor 2  
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Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Alexa FluorTM 488 Phalloidin Thermo Scientific Cat# R37110 

Anti-Rabbit BMAL1 
Homemade (Weaver Lab) 

 
N/A 

Anti-Rabbit Cytokeratin 8 Abcam 
Cat# ab53280 

RRID: AB_860091 

Anti-Rabbit CLOCK Proteintech 
Cat# 18094-1-AP 

RRID: AB_2878497 

Anti-Rabbit CRY1 Proteintech 
Cat# 13474-1-AP 

RRID: AB_10697652 

Anti-Rabbit ER Cell Signaling Technology 
Cat# 8644 

RRID: AB_2617128 

Anti-Rabbit HER2 Cell Signaling Technology 
Cat# 2165 

RRID: AB_10692490 

Anti-Rabbit Ki-67 Abcam 
Cat# ab16667 

RRID: AB_302459 

Anti-Rabbit PER2 Abclonal 
Cat# a5107 

RRID: 2863447 

Anti-Rabbit Vimentin Abcam 
Cat# ab92547 

RRID: AB_10562134 

Primers 

   

   

   

   

Bacterial and virus strains 

NEB Stable Competent E. coli (High efficiency) New England Biolabs Cat# C3040H 

Biological samples 

Human breast samples MCRC Biobank Ref: 21_QIME_01 

TCGA-BRCA samples FireBrowse http://firebrowse.org/ 

GTEx v8 breast samples GTEX portal40 

https://storage.googleapis.
com/gtex_analysis_v8/rna
_seq_data/GTEx_Analysis
_2017-06-
05_v8_RNASeQCv1.1.9_g
ene_tpm.gct.gz 

BA11 brain samples NIH GEO: GSE71620 Chen et al.76 

Groningen and Laval lung samples NIH GEO: GSE23546 Bossé et al.77 

Chemicals, peptides, and recombinant proteins 

1X Trypsin-EDTA solution Sigma-Aldrich Cat# T3924 

10X Tris/Glycine/SDS Bio-Rad Cat# 1610732 

A83-01 Tocirs Cat# 2939 

Acetic Acid Glacial Fisher scientific Cat# 10171460 

Advanced DMEM/F12 Gibco Cat# 12634010 

Agarose Bioline Cat# BIO-41025 

Alt-R S.p.Cas9 Nuclease V3 
Integrated DNA 
Technologies 

Cat# 1081058 

Ampicillin Sigma-Aldrich Cat# A9393 
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B27 supplement (50X), serum free Gibco Cat# 17504044 

BSA (Bovine Serum Albumins) Sigma-Aldrich Cat# A2153 

Calcium Chloride Fisher scientific Cat# 10171800 

Collagenase A Roche Cat# 10103186001 

Chloroform, 99.8+% Fisher scientific Cat# 10784143 

Dexamethasone Sigma-Aldrich Cat# D4902 

Dispase II Roche Cat# 37045800 

Donkey Serum Sigma-Aldrich Cat# D9663 

DPX Mountant for histology Sigma-Aldrich Cat# 06522 

DPBS (1X) Sigma-Aldrich Cat# D5652 

DMEM/F12 without phenol red Gibco Cat# 2063394 

Dnase I Roche Cat# 11284932001 

Dnase-free RNase set QIAGEN Cat# 79254 

Eosin-Y Sigma-Aldrich Cat# E4009 

EGF (Epidermal Growth Factor) Peprotech Cat# AF-100-15 

Ethanol, 99.8+% Fisher scientific Cat# 12337163 

FBS Sigma-Aldrich Cat# 12103C 

FGF2 (Fibroblast Growth Factor 2) Peprotech Cat# 100-18B 

FGF7 Peprotech Cat# 100-19 

FGF10 Peprotech Cat# 100-26 

Gentamicin solution Sigma-Aldrich Cat# G1272 

GlutaMax 100X Gibco Cat# 15630-056 

Goat Serum Sigma-Aldrich Cat# G9023 

HaltTM Protease inhibitor cocktails Thermo Scientific Cat# 78429 

HBSS Sigma-Aldrich Cat# H9394 

HCl (Hydrochloric Acid) Fisher scientific Cat# 10053023 

Hematoxylin Solution, Gill No. 2 Sigma-Aldrich Cat# GHS216 

HEPES Sigma-Aldrich Cat# H0887 

High-Capacity RNA to cDNA kit Applied Biosystems Cat# 4387406 

Hyaluronidases Sigma-Aldrich Cat# H3885 

Hydrogen peroxide solution Sigma-Aldrich Cat# 95321 

ISOLATE II Genomic DNA kit Bioline Cat# BIO-52066 

Isopropanol Fisher scientific Cat# 10477070 

L-Glutamine Sigma-Aldrich Cat# G7513 

Lipofectamine CRISPRMAX Transfection 
Regent 

Thermo Scientific Cat# CMAX00015 

Beetle Luciferin, Potassium Salt Promega Cat# E1603 

Lysing Matrix A MP Biomedicals Cat# 116910050 

Corning Matrigel® Growth Factor Reduced 
(GFR) Basement Membrane Matrix, LDEV-free 

Corning Cat# 354230 

Methanol Fisher scientific Cat# 10141720 

Methylcellulose Sigma-Aldrich Cat# M7027 

4-20% Mini-PROTEIN TGX Precast Protein 
Gels 

Bio-Rad Cat# 4561093 

N-Acetylcysteine Sigma-Aldrich Cat# A9165 

Nicotinamide Sigma-Aldrich Cat# N6036 

Noggin Peprotech Cat# 120-10C 
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Opti-MEMTM I Reduced Serum Medium, no 
phenol red 

Thermo Scientific Cat# 11058021 

P/S (Penicillin/Streptomycin) Sigma-Aldrich Cat# P4333 

Polybrene Sigma-Aldrich Cat# TR-1003-G 

Paraformaldehyde Sigma-Aldrich Cat# 95321 

Pierce™ BCA Protein Assay Reagent A Thermo Scientific Cat# 23223 

Pierce™ BCA Protein Assay Reagent B Thermo Scientific Cat# 23224 

Primocin Invivogen Cat# Ant-pm-1 

PureCol EZ gel solution Sigma-Aldrich Cat# 5074 

QIAfilter Plasmid Maxi Kit QIAGEN Cat# 12245 

QIAquick Gel Extraction Kit QIAGEN Cat# 28704 

Qubit™ RNA XR Assay Kit Thermo Scientific Cat# Q33224 

R-spondin 3 Peprotech Cat# 120-44 

RIPA Buffer Sigma-Aldrich Cat# R2078 

RNAlaterTM Stabilization Solution Thermo Scientific Cat# AM7020 

RNA ScreenTape Agilent Cat# 5067-5576 

RNA ScreenTape Sample Buffer Agilent Cat# 5067-5577 

Rneasy Lipid Tissue Mini Kit QIAGEN Cat# 74804 

SB202190 Sigma-Aldrich Cat# S7067 

SIGMAFAST™ 3,3′-Diaminobenzidine tablets Sigma-Aldrich Cat# D4168 

Sodium Butyrate Sigma-Aldrich Cat# B5887 

Sodium citrate (100X) Abcam Cat# ab93678 

Streptavidin, Peroxidase (Concentrate, for IHC) Vector Cat# SA-5004-1 

TAE Buffer (50X) Thermo Scientific Cat# B49 

Takyon ROX probe Mastermix DTTP blue Eurogenetic Cat# EUK212 

Trans-Blot Tuobo RTA Mini 0.2 m 

Nitrocellulose Transfer Kit, for 40 bolts 
Bio-Rad Cat# 1704270 

Triton X-100 Thermo Scientific Cat# 85111 

Tween™ 20 Thermo Scientific Cat# 85113 

Xylenes Fisher scientific Cat# 15618420 

Software and algorithms 

STAR(version 2.5) Dobin et al.78 
https://github.com/alexdobi
n/STAR/releases 

RSEM(version 1.3.0) Li et al.79 
https://github.com/deweyla
b/RSEM/releases 

R (v4.2.1) - https://www.R-project.org 

CCMapp Wu et al.38 
https://github.com/gangwu
g/CCMapp 

BioRender - https://www.biorender.com 

Julia (v1.6) Bezanson et al.80 
https://doi.org/10.1137/141
000671 

GSEA (v4.2.3) Subramanian et al.47  
https://doi.org/10.1073/pna
s.0506580102 

PSEA Zhang et al.46 
https://doi.org/10.1177/074
8730416631895 

enrichR.R (v3.1) Chen et al.48  
https://doi.org/10.1093/nar/
gkw377 

Dataframes.jl (v1.3.4) - 
https://dataframes.juliadata
.org/stable/ 
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Statistics.jl - 
https://docs.julialang.org/e
n/v1/stdlib/Statistics/ 

StatsBase.jl (v0.33.21) - 
https://juliastats.org/StatsB
ase.jl/stable/ 

LinearAlgebra.jl - 
https://docs.julialang.org/e
n/v1/stdlib/LinearAlgebra/ 

MultivariateStats.jl (v0.10.0) - 
https://juliapackages.com/p
/multivariatestats 

Flux.jl (v0.13.5) Innes.81 
https://doi.org/10.21105/jos
s.00602 

PyPlot.jl (v2.11.0) - 
https://github.com/JuliaPlot
s/Plots.jl 

Distributed.jl - 
https://docs.julialang.org/e
n/v1/stdlib/Distributed/# 

Random.jl - 
https://docs.julialang.org/e
n/v1/stdlib/Random/ 

CSV.jl (v0.10.4) - 
https://csv.juliadata.org/sta
ble/ 

Revise.jl (v3.4.0) - 
https://timholy.github.io/Re
vise.jl/stable/ 

Dates.jl - 
https://docs.julialang.org/e
n/v1/stdlib/Dates/ 

Multipletesting.jl (v0.5.1) - 
https://zenodo.org/badge/l
atestdoi/27935122 

sva.R (v3.44.0) Leek et al.82 
https://doi.org/doi:10.1812
9/B9.bioc.sva 

refGenome (v1.7.7) - 
https://cran.r-
project.org/src/contrib/Arch
ive/refGenome/ 

RTCGA.clinical (20151101.20.0)  - 

https://bioconductor.org/pa
ckages/release/data/experi
ment/html/RTCGA.clinical.
html 

RTCGA (1.20.0) - 
https://www.bioconductor.o
rg/packages/release/bioc/h
tml/RTCGA.html 

tidyverse.R (v1.3.2) - 
https://doi.org/10.21105/jos
s.01686 

aod.R (v1.3.2) - 
https://cran.r-
project.org/package=aod 

circular.R (v0.4-95) - 
https://r-forge.r-
project.org/projects/circular
/ 

Other 
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Fig. S4
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Fig. S6
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Fig. S7
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