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Summary

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular
rhythms in non-cancerous and cancerous human breast tissues are largely unknown. We reconstructed
rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For non-
cancerous tissue, the inferred order of core-circadian genes matches established physiology. Inflammatory,
epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian
modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian
organization. Luminal A organoids and informatic ordering of Luminal A samples exhibit continued, albeit
disrupted rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely
among Luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude
Luminal A tumors. Patients with high-magnitude tumors had reduced 5-year survival. Correspondingly, 3D
Luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-

specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.
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Highlights

e Breast cancers exhibit subtype-specific and estrogen-dependent clock disorganization.
e Luminal A tumors show dysregulated rhythmic pathways and varied rhythm strength.
e Higher rhythm strength in Luminal A tumors was correlated with reduced 5-year survival.

e Reducing rhythm strength in Luminal A cells in vitro slows cell invasion.

Introduction

Worldwide, breast cancer is the most common cancer among women®3, Over the last decades, the
introduction of early detection programs, combined with improvements in systemic therapies, have reduced
breast cancer mortality?“. Despite these improvements, resistance and subsequent relapse remain major
issues®. Among women, those with breast cancer lose more disability-adjusted life years than with any
other cancer®. Adverse effects frequently compromise quality of life®>®®. There remains a clear need to

improve the therapeutic index for breast cancer treatments.

Over the last two decades, research has highlighted the critical roles of cell-intrinsic circadian rhythms in
disease (including cancer) and medicine®?*2. The circadian (~24-hourly) clock is evolutionarily ancient and
highly conserved, permitting cells to anticipate daily environmental changes through temporally coordinated
metabolic and gene expression profiles'®15. A series of transcription-translational feedback loops form the
molecular circadian clock?®'8, The positive arm of the central loop includes the transcriptional activators
Circadian Locomotor Output Cycles Kaput (CLOCK) and Brain and Muscle ARNT-Like 1 (BMAL1)*%16, The
negative arm, which includes the Cryptochrome (Cry1/Cry2) and Period (Perl/Per2) genes, later represses

translation3-16,

The influence of circadian time on cell division, and, by extension, cancer, is particularly strong. In
yeast and mammals, evolutionary pressures acted to gate DNA replication and cell division, shielding
the dividing cell from solar radiation and toxic metabolites'217:18, The cell cycle and circadian clocks
share components and signaling molecules and show reciprocal regulation'®?4. In addition, several
oncogenes have been causally linked to circadian clock dysfunctions and may directly hijack clock

mechanisms?22:25,
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Epidemiological and animal studies have proposed that night shift work that disrupts circadian rhythms may
increase the risk of developing breast and other cancers?®-28, This has prompted the WHO to classify night
shift work as a probable carcinogen®28, Previously we demonstrated that the extracellular
microenvironment modulates functional, cell-intrinsic circadian clocks in mouse mammary gland tissue and
human breast epithelial cells?®32, Time series transcriptomic analysis revealed hundreds of rhythmic genes
in the mouse mammary gland. Rhythmic transcripts included critical molecules implicated in cell cycle
regulation, epithelial/progenitor cell function, and hormone responsiveness. Acting, in part, through an
immunosuppressive shift in the tumor environment, chronic circadian disruption increases mammary

cancer cell dissemination and metastasis in a mouse model of tumorigenesis®3.

Beyond this basic biology, the molecular circadian clock regulates thousands of genes in a cell and tissue-
specific manner. Half of the 100-best-selling-drugs target molecules that oscillate in different mouse
tissues®. In 1973, Halberg and colleagues initiated a series of studies with the underlying hypothesis that
dosage time could influence chemotherapeutic pharmacokinetics, limit toxicity, and improve efficacy3.
Decades of clinical experience show that time-of-day can influence chemotherapeutic activity. However,
the widespread translation of circadian biology in oncology remains slow and serendipitous. Mechanistic
knowledge about the unique molecular rhythms in distinct tumors and normal human tissues must be
improved. Repeated biopsies or time course sampling from large numbers of human patients is neither safe
nor practical. As a result, clinically relevant molecular rhythms still need to be discovered, and opportunities
for targeted circadian therapies are unrealized. In addition, while some in vitro and in vivo cancer models
demonstrate a complete lack of rhythms, other models (like U20S cells) show continued rhythms?®, Indeed,
informatic analysis of intact hepatocellular carcinoma has shown disrupted yet persistent transcriptional

rhythms®,

We recently optimized CYClic Ordering by Periodic Structure (CYCLOPS) to overcome this problem. This
machine learning algorithm has allowed us to reconstruct circadian rhythms in samples where sampling
time is unknown3%38, We adapted CYCLOPS to better account for the non-circadian variation inherent to
large-scale data in clinical databases (CYCLOPS 2.0). We then adopted a hybrid study design (Fig 1A).
We combined deep sequencing of a small number of time-stamped, paired clinical samples with data from
large RNASeq datasets—the Tissue Cancer Genome Atlas®® (TCGA) and the Genotype-Tissue
Expression*® (GTEX) project—where the circadian time of sample collection is unknown. Both the modified
CYCLOPS algorithm and experimental validation reveal clear cancer-subtype-dependent changes in
molecular clocks and their rhythmic targets. Notably, we uncover a key role of molecular timekeeping in
Luminal A tumors linking circadian rhythms to epithelial-mesenchymal transition (EMT), cell invasion, and
prognosis. Our studies also provide mechanistic insights into the role of estrogen receptors (ER) in

regulating breast cancer clocks.
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Results

Profound changes in clock gene expression and circadian organization in time-recorded breast
cancer biopsies

To assess and improve the accuracy of informatic predictions and to enable direct comparisons of
transcriptional changes in circadian genes, we collected 43 pairs of fresh human breast samples (non-
cancerous and paired tumors from the same individuals) from patients undergoing mastectomy at the
Nightingale Breast Centre, Manchester, UK (Patient demographics on Table. 1). Non-cancerous tissues
were collected at least 4 cm away from tumors (Fig. 1A). Tumor samples included Luminal A (N=29),
Luminal B (N=3), HER2 (N=2) and Triple-negative breast cancers (TNBC, N=9) (Fig. 1B). Resection times
of all samples were recorded (Fig. 1C). To identify non-cancerous and tumor areas we employed
Hematoxylin and Eosin-Y staining (H&E staining) and immunohistochemistry using epithelial and stromal
markers (Cytokeratin 8 and Vimentin, respectively) (Fig. 1D). Normal breast contains organized acinar and
lobular structures, whereas tumor regions lack regular glandular structures. We performed RNA sequencing
following RNA isolation. Based on these RNAseq data, the expression of most clock genes is significantly
altered in breast cancer tissues. Compared to the paired non-cancerous samples, we observed significant
downregulation of PER1, PER2, CRY2, HLF, TEF, and NFIL3 (Fig. 1E; Fig. S1). In contrast, CLOCK,
NPAS2, CIART/CHRONO, BHLHE40, RORA, and RORC were significantly upregulated in these breast
tumors (Fig. 1E; Fig. S1).

To examine core clock organization in these breast tumors, we performed Spearman’s correlation
coefficient analysis®®443 using RNAseq data from time-stamped paired breast tumors and non-cancerous
samples with a sequencing depth of >20 million reads. As expected, the non-cancerous breast tissues
demonstrate core-clock correlation patterns mirroring those seen in mice'é. The expression levels of clock
activators positively correlate with each other across samples. The same is true for the canonical
repressors. In contrast, the two groups negatively correlate with each other (Fig. 1F). The strong similarity
between the clock correlation patterns seen in the non-cancerous tissue (Fig. 1F, Zstat score of 20.71) and
the mouse model suggests a functional clock network. In contrast, a weaker overall correlation in breast

tumors (Fig. 1F, Zstat score of 9.28) suggests a weakening of core circadian organization in these samples.

Transcriptional circadian rhythms are evolutionarily conserved in non-cancerous human breast and
mouse mammary tissue

We adopted a hybrid study design®® to evaluate circadian time order in human non-cancerous breast
tissues. We used informatic tools to integrate RNAseq data from newly collected time-stamped breast
samples (N=26, with non-cancerous samples with > 20 million reads) with RNAseq data from female breast
samples in public databases. We incorporated data from TCGA3 and GTEx* (Table S1). We did not
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include samples collected in centers where only a small number (n<5) of non-cancerous samples were

processed.

Systematic differences between sample collection sites, processing methods, and patient populations
complicate the use of aggregate data. These differences may be particularly problematic when different
centers have different biases in collection time. We modified the CYCLOPS®* neural network to
accommodate explicit confounding variables, simultaneously learning confounder adjustments and a
common circular structure that explains the variance of the combined data: CYCLOPS 2.0 (Fig. S2A). We
benchmarked CYCLOPS 2.0 on actual, semi-synthetic, and fully-synthetic data with different temporal
biases (Fig. S2B-D). CYCLOPS 2.0 demonstrates improved accuracy with realistic levels of non-circadian
noise. Finally, we allowed the ordering process to use information from a subset of time-stamped samples.
We performed 10-fold cross-validation to determine the relative weight given to predicting time in these

samples and identify a common circular structure for all samples.

We identified the human orthologues of transcripts that cycle in mouse mammary gland tissue?°. Combining
these with the human orthologues of transcripts that cycled in >75% of mouse tissues?®, we constructed a
circadian "seed gene" list appropriate for ordering human breast tissue. Ordering the combined dataset
using these seed genes and including temporal information from the 26 time-stamped human samples, the
CYCLOPS smoothness and ordering metrics for the entire dataset meet previously established standards
(Statsmooth=0.75, Staterror=0.015). The CYCLOPS-predicted sample phases show a significant
correlation with the known sample collection times of the 26 subjects (Corrcirc=0.7, p<0.005) (Fig. 2A). As
expected, the clinical biopsies available in TCGA show a temporal bias in inferred sample collection phase
(Fig. 2B). In contrast, the distribution of inferred sample phases assigned to the GTEx samples (autopsy
collection) was more uniform (Fig. 2B). After ordering, we used modified Cosinor regression®¢4 to identify
cycling transcripts and estimate their amplitude and acrophase (time of peak expression) (Fig. 2C, D). The
expanded Cosinor model explicitly accounted for differences in expression due to sequencing sites or
source databases. At a BHq threshold of 0.05, we identified ~2,000 genes as rhythmic. When we imposed
a relative cycling amplitude (amplitude/MESOR (Midline Estimating Statistic of Rhythm)) greater than 1/3—
as a measure of likely biological significance—we reduced the number of identified cycling transcripts to
~650 (File. S2). As observed in other tissues, there are clear circadian "rush hour periods" where many
rhythmic transcripts peaked!®3745, With the notable exception of RORC, the relative acrophases of core-
clock transcripts reconstructed from non-cancerous human breast tissue are in good accord with the well-

established ordering of these transcripts in other mouse and human tissues (Fig. 2E).

To put these cycling results in a broader biological context, we used phase set enrichment (PSEA)* to
identify annotated gene sets and biological pathways where the constituent cycling transcripts exhibited

circadian concentration and were not uniformly distributed across the circadian day. Pathways related to
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adipogenesis, EMT, and estrogen responsiveness, show circadian orchestration, similar to reports from
mouse mammary gland (Fig. 2F). Using both gene set enrichment*’ and over-representation approaches*®
50 we also labeled pathways that were enriched for cycling genes. In addition to the abovementioned

pathways, various immune and cell cycle pathways show marked circadian orchestration (Fig. 2G, H).

ER activity correlates with circadian organization and function in breast cancer subtypes

Our clock correlation analysis on locally collected cancer samples combined data from biologically distinct
breast tumor types. We applied clock gene correlation analysis®+4143 to TCGA breast tumor data to evaluate
cancer-subtype-dependent changes in clock organization—the expression of the PAM50 panel genes
defined cancer subtypes®-2. Consistent with the non-cancerous time-stamped samples, the non-
cancerous breast tissues from the database show an intact core circadian organization that closely mirrors
the established consensus with a Zstat score of 20.86. The Luminal A samples demonstrate weaker but
still considerable evidence of intact circadian organization with a Zstat score of 11.04. On the other hand,
Luminal B and Triple Negative breast cancers exhibit disrupted correlation patterns with Zstat scores of
6.93 and 4.98, respectively (Fig. 3A). The relatively small number of HER2 samples in the TCGA database
prevented evaluation of clock organization in this tumor type.

Given these findings, we hypothesized that circadian function in breast tumor tissues, like core clock
organization, varies among cancer subtypes - with Luminal A samples showing reasonably good clocks.
We assessed molecular circadian rhythms in breast tumors and paired non-cancerous tissues from the
same individuals to confirm these predictions. We derived organoids from primary mammary epithelial cells.
This model more closely mimics in vivo physiological functions of mammary epithelia®*252, The organoid
cultures from normal breast tissues showed typical acinar structures. In contrast, breast tumor organoids
showed disrupted cell polarity (Fig. 3B). After lentiviral transduction of a BMAL1-Luc circadian reporter, we
imaged bioluminescence signals using an LV200 imaging system (Olympus). Non-cancerous human
mammary organoids showed robust circadian rhythms. Patient-derived Luminal A tumor organoids showed
persistent but weakened rhythms (Fig. 3C, Video. S1, N=4). However, we did not observe sustained
circadian rhythms in BMAL1-Luc activity in TNBC tumor organoids (Fig. 3D, Video. S2, N=3), Luminal B
organoids, or HER2 organoids (data not shown). Using either a BMAL1-Luc reporter or time course western
blot studies of clock factors, we also observed corresponding clock changes in established breast cancer
cell lines representing various tumor subtypes (Fig. S3A-C). The MCF-7 cell line (representative of ER+
Luminal A) continues to exhibit circadian rhythms, while the MDA-MB-231 (TNBC) and SKBR3 (HER2+)
cell lines do not (Fig. S3B, C). In unsynchronized cells, we observed altered average expression levels of

core clock genes among the three cell lines. (Fig. S3D).

As ER status is one of the key factors in differentiating these tumor subtypes, our informatic and

experimental results suggest a possible link between ER responsiveness and clock functions in breast
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cancer cells. Indeed, further stratification of breast tumor samples based on ER status indicates a strong
correlation between ER expression and clock functionality (Fig. S4A). To more directly determine whether
ER signaling regulates circadian rhythms in breast cancer cells, ERa was knocked out of BMAL1-Luc MCF-
7 cells using CRISPR-Cas9. Following co-transfection of sgRNA and Cas9 protein, single-cell colonies
were isolated. We confirmed successful knockout by DNA sequencing, supported by the absence of ERa
mRNA and protein (Fig. S4B, C). ERa-KO disrupted the expression of clock factors in MCF-7 cells
compared to the control (Fig. S4 D, E). In contrast to the robust 24-hour rhythms in control MCF-7 cells,
there was a complete loss of circadian BMAL1-Luc rhythms in all four clones of MCF-7 cells with ERa-KO
(Fig. S5A). In addition, an ERa selective agonist PPT (Propyl Pyrazole Triol) synchronized circadian clocks
in MCF-7 cells in a dose-dependent manner, further supporting a regulatory role of ER signaling in MCF-7
cell circadian function (Fig. S5B).

CYCLOPS 2.0 analysis revealed global changes in rhythmic gene expression patterns and pathways
in Luminal A samples

Guided by the experimental and informatic evidence for persistent rhythms in Luminal A tumors and the
relative abundance of Luminal A samples in the TCGA database, we next used CYCLOPS 2.0 to order
Luminal A tumors (Table S2). There is likely significant non-circadian heterogeneity among Luminal A
samples. We projected the Luminal A data onto the eigengene space computed from the non-cancerous
samples®® to emphasize the variation resulting from circadian time. Using the CYCLOPS 2.0 model, we
included data from both non-cancerous and Luminal A samples in the ordering, now listing tumor status as
a covariate. After ordering and applying cosinor regression to the Luminal A samples, seven core clock
genes, including DBP, NR1D1, NR1D2, TEF, PERS, NFIL3, and CRY1, meet the initial criteria for cycling
(Fig. 4A, B). At a BHq threshold of 0.05, we identified ~1,100 genes as rhythmic. When we imposed a
relative cycling amplitude greater than 1/3, we reduced the number of identified cycling transcripts to ~675
(File. S2). Of course, differences in sample size and non-circadian variability may have contributed to these
changes. Thus, in addition to simply identifying genes that meet our statistical cutoffs in Luminal A, we used
nested regression models as we* and others®*%> have done previously, to directly test for changes in
cycling between Luminal A and non-cancerous samples (File. S3). This nested modeling approach tests
the importance of tumor-dependent cycling parameters while accounting for tumor-dependent differences
in mean expression level. We observe changes in core clock gene and clock output gene rhythms in
Luminal A samples (Fig. 4A, B). For example, while TEF shows decreased amplitude in the Luminal A
samples, its partner and structural/functional paralogue®, DBP, shows increased amplitude. As in the non-
cancerous samples, Luminal A samples show "rush hours" of rhythmic transcription (Fig. 4C). However,
here, the proportion of samples assigned to the window that precedes the ARNTL (BMALL1) acrophase
(inferred early evening) is much higher. Using our nested regression models to compare the fit amplitude
for transcripts that cycled in either Luminal A or non-cancerous samples, we find that more transcripts lose

as opposed to gain amplitude in Luminal A samples (Fig. 4D). Of note, TCGA includes a limited number of
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matched Luminal A tumors and non-cancerous samples from the same patient. The sample phases

assigned to the tumors and their non-cancerous matches are poorly correlated (Fig. 4E).

At a gene set level, many pathways demonstrate continued circadian orchestration in the Luminal A
samples (Fig. 4F). Phase set enrichment analysis reveals cycling in EMT, androgen responsiveness, and
numerous immune and inflammatory pathways. We used two complementary approaches to focus on
pathway-level differences in Luminal A and non-cancerous output rhythms. To identify pathways with
enhanced rhythmicity in Luminal A, we first ranked the full complement of genes that cycled in either
Luminal A or non-cancerous tissue by the log fold change in amplitude. We then used GSEA to identify
gene sets enriched for more marked amplitude increases in this ranked list. Alternatively, we used nested
regression to identify transcripts that showed statistically significant differential cycling (BHq<0.05) between
Luminal A and non-cancerous samples. Focusing on genes with a more than five-fold gain in amplitude in
Luminal A samples, we used EnrichR to identify pathways overrepresented in this discrete set. Both
methods yield similar results (Fig. 4G, H). EMT and angiogenesis pathways—critical to cell invasion and
growth support—show increased cycling in Luminal A samples. We find that adipogenesis appears to have
reduced cycling using the same two analyses (Fig. 41, J). Pathways related to fatty acid metabolism and
NFKB signaling (among others) also show reduced cycling in Luminal A tumors using one or the other
analysis (Fig. 4l, J).

CYCLOPS magnitude as a measure of global circadian rhythm strength

While we understand the amplitude of a single rhythmic waveform, meaningful, global measures of
transcriptional rhythm strength still need to be well established. For example, it is generally unknown if high
amplitude circadian expression in some genes predicts high amplitude circadian expression of others.
CYCLOPS operates on eigengenes—global descriptors of expression that summarize the behavior of many
cycling genes. CYCLOPS projects these data onto a plane where a circular structure is apparent. We use
the angular position of any sample on this circle to infer its internal molecular phase. We also calculate the
radial distance of each sample from the circle's center. Geometrically, we interpret CYCLOPS magnitude
(CMag) (Fig. 5A) as a weighted sum of the amplitudes of the individually cycling seed genes. This concept
resembles the PCA plots of cycling gene expression in Brooks et al.>’. The distribution of CYCLOPS
magnitudes obtained from the Luminal A samples is broad with a long tail (Fig. 5B). Dividing samples into
equal thirds based on CMag, we find that across all transcripts cycling in Luminal A samples, the amplitude
of cycling is generally greater in high magnitude samples as compared to low magnitude samples (Fig. 5C,
D). Unlike Luminal A samples as a whole (Fig. 4E), the circadian molecular phases assigned to high CMag
Luminal A samples generally match the phases assigned to their non-cancerous pair (Fig. 5E). This

suggests that higher CMag in Luminal A samples is indicative of a more robust clock.
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Circadian rhythm strength predicts prognosis and modulates metastatic potential

We investigated if rhythm strength influenced tumor biology and prognosis. Patients with Luminal A tumors,
as assessed by the PAM50 panel®?, were stratified into three equally sized groups based on the CMag of
their tumors (low, medium, and high CMag). Using TCGA outcome data, we evaluated these patients' 5-
year survival. Retrospectively, the risk of death increases among patients with high-magnitude Luminal A
tumors (Fig. 5F). This difference is statistically significant (p=0.047, ANOVA). The increased risk in the high-
magnitude tumor group remains statistically significant when we tested its influence in a generalized
(logistic regression) model that also included patient age and the presence of known metastases at
diagnosis (p<0.05). A high-magnitude tumor increased the relative risk by ~1.5x, over and above the risk
established by the other covariates. Indeed, the predictive value of tumor magnitude remains significant in
a model that includes MKI67 transcript expression (p<0.05). Of some note, while the same trend appears
examining a broader outcome of death OR new cancer event (Fig. S6), this trend is not statistically

significant.

CYCLOPS magnitude is broadly associated with the cycling amplitude of many genes. Given its prognostic
importance, we next identified rhythmic pathways that showed the most marked differences in high-
magnitude samples. For each transcript that showed statistically significant cycling in Luminal A samples,
we compared the amplitude estimated from the high-magnitude samples (top third) to the amplitude
estimated from lower-magnitude samples (bottom two-thirds). Again, we leveraged both enrichment and
overrepresentation approaches to analyze these results at the pathway level. When we compare high- and
lower-magnitude samples, our analyses show that EMT-related genes exhibit the most pronounced
changes in cycling (Fig. 5G, H). Given the well-established role of EMT in tumor biology and, in particular,
metastatic potential, we hypothesized that high amplitude rhythms might modulate Luminal A tumor cell

behavior and the potential for invasion.

Most core circadian clock genes have paralogues that can functionally compensate for molecular
knockdown®8. Only BMALL1 is essential for circadian locomotor function®®. To establish the role of circadian
clocks in regulating breast cancer cell behavior, we used lentiviral ShRNA for BMAL1 to disrupt cellular
clock functions in rhythmic MCF-7 cells. As expected, the lack of BMAL1 abolished circadian reporter
rhythms in MCF-7 cells (Fig. 6A). We used hanging drop and cell invasion assays to evaluate the invasion
of MCF-7 cells through a 3D collagen | matrix microenvironment. We assessed invasiveness by measuring
the distance from the center of the spheroid (initial droplet) to the edge of the furthest cell. Circadian
disruption through BMAL1 deficiency inhibited the rate of cell invasion in both MCF-7 cells (p< 0.001, Fig.
6B, C) and primary Luminal A breast tumor cells (Fig. S7A). When we disrupted the molecular clock with
KLOO01, which stabilizes both CRY1/CRY2, we observed a similar suppression of cell invasiveness (Fig.
6D-F). Next, MCF-7 cell proliferation was assessed by expression of Ki-67 and real-time quantitative live

cell imaging using IncuCyte. BMAL1 knockdown increased levels of Ki-67 (Fig. S7B) and cell proliferation
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(p< 0.0001) (Fig. S7C, Video. S3) in MCF-7 cells. As such, the loss of molecular clock rhythm in MCF-7

cells compromises breast cancer cell invasion into the 3D matrix, despite increasing cell proliferation.

Discussion

This work used informatic ordering (CYCLOPS 2.0) to integrate newly collected, time-stamped biopsies
with public data. We reconstructed temporal rhythms in non-cancerous breast tissue and Luminal A breast
tumors. In non-cancerous tissue, our approach reveals the cycling of inflammatory, EMT, and estrogen
response pathway genes. Experiments with Luminal A organoids show continued, albeit dampened
rhythms. Disrupted rhythms are also evident in our informatic circadian reconstruction of Luminal A tumors.
Strikingly, retrospective analysis shows that Luminal A cancer patients with high rhythm strength tumors
had increased 5-year mortality. EMT pathway genes show the most marked increase in cycling when
comparing tumors with higher and lower rhythm strength. Given the importance of EMT in cell invasion, we
hypothesized that tumors with high rhythm strength might show increased metastatic potential. Accordingly,
3D culture experiments using established Luminal A cancer cell lines and primary Luminal A cells show
reduced invasion following molecular clock disruption. As such, our study links subtype-specific circadian

disruption in breast cancer to EMT, metastatic potential, and prognosis.

A bi-directional web of transcription factors and direct protein-protein interactions couples the cell-intrinsic
circadian clocks and the cell cycle. Core circadian clock genes include the likely tumor suppressors PER1
and PER2%%-62, More recently, researchers have shown that the master clock activators BMAL1 and CLOCK
have anti-apoptotic roles, promoting liver cell proliferation through the cell cycle regulator Wee-14083. On

the other hand, oncogenes such as c-MYC or KRAS interfere with circadian pacemaking?*2°.

The circadian-cancer connection may be vital in breast cancer. Several epidemiologic studies have now
linked night shift work with breast cancer risk?6-28, In mouse models bearing primary mammary tumors or
breast cancer xenografts, the efficacies of Doxorubicin and Celecoxib are time-of-day dependent®45,
However, the difficulty of obtaining time-course clinical samples across multiple circadian cycles in a large,
clinically informative cohort hinders our understanding of circadian biology and its translation in human

breast cancer.

Several supervised learning algorithms (e.g., BodyTime, TimeSignature, TimeTable, and ZeitZeiger)
predict internal clock time from time-unknown human samples®®. These approaches require “training
data” that spans the tissues and conditions covered in later applications. BodyTime, for example, uses a
small set of transcriptomic biomarkers from blood monocytes to predict the melatonin phase®’. These

approaches show promise when applied to the specific tissue for which they were trained. However, they
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are not designed for application to new tissues or disease states (such as solid tumors) without specific

training data.

In contrast, CYCLOPS?¢ uses global descriptors of expression structure and unsupervised machine
learning that identifies more general signatures of rhythmic processes. CYCLOPS does not require exact
knowledge of the particular cycling genes in a tissue or the specific temporal relationship between those
rhythmic genes. Instead, CYCLOPS requires a list of “seed genes” likely to cycle in a given tissue. It
assumes a fixed relative phase relationship between the cycling seed genes across subjects (e.g., BMAL1
precedes NR1D1 by a relatively fixed amount in the oscillations in each sample). More recently, other
unsupervised and semi-supervised approaches have emerged. Most notably, Talamanca et al.*® aimed to
increase the power of this approach, focusing on GTEx data, where many sample tissues were taken from
the same individuals. Their approach assumes that tissues obtained from the same individual at the same

time are at the same molecular phase.

In our work, however, the limitations of having a single tissue type are compounded by the need to
aggregate data from several sources. We specifically tailored our modifications to CYCLOPS for these
issues. In this context, non-circadian covariates and batch effects in processing can likely overwhelm
circadian variation. As we demonstrate in our benchmarking, batch-correcting approaches like COMBAT
that attempt to “normalize away” these differences are unlikely to overcome this obstacle. If different centers
have different biases in collection time, that approach may remove much of the circadian signal. This
challenge is particularly relevant when combining clinical biopsy and autopsy-based collections. CYCLOPS
2.0 explicitly accommodates these issues, finding batch and covariate adjustments to utilize a common

underlying periodic structure for all datasets.

While our CYCLOPS 2.0 ordering of non-cancerous breast tissue is consistent with well-established
circadian physiology (i.e., the relative phase relationships between core clock genes) and meets various
informatic quality checks, it is always reasonable to question informatic results. We cannot dismiss the
influence of non-circadian variability on the ordering process. Our hybrid experimental design lends
considerable reassurance. This design required only a small number of newly collected time-stamped
samples to guide our efforts and demonstrate that the informatic ordering reflects natural temporal variation.
This informatics-guided approach reflects a practical compromise, allowing us to infer molecular rhythms
without exhaustive time course sampling more confidently. It should also be noted that CYCLOPS, like
other ordering methods, infers time as a function of gene expression. Therefore, using time as an
independent variable for cycling analysis is somewhat fraught. We have attempted to address this, as we
did previously®, by implementing a more stringent modified cosinor regression and imposing strict

numerical thresholds.
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Clock gene correlation analysis from breast cancer samples showed subtype-dependent changes in the
core-clock organization, supported by our in vitro data showing subtype-dependent clock functionality in
tumor organoids. Both approaches revealed a critical role in estrogen responsiveness in regulating breast
cancer clocks. Previous work using microarray data to study the correlation between clock genes in node-
negative breast cancer patients supports this concept of breast cancer subtype-dependent clock changes.
Pairwise correlations between functionally related clock genes (e.g., PER2-PER3 and CRY2-PER3) were

more robust in ER+/HER2- and weaker in ER-/HER2+ tumors™®,

Among breast cancer subtypes, Luminal A tumors had the most robust evidence for persistent rhythms,
prompting our interest in ordering these tissues along circadian time. We find marked changes in the
informatically reconstructed cycling in Luminal A tumors; many genes and pathways, including
chemotherapeutic targets, gained or lost rhythmicity. Using CYCLOPS magnitude as a measure of the
global rhythm strength in each sample, we identify marked variations in the rhythm strength of Luminal A
tumors. The global magnitude of rhythmic oscillation in Luminal A tumors negatively correlates with five-
year mortality and positively correlates with cycling in EMT pathway genes. Our in vitro experimental
evidence casually links molecular clock disturbance with cancer cell invasion in a 3D model, thus supporting
our informatic result. The work of De et al., who observed MCF-7 cells and noted circadian rhythms in EMT-

associated changes in cell morphology’?, also buttresses our results.

Our results also agree with a previous analysis of TCGA data comparing paired tumor and non-tumor
samples in 14 cancer types. Specifically, in breast cancer, they report a similar downregulation of PER1,
PER2, CRY2, and HLF, while CLOCK, ARNTL(BMAL1), and BHLHE40 levels remained relatively
unchanged’. However, by including a temporal ordering component in the analysis of Luminal A tumors,
we observe changes in rhythmic patterns. For example, we observe that ARNTL(BMALL1) loses rhythmicity
in addition to a change in basal expression. Similarly, while HLF cycling shows increased amplitude, its
functional paralogue’ DBP shows decreased cycling amplitude. This data will allow cancer researchers to
identify chemotherapeutic targets with temporal properties which differ between cancer and non-cancerous
tissue, opening a potential chronotherapeutic opportunity. For example, we note cycling in BRAF and other
kinase pathway target genes (File. S4-S8). We hypothesize that highly rhythmic Luminal A tumors, which
have the worst prognosis, likely due to increased invasiveness despite the reduced proliferative potential,

will also be most responsive to time-aware therapies.

These new insights bring us one step closer to personalized circadian medicine. Our results also
underscore vital outstanding questions. Comparing rhythms in non-tumor and luminal A samples, the EMT
pathway genes stood out for demonstrating increased cycling in tumor samples. Comparing cycling
between Luminal A tumors with high/low global rhythm strength again highlights the EMT pathway. Our

repeated identification of EMT as a rhythmically coordinated pathway in Luminal A tumors is particularly
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intriguing, given recent reports that the metastatic spread of breast cancer accelerates during sleep”.
Although our experimental results show that Luminal A tumors have cell-autonomous rhythms, our
informatic study design cannot distinguish clinically relevant direct clock outputs from rhythms imparted
from cycling hormones or other physiological signals. Tumors with high rhythm magnitudes may be more
responsive to host signals. Using mouse models, Hill and colleagues previously identified nocturnal light
exposure and the corresponding change in host melatonin rhythms as influencing EMT. While the
association between tumor rhythm strength, EMT cycling, and patient prognosis is important regardless of

mechanism, distinguishing these possibilities is likely essential for targeted therapy.

Further investigations are needed to evaluate the relative contributions of host and tumor rhythms in
modulating human disease. Our experimental results showing a change in tumor invasiveness following
clock disruption suggest that tumor-autonomous rhythms causally influence metastatic potential. However,
it is also possible that circadian fithess or responsiveness is a marker of other features that contribute to an
aggressive phenotype. In addition, we cannot be sure these disrupted tumor rhythms retain a ~24-hour
period in vivo. As CYCLOPS does not explicitly measure time but rather an ordering relative to an internal

molecular cycle, it is possible that in vivo tumor-autonomous rhythms have a longer or shorter period.

Of particular note, our result suggesting tumor rhythm strength is a potential prognostic marker requires
significant follow-up and prospective verification in an independent cohort before any clinical application
should be considered. Currently, CYCLOPS uses the complete list of ~70 “seed genes” to compute the
magnitude score. A smaller cohort of transcripts could likely suffice for this purpose. While circadian
magnitude offers prognostic value beyond PAM50 tumor type and MKI67 levels, we do not have
immunostained Ki-67 levels in these TCGA samples. While MKI67 transcript and Ki-67 protein levels
correlate, they are clearly different. However, we predict that the mechanistic insights our results suggest
and the awareness that high-magnitude tumors are better candidates for circadian medicine approaches

may prove most useful.

Our results also emphasize the importance of subtype and patient-specific analysis of tumor rhythms. The
interactions between cancer biology and circadian rhythms are multifaceted and tumor dependent. The
biological differences between tumor subtypes extend far beyond the clock. Indeed, our screening analysis,
like previously noted informatic studies, suggests that more aggressive HER2 and triple-negative tumors
have weaker or absent rhythms. Nevertheless, we find that within Luminal A tumors, increasing rhythm
strength appears to predict increased invasiveness. We believe it is ill-advised to make blanket statements
based on a single tumor type or to compare rhythms in tumor types with vastly different biological features.
Our results cannot be applied directly to other tumor types. Future studies could test the intriguing
hypothesis that specific cancer cells “hijack” the clock mechanism to temporally organize metabolic

programs, evade immune surveillance, suppress apoptosis, or facilitate intravasation and metastasis.
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Some cancers may specifically disrupt the circadian check on cell division. Other cancer cells may have
evolved to break loose from circadian control altogether to suit their needs best®73, For Luminal A tumors,
like most organisms, tumor rhythms may impart increased biological fithess — to the detriment of the patient.
Taken as a whole, the biological insights from this study may help lay the groundwork for improved breast
cancer prevention (e.g., lifestyle changes), new prognostic biomarkers, and more effective personalized

breast cancer treatments.
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Tables. 1 Patient demographics for 43 pairs of Manchester human breast samples

Time of

Patient ID Gender | Age . Type Grade | ER? | PRP | HER2¢ | Ki-67
resection

WO005787 Female 72 17:10 IDC 3 0 0 3 40%
WO005805 | Female | 74 16:35 IDC 2 8 8 1 5%
W005821 Female 62 15:06 IDC 3 0 0 0 70%
WO005830 Female 38 16:05 IDC 3 8 5 1 38%
W005831 Female 78 12:55 IMC 3 0 0 0 38%
W005859 Female 44 15:20 IDC 2 8 8 1 14%
WO005863 | Female | 51 16:40 IMC 2 8 5 1 36%
WO005925 Female 65 15:50 IDC 3 8 0 3 -
W006024 Female 93 12:45 IDC 3 2 0 0 62%
W006029 Female 54 13:10 ILC 2 8 7 1 25%
W006034 Female 76 13:50 IDC 2 8 8 1 21%
W006044 Female 60 12:30 IDC 2 8 8 1 28%
W006045 Female 63 11:55 IDC 1 0 0 1 82%
W006053 Female 47 16:00 IDC 3 8 8 0 50%
W006055 Female 75 13:50 IDC 3 2 0 1 63%
W006071 Female 45 13:00 IDC 2 7 7 2 27%
W006074 | Female | 75 16:10 IDC + DCIS 2 8 7 1 17%
WO006077 Female | 40 10:40 IDC 3 0 0 0 -
W006078 Female 70 16:45 IDC 2 8 0 2 25%
W006140 Female 77 10:25 IAC 2 0 0 1 12%
W006147 Female 73 15:40 IDC 3 0 0 1 30%
WO006155 | Female | 68 11:18 IDC 3 8 3 1 21%
WO006161 Female 60 15:55 ILC 2 8 6 2 10%
W006167 Female 85 10:54 IDC 2 8 7 1 30%
W006193 Female 54 13:50 IDC + DCIS 2 8 7 2 36%
WO006195 | Female | 33 11:45 IDC 1 8 7 1 20%
W006212 Female | 42 12:55 IDC 2 8 0 3 -
WO006217 Female | 48 10:45 IDC 2 7 8 2 20%
W006218 Female 76 13:15 IDC 2 8 8 1 12%
W006219 Female 71 12:20 ILC 2 8 4 1 5%
W006226 Female | 43 15:00 IDC 3 0 0 3 -
WO006238 Female 56 10:05 IDC 3 8 4 2 29%
W006241 Female 80 16:45 IDC 3 8 7 2 35%
W006267 Female 71 17:03 IPLC 3 7 5 1 30%
W006268 Female 41 12:00 ILC 2 7 7 2 19%
W006312 Female 63 15:58 IDC 2 8 7 1 13%
WO006314 Female 54 12:15 IDC 2 8 8 1 19%
W006335 Female 45 11:40 IDC 3 8 7 0 10%
W006506 Female 69 15:55 ILC 2 6 0 2 20%
W006510 Female | 49 16:20 IDC 3 8 3 0 33%
W006511 | Female | 53 10:15 IDC 1 8 6 1 25%
WO006542 Female 39 13:50 ILC + DCIS 2 8 8 1 10%
W006553 Female 72 14:40 IDC 3 0 0 1 18%

a, estrogen receptor; b, progesterone receptor; ¢, human epidermal growth factor receptor 2
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Key resources table

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Alexa Fluor™ 488 Phalloidin

Thermo Scientific

Cat# R37110

Anti-Rabbit BMAL1

Homemade (Weaver Lab)

N/A

Anti-Rabbit Cytokeratin 8

Abcam

Cat# ab53280
RRID: AB 860091

Anti-Rabbit CLOCK

Proteintech

Cat# 18094-1-AP
RRID: AB_2878497

Anti-Rabbit CRY1

Proteintech

Cat# 13474-1-AP
RRID: AB_10697652

Anti-Rabbit ERa Cell Signaling Technology RRIDC??;E 8§gf7128
Anti-Rabbit HER2 Cell Signaling Technology RRID:Cthif 21%)?522490
Anti-Rabbit Ki-67 Abcam R A
Anti-Rabbit PER2 Abclonal o
Anti-Rabbit Vimentin Abcam Cat# ab92547

RRID: AB 10562134

Primers

Bacterial and virus strains

NEB Stable Competent E. coli (High efficiency) |

New England Biolabs

Cat# C3040H

Biological samples

Human breast samples

MCRC Biobank

Ref: 21_QIME_01

TCGA-BRCA samples

FireBrowse

http://firebrowse.org/

GTEX v8 breast samples

GTEX portal*®

https://storage.googleapis.

com/gtex_analysis_v8/rna

_seq_data/GTEx_Analysis
_2017-06-

05 v8 RNASeQCv1.1.9 g
ene_tpm.gct.gz

BA11 brain samples

NIH GEO: GSE71620

Chen et al.”®

Groningen and Laval lung samples

NIH GEO: GSE23546

Bossé et al.””

Chemicals, peptides, and recombinant proteins

1X Trypsin-EDTA solution Sigma-Aldrich Cat# 73924
10X Tris/Glycine/SDS Bio-Rad Cat# 1610732
A83-01 Tocirs Cat# 2939
Acetic Acid Glacial Fisher scientific Cat# 10171460
Advanced DMEM/F12 Gibco Cat# 12634010
Agarose Bioline Cat# BIO-41025

Alt-R S.p.Cas9 Nuclease V3

Integrated DNA
Technologies

Cat# 1081058

Ampicillin

Sigma-Aldrich

Cat# A9393
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B27 supplement (50X), serum free Gibco Cat# 17504044
BSA (Bovine Serum Albumins) Sigma-Aldrich Cat# A2153
Calcium Chloride Fisher scientific Cat# 10171800
Collagenase A Roche Cat# 10103186001
Chloroform, 99.8+% Fisher scientific Cat# 10784143
Dexamethasone Sigma-Aldrich Cat# D4902
Dispase Il Roche Cat# 37045800
Donkey Serum Sigma-Aldrich Cat# D9663
DPX Mountant for histology Sigma-Aldrich Cat# 06522
DPBS (1X) Sigma-Aldrich Cat# D5652
DMEM/F12 without phenol red Gibco Cat# 2063394
Dnase | Roche Cat# 11284932001
Dnase-free RNase set QIAGEN Cat# 79254
Eosin-Y Sigma-Aldrich Cat# E4009
EGF (Epidermal Growth Factor) Peprotech Cat# AF-100-15
Ethanol, 99.8+% Fisher scientific Cat# 12337163
FBS Sigma-Aldrich Cat# 12103C
FGF2 (Fibroblast Growth Factor 2) Peprotech Cat# 100-18B
FGF7 Peprotech Cat# 100-19
FGF10 Peprotech Cat# 100-26
Gentamicin solution Sigma-Aldrich Cat# G1272
GlutaMax 100X Gibco Cat# 15630-056
Goat Serum Sigma-Aldrich Cat# G9023
Halt™ Protease inhibitor cocktails Thermo Scientific Cat# 78429
HBSS Sigma-Aldrich Cat# H9394
HCI (Hydrochloric Acid) Fisher scientific Cat# 10053023
Hematoxylin Solution, Gill No. 2 Sigma-Aldrich Cat# GHS216
HEPES Sigma-Aldrich Cat# H0887
High-Capacity RNA to cDNA kit Applied Biosystems Cat# 4387406
Hyaluronidases Sigma-Aldrich Cat# H3885
Hydrogen peroxide solution Sigma-Aldrich Cat# 95321
ISOLATE Il Genomic DNA kit Bioline Cat# BIO-52066
Isopropanol Fisher scientific Cat# 10477070
L-Glutamine Sigma-Aldrich Cat# G7513
Isgg;enitamme CRISPRMAX  Transfection Thermo Scientific Cat# CMAX00015
Beetle Luciferin, Potassium Salt Promega Cat# E1603
Lysing Matrix A MP Biomedicals Cat# 116910050
e e e, Loty vea | comin
Methanol Fisher scientific Cat# 10141720
Methylcellulose Sigma-Aldrich Cat# M7027
é—ezlg% Mini-PROTEIN TGX Precast Protein Bio-Rad Cat# 4561093
N-Acetylcysteine Sigma-Aldrich Cat# A9165
Nicotinamide Sigma-Aldrich Cat# N6036
Noggin Peprotech Cat# 120-10C
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Opti-MEM™ | Reduced Serum Medium, no

phenol red Thermo Scientific Cat# 11058021
P/S (Penicillin/Streptomycin) Sigma-Aldrich Cat# P4333
Polybrene Sigma-Aldrich Cat# TR-1003-G
Paraformaldehyde Sigma-Aldrich Cat# 95321
Pierce™ BCA Protein Assay Reagent A Thermo Scientific Cat# 23223
Pierce™ BCA Protein Assay Reagent B Thermo Scientific Cat# 23224
Primocin Invivogen Cat# Ant-pm-1
PureCol EZ gel solution Sigma-Aldrich Cat# 5074
QIAfilter Plasmid Maxi Kit QIAGEN Cat# 12245
QIAquick Gel Extraction Kit QIAGEN Cat# 28704
Qubit™ RNA XR Assay Kit Thermo Scientific Cat# Q33224
R-spondin 3 Peprotech Cat# 120-44
RIPA Buffer Sigma-Aldrich Cat# R2078
RNAlater™ Stabilization Solution Thermo Scientific Cat# AM7020
RNA ScreenTape Agilent Cat# 5067-5576
RNA ScreenTape Sample Buffer Agilent Cat# 5067-5577
Rneasy Lipid Tissue Mini Kit QIAGEN Cat# 74804
SB202190 Sigma-Aldrich Cat# S7067
SIGMAFAST™ 3,3'-Diaminobenzidine tablets Sigma-Aldrich Cat# D4168
Sodium Butyrate Sigma-Aldrich Cat# B5887
Sodium citrate (100X) Abcam Cat# ah93678
Streptavidin, Peroxidase (Concentrate, for IHC) Vector Cat# SA-5004-1
TAE Buffer (50X) Thermo Scientific Cat# B49
Takyon ROX probe Mastermix DTTP blue Eurogenetic Cat# EUK212
Trans-Blot Tuobo RTA Mini 0.2 um Bio-Rad Cat# 1704270

Nitrocellulose Transfer Kit, for 40 bolts

Triton X-100 Thermo Scientific Cat# 85111
Tween™ 20 Thermo Scientific Cat# 85113
Xylenes Fisher scientific Cat# 15618420

Software and algorithms

https://github.com/alexdobi

i i 78
STAR(version 2.5) Dobin et al. n/STAR/releases
. . https://github.com/deweyla
79
RSEM(version 1.3.0) Li et al. b/RSEM/releases
R (v4.2.1) - https://www.R-project.org
https://github.com/gangwu
38
CCMapp Wu et al. g/CCMapp
BioRender - https://www.biorender.com
Julia (v1.6) Bezanson et al & https://doi.org/10.1137/141

000671

GSEA (v4.2.3)

Subramanian et al.#”

https://doi.org/10.1073/pna
s.0506580102

PSEA

Zhang et al.*¢

https://doi.org/10.1177/074
8730416631895

enrichR.R (v3.1)

Chen et al.*®

https://doi.org/10.1093/nar/
gkw377

Dataframes.jl (v1.3.4)

https://dataframes.juliadata
.org/stable/
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Statistics.jl

https://docs.julialang.org/e
n/vl/stdlib/Statistics/

StatsBase.jl (v0.33.21)

https://juliastats.org/StatsB
ase.jl/stable/

LinearAlgebra.jl

https://docs.julialang.org/e
n/vl/stdlib/LinearAlgebra/

MultivariateStats.jl (v0.10.0)

https://juliapackages.com/p
/multivariatestats
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Fig. S1
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Fig. S4
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Fig. S6
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Fig. S7
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