

1 **Title**

2 Single-cell spatial atlas of tertiary lymphoid structures in ovarian cancer

3 **Authors**

4 Joona Sarkkinen¹, Ada Junquera^{2*}, Ella Anttila^{2*}, Angela Szabo², Fernando Perez^{2,3},
5 Inga-Maria Launonen², Anna Laury^{2,4}, Julia Casado², Eliisa Kekäläinen^{1,5}, Anniina
6 Färkkilä^{2,3,6,7}

7 * equal contribution

8 **Affiliations**

9 1) Translational Immunology Research Program, University of Helsinki and Helsinki
10 University Hospital, Helsinki, Finland
11 2) Research Program in Systems Oncology, University of Helsinki
12 3) iCAN Digital Precision Cancer Medicine
13 4) HUS Diagnostic Center, Pathology, Helsinki, Finland
14 5) HUS Diagnostic Center, Clinical Microbiology, Helsinki, Finland
15 6) Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences,
16 University of Helsinki, Finland
17 7) Department of Obstetrics and Gynecology, Helsinki University Hospital

18 **Corresponding Author**

19 Anniina Färkkilä

20 MD PhD, Assistant Professor (TT) in Translational Gynecologic Oncology
21 Specialist in Obstetrics and Gynecology
22
23 Research Program in Systems Oncology &
24 Department of Obstetrics and Gynecology
25 University of Helsinki and Helsinki University Hospital
26 00014 University of Helsinki
27
28 anniina.farkkila@helsinki.fi
29 +358505967786

30 Abstract (350)

31 Background

32 Recent advances in highly-multiplexed tissue technologies and image analysis tools
33 have enabled a more detailed investigation of the tumor microenvironment (TME)
34 and its spatial features, including tertiary lymphoid structures (TLSs), at single-cell
35 resolution. TLSs play a major part in antitumor immune responses, however, their
36 role in antitumor immunity in ovarian cancer remains largely unexplored.

37 Methods

38 In this study, we generated a comprehensive single-cell spatial atlas of TLSs in
39 ovarian cancer by extracting spatial topology information from in-situ highly-
40 multiplexed cellular imaging using tissue cyclic immunofluorescence (CyCIF). Our
41 analysis included 44 patients with high-grade serous ovarian cancer (HGSC) from
42 the TOPACIO Phase II clinical trial. We combined spatial and phenotypic features
43 from 302,545 single-cells with histopathology, targeted sequencing-based tumor
44 molecular groups, and Nanostring gene expression data.

45 Results

46 We find that TLSs are associated with a distinct TME composition and gene
47 expression profile, characterized by elevated levels of the chemokines CCL19,
48 CCL21, and CXCL13 correlating with the number of TLSs in the tumors. Using
49 single-cell feature quantification and spatial mapping, we uncover enriched germinal
50 center (GC) B cell infiltration and selective spatial attraction to follicular helper T and
51 follicular regulatory T cells in the TLSs from chemo-exposed and *BRCA1* mutated
52 HGSCs. Importantly, spatial statistics reveal three main groups of cell-to-cell
53 interactions; significantly enriched structural compartments of CD31+ cells, myeloid,

54 and stromal cell types, homotypic cancer cell- and cancer cell to IBA1+ myeloid cell
55 crosstalk, and enriched selective Tfh, Tfr, and Tfc communities with predominant Tfh
56 - GC B cell interactions. Finally, we report spatiotemporal gradients of GC-B cell
57 interactions during TLS maturation, with enriched non-GC B cell attraction towards
58 the GC B cells in early TLSs, and avoidance patterns with selective GC B-cell
59 communities in the TLSs with GCs.

60 Conclusions

61 Our single-cell multi-omics analyses of TLSs showed evidence of active adaptive
62 immunity with spatial and phenotypic variations among distinct clinical and molecular
63 subtypes of HGSC. Overall, our findings provide new insights into the spatial biology
64 of TLSs and have the potential to improve immunotherapeutic targeting of ovarian
65 cancer.

66

67

68 What is already known on this topic

69 TLSs play a major part in antitumor immune responses, however, their exact role
70 and mechanisms in antitumor immunity are widely unexplored.

71

72 What this study adds

73 Our results deepen the understanding of TLS biology including cell-cell interactions
74 and shows how the presence of TLSs is characterized with a distinct TME
75 composition and gene expression profile.

76

77 How this study might affect research, practice or policy

78 Overall, our findings provide new insights into the spatial biology of TLSs and have
79 the potential to improve therapeutic options for ovarian cancer.

80

81 **Keywords**

82 Ovarian cancer, tertiary lymphoid structures, single-cell spatial analysis

83

84 **List of Abbreviations**

85 high-grade serous ovarian cancer (HGSC), tumor microenvironment (TME), tumor-
86 infiltrating lymphocyte (TIL), tertiary lymphoid structure (TLS), germinal center (GC),
87 follicular T helper cell (Tfh), follicular T regulator cell (Tfr), follicular cytotoxic T cell
88 (Tfc), Formalin-fixed paraffin-embedded (FFPE), cyclic immunofluorescence
89 (CyCIF), antigen-presenting cell (APC), high endothelial venule (HEV)

90 Background

91 Anti-tumor immunity plays a critical role in high-grade serous ovarian cancer (HGSC)
92 therapy responses and clinical outcomes(1,2). Unfortunately, single-agent immune
93 checkpoint blockade therapies in unselected HGSC patient populations have
94 dramatically failed to produce clinical benefits(3). Thus, a better understanding of the
95 tumor microenvironment (TME) is needed to improve immunotherapeutic
96 approaches for ovarian cancer. Interestingly, combined inhibition of Poly-ADP
97 Ribose Polymerase and immune checkpoint inhibition has yielded encouraging
98 results for HGSC patients with an increased proportion of exhausted CD8+ T cells or
99 defective homologous recombination DNA repair(4). Furthermore, the infiltration of
100 CD8+ T cells in *BRCA1/2* mutated (mut) tumors has a prognostic role resulting from
101 their spatial arrangement, highlighting the importance of cell neighborhoods in the
102 TME(5).

103 Besides T cells, also B cells are found in the TME. Antigen-experienced
104 CD20+ B cells infiltrated together with CD8+ T cells are correlated more strongly to
105 overall survival than CD8+ tumor-infiltrating lymphocytes (TILs) alone in HGSC(6).
106 Infiltrated B cells can together with follicular subtypes of CD4+ T cells form tertiary
107 lymphoid structures (TLSs), which develop in response to prolonged inflammation.
108 TLSs can be diffuse aggregates of lymphocytes, including T cell subsets called
109 follicular T helper (Tfh) and T regulator (Tfr) cells, and maturing B cells, or they can
110 be organized containing B cell follicles and germinal centers (GC) including also
111 highly clonal plasma cells indicating antigen-specific responses.(7,8) In ovarian
112 cancer, tumors with TLSs containing CD8+ TILs and CD20+ B cells are associated
113 with a better prognosis than tumors containing only CD8+ TILs (9). TLSs seem to

114 play a major part in antitumor immune responses, however, their exact role and
115 mechanisms in antitumor immunity are widely unexplored.(10)

116 To uncover cellular and spatial characteristics of TLSs in ovarian cancer, and
117 to understand TLS shaping factors, we performed highly multiplexed
118 immunofluorescence and single-cell-level image analysis combined with gene
119 expression profiling of tumor samples with recurrent HGSC from the TOPACIO
120 trial(11). Altogether our study reveals distinct gene expression programs, cellular
121 compositions, and spatial cell-cell interactions in HGSC associated with TLS
122 maturation and clinical and molecular patient groups.

123 Materials and methods

124 Study cohort

125 The study consisted of 44 patients participating in the TOPACIO Phase II clinical trial
126 (4)(11). Formalin-fixed paraffin-embedded (FFPE) tumor samples were collected
127 either at the time of diagnosis (chemo-naïve) or after neoadjuvant platinum-based
128 chemotherapeutics (chemo-exposed). The H&E stains were available on 42/44
129 tumor samples (4). A trained pathologist (A.L.) annotated the tumors for TLSs from
130 the H&E digital sections, and the TLSs were further labeled into three categories
131 based on their location (intratumoral, peritumoral, or “both”) to the invasive tumor
132 margin. TLSs were detected in 26/44 tumor samples. A subcohort of 19/44 tumor
133 samples was analyzed with single-cell image analysis using CyCIF, in which ten
134 tumor samples contained TLSs and nine did not. The TLS status obtained from H&E
135 stains differed in 3/16 samples obtained from the CyCIF analysis, due to that the H&E
136 and CyCIF assays were not performed from consecutive tissue sections. In the
137 CyCIF subcohort, three samples were excluded due to suboptimal tissue quality.
138 Characteristics of the clinical data and the TLS status are shown in **Table S1**.

139

140 Cyclic immunofluorescence

141 5µm FFPE sections were stained using highly multiplexed cyclic
142 immunofluorescence (CyCIF)(12)(4). Briefly, the FFPE tissue sections were
143 cyclically stained with antibodies (**Table S1**) and scanned with the RareCyte
144 CyteFinder scanner. Scanned image files were corrected using BaSiC and stitched

145 and registered using the ASHLAR algorithm(13). The single-cell proportions of the
146 WSIs were utilized from our previous study(4).

147 **Single-cell image analysis of TLSs**

148 TLS aggregates were cropped from the whole-slide images (WSIs) using ImageJ(14)
149 utilizing morphology and CD20 signal for TLSs. The nuclei were segmented using
150 StarDist's versatile (fluorescent nuclei) model(15). The median fluorescence
151 intensity (MFI) for each cell mask was computed using the Bio-Formats library in
152 Matlab(16). To filter out cells with diminishing signals during the CyCIF protocol, we
153 used the repeated DNA MFI measurement. The possible lost cells were visualized in
154 Napari(17). **Table S1** shows the number of images analyzed including the quality
155 assessment of each TLS.

156

157 The quantified single-cell data were normalized, phenotyped, and further analyzed
158 using Scimap(18) (<https://scimap.xyz/>). For the markers used for phenotyping, the
159 positive thresholds were set manually after which the signal intensities of the
160 cropped TLSs were normalized per tumor sample. For the markers not used in the
161 cell phenotyping, a Gaussian mixture model was used to normalize the signal
162 intensities. **Table S2** summarizes the manual thresholds and shows the workflow of
163 the cell phenotyping. In total, 302,545 single cells were identified and phenotyped
164 based on their marker positivity. A minority of double negative (CD3+CD4-CD8-) T
165 cells (334 cells, 0.11%) and granulocytes (CD15+, 114 cells, 0.05%) were removed
166 from further analysis due to low cell counts. The schematic pipeline of the image
167 analysis is shown in **Figure 1A**.

168 **Single-cell spatial analysis**

169 The neighborhood analyses were adopted from Scimap using Jupyter Notebook with
170 Python. First, the average shortest spatial distances between the different cell types
171 were calculated to create a network of cellular distances across the TLSS. Secondly,
172 the K-nearest neighbors' method with 10 nearest cells was applied, to determine the
173 cell-type-specific cellular communities for every cell and to identify the spatial
174 patterns of attraction and avoidance between the given cell types(18).

175 **Gene expression profiling and pathway analysis**

176 The Nanostring gene expression profiling using a PanCancer IO 360 Gene
177 Expression Panel plus 30 DNA repair genes was used in a cohort of 44 patients on
178 FFPE tumor sections obtained from the same FFPE blocks which were used in the
179 CyCIF experiment(4). The data were normalized to 20 housekeeping genes and
180 analyzed through the NanoString NSolver Advanced Analysis Platform, including
181 pathway enrichment scores. An unpaired t-test was used for the differential gene
182 expression analysis using a p-value cutoff of -log10 of 3.0 and a log2FC of >1.5 or
183 <-1.5. Genes affected by the treatment status were filtered out (a cutoff of -log10 p-
184 value of 3.0 and a log2FC of >2.5 or <-2.5). Differentially expressed KEGG
185 pathways were detected using a -log10 p-value of 2.5 and a log2FC cutoff of >2.5 or
186 <-2.5.

187 **Statistics**

188 Either an unpaired Wilcoxon or a t-test was used to compare two different
189 categories. P-values of <0.05 were considered statistically significant. For the

190 RNAseq analysis, the distribution of the data was approximately normal based on the Shapiro-
191 Wilk test and an unpaired T-test was applied. A Pearson correlation test was used for
192 certain differentially expressed genes. Euclidean dissimilarity distances and Ward's
193 agglomerative clustering were used in the correlation plots. P-values for the cell-
194 type-specific cellular communities were either calculated by subtracting the permuted
195 mean from the observed mean divided by the number of permutations described by
196 Schapiro et al(19) or by using an unpaired Wilcoxon test to compare the cell-cell
197 spatial interaction of given cell types between two categorical groups.

198 **Results**

199 The presence of TLSs is reflected in the overall TME cell
200 composition in HGSC

201 Using highly-multiplexed imaging, we identified infiltrations of B cells (CD20+)
202 colocalizing with CD3+CD4+ T helper cells forming TLSs in 10 out of 19 (53%)
203 HGSC samples (**Figure 1A**). First, we compared how the presence of TLSs was
204 reflected in the proportions of different immune cell subtypes in the whole slide
205 image (WSI) CyCIF data. Agglomerative hierarchical clustering resulted in two larger
206 clusters that followed the presence of TLSs (**Figure 1B**). Ovarian cancers with TLSs
207 had a higher proportion of CD20+ B cells ($p=0.016$) and CD4+ T helper cells
208 (CD3+CD4+FOXP3-, $p=0.010$) as compared to tumors without TLSs (**Figure S1A**).

209 The presence of TLSs is characterized by a distinct gene
210 expression profile of CCL19, CCL21, and CXCL13

211 We next tested whether the presence of TLSs was associated with gene expression
212 profiles of the tumors using expression data of 800 genes from the Nanostring
213 platform from 44 patients. Based on histopathology, TLSs were identified in 24
214 tumors whereas in 18 tumors they were absent (**Figure S1B**). Treatment with
215 chemotherapy has been associated with an increase in TLS formation in various
216 cancer types(10,20), however here the presence of TLSs did not correlate with the
217 chemotherapy status (12/21 chemo-naïve vs 12/21 chemo-exposed), *BRCA1/2*
218 mutation status (4/8 *BRCA1/2*mut vs 20/34 *BRCA1/2* wild-type), or the outcomes of
219 patients (11/17 clinical benefit vs 13/25 without benefit) in the TOPACIO trial.

220 Altogether, we identified 36 genes upregulated in tumors with TLSs, which
221 remained after filtering for chemo-exposure status. (**Figure S1C**). Again, the tumors
222 clustered into two major clusters correlating with the presence of TLSs in
223 histopathological assessment (**Figure 1C**), while chemotherapy exposure was not
224 associated with the main clusters. No clear gene expression patterns were observed
225 based on TLS location (intratumoral, peritumoral, or “both”) (**Figure 1C**).
226 Interestingly, we observed a significant upregulation of several genes encoding for
227 chemoattractants responsible for lymphocyte migration into TLSs (*CCL19*, $p=8.3e-09$; *CCL21*, $p=5e-05$; *CXCL13*, $p=4.5e-05$; **Figure 1D**). Furthermore, the expression
228 levels of *CCL19* and *CXCL13* also significantly correlated with the number of TLSs in
229 the tumors (*CCL19*, $R^2=0.84$, $p=3.2e-07$; *CXCL13*, $R^2=0.73$, $p=5.9e-05$; **Figure 1E**).

232 We next explored the gene expression patterns using KEGG pathways of the
233 differentially expressed genes. We observed that the tumors with TLSs showed
234 increased activity in immunoregulatory interactions between lymphoid and non-
235 lymphoid cells, TCR signaling, IL2, 4, and 10 signaling, and costimulation by the
236 CD28 family. Again, the tumors clustered according to the TLS status, implicating
237 distinct gene expression programs in tumors with TLSs (**Figure S1D**).

238 **CyCIF reveals heterogeneity of TLS composition at single-cell
239 resolution**

240 We next set out to characterize the composition of the TLSs at single-cell resolution.
241 In total, 302,545 single cells from 82 TLSs from WSIs encompassing 7 different
242 HGSC patients were subjected to further single-cell analyses (**Figure 1A, Table S1**).
243 We phenotyped the cells to different subsets of CD4+ T helper cells, regulatory T

244 cells, CD8+ T killer cells, CD20+ B cells, myeloid, stromal, endothelial, and cancer
245 cells, with a specific focus on follicular T cells by utilizing probability-based marker
246 expressions (**Figure 2A, Table S2**). Consistent with the TLS biology, B cells and
247 CD4+ T cells encompassed over 50% of the cells identified in the TLSs, followed by
248 myeloid, CD8+ T, and stromal cells (**Figure 2B**). In unsupervised hierarchical
249 clustering, the TLSs formed four main clusters enriched either in T-cell populations,
250 cancer and myeloid cells, B-cells, or stromal cells. Interestingly the individual TLSs
251 showed marked heterogeneity in the main cell lineage composition between the
252 patients (**Figure 2C**). Notably, the samples with the largest frequencies of B cells did
253 not possess the largest frequencies of T cell subsets and had relatively low
254 frequencies of other cells, consistent with the WSI data (**Figure 1B,2C**).

255 **Chemotherapy-exposed TLSs are enriched in germinal center
256 B cells**

257 Even though there was no difference in TLS prevalence between chemo-exposed
258 and naïve tumors, we hypothesized that chemotherapy would influence the TLS
259 composition. First, we compared the proportions of the main cell lineages within the
260 TLSs and noticed that the chemo-exposed TLSs seem to have a reduction of overall
261 B cells (CD20+; $p=0.01$) and CD4 T helper cells (CD3+CD4+FOXP3-; $p=1e-04$), and
262 enrichment of endothelial cells (CD31+; $p=0.01$) and myeloid cells ($p=2e-09$) as
263 compared with the chemo-naïve TLSs (**Figure S2**). A more detailed analysis of the
264 lymphocyte compartment revealed that the chemo-exposed TLSs had a significantly
265 higher proportion of proliferative GC-related CD20+Ki67+ B cells (GC B; $p=8e-04$)
266 and subsequently the fraction of non-GC (CD20+Ki67-) B cells ($p=0.02$; **Figure 2D**)
267 was reduced. The proportion of CD3+CD4+PD1-FOXP3- (CD4 T) cells was lower in

268 the chemo-exposed TLSs ($p=4e-04$). The other T cell subsets including PD1+
269 populations did not differ between the subgroups. Traditionally, follicular T helper
270 (Tfh) and regulator (Tfr) cells are characterized by chemokine receptor CXCR5 in
271 addition to canonical T cell markers, however, their spatial localization in the TLS
272 follicles, as shown later in **Figure 3B (i-iii, vi)**, makes it plausible to annotate the
273 CD3+CD4+PD1+ as Tfh and CD3+CD4+PD1+FOXP3+ as Tfr cells. In the TLS
274 follicle, the PD1+ cells were Tfh cells and not GC B cells (**Figure 3B iii-iv**).

275 The myeloid cells (CD11b+/CD11c+/CD163+/IBA1+) were further divided into
276 CD11c+ antigen-presenting cells (APC), CD163+ and IBA1+CD163+CD11c+
277 macrophages, and unspecified myeloid cells (**Table S2**). We observed that the
278 chemo-exposed TLSs had an enriched proportion of all myeloid subsets as
279 compared to the chemo-naïve TLSs (CD11c+ APCs, $p=0.02$; CD163+ macrophages,
280 $p=7e-04$; IBA1+CD163+CD11c+, $p=1e-05$; unspecified myeloid cells, $p = 0.002$;
281 **Figure 2E**).

282 Enriched infiltration of follicular T-cells in the TLSs of *BRCA1*
283 mutated tumors

284 To enhance our understanding of the TME after chemotherapy, we focused on the
285 TLSs from chemotherapy-exposed tumors across different molecular subgroups of
286 HGSC. Previous studies have shown that mismatch repair-deficient colorectal
287 cancers have an increased prevalence of TLSs with more mature phenotypes(20),
288 but this was not observed in *BRCA1*mut breast cancer patients(21). *BRCA1* mutation
289 could nevertheless alter TLSs on a cellular level, which led us to compare TLS cell
290 composition of chemotherapy-exposed tumors between *BRCA1*mut TLSs to TLSs
291 from tumors with no alterations in homologous recombination pathways (wild-type).

292 TLSs from *BRCA1*mut had an increased infiltration of Tfh ($p=8e-05$) and Tfr
293 cells ($p=5e-05$), while unspecified CD4 T cells ($p=2e-05$) and
294 CD3+CD4+FOXP3+PD1- regulatory T cells (Tregs; $p=0.002$) were decreased
295 compared to wild-type TLSs (**Figure 3A**). Interestingly, we observed divergent
296 CD3+CD8+ T cell infiltration patterns in the TLSs of *BRCA1*mut and wild-type
297 tumors. The TLSs in *BRCA1*mut tumors showed an enriched infiltration of PD1+CD8
298 T cells ($p=2e-05$; **Figure 3A**), which are likely follicular cytotoxic T (Tfc) cells since
299 they spatially located inside or near the TLS follicle (**Figure 3B iii, vi**), while the
300 fraction of PD1-negative CD8 T cells was reduced ($p=0.002$) compared to wild-type
301 TLSs consistent with general observations from the tumor-infiltrating
302 lymphocytes(22).

303 Earlier we reported reduced infiltration of CD11c+ APCs and
304 IBA1+CD163+CD11c+ macrophages in the *BRCA1*mut tumors as compared to wild-
305 type(5). Similarly in the TLSs, we observed lower fractions of both CD11c+ APCs
306 ($p=0.003$), CD163+ ($p=0.006$) and IBA1+CD163+CD11c+ ($p=0.01$) macrophages in
307 the *BRCA1*mut TLSs (**Figure 3C**). The reduced infiltration of myeloid cells in the
308 TLSs could also rise from highly expanded Tf cells reported above because no
309 changes in different myeloid cell subpopulations were seen within the myeloid
310 compartment alone (**Figure S3**). Consistently, the myeloid cells were mostly located
311 outside of the TLS follicle, yet the CD11c+ APCs were also found inside the GC B
312 cell-rich follicle (**Figure 3B v-vi**).

313 **Selective spatial interactions of follicular T cells and GC B cells**
314 To investigate the cell-to-cell spatial interactions within the TLSs, we next calculated
315 the average shortest spatial distances between different cell types to create a

316 network of cellular distances. We found that cells of the same type were more likely
317 to cluster together, indicating spatial clustering of the cells of the same type towards
318 each other (**Figure S4A**). Based on average distances between cell types, the
319 cellular interactions were clustered into three main categories of cellular networks: 1)
320 homotypic interactions (i.e., cells adjacent only with the same cell type, and distant
321 from other cell types), 2) heterotypic interactions (i.e. cells closely interacting with
322 many other cell types), and 3) selective interactions (i.e. cells adjacent mostly with
323 the same cell types, but also with a subset of other cells) (**Figure 4A**). The
324 homotypic interactions involved cancer cells (CK7+ or PAX8+), proliferative (Ki67+)
325 cancer and stromal cells, CD163+ myeloid cells, and CD31+ lymphocytes (CD31+
326 CD4 T cells, CD8 T cells, or B cells) which may represent trafficking lymphocytes
327 (23) since they were mostly found around CD31+ endothelial cells including HEVs
328 confirmed by visual inspection and their cellular communities (as shown later in
329 **Figure 4C,5C**). The heterotypic interactions consisted of cell types that closely
330 interacted with a variety of different cell types across TLSs and contained non-GC B
331 cells, unspecified CD4 and CD8 T cells, Tregs, CD11c+ APCs, stromal, and
332 endothelial cells. Selective cellular interactions within the TLSs consisted of various
333 myeloid cell types (IBA1+CD163+CD11c+, IBA1+CD163+, unspecified myeloid
334 cells), GC B cells, and follicular T cells (Tfh, Tfr, and Tfc cells). Interestingly, the
335 spatial interactions of the GC B and follicular T cells formed an independent
336 subcluster. Consistently, the Tfh cells were the only cell type adjacent and interacting
337 with the GC B and non-GC B cells within the selective interactions network. The
338 spatial projection of the distinct cell-cell interactions on the underlying highly-
339 multiplexed image confirms the presence of the distinct spatial interaction networks
340 in the TLSs (**Figure 4B**).

341 Next, we investigated the cell-type-specific cellular communities of 10 spatially
342 closest neighbors for every cell. To reveal patterns of attraction or avoidance, we
343 computed a statistical measure of how likely a given cell type is to be found in the
344 proximity of another cell type as compared to random(19). We identified distinct
345 significantly enriched cellular communities which clustered into three groups (**Figure**
346 **4C**). First, we observed a significant attraction of cancer cells towards each other,
347 consistent with observations in **Figure 4A**. The only statistically significant neighbor
348 cell type for cancer cells in TLSs were IBA1+ myeloid cells supporting the role of
349 myeloid cells in regulating anti-tumor immunity in HGSC. Secondly, we observed
350 significantly enriched communities of CD31+ cells, myeloid, and stromal cell types
351 (**Figure 4C**). We found that the CD31+ endothelial cells including HEVs, together
352 with the myeloid and stromal cell types showed significant attraction and co-
353 occurrence with potential structural functions for the TLSs, consistent with the
354 stromal cells and HEVs being especially critical for TLS development and the
355 migration of lymphocytes to the TLS site(24). The myeloid, endothelial, and stromal
356 cells were also mostly found in statistically significant spatial avoidance of the GC B
357 cells, outside of the follicle supporting their function in the TLS structures (**Figure**
358 **4C**), as also visible in **Figure 3B v-vi**. The third cluster of significant attractions was
359 formed by lymphocytes, highlighting the critical role of spatial lymphocytic
360 interactions in TLS function. Interestingly, the Tfh, Tfr, and Tfc cells formed
361 communities of significant spatial attraction, whereas the cellular neighborhoods of
362 unspecified CD4 and CD8 T cells, and Tregs were more scattered in the TLSs. Of
363 note, the Tfc cells were significantly enriched in the T cell neighborhoods but showed
364 avoidance patterns towards cancer and myeloid cells supporting the notion that the
365 CD3+CD8+PD1+ cells in TLSs here represent a follicular subset of CD8 T (Tfc) cells

366 rather than the classical exhausted CD8 T cells. Importantly, the Tfh cells were the
367 only cells forming statistically significant attractions to the GC B cells (**Figure 4C**)
368 highlighting the importance of selective spatial crosstalk between the GC B and Tfh
369 cells for the GC reaction.

370 Enriched spatial interactions of follicular T cells and GC B cells
371 in chemo-exposed and *BRCA1mut* HGSCs

372 Since the cell composition of TLSs differed between chemo-exposed and naïve
373 tumors (**Figure 2C-D**), we next investigated whether the cell-type-specific cellular
374 communities presented in **Figure 4C** were affected by the chemotherapy status. We
375 observed drastic differences in immediate cell-cell interactions especially for the GC
376 B and Tfh cells. The cell communities of the GC B cells included increased
377 attractions to the Tfh ($p=0.005$, **Figure 4D**) and Tfr cells ($p=0.004$, **Figure S4B**) in
378 the chemo-exposed TLS as compared to the chemo-naïve TLSs. Similarly, the cell
379 communities of the Tfh cells harbored increased attractions to the GC B cells
380 ($p=0.0004$, **Figure 4D**) and to the non-GC B cells ($p=0.019$, **Figure S4B**) in the
381 chemo-exposed TLS as compared to the chemo-naïve TLSs. Even though the
382 myeloid cell subsets were increased in the chemo-exposed tumors, we did not detect
383 evident patterns of changes in the myeloid communities between TLSs of different
384 chemotherapy statuses (**Figure S4C**).

385 We then focused the analysis to the chemo-exposed TLSs and compared the
386 cell-type-specific cellular communities ($knn=10$ cells) of *BRCA1mut* and wild-type
387 TLSs. We observed that, in addition to the enrichment of follicular T cell populations
388 (**Figure 3A**), the *BRCA1mut* TLSs also had increased spatial attractions between the
389 GC B and all follicular T cell populations as compared to the wild-type TLSs (**Figure**

390 **S4D**). Of note, in the wild-type TLSs, the GC B cells had significant attractions only
391 with the Tfh cells. The spatial attraction between GC B cells and Tfh/Tfr cells was
392 found to be significantly increased in *BRCA1*mut tumors compared to wild type
393 (p=0.04 and p=0.02, respectively, as shown in **Figure 4E**). Further, the cellular
394 communities of the Tfh, Tfr, and Tfc cells had increased attraction with each other in
395 TLSs from the *BRCA1*mut tumors as compared to the wild-type (**Figure 4E**).
396 However, no significant difference was observed in the interactions between GC B
397 cells and Tfc cells.

398 Spatial interaction dynamics during TLS maturation

399 To shed light on the dynamic changes in the development of TLSs, we classified the
400 TLSs into three categories using morphological characteristics(25). Over one-third of
401 all TLSs consisted of small aggregates of lymphocytes without an evident B cell
402 follicle (TLS-I, 34.1%, 28/82, **Figure 5A i**). TLSs with larger aggregates of
403 lymphocytes containing a B cell follicle without GC formation consisted of over half of
404 all TLSs (TLS-II, 54.9%, 45/82, **Figure 5A ii**), whereas a GC, confirmed with Ki67-
405 positivity, was seen in 11.0% of the TLSs (TLS-III, 9/82, **Figure 5A iii**). Although
406 morphological changes were observed among TLSs, the only significant differences
407 in cell compositions between TLS categories were found in Ki67+ cancer cells and
408 GC B cells (**Figure 5B**). Specifically, the proportion of Ki67+ cancer cells was
409 significantly higher in TLS-I than in TLS-II (p=0.006) and TLS-III with GCs (p=0.003),
410 while no statistical differences in cell composition were observed between TLS-II and
411 TLS-III (**Figure S5A**). In line with TLS maturation, TLSs with GC formation (TLS-III)
412 showed enrichment of GC B cells as compared to TLS aggregates without a B cell

413 follicle (TLS-I, $p=0.003$) or TLSs with a B cell follicle but no GC (TLS-II, $p=0.003$,
414 **Figure S5B**).

415 Next, we used spatial statistics to examine the spatial dynamics of cell-type-
416 specific cellular communities ($knn=10$ cells) during TLS maturation (Figure 5C-F).
417 The Tfh, Tfr, and Tfc cells formed a large spatial cluster with CD4 and CD8 T cells,
418 and Tregs throughout all TLS maturation phases (**Figure 5C**). However, Tfh and Tfr
419 cells showed increasing avoidance of other cell types during TLS maturation,
420 indicating the segregation of the follicular T-cell communities in TLS-III. Both GC and
421 non-GC B cells formed a separate spatial cluster next to the T cell cluster in all TLS
422 categories. In TLS-IIs, the GC B cells attracted Tfh cells, while in TLS-Is, they only
423 attracted non-GC B cells in addition to themselves, supporting the development of B
424 cell follicles. The cellular communities of different myeloid cell types primarily
425 consisted of other myeloid cell subpopulations, which mostly showed avoidance
426 patterns towards lymphocyte populations. In the more mature TLSs (TLS-II and TLS-
427 III), stromal and endothelial cells also accompanied the myeloid cell communities
428 (**Figure 5C**), supporting the structural maturation of the TLSs.

429 The categories of TLSs were not solely associated with cell compositions
430 (**Figure S5C**), highlighting the importance of cell-type-specific cellular communities
431 and cell-cell interactions in TLS development (**Figure 5C**). Since GC B cells
432 exhibited only a few statistically significant attractions to other cell types, we
433 investigated whether cell-type-specific cellular communities involved more
434 interactions with GC B cells in specific TLS categories. Tfh cells had significantly
435 enriched interactions with GC B cells in TLSs with GC formation compared to those
436 without (TLS-I, $p=1e-05$; TLS-II, $p=8.3e-06$, **Figure 5D**). No difference in interactions
437 between Tfh and GC B cells was observed between TLS-I and TLS-II, even though a

438 B cell follicle was already present in the TLS-II. Similarly, GC B cell communities
439 showed a trend of enriched attraction to Tfh cells in TLS-III (**Figure S5D**). Other
440 follicular T cells (i.e., Tfr and Tfc cells) were not truly attracting or avoiding GC B
441 cells in any TLS category, although Tfc cell communities in the TLS-IIs had slightly
442 more interactions with GC B cells than in TLS-IIIs ($p=0.017$, **Figure S5E-F**).
443 Interestingly, the cellular communities of non-GC B cells had fewer interactions with
444 GC B cells in TLSs with GC formation than those without (TLS-I, $p=0.028$; TLS-II,
445 $p=0.033$, **Figure 5C,E**). Conversely, the GC B cells had significantly increased
446 selective interactions with themselves in TLSs with GC (TLS-III) compared to those
447 without (TLS-I, $p=1.1e-05$; TLS-II, $p=3.3e-06$, Figure 5F), while spatial interactions
448 were similar in TLS-I and TLS-II, highlighting the unique spatiotemporal dynamics of
449 the GC reaction during TLS maturation.

450 Discussion

451 The recent developments in the highly-multiplexed tissue technologies and image
452 analysis tools have enabled a more detailed investigation of the TME and its spatial
453 structures such as TLSs at single-cell resolution. Here, using single-cell feature
454 quantification and spatial statistics in high-plex marker space, we present a detailed
455 map of TLSs in ovarian cancer. We show that spatially and functionally
456 heterogeneous TLSs are present in HGSCs regardless of the chemotherapy
457 exposure. Further, we revealed that TLS structures were associated with a distinct
458 TME composition and tumor gene expression signature with elevated expression of
459 chemokines CCL19, CCL21, and CXCL13. Spatial and structural analysis revealed
460 unique cellular interactions and dynamics during TLS maturation in the ovarian
461 cancer TME.

462 By combining single-cell profiling of TLS, whole-slide imaging (WSI), and
463 gene-expression profiling, we explored the cellular composition and gene expression
464 signatures indicative of active adaptive anti-tumor immunity. We observed that the
465 presence of TLSs correlated with an increased proportion of B cells and T helper
466 (Th) and regulator (T reg) cells in whole slides of tumor samples obtained with
467 CyCIF(4). Similarly, the gene expression profile of the tumor samples formed two
468 main clusters correlating with the presence of TLSs in histopathological assessment.
469 The tumors with TLSs showed upregulation of genes associated with lymphocyte
470 migration to TLSs. *CCL19*, *CCL21*, and *SELL* are expressed by high endothelial
471 venules (HEVs), critical postcapillary venules evident for both lymphocyte migration
472 to TLSs(26), but also for TLS development(7). Lymphocytes migrate from the
473 periphery to the target organ according to the *CCL19* and *CCL21* gradient using

474 CCR7(27), after which by upregulation of CXCR5 T and B cells designated for GC
475 reaction, here in TLSs, enter to B cell follicle by following CXCL13 gradient(28,29).
476 As signs of infiltrating B cells, tumors with TLSs also had upregulated CD20 coding
477 *MS4A*(10), and *BTLA* expressed by various B cells and Tfh cells also known to
478 control the GC reaction(30). We also observed upregulation of *FCRL2*(31,32) as a
479 sign of active GC reaction, and *CD27*(33), a memory marker for B cells. Also, *IL7R*
480 seen in activated Th cells(34), *IL2RG* (the common gamma chain)(35), and *CD3D*
481 and *CD3E* evident for T-cell receptor complex(36) where upregulated as a possible
482 sign of general activation of T effector cells related to cancer immunity. Furthermore,
483 we observed that tumors with TLSs contained increased numbers of B, Th, and
484 Tregs, which, together with the gene expression profile, suggest the activation of
485 targeted antibody responses in the TLS, implicating that targeting TLSs could be a
486 promising therapeutic avenue for enhancing antitumor immunity, especially in
487 ovarian cancers expressing CCL19, CCL21, and CXCL13 as biomarkers for TLSs.

488 Among the distinct clinical groups, we observed enriched GC B cells with
489 enhanced spatial interactions with Tfh cells in the chemo-exposed TLSs as
490 compared to the chemo-naïve TLSs. In general, GC B cells are found from the GCs
491 where they alternate between rounds of somatic hypermutations in the dark zone
492 and competition of surviving signals from Tfh in the light zone. Our results underline
493 how specific the cell neighborhoods are in TLSs, and how significant cell-to-cell
494 connections are for the GCs. Further, the migration of T and B cells to tumor areas
495 leading to the formation of TLSs(26,37) has been associated with CD31+ HEV(38).
496 Consistently, we observed increased frequencies of CD31+ endothelial cells in the
497 chemo-exposed TLSs, potentially indicative of sustained TLS formation and
498 maturation. We observed the enrichment of Tfh, Tfr, and Tfc cells and enhanced

499 spatial interactions between GC B cells and Tfh and Tfr cells in the TLSs of
500 *BRCA1mut* HGSC. These findings together suggest increased follicular T cell
501 accumulation in the TLSs of *BRCA1mut* HGSC regardless of the lack of differences
502 in the total GC B cell counts in the TLSs or the WSIs(4). Further, in line with our
503 findings from WSI overall distinct spatial TMEs in *BRCA1mut* HGSC(5), we observed
504 a reduction of CD11c+ APCs, and CD163+ and IBA1+CD163+CD11c+
505 macrophages particularly in the TLSs of *BRCA1mut* patients. Altogether, the results
506 suggest activated adaptive immunity manifested as TLSs in the chemo-exposed and
507 *BRCA1mut* HGSC, however, the exact mechanisms remain unknown warranting
508 future studies in larger cohorts with patient-matched sample sets.

509 In addition to the single-cell phenotypes and cellular neighborhoods, emerging
510 evidence suggests that also cellular phenotypes are affected by their spatial
511 context(5,39). In anti-tumor immunity, PD1+ T cells are often considered exhausted
512 T cells, whereas in germinal centers, e.g., of SLOs and TLSs, PD1+ T cells usually
513 are subsets of follicular T cells (Tf). Tfh and Tfr cells are specialized subsets of T
514 helper cells needed in affinity-driven evolution and selection of B cells and are found
515 both in TLSs and GCs characterized mainly by chemokine receptor CXCR5 in
516 addition to canonical T cell markers. Herein, the direct spatial focus on TLSs enabled
517 the phenotypic characterization of the CD3+CD4+PD1+ cells as Tf helper cells (Tfh)
518 and the CD3+CD4+PD1+FOXP3+ as Tf regulator cells (Tfr) even without information
519 on CXCR5 staining. Similarly, both PD1-positive and -negative CD8 T cells were
520 significantly enriched in the T cell neighborhoods and showed avoidance patterns
521 towards cancer and myeloid cells. Of the CD8 cells, PD1-positive cells were
522 adjacency to GC B cells supporting the notion that the CD3+CD8+PD1+ cells in
523 TLSs here represent a follicular subset of CD8 T cells (here stated as Tfc cells)

524 rather than the classical exhausted Tc cells, further strengthening the notion that the
525 phenotypic roles of the cells in the TME are dependent on their spatial context.

526 In summary, our findings suggest that the presence of TLSs associates with a
527 distinct TME composition and gene expression profile with upregulation of
528 chemokines CCL19, CCL21 and CXCL13. Moreover, we present a detailed spatial
529 composition of TLSs, with enhanced GC functions and adaptive anti-tumor immunity
530 particularly in the chemo-exposed and *BRCA1*mut tumors. We acknowledge that our
531 study is limited in the number of samples especially in the CyCIF cohort, and thus
532 pave the way for future studies in larger patient cohorts. Nevertheless, our findings
533 provide new insights into the spatial biology of TLSs opening new possibilities for
534 precision immunotherapeutic targeting in ovarian cancer.

535

536

537 **Declarations**

538 **Ethics approval and consent to participate**

539 This study was conducted in accordance with the Declaration of Helsinki and was
540 approved by the Dana-Farber Cancer Institute institutional review board (DFCI 15-
541 550). All patients provided written informed consent to participate in the study.

542 **Availability of data and material**

543 All code used in the study are available at
544 https://github.com/SarkkinenJ/OV_CA_TLS. H&E images and CyclF data of TLS
545 crops (TLS images, masks, single-cell data) are available at
546 <https://doi.org/10.7303/syn51375062>. The CyclF WSI, Nanostring and clinical data
547 are available at <https://doi.org/10.7303/syn21569629>.

548 **Funding**

549 This study was funded by the Emil Aaltonen Foundation (J.S), Biomedicum Helsinki
550 Foundation (J.S.), Sigrid Jusélius Foundation (A.F.), Cancer Society of Finland
551 (A.F.), Academy of Finland (grant number 339805, 350396 to A.F.) The Finnish
552 Medical Foundation (A.F.), University of Helsinki (A.F.), the European Union under
553 the grant agreement 101076096 — SPACE (A.F.).

554 **Competing interests**

555 The authors have nothing to disclose.

556 Authors' contributions

557 J.S. coordinated the study, and performed cell segmentation, and analyzed all the
558 image data and wrote the manuscript; A.J. performed the Nanostring analysis; J.C.
559 generated the CycIF multiplexed image crops; J.C. and F.P. generated the single-
560 cell quantitated imaging data, J.S., J.C., E.A, and A.S. performed quality control of
561 images; A.L. together with J.S. and A.J. evaluated the histology of H&E tumor
562 sections; J.S., I-M.L, and A.F did the neighborhood analyses, J.S., E.K., and A.F.
563 designed the study, A.F. supervised the study and wrote the manuscript. All authors
564 contributed to the writing and editing of the manuscript.

565 Figure captions

566 Figure 1: The presence of TLSs is characterized by distinct TME and gene
567 expression profiles.

568 (A) Schematics demonstrate the study design. The inclusion of tumor samples with
569 TLSs for single-cell image analysis is shown in the flow diagram. (B) Cluster
570 heatmap displaying correlation of TLS status with CyCIF WSI cell type proportions
571 obtained from Färkkilä et al (4). The color in the box corresponds to the proportion of
572 cell type in a given tumor. Heatmap clustering was performed with Ward D2 linkage.
573 (C) Cluster heatmap of gene expression analysis of 44 tumors using a p-value cutoff
574 of -log10 of 3.0 and a log2FC of >1.5 or <-1.5 correlates by the TLS status. The
575 color in the box corresponds to the mRNA level in a given tumor. Heatmap clustering
576 was performed with Ward D2 linkage.

577 Genes differentially expressed within the treatment comparison were filtered out. (D)
578 Box and whisker plot of *CCL19*, *CCL21*, and *CXCL13* mRNA level by the TLS status
579 obtained from digitized H&E stained digital section of HGSC. The P-value was
580 calculated with an unpaired Wilcoxon test. (E) Pearson correlation test of *CCL19* and
581 *CXCL13* mRNA level against TLS number in CyCIF annotated tumors (*CCL19*,
582 p=8.3e-09; *CCL21*, p=5e-05; *CXCL13*, p=4.5e-05). Sample 0078 contained 48 TLSs
583 and was excluded from the correlation tests as an outlier.

584

585 Figure 2: Cell composition of TLSs and increased proportion of GC B cells in chemo-
586 exposed tumors.

587 (A) Heatmap showing scaled mean fluorescence intensities of different markers
588 detected from CyCIF images per cell type in TLSs after probability-based

589 phenotyping. (B) Proportions of main cell lineages of all cells (%) in TLSs from
590 CyCIF images are shown using a pie chart. (C) Cluster heatmap of proportions of
591 main cell lineages in individual TLSs shows heterogeneity between individual TLSs
592 and samples. Clustering was achieved using the complete method. Scaling to z-
593 scores was performed cell lineage-specifically. (D) Lymphocyte compartment in
594 TLSs from chemo-exposed tumors shows an increased proportion of GC B
595 (CD20+Ki67+, $p=8e-04$) cells and naïve T helper (Th, CD3+CD4+PD1-FOXP3-) cells
596 ($p=4e-04$) whereas the proportion of non-GC B (CD20+Ki67-, $p=0.02$) cells was
597 decreased compared to chemo-naïve TLSs (unpaired Wilcoxon test). No statistical
598 differences were observed in proportions of follicular T cells (Tfh,
599 CD3+CD4+PD1+FOXP3-; Tfr, CD3+CD4+PD1+FOXP3+; Tfc, CD3+CD8+PD1+)
600 and cytotoxic T (Tc, CD3+CD8+PD1-) cells between the subtypes. (E) chemo-
601 exposed TLSs had a higher proportion of all myeloid subsets compared to chemo-
602 naïve TLSs (CD11c+ APCs, $p=0.02$; CD163+ macrophages, $p=7e-04$;
603 IBA1+CD163+CD11c+, $p=1e-05$; unspecified myeloid cells, $p=0.002$. In (C) and (D),
604 p-values were calculated with an unpaired Wilcoxon test.

605

606 Figure 3: The proportion of follicular T cells is increased in *BRCA1* mutated TLSs.
607 (A) The proportion of lymphocytes in chemo-exposed TLSs shows the increased
608 proportion of Tfh ($p=8e-05$), Tfr ($p=5e-05$), and Tfc cells ($p=2e-05$) cells and the
609 decreased proportion of Th ($p=2e-05$), Treg ($p=0.002$), and Tc ($p=0.002$) cells in
610 *BRCA1* mutated tumors compared to wild-type (an unpaired Wilcoxon test). No
611 statistical difference in B cell populations was observed. (B) CyCIF images with scale
612 bars of 50 μ m demonstrate the organization of a TLS and the location of its cell
613 types. i) An example of TLS with GC B (CD20+Ki67+) cells containing follicle

614 showing how follicular (PD1+, pink) T cells are located mostly inside or vicinity of the
615 follicle. ii) A magnification showing the interface of GC and mantle zone. iii) PD1+
616 (red) cells are mostly CD4+ (green) Tfh cells (orange) or CD8+ (blue) Tfc cells
617 (purple). iv) Ki67+ (yellow) cells are mostly CD20+ (cyan) GC B cells found in the
618 follicle. v) CD11c+ (yellow), IBA1+ (pink), and CD163+ (red) myeloid cell types and
619 CD31+ endothelial cells are seen mostly outside the follicle. Some CD11c+ APCs
620 are found in the follicle. vi) A Voronoi plot using segmented cells shows typical
621 locations of different cell types. For simplicity, different myeloid cell types were
622 pooled as “Myeloid”, cancer cells as “Cancer”, and stromal cells as “Stroma”. CD31-
623 positive CD4 T, CD8 T, and B cells were included in “CD4 T”, “CD8 T cells”, and “B
624 cells”, respectively. (C) All myeloid cell subsets were decreased in chemo-exposed
625 *BRCA1* mutated TLS compared to chemo-exposed wild-type TLSs (CD11c+ APCs,
626 p=0.003; CD163+, p=0.006; IBA1+CD163+CD11c+, p=0.01). P-values were
627 calculated with an unpaired Wilcoxon test.

628

629

630 Figure 4: TLSs harbor unique cell type-specific neighborhoods

631 (A) The average shortest distances between different cell types are presented as a
632 heatmap. Cell types were clustered into three different interaction networks: 1)
633 homotypic cells, i.e., cells adjacent only with themselves (blue), 2) homotypic cells,
634 i.e., cells interacting with most cell types (red), and 3) selective cells, i.e., cells
635 interacting with certain cell types (orange). Cell-cell distances are in log scale, where
636 the red color means that cell types are adjacent whereas the blue color means they
637 are distant. (B) A Voronoi plot of the TLS displayed in **Figure 3B** illustrates how
638 separate interaction networks are located in a TLS. Each cell was annotated based

639 on the interaction network identified in **A**. (C) The immediate cell-type-specific
640 cellular communities of the TLS cell types show restricted communities for i)
641 lymphocytes and ii) myeloid, stromal, and endothelial cells (highlighted with red
642 rectangles). The red color reflects attraction between given cell types, whereas the
643 blue color means avoidance compared to random. P-values were calculated by
644 subtracting the permuted mean from the observed mean divided by the number of
645 permutations. (D) Chemo-exposed TLSs harbor more cell-cell interactions between
646 GC B cells and Tfh cells than chemo-naïve TLSs, both when Tfh cells neighbor GC
647 B cells (left, $p=0.005$), and when GC B cells neighbor Tfh cells (right, $p=0.0004$). The
648 spatial interaction between the cell types was compared using an unpaired Wilcoxon
649 test. (E) A dot plot summarizes cell-type-specific immediate cellular communities by
650 comparing the cell-cell spatial interactions between the *BRCA1*mut and wild-type
651 TLSs with an unpaired Wilcoxon test. GC B cells have more spatial interactions with
652 Tfh, Tfr, and Tfc cells in TLSs from tumors with *BRCA1*mut than wild-type. The size
653 of the dot reflects statistical significance. In **C-E**, the 10 nearest neighbors were used
654 to determine the immediate communities for every cell.

655

656 Figure 5: Cell composition and spatial interactions change during the development of
657 TLS.

658 (A) CyCIF images with scale bars of 50 μ m demonstrate structural characteristics of
659 each TLS category: i) TLS-I: unorganized aggregates of B (CD20, blue), CD4
660 (green), and CD8 (cyan) T cells; ii) TLS-II: larger aggregates of lymphocytes with a B
661 cell follicle in the middle. iii) TLS-III: an organized TLS with a B cell follicle containing
662 a Ki67-positive (yellow) GC infiltrated with the PD1+ (pink) Tfh cells. (B) A stacked
663 bar plot showing the proportions of different cell types of all cells. The only statistical

664 changes in cell type proportions between TLS categories were observed in the Ki67+
665 cancer and GC B cells as shown in more detail in Figure S5A-B. The CD31+
666 lymphocytes and certain stromal, myeloid, and cancer cell subsets are not shown
667 due to their low proportions. (C) The immediate cell-type-specific cellular
668 communities for separate TLS categories are summarised using cluster heatmaps.
669 P-values were calculated by subtracting the permuted mean from the observed
670 mean divided by the number of permutations. The red color reflects an attraction
671 between given cell types, whereas the blue color means avoidance compared to
672 random. The Tfh, Tfr, and Tfc cells clustered together with the unspecified CD4 and
673 CD8 T cells, and Tregs throughout the TLS maturation phases (the red rectangles),
674 however, the avoidance of Tfh and Tfr cells towards other cells than lymphocytes got
675 more prominent during the maturation from lymphocyte aggregates (TLS-I) towards
676 the TLSs with GCs (TLS-III, the blue rectangles). The spatial communities involving
677 the GC B cells contained only few significant attractions (the yellow rectangles). The
678 myeloid and stromal cells where interacting mostly with themselves (the green
679 rectangles). (D) The cellular communities of the Tfh cells had increased interactions
680 with the GC B cells in the TLSs with GC formation as compared to the TLSs without
681 GCs (TLS-I vs TLS-III, $p=1e-05$; TLS-II vs TLS-III, $p=8.3e-06$). (E) The cellular
682 communities of the non-GC B cells had less interactions to the GC B cells in TLSs
683 with GC formation as compared to the TLSs without GC (TLS-I, $p=0.028$; TLS-II,
684 $p=0.033$). Within the GC B cells communities, the GC B cells were interacting more
685 with themselves in the TLSs with GC as compared to TLSs without GC (TLS-I,
686 $p=1.1e-05$; TLS-II, $p=3.3e-06$). In **D-F**, the spatial interactions between the cell types
687 were compared using an unpaired Wilcoxon test. The 10 nearest cells were used in
688 **C-F** to define immediate communities for every cell.

689 References

690

- 691 1. Li J, Wang J, Chen R, Bai Y, Lu X. The prognostic value of tumor-infiltrating T
692 lymphocytes in ovarian cancer. *Oncotarget*. 2017 Feb 28;8(9):15621–31.
- 693 2. Yuan X, Zhang J, Li D, Mao Y, Mo F, Du W, et al. Prognostic significance of
694 tumor-associated macrophages in ovarian cancer: A meta-analysis. *Gynecol
695 Oncol*. 2017 Oct;147(1):181–7.
- 696 3. Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S,
697 Vergote I, et al. Antitumor activity and safety of pembrolizumab in patients with
698 advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100
699 study. *Ann Oncol*. 2019 Jul 1;30(7):1080–7.
- 700 4. Färkkilä A, Gulhan DC, Casado J, Jacobson CA, Nguyen H, Kochupurakkal B, et
701 al. Immunogenomic profiling determines responses to combined PARP and PD-
702 1 inhibition in ovarian cancer. *Nat Commun*. 2020 Mar 19;11(1):1459.
- 703 5. Launonen I-M, Lyytikäinen N, Casado J, Anttila EA, Szabó A, Haltia U-M, et al.
704 Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade
705 serous ovarian cancer. *Nat Commun*. 2022 Feb 11;13(1):1–14.
- 706 6. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, et al.
707 CD20+ tumor-infiltrating lymphocytes have an atypical CD27+ memory
708 phenotype and together with CD8+ T cells promote favorable prognosis in
709 ovarian cancer. *Clin Cancer Res*. 2012 Jun 15;18(12):3281–92.
- 710 7. Gago da Graça C, van Baarsen LGM, Mebius RE. Tertiary Lymphoid Structures:
711 Diversity in Their Development, Composition, and Role. *J Immunol*. 2021 Jan
712 15;206(2):273–81.
- 713 8. Schumacher TN, Thommen DS. Tertiary lymphoid structures in cancer. *Science*.
714 2022 Jan 7;375(6576):eabf9419.
- 715 9. Kroeger DR, Milne K, Nelson BH. Tumor-Infiltrating Plasma Cells Are Associated
716 with Tertiary Lymphoid Structures, Cytolytic T-Cell Responses, and Superior
717 Prognosis in Ovarian Cancer. *Clin Cancer Res*. 2016 Jun 15;22(12):3005–15.
- 718 10. Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid
719 structures in the era of cancer immunotherapy. *Nat Rev Cancer*. 2019
720 Jun;19(6):307–25.
- 721 11. Konstantinopoulos PA, Waggoner S, Vidal GA, Mita M, Moroney JW, Holloway
722 R, et al. Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With
723 Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian
724 Carcinoma. *JAMA Oncol*. 2019 Aug 1;5(8):1141–9.
- 725 12. Lin J-R, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. Highly multiplexed
726 immunofluorescence imaging of human tissues and tumors using t-CyCIF and

727 conventional optical microscopes. *Elife* [Internet]. 2018 Jul 11;7. Available from:
728 <http://dx.doi.org/10.7554/eLife.31657>

729 13. ashlar: ASHLAR: Alignment by Simultaneous Harmonization of Layer/Adjacency
730 Registration [Internet]. Github; [cited 2023 Feb 12]. Available from:
731 <https://github.com/labsyspharm/ashlar>

732 14. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.
733 Fiji: an open-source platform for biological-image analysis. *Nat Methods*. 2012
734 Jun 28;9(7):676–82.

735 15. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-Convex
736 Polygons. In: *Medical Image Computing and Computer Assisted Intervention –*
737 *MICCAI 2018*. Springer International Publishing; 2018. p. 265–73.

738 16. The MathWorks Inc. MATLAB version: 9.13.0 (R2022b [Internet]. Natick,
739 Massachusetts, United States; 2022 [cited 2023 Apr 27]. Available from:
740 <https://www.mathworks.com/products/matlab.html>

741 17. Sofroniew N, Lambert T, Evans K, Nunez-Iglesias J, Bokota G, Winston P, et al.
742 napari: a multi-dimensional image viewer for Python [Internet]. 2022. Available
743 from: <https://zenodo.org/record/7276432>

744 18. Nirmal AJ, Maliga Z, Vallius T, Quattrochi B, Chen AA, Jacobson CA, et al. The
745 Spatial Landscape of Progression and Immunoediting in Primary Melanoma at
746 Single-Cell Resolution. *Cancer Discov*. 2022 Jun 2;12(6):1518–41.

747 19. Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D,
748 et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image
749 cytometry data. *Nat Methods*. 2017 Sep;14(9):873–6.

750 20. Posch F, Silina K, Leibl S, Mündlein A, Moch H, Siebenhüner A, et al. Maturation
751 of tertiary lymphoid structures and recurrence of stage II and III colorectal
752 cancer. *Oncoimmunology*. 2018;7(2):e1378844.

753 21. Solinas C, Marcoux D, Garaud S, Vitória JR, Van den Eynden G, de Wind A, et
754 al. BRCA gene mutations do not shape the extent and organization of tumor
755 infiltrating lymphocytes in triple negative breast cancer. *Cancer Lett*. 2019 May
756 28;450:88–97.

757 22. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al.
758 Association and prognostic significance of BRCA1/2-mutation status with
759 neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-
760 1/PD-L1 in high grade serous ovarian cancer. *Oncotarget*. 2016 Mar
761 22;7(12):13587–98.

762 23. Ma L, Cheung KCP, Kishore M, Nourshargh S, Mauro C, Marelli-Berg FM. CD31
763 exhibits multiple roles in regulating T lymphocyte trafficking in vivo. *J Immunol*.
764 2012 Oct 15;189(8):4104–11.

765 24. N J, J T, SI N, Gt B. Tertiary lymphoid structures and B lymphocytes in cancer
766 prognosis and response to immunotherapies. *Oncoimmunology*. 2021 Mar

767 29;10(1):1900508.

768 25. Lin Q, Tao P, Wang J, Ma L, Jiang Q, Li J, et al. Tumor-associated tertiary
769 lymphoid structure predicts postoperative outcomes in patients with primary
770 gastrointestinal stromal tumors. *Oncoimmunology*. 2020 Apr 7;9(1):1747339.

771 26. Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective
772 on Tertiary Lymphoid Structures in Cancer. *Front Immunol*. 2021 Aug
773 17;12:736670.

774 27. Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, et al.
775 Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in
776 lymphocyte and dendritic cell recruitment and lymphoid neogenesis. *J Immunol*.
777 2002 Jul 1;169(1):424–33.

778 28. Kerfoot SM, Yaari G, Patel JR, Johnson KL, Gonzalez DG, Kleinstein SH, et al.
779 Germinal center B cell and T follicular helper cell development initiates in the
780 interfollicular zone. *Immunity*. 2011;34(6):947–60.

781 29. Kang W, Feng Z, Luo J, He Z, Liu J, Wu J, et al. Tertiary Lymphoid Structures in
782 Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential
783 Therapeutic Induction Strategies. *Front Immunol*. 2021 Jul 29;12:689270.

784 30. Stienne C, Virgen-Slane R, Elmén L, Veny M, Huang S, Nguyen J, et al. Btla
785 signaling in conventional and regulatory lymphocytes coordinately tempers
786 humoral immunity in the intestinal mucosa. *Cell Rep*. 2022 Mar
787 22;38(12):110553.

788 31. Morgan D, Tergaonkar V. Unraveling B cell trajectories at single cell resolution.
789 *Trends Immunol*. 2022 Mar;43(3):210–29.

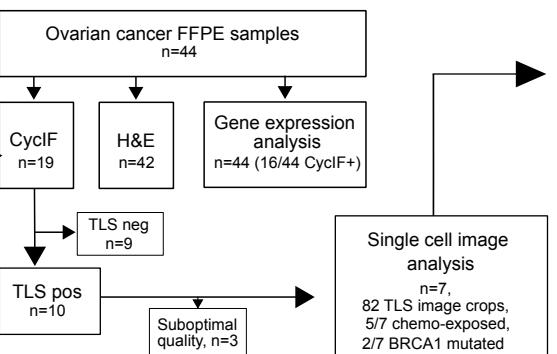
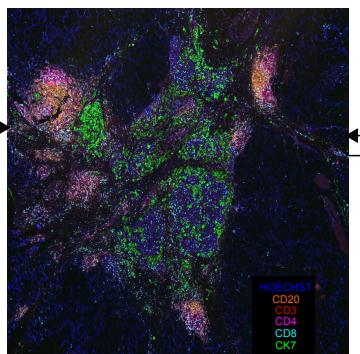
790 32. Jackson TA, Haga CL, Ehrhardt GRA, Davis RS, Cooper MD. FcR-like 2
791 Inhibition of B cell receptor-mediated activation of B cells. *J Immunol*. 2010 Dec
792 15;185(12):7405–12.

793 33. Xiao Y, Hendriks J, Langerak P, Jacobs H, Borst J. CD27 is acquired by primed
794 B cells at the centroblast stage and promotes germinal center formation. *J*
795 *Immunol*. 2004 Jun 15;172(12):7432–41.

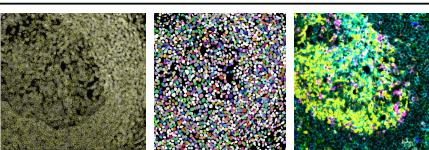
796 34. Lawson BR, Gonzalez-Quintial R, Eleftheriades T, Farrar MA, Miller SD, Sauer K,
797 et al. Interleukin-7 is required for CD4(+) T cell activation and autoimmune
798 neuroinflammation. *Clin Immunol*. 2015 Dec;161(2):260–9.

799 35. Dwyer CJ, Knochelmann HM, Smith AS, Wyatt MM, Rangel Rivera GO,
800 Arhontoulis DC, et al. Fueling Cancer Immunotherapy With Common Gamma
801 Chain Cytokines. *Front Immunol*. 2019 Feb 20;10:263.

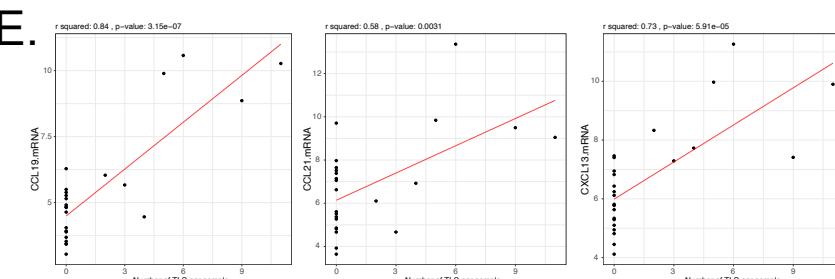
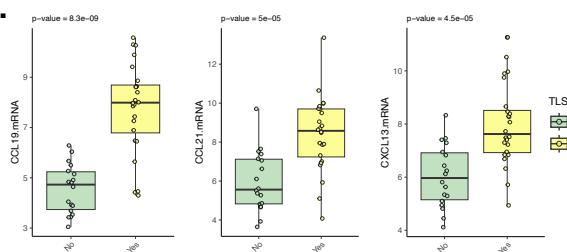
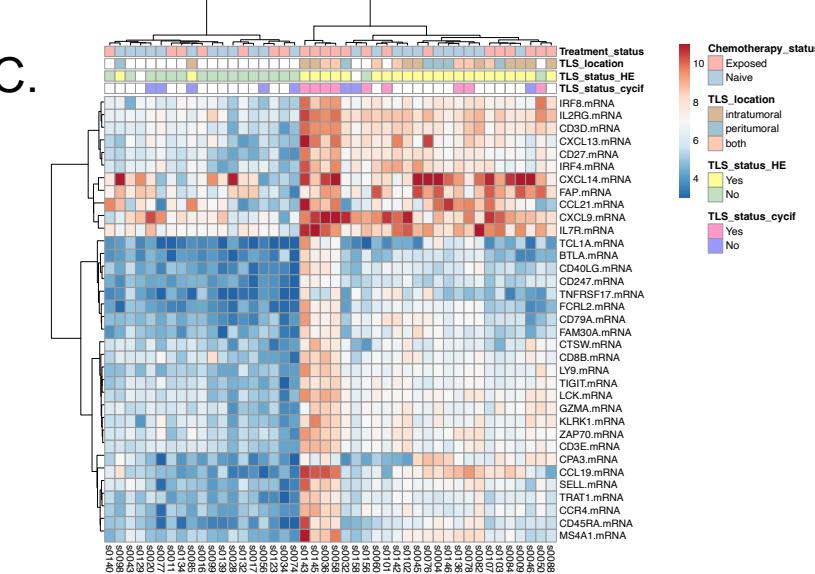
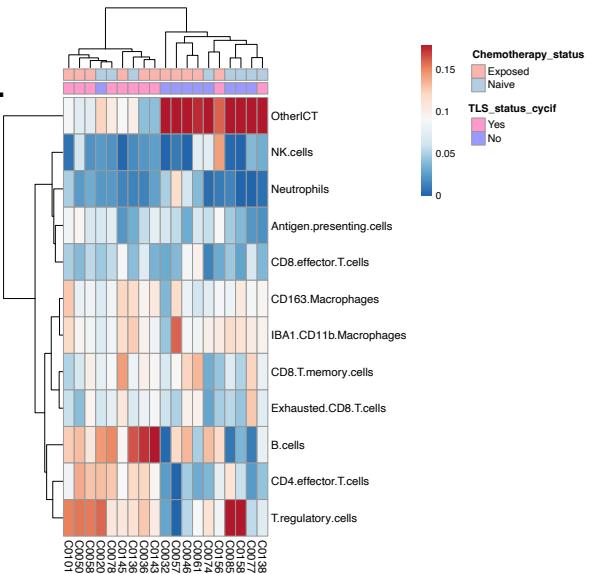
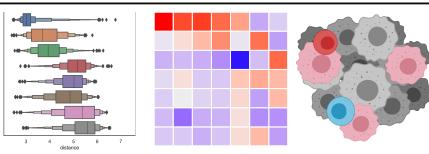
802 36. Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health
803 and disease. *Signal Transduct Target Ther*. 2021 Dec 13;6(1):412.

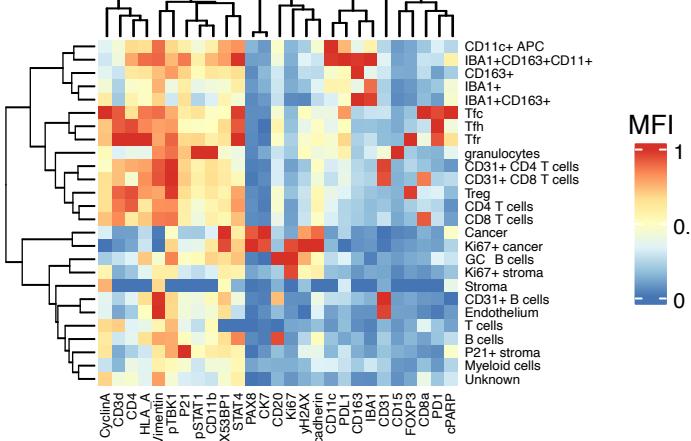


804 37. Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie J-J, et al.
805 Human solid tumors contain high endothelial venules: association with T- and B-
806 lymphocyte infiltration and favorable prognosis in breast cancer. *Cancer Res*.

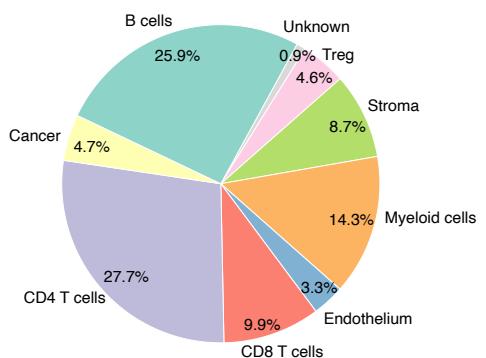
807 2011 Sep 1;71(17):5678–87.

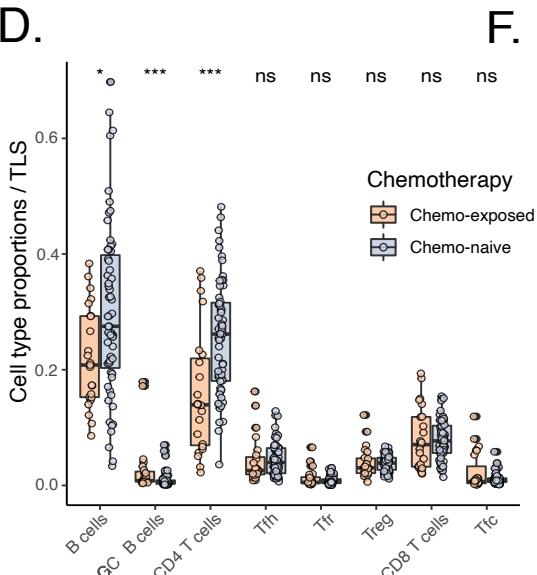

808 38. Ager A. High Endothelial Venules and Other Blood Vessels: Critical Regulators
809 of Lymphoid Organ Development and Function. *Front Immunol.* 2017;8:45–45.

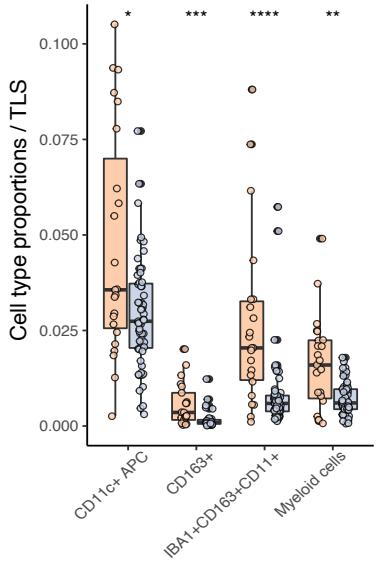
810 39. Duraiswamy J, Turrini R, Minasyan A, Barras D, Crespo I, Grimm AJ, et al.
811 Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-
812 1 blockade via CD28 costimulation. *Cancer Cell.* 2021 Dec 13;39(12):1623-
813 1642.e20.

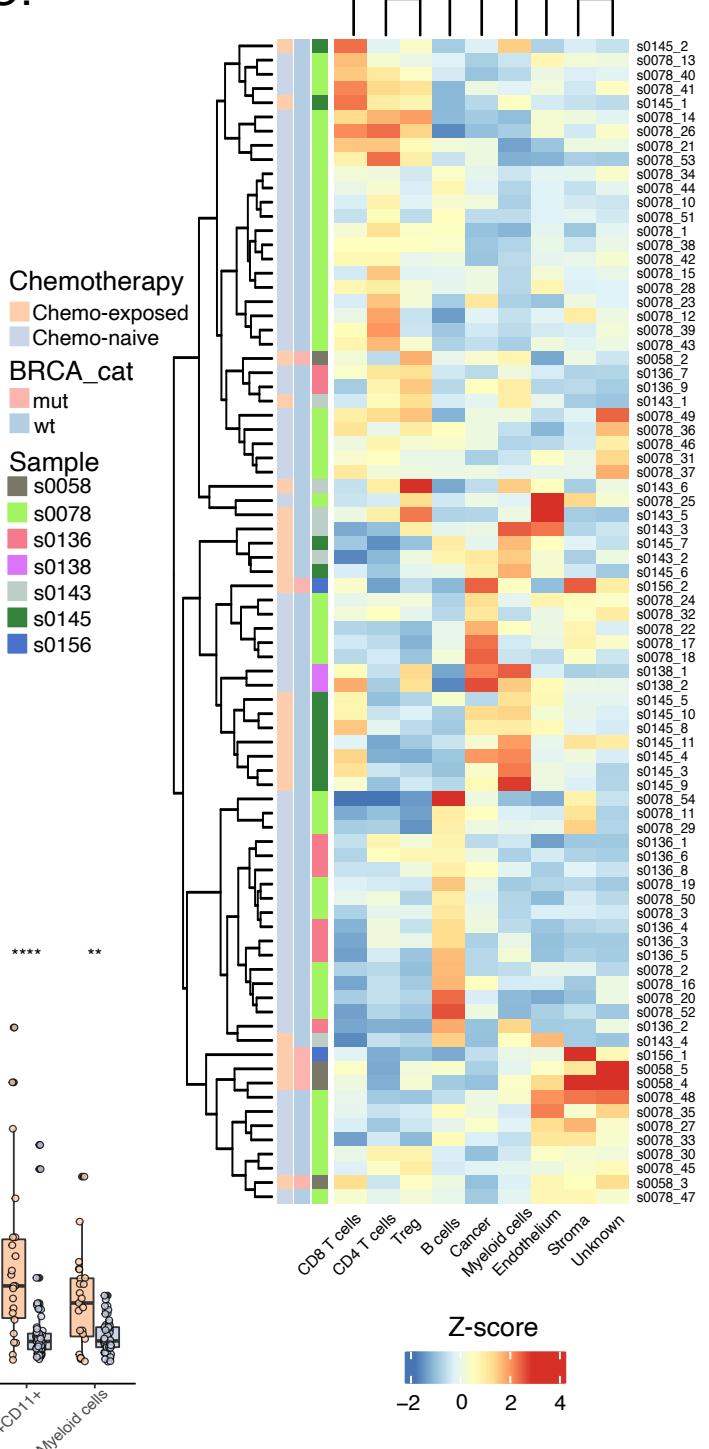





A

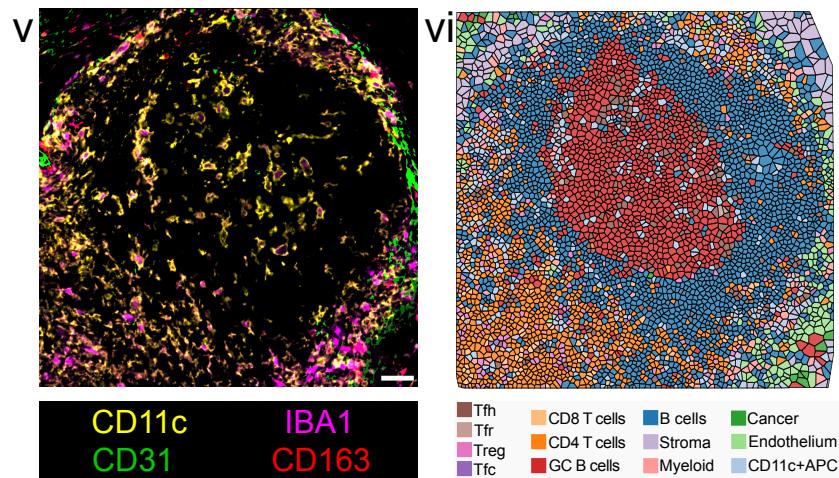
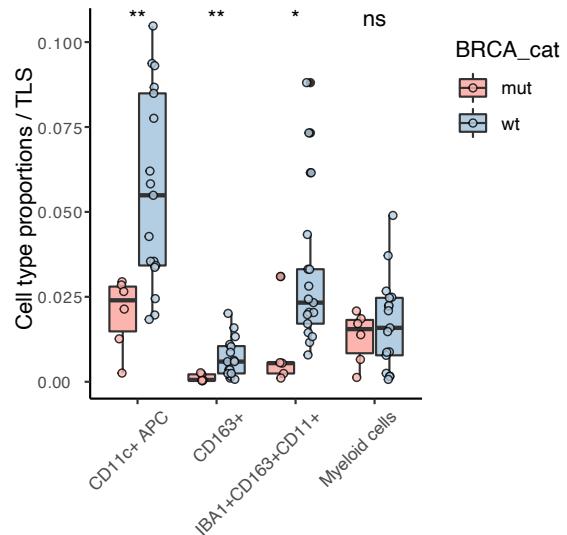
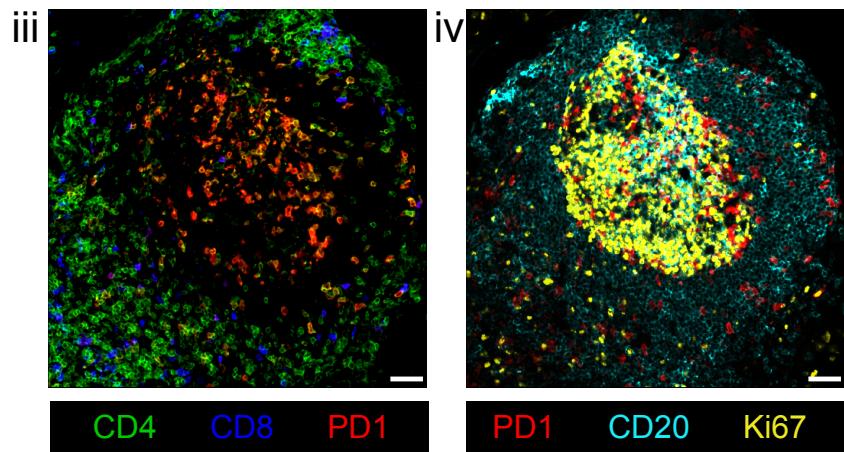
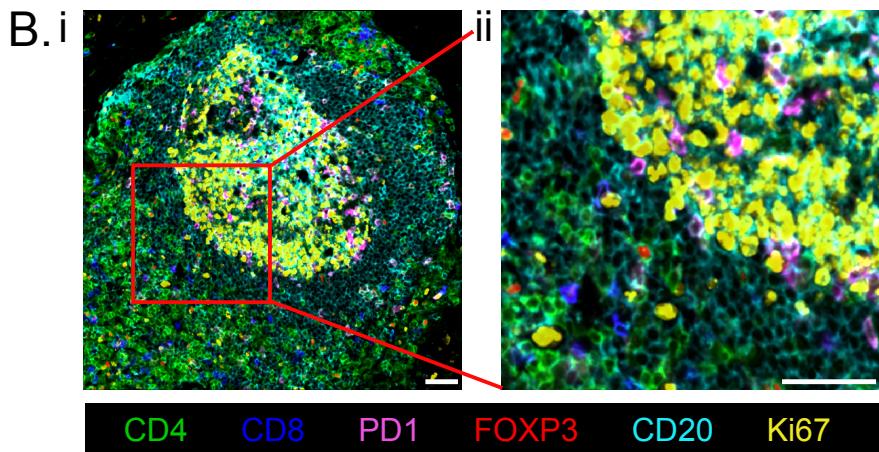
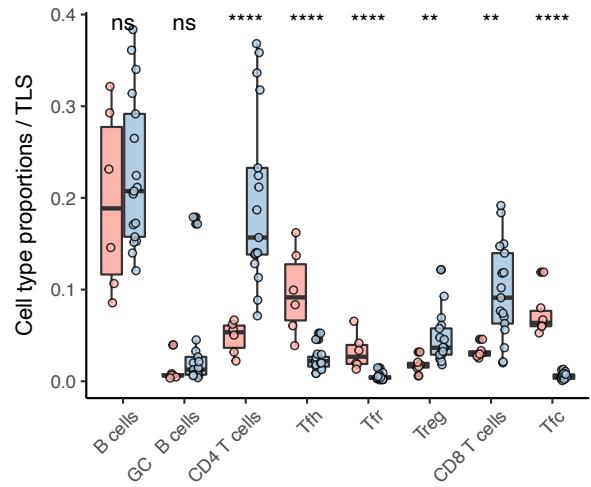

Nuclei detection and cell type calling

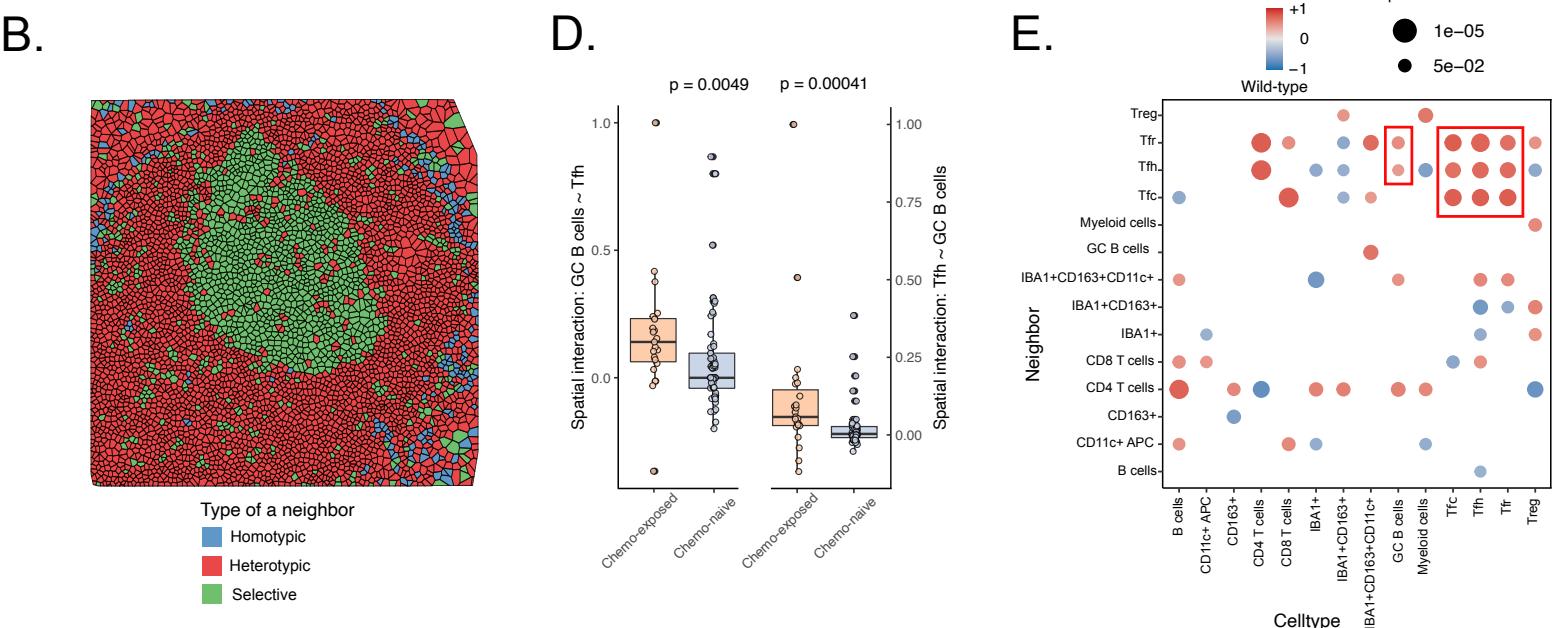
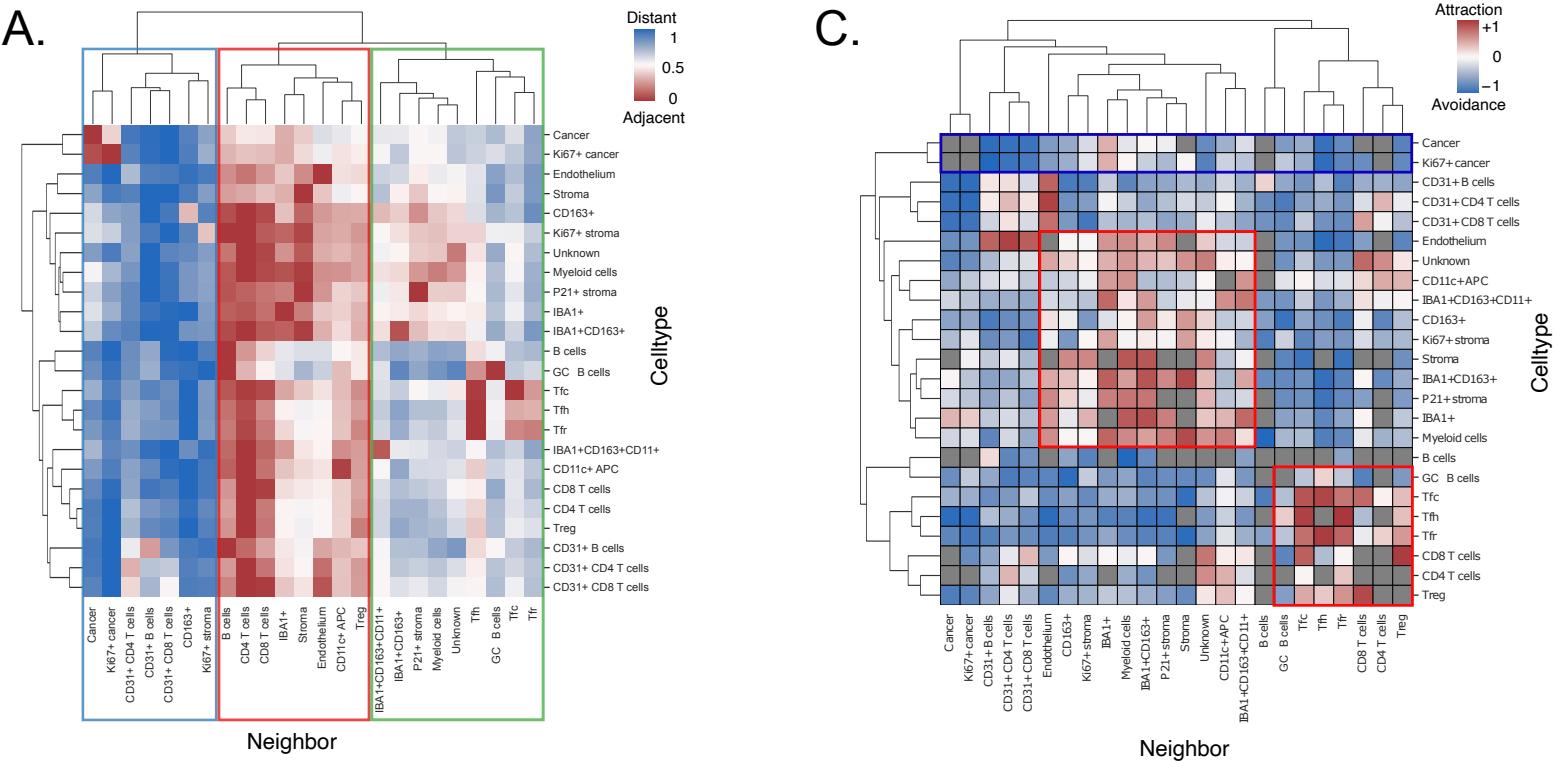

Frequency and spatial analysis

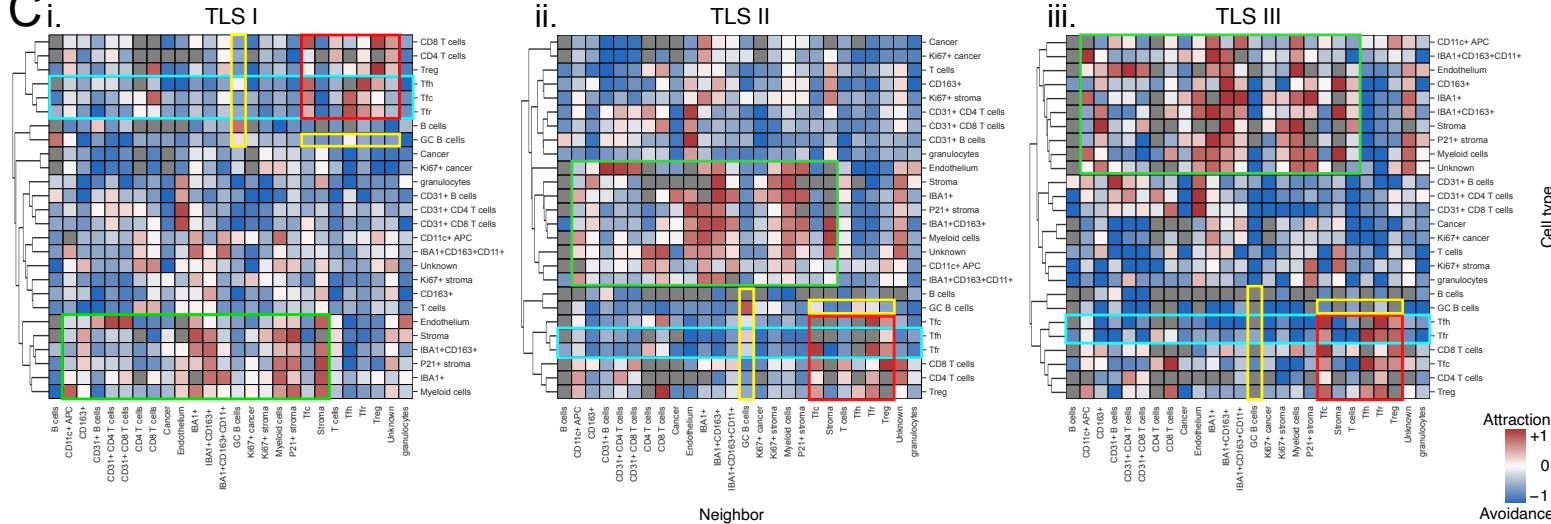
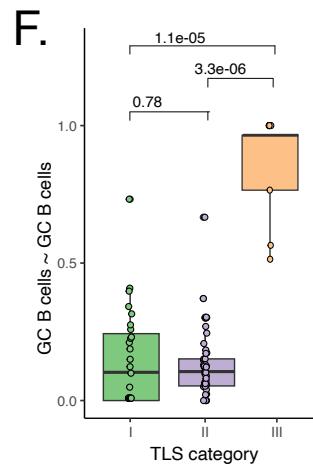
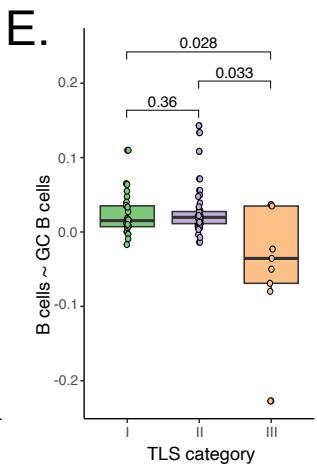
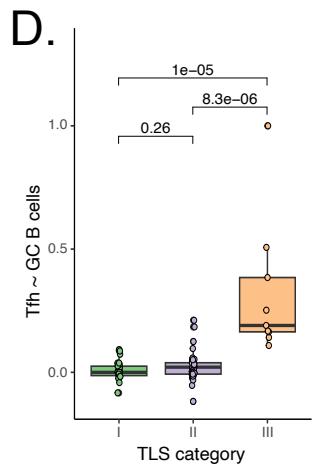
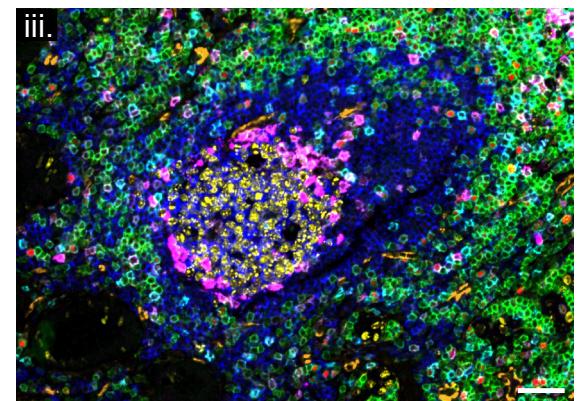
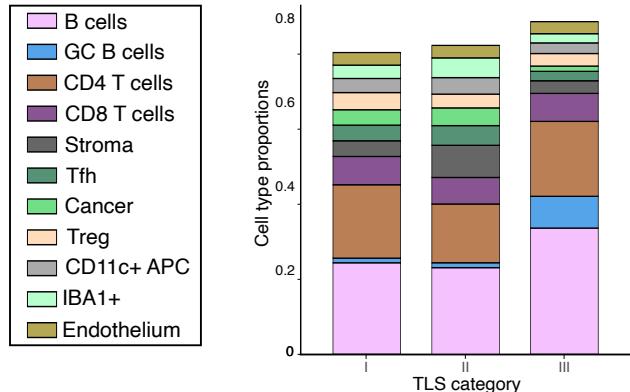
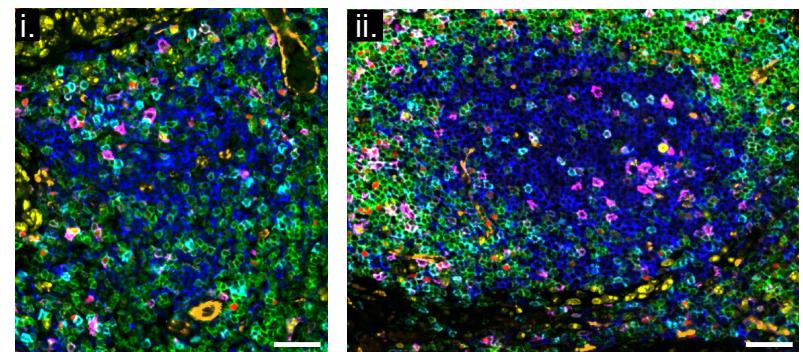

A.


B.


D.



F.

C.

