

1 Design of multi-epitope vaccine 2 candidate against Brucella type IV 3 secretion system (T4SS)

4

5 **Zhengwei Yin¹,Min Li¹ , Ce Niu¹,Mingkai Yu³, Xinru Xie¹, Gulishati Haimiti¹,**

6 **Wenhong Guo¹, Juan Shi¹,Yueyue He³, Jianbing Ding^{3,4*}, Fengbo Zhang^{2,4,*}**

7 ¹ The First Affiliated Hospital of Xinjiang Medical University, No. 393, Xinyi Road,

8 Urumqi 830011, Xinjiang, China

9 ²Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical

10 University, No. 393, Xinyi Road, Urumqi 830011, Xinjiang, China

11 ³ Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical

12 University, No. 393, Xinyi Road, Urumqi 830011, Xinjiang, China

13 ⁴ State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High

14 Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, No.

15 393, Xinyi Road, Urumqi, 830011 Xinjiang, China

16

17 Correspondence

18 Jianbing Ding, Department of Immunology, School of Basic Medical Sciences,

19 Xinjiang Medical University, Urumqi 830011, China.E-mail:1601379937@qq.com;

20 Fengbo Zhang, Department of Clinical Laboratory, The First Affiliated Hospital of

21 Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011 Xinjiang, China.

22 E-mail:765219598@qq.com

23

24 **Funding information**

25 This study was supported by grants (No. 81860352, No.81860375, No.81560322)
26 from the National Natural Science Foundation of China and funds for the Xinjiang
27 Key construction Project of the 13th Five-Year Plan (basic medicine) and Tianshan
28 Youth Talent Program of Xinjiang Uygur Autonomous Region.

29

30 **Abbreviations**

MEV	multi-epitope vaccine	hBD3	human β -defensin-3
CTL	cytotoxic T lymphocyte	TLR4	Toll-like receptor 4
HTL	helper T lymphocyte	LPS	lipopolysaccharides
LBE	Linear B-cell epitopes	CAI	codon adaptation index
CBE	Conformational B-cell epitopes	PCR	polymerase chain reaction
GRAVY	grand average of hydropathicity	MCS	multiple cloning site
RMSD	Root mean square deviations	NMA	normal mode analysis

31

32 **Abstract** Objective the dominant epitopes of T and B cells of VirB8 and VirB10
33 of *Brucella* type IV. Secretory systems were predicted and analyzed by
34 bioinformatics, and then multi-epitope vaccines were constructed by reverse
35 vaccination. Methods The amino acid sequences of VirB8 and VirB10 were obtained
36 from the UniProt database, T and B cell dominant epitopes were selected and
37 supplemented with adjuvants to construct a multi-epitope vaccine, SOPMA and

38 RoseTTAFold were applied to predict secondary and tertiary structures respectively
39 for immune simulations. Finally, molecular dynamics simulations of iMEV-TLR4
40 were then performed. Results one cytotoxic T lymphocyte (CTL) epitope, five helper
41 T lymphocyte (HTL) epitopes, two linear B cell epitopes and three conformational B
42 cell epitopes were obtained in VirB8. 1 cytotoxic T lymphocyte (CTL) epitope, 4
43 helper T lymphocyte (HTL) epitopes, 4 linear B cell epitopes, and 3 conformational B
44 cell epitopes were obtained in VirB10. The resulting multiepitope vaccine is a protein
45 with good antigenicity, hydrophilicity, and stability. Conclusion a novel brucella
46 multiepitope vaccine was designed by reverse vaccination, and this study provides a
47 theoretical basis for further research.

48 **Keywords** Brucella; Multi-epitope vaccines; T4SS; VirB8; VirB10

49 **Introduction**

50 Brucellae are tiny, globular, gram-negative bacteria that are non-budding,
51 non-flagellated and do not form pods. The genus Brucella includes twelve species:
52 Brucella melitensis, Brucella abortus, Brucella hoggettii, Brucella neotmans,
53 Brucella suis minor bifidum, Brucella catarrhalis, Brucella canis, Brucella vulgaris,
54 Bifidobacterium cetaceum, Bifidobacterium barkerium and Bifidobacterium
55 plumosa^[1]. Although Bifidobacterium melitensis mainly infects sheep and goats, it
56 often causes brucellosis in humans^[2]. Brucellosis is one of the most common zoonotic
57 infections worldwide^[3,4]. The main clinical manifestations are fever, weakness,
58 arthralgia and muscle pain^[5]. The main routes of transmission are the gastrointestinal
59 tract, skin, mucous membranes, respiratory tract, blood body fluids and aerosols. For

60 example, direct or indirect contact with infected animals, consumption of their raw
61 meat or dairy products^[6,7].In recent years, the incidence of human brucellosis in China
62 has increased dramatically^[8].Brucellosis can involve multiple organs, but its clinical
63 manifestations are non-specific^[9].Traditional bacteriological methods take a long time
64 to identify^[10].At present, human brucellosis remains one of the major public health
65 problems in China. For this reason, new treatments against Brucella are being
66 developed in early prevention.

67 Vaccines are an effective way to prevent brucellosis^[11].Reverse vaccinology
68 (RV) has proven to be a very effective approach in which vaccine antigen prediction
69 is performed based on bioinformatics analysis of the pathogen genome using rational
70 vaccine design^[12,13].MEV, on the other hand, uses a reverse vaccinology approach to
71 vaccine prediction, which can improve its safety and efficacy^[14].The VirB system
72 (VirB1-VirB12) has been shown to be present in all Brucella species and is highly
73 conserved^[15].The type IV secretion system (T4SS), encoded by the virB manipulator,
74 is an important virulence factor for Brucella abortus. It disrupts cellular pathways,
75 induces a host immune response by secreting effectors, promotes replication of
76 Brucella in host cells and induces persistent infection^[16].VirB8 is one of the core
77 components of the type IV secretion system (T4SS) and has been shown in previous
78 experiments to be immunogenic and suitable as a candidate protein for vaccine
79 design^[17].VirB10 is an important functional protein of Brucella abortus and one of the
80 core components of the type IV secretion system (T4SS)^[18].VirB10 has been shown
81 to have good immunogenicity in animal models of infection and is a good choice for

82 vaccine design^[19]. Ultimately, both proteins are suitable for MEV design against
83 *Bifidobacterium melitensis*.

84 We analysed the epitopes of VirB8 and VirB10 using various bioinformatics
85 methods such as IEDB, NetCTLpan1.1, NETMHCIpan4.0 and ABCpred. Epitope
86 bonding requires a linker. We use AAY, GPPGPG and KK to link CTL epitopes,
87 HTL epitopes and B-cell epitopes^[20]. However, epitope-linked vaccine peptides are
88 poor immunogens and susceptible to enzymatic degradation, so we chose specific
89 adjuvants to enhance and stabilize the immunogenicity of the vaccine peptides^[21]. We
90 analyzed the physicochemical properties, antigenicity and sensitisation of MEV, and
91 performed a model assessment of the predicted secondary and tertiary structures of
92 MEV, followed by immune simulations and finally a molecular dynamics study of
93 MEV-TLR4.

94 **Materials and methods**

95 **1.1 Material sources**

96 Find the amino acid sequences of *Brucella melitensis* VirB8 and VirB810 in the
97 UniProt database.

98 **1.2 Research Methodology**

99 **1.2.1 Selection of target proteins**

100 ProtParam (<http://web.expasy.org/protparam/>) software was applied to analyse
101 the physicochemical properties of the proteins and MEVs. This included the number
102 of amino acids, the molecular formula, the instability index and the overall mean of
103 the water solubility (GRAVY). VaxiJen

104 (<http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html>) was applied to analyse
105 the antigenicity of the target proteins^[22]with a threshold value of 0.4. For this purpose
106 we also compared hydrophilicity and stability. Ultimately, VirB8 and VirB10, the two
107 target proteins, had good antigenicity, hydrophilicity and stability when designed for
108 MEV.

109 **1.2.2 Sequence Search**

110 The amino acid sequences of VirB8 (sequence number Q9RPX7) and VirB10
111 (sequence number Q8YDZ0) were obtained from the Uniprot database
112 (<https://www.uniprot.org/>). The amino acid sequences in Jalview were compared by
113 MAFFT to analyse their homology^[23].

114 **1.2.3 Prediction of signal peptides**

115 The prediction of protein signal peptides was implemented by SignalP5.0 and
116 LiPOP1.0(<https://services.healthtech.dtu.dk/service.php?LipoP-1.0>).finally, we chose
117 the merged set as the final result^[24].

118 **1.2.4 Prediction of protein T-cell epitopes**

119 T cell epitopes consist of MHC class I and MHC class II molecules, and CD8 T
120 cells become cytotoxic T lymphocytes (CTL) upon recognition of the T CD8
121 epitope. At the same time, the triggered CD4 T cells become helper T lymphocytes
122 (HTL) or regulatory (Treg) T cells^[25,26].We selected the Xinjiang HF alleles
123 (HLA-A*1101, HLA-A*0201, HLA-A*0301, HLA-DRB1*0701, HLA-DRB1*1501
124 and HLA-DRB1*0301) to predict CTL, HTL epitopes^[27].CTL epitopes of target
125 proteins are predicted by IEDB (<http://tools.immuneepitope.org/>) and NetCTLpan1

126 server (<https://services.healthtech.dtu.dk/service.php?NetCTLpan-1.1>)^{[28],[29]}. For CTL
127 epitope prediction, the three alleles of HLA-A were selected with a length of 10 and
128 the other original thresholds were unchanged. As NetCTLpan1.1 starts counting from
129 0, care should be taken to add 1 to the sequence when comparing the results with
130 those of IEDB at the end. Application of IEDB and NetMHC-IIpan-4.0
131 (<https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0>) for prediction of
132 HTL epitopes of target proteins^[30]. For HTL epitope prediction, three allele lengths
133 such as HLA-DRB1 were chosen to be 15. The default thresholds for
134 NetMHC-IIpan-4.0 remain unchanged. Ultimately, we listed the top 10 high-scoring
135 epitopes for each software and selected the two software repeats as T-cell dominant
136 epitopes for the proteins.

137 **1.2.5 Prediction of protein B-cell epitopes**

138 B-cell epitopes consist of linear and conformational epitopes. ABCpred
139 (https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html) was used to predict
140 the selection of dominant B-cell linear epitopes with an overall prediction accuracy of
141 65.93%. The corresponding sensitivity, specificity and positive predictive values were
142 67.14 %, 64.71 % and 65.61 %, respectively. The prediction of conformational
143 epitopes was performed by Ellipro of IEDB (<http://tools.iedb.org/ellipro/>), and we
144 selected sequences with high scores. Finally, linear and conformationally dominant
145 epitopes of B cells were selected for MEV design.

146 **1.2.6 Molecular docking of T-cell epitopes to HLA alleles**

147 Use the HDOCK server for molecular docking. We selected HLA class I
148 (HLA-A*02:01) and HLA class II (HLA-DRB1*01:01) alleles for molecular docking
149 with T-cell epitopes and eventually discovered the interactions between the alleles
150 and T-cell epitopes.

151 **1.2.7 Vaccine construction for MEV**

152 We choose non-toxic, non-allergenic and advantageous table positions. CTL
153 epitopes are linked to AAY linkers and linked to HTL epitopes with GPGPG linkers;
154 HTL epitopes are linked to GPGPG linkers and linked to B-cell epitopes with KK
155 linkers; B-cell epitopes are linked with KK linkers [20]. To increase the antigenicity of
156 MEV, the human β -defensin-3 sequence (sequence no. Q5U7J2), and the PADRE
157 sequence were linked with the help of an EAAAK junction at the N
158 terminus [31]. Finally, a polyhistidine tag is added to the C-terminus to obtain the
159 complete vaccine protein sequence.

160 **1.2.8 Physicochemical properties, antigenicity, solubility and**
161 **sensitization of MEV**

162 ProtParam software was applied to analyse the physicochemical properties of
163 MEV. VaxiJen was applied to analyse the antigenicity with a threshold of 0.4 and
164 SOLpro (<http://scratch.proteomics.ics.uci.edu/>) was applied to predict the solubility of
165 MEV. with a threshold value of 0.5 [32]. Finally, AllergenFP was applied to analyse its
166 allergenicity.

167 1.2.9 Projections for secondary and tertiary structures We used the SOPMA
168 (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html)

169 secondary structure prediction tool. Applying RoseTTAFold to predict the tertiary
170 structure of MEV^[33].

171 **1.2.10 Quality assessment of predictive models**

172 The quality of the three-level structural model of the MEV was assessed using
173 the SWISS-MODEL structural assessment (<https://swissmodel.expasy.org/assess>).

174 **1.2.11 Molecular docking**

175 Molecular docking of MEV and TLR4 (PDB ID: 4G8A) immunoreceptors using
176 the HDOCK server (<http://hdock.phys.hust.edu.cn/>)^[34]. Key interacting residues were
177 inferred from LigPlot+ generated protein-ligand 2D structural interaction maps and
178 their 3D structures were visualised by PyMOL.

179 **1.2.12 Immunosimulation**

180 C-ImmSim (<https://kraken.iac.rm.cnr.it/C-IMMSIM/>) describes the different
181 stages of the process of recognition and response of the immune system to pathogens,
182 while the server simulates three different parts representing three separate anatomical
183 regions in mammals, including the bone marrow, thymus and tertiary lymphoid
184 organs (lymph nodes). The three different intervals are 1, 84 and 168^[35,36]. In the
185 Xinjiang population, HLA-A*1101, HLA-A*0201, HLA-B*5101, HLA-B*3501,
186 HLA-DRB1*0701 and HLA-DRB1*1501 high frequency alleles were selected for
187 analysis^[27]. Finally, the parameters were set to the default values of the software, the
188 simulation parameter random seed was set to 12345, the simulation volume was set to
189 50 and the simulation step was set to 1050.

190 **1.2.13 Optimization of MEV codons and in silico cloning**

191 We used the online codon optimisation tool ExpOptimizer
192 (<https://www.novopro.cn/tools/codon-optimization.html>) to analyse and optimise the
193 codons of MEV. For analysis and optimisation, we selected *E. coli* as the expression
194 host and excluded two restriction endonuclease sites, XHOI and BamHI, and then
195 obtained the DNA sequence of the MEV codon from the results. In silico cloning, we
196 selected pET-28a(+) as the vector. Primers were then designed and polymerase chain
197 reaction(PCR) completed in SnapGene 6.1.1 with primer lengths between 15-30bp,
198 Tm values chosen at 60°C, annealing temperature of 1°C and GC content between
199 40% and 60%. Finally, the appropriate nucleic acid endonuclease sites (XHOI and
200 BamHI) in the polyclonal site (MCS) region were analysed and the MEV-amplified
201 target gene sequence was inserted into the vector to complete the in-silico cloning.

202 **1.2.14 agarose gel electrophoresis of MEV**

203 Agarose gel electrophoresis of the target gene (after PCR), vector and recombinant
204 plasmid was simulated in SnapGene 6.1.1. and the experiments were completed in
205 TBE buffer and at a concentration of 1% agarose.

206 **1.2.15 Molecular dynamics simulation**

207 iMODS (<http://imods.Chaconlab.org/>) is the internal coordinate normal mode
208 analysis(NMA) server. To explore the collective motions of proteins and nucleic acids
209 using NMA in internal coordinates (torsional space)^[37]. We therefore performed
210 molecular dynamics simulations of the MEV-TLR4 complex and analysed the
211 deformability, stiffness and stability of the complex with the output results.

212 **Results**

213 **2.1 Target protein selection**

214 By bioinformatics analysis, the results of antigenicity analysis for VirB8 a
215 nd VirB10 were 0.6221 and 0.6906 respectively both greater than the threshold
216 value of 0.4 with good antigenicity. The combined (Table 1) results show that
217 VirB8 and VirB10 are hydrophilic and stable proteins.

Table 1 Basic structure and physicochemical properties of amino acids

amino acid	Number of amino acids	Molecular weight	Instability index	Grand average of hydropathicity(GRAVY)	Theoretical PI
VirB8	239	26445.83	28.56	-0.392	8.60
VirB10	380	40442.32	36.52	-0.155	7.72

218

219 **2.2 Sequence Search**

220 The high precision of the MAFFT in Jalview (Fig.1) suggests that the two proteins
221 share several homologies. Among them, the high homology sequences of VirB8 and
222 VirB10 suggest that these proteins may be derived from the same gene and may play
223 similar roles in the immune response.

224 **Fig 1. Comparison of protein homologous sequences, the black regions are highly
225 conserved amino acid regions, while the blue regions are similar amino acid
226 sequence regions (darker colours represent high homology)**

227 **2.3 Prediction of signal peptides**

228 We applied SignalP5.0 and LiPOP1.0 to predict the signal peptide and the final
229 1 result was no signal peptide for both VirB8 and VirB10 (Fig.2).

230 **Fig 2. Results of analysis using SignalP-5.0.SP(Sec/SPI) / LIPO(Sec/SPII) /**
231 **TAT(Tat/SPI) (depending on what type of signal peptide is predicted);CS (t**
232 **he cleavage site) and OTHER (the probability that the sequence does not h**
233 **ave any kind of signal peptide)**

234 (A) Signal peptide prediction of VirB8: None.(B)Signal peptide prediction of V
235 irB10: None.

236 **2.4 Prediction of T-cell epitopes**

237 We selected the top 10 epitopes for each software score and applied VaxiJen to
238 analyse the antigenicity of the epitopes; used AllergenFP v1.0
239 (<http://www.ddg-pharmfac.net/AllergenFP/>) to detect whether the epitopes were
240 allergenic; applied ToxinPred
241 (<https://webs .iitd.edu.in/raghava/toxinpred/design.php>) to predict the toxicity of the
242 epitopes. Ultimately, two CTL-dominant epitopes and nine HTL-dominant epitopes
243 were obtained (Table 2). These epitopes were highly antigenic, non-toxic and
244 non-sensitizing.

245

Table 2 Ultimately selected T cell epitopes (CTL、HTL)

	Serials	CTL epitopes	Antigenicity	Serials	HTL epitopes	Antigenicity
VirB8	95-104	SVSYDTVMDK	1.0037	226-240	NVTSYRVDPEMGVVQ	1.1654
				93-107	DEKSVSYDTVMDKYW	0.8741
				31-45	EAAHVRLVEKSERRA	1.0387
				32-46	AAHVRLVEKSERRAW	0.5797
				94-108	EKSVSYDTVMDKYWL	0.6779
VirB10	79-88	FKLPPPPPPA	1.8350	142-156	SGDTVVQTTNARIQA	1.3987
				143-157	GDTVVQTTNARIQAL	1.0796
				141-155	SSGDTVVQTTNARIQ	1.5812
				266-270	PNGVVIDLDSPGADP	0.8910

246

247 **2.5 Prediction of B-cell epitopes**

248 By bioinformatics analysis, we obtained six dominant linear B-cell epitopes
249 and six conformational B-cell epitopes (Table 3). Finally, we selected non-toxic
250 and non-sensitizing B-cell conformational epitopes (Fig.3).

251 **Fig 3. B-cell conformational epitopes**

252 (A-C) B-cell conformational epitope residues of VirB8. (D-F) B-cell conformati
253 onal epitope residues of VirB10 (A)Residues:M1,F2,G3,R4,K5. (B) Residues:M2
254 35,G236,V237,V238,Q239.(C)Residues:Q6,S7,P8,Q9,K10,S11,V12,K13,N14,G15,Q
255 16,G17,N18,A19,P20,S21,V22,Y23,D24,E25,A26,L27,N28,W29,E30,A31,A32,H33,
256 V34,R35,L36,V37,E38,K39,S40,E41,R43.VirB10. (D)Residues: K139,S140,S141,G
257 142,D143,T144,V145,V146,Q147. (E)Residues:E4,N5,I6,P7,V8,Q9,P10,G11,T12,L1
258 3,D14,G15,E16. (F)Residues: E91,P92,P93,A94,P95,P96,P97,A98,P99,A100,M101,

259 P102,I103,A104,E105,P106,A107,A108,A109,A110,L111,S112,L113,P114,P115,L1

260 16,P117,D118,D119,T120,P121,A122,K123,D124,D125,V126,L127,D128,S130,A13

261 1,S132,A133,L134.

262

263

TABLE 3 Final selected B cell epitopes (LBES、CBES)

	Serials	LBEs	Score	Antigenicity	Serials	Residues	CBEs	Score
VIRB8	18-37	NAPSVYDEALN WEAAHVRLV	0.86	0.7330	1-5	M1, F2, G3, R4, K5	MFGRK	0.987
	72-91	VPYLVRVNAQT GAPDILTSL	0.82	0.6699	235-239	M235, G236, V237, V238, Q239	MGVVQ	0.868
					6-43	Q6,S7,P8,Q9,K10,S 11,V12,K13,N14,G1 5,Q16,G17,N18,A19 ,P20,S21,V22,Y23, 32,H33,V34,R35,L3 6,V37,E38,K39,S40, E41,R43	YDEALN WEAAH VRLVEK SER	0.839
VIRB10	99-118	PAMPIAEPAAAA LSLPLPD	0.910	0.4357	139-147	K139,S140,S141,G1 42,D143,T144,V145 ,V146,Q147	KSSGDT VVQ	0.949
	329-348	TGGGESTSNLAS TALKDTIN	0.890	1.3876	4-16	E4,N5,I6,P7,V8,Q9, P10,G11,T12,L13,D 14,G15,E16	ENIPVQP GTLDGE	0.93
	111-130	LSLPLPDDTPA KDDVLDKS	0.890	0.4408	91-134	E91,P92,P93,A94,P 95,P96,P97,A98,P99 ,A100,M101,P102,I 103,A104,E105,P10 6,A107,A108,A109, A110,L111,S112,L1 13,P114,P115,L116, P117,D118,D119,T1 20,P121,A122,K123 ,D124,D125,V126,L 127,D128,S130,A13 1,S132,A133,L134	EPPAPPP APAMPI AEPAAA ALSLPPL PDDTPA KDDVLD KSASAL	0.822
	11-30	GTLDGERGLPTV NENGSGRT	0.890	1.0657				

265 **2.6 Molecular docking of T-cell epitopes to HLA alleles**

266 Assessing the structural association of HLA alleles with T cell epitopes. Results
267 for CTL epitopes interacting with HLA-A*02:01, Docking Score: -242.47 Confidence
268 Score: 0.8641 Ligand RMSD (Å): 32.94.HTL epitopes interacting with
269 HLA-DRB1*01:01 Results , Docking Score: -275.57 Confidence Score: 0.9249
270 Ligand RMSD (Å): 150.52. The final indication is that the molecules have good
271 affinity for the docked complexes. (Fig.4).

272 **Fig 4. The docked complexes.**

273 (A-B) HLA-bacterial peptide complexes. (A) Results of molecular docking of CTL
274 epitopes to HLA-A*02:01. (B) Results of molecular docking of HTL epitopes to
275 HLA-DRB1*01:01.

276 **2.7The construction of MEV**

277 Results of the MEV construction (Fig.5). the dominant epitopes selected for our
278 MEV vaccine construction were 2 CTL epitopes, 9 HTL epitopes, 6 LBE epitopes and
279 6 CBE epitopes.

280 **Fig 5. Amino acid sequence of MEV. EAAK、 AAY、 GPPGPG and KK are**
281 **linkers."Adj" in red is β-defensin-3. The Yellow "PADRE" is the PADRE**
282 **sequence. Dark green"CTLS"represents the dominant epitope of the selected**
283 **cytotoxic T cells. The dark blue "HTLS" represents the dominant epitope of the**
284 **selected helper T cells. "BES" represents the dominant epitope of the selected**
285 **linear and conformational B cells. The "6×H" indicates a polyhistidine tag.**

286 **2.8 Physicochemical properties, antigenicity, solubility and**

287 **sensitization of MEV.**

288 The molecular formula of MEV was C2479H3998N720O762S14. The molec
289 ular weight of MEV was 56530.22KD. The number of amino acid residues in
290 MEV was 537. MEV had a solubility of 0.99, which means that the protein ant
291 igen was soluble. The instability index (II) was computed to be 30.75, less than
292 the threshold 40, so MEV was a stable protein. The GRAVY was -0.626. Indicate
293 s that MEV was a hydrophilic protein. In addition, the antigenicity of MEV is
294 0.8788 (greater than the threshold value of 0.4), indicating that the protein is a
295 ntigenic. In the sensitisation prediction results it was shown that PROBABLE
296 NON-ALLERGEN. In conclusion, the MEV design is feasible.

297 **2.9 Forecasts for secondary and tertiary structures**

298 The predicted results show that in the secondary structure prediction, α -helix
299 accounts for 28.12%, β -turn for 5.03%, random coil for 49.53% and extended strand
300 for 17.32%, the ratio of the four is consistent with the tertiary structure (Fig. 6A、
301 B). Furthermore, we depicted the tertiary structure of MEV in Discover Studio, further
302 demonstrating that the prediction of a tertiary structure is reasonable (Fig. 6C).
303 Ultimately, (Fig. 6D) shows the regions where the donor and acceptor are likely to be
304 present.

305 **Fig 6. The predicted results of MEV.**

306 (A-B) Predicted results for MEV secondary structure. (C) Predicted results for the
307 MEV tertiary structure. (D) H-Bonds of MEV. As illustrated in the figure, the “pink
308 area” stands for the donor, and the “green area” stands for the acceptor.

309

310 **2.10 Quality assessment of models**

311 A Ramachandran plot is a way to visualize energetically favoured regions for
312 backbone dihedral angles against of amino acid residues in protein structure. The
313 number of observed Φ (Phi; C-N-CA-C) / Ψ (Psi; N-CA-C-N) pairs determines the
314 contour lines. (Fig. 7). The dark green region in the Ramachandran plots indicated the
315 allowed region, the light green region in the diagram indicated the maximum allowed
316 region, and the blank region in the diagram indicated the disallowed region. Overall,
317 the quality of MEV's models was assessed as better.

318 **Fig 7. Validation: Ramachandran plot analysis showing 90.47% in favored,**
319 **7.10% in allowed, and 2.43% in disallowed regions of protein residues.**

320 **2.11 Molecular docking**

321 With the HDOCK server we obtained the results of molecular docking. We
322 selected the first place cluster for the analysis of the interaction between receptor
323 (TLR4) and ligand(MEV).The results showed a Docking Score of -349.70, a Ligand
324 RMSD of 54.64 Å and a Confidence Score of 0.9819.Finally, the best docking
325 structure was demonstrated using Discovery Studio (Fig.8A). The 3D interaction
326 structure was then visualised using PyMOL (Fig.8B) and the 2D interaction map was
327 visualised using LigPlot + (Fig.8C).

328 **Fig 8 The results of molecular docking.**

329 (A)Structural presentation of the MEV-TLR4 complex using Discovery Studio:
330 MEV donor in green and TLR4 acceptor in blue. (B) Analysis of the interaction of the

331 MEV-TLR4 complex and its 3D image taken using PyMol. (C) Analysis of the
332 interaction of the MEV-TLR4 complex and its 2D image taken using Ligplot.

333 **2.12 Immunosimulation**

334 The C-ImmSim server was used to simulate the immune response to three
335 injections of the vaccine. In the secondary and tertiary immune response, the
336 concentrations of IgM and IgG continued to rise as the antigen decreased, and the
337 amount of IgM was consistently higher than IgG, peaking at the tertiary response
338 (Fig. 9A). B cells are mainly involved in humoral immunity and play an important role
339 in the stimulated immune response, with the number of B cells increasing with the
340 three doses of vaccine and eventually reaching a peak (Fig. 9B). The growth trend of
341 helper T cells after three doses of vaccine was similar to that of B cells, eventually
342 reaching a peak (Fig. 9C). Macrophage activity was enhanced with the three doses of
343 vaccine (Fig. 9G). In contrast, cytotoxic T cells (Fig. 9D), natural killer cells (Fig. 9E),
344 dendritic cells (Fig. 9F) and EP (Fig. 9H) all showed relative stability in general. In
345 addition, the vaccine injection induced a high response of cytokines and interleukins,
346 resulting in significant elevations of IFN- γ , TGF- β , IL-10, IL-
347 12 and IL-2. finally, the danger signal was extremely low, indicating a difference in
348 immune response. (Fig. 9I)

349 **Fig 9 The results of C-ImmSim.**

350 (A) The immunoglobulin production after antigen injection. (B) The B cell population
351 after three injections. (C) The Helper T Cell Population after three injections. (D) The
352 Cytotoxic T Cell Population after three injections. (E) The NK-cell Population after

353 three injections.(F)The Dendritic cell Population per state after three
354 injections.(G)Macrophage Population per state after three injections.(H)The EP
355 Population per state after three injections.(I)Concentration of cytokines and
356 interleukins. Inset plot shows danger signal together with leukocyte growth factor
357 IL-2.

358 **2.13 Optimization of MEV codons and in silico cloning**

359 The quality of the codon optimisation was measured by the display of the codon
360 adaptation index (CAI) and GC content. the optimized CAI value for MEV was 0.80.
361 the ideal range for GC content was 30%-70% and the optimized GC content for MEV
362 was 58.35%, which was within the ideal range (Fig.10A, B). Based on the principles
363 of primer design, a forward primer (5'-CTCGAGGAAGCGGCCGC-3') with a length
364 of 17, a Tm value of 62 and a GC content of 76%; and a reverse primer
365 (5'-GGATCCATGGTGGTGATGATGGTGC-3') with a length of 25, a Tm value of
366 63 and a GC content of 56% were designed. The target gene for MEV was then
367 amplified in SnapGene(Fig.10C). Restriction endonuclease sites XHOI and BamHI
368 were inserted into the N and C ends of the optimised codons at the time the primers
369 were designed. Finally, these codons are inserted into the MCS structural domain in
370 the vector and should be considered to correspond to the restriction endonuclease sites
371 (XHOI and BamHI) on the vector (Fig.10D).

372 **Fig 10 Codon optimization of MEV and construction of plasmid vectors.**

373 (A) CAI after codon optimization: 0.80. (B) GC content after codon optimization:
374 58.35%. (C) MEV after polymerase chain reaction. (D) The pink sequence (gene of

375 interest) is the MEV codon sequence optimized after insertion into the vector (pET28a
376 (+)). The cloning was done in SnapGene6.1.1.

377 **2.14 agarose gel electrophoresis of MEV**

378 As shown in the figure (Fig.11). The amount of each DNA was consistent with
379 previous predictions, with 1611bp of MEV sequence, with 1623 bp of MEV sequence
380 after PCR, 5639 bp of pET-28a(+) sequence, and 6946 bp of recombinant plasmid
381 sequence.

382 **Fig 11. Mock agarose gel electrophoresis results. "1" represents MEV-PCR, "2"
383 represents pET-28a (+), "3" represents pET-28a (+) &MEV recombinant
384 plasmid.**

385 **2.15 Molecular dynamics simulation**

386 The molecular motion was analysed by normal modal analysis using IMODs and
387 the results are shown in (Figures 12). The main-chain deformability is a measure of
388 the capability of a given molecule to deform at each of its residues. The location of
389 the chain 'hinges' can be derived from high deformability regions (Fig.12A). The
390 variance associated with each normal mode is inversely related to the eigenvalues.
391 Coloured bars show the individual (purple) and cumulative (green) variances. The
392 variance plots show the progressive decline of individual variances (Fig.12B). The
393 experimental B-factor is taken from the corresponding PDB field and the calculated
394 from NMA is obtained by multiplying the NMA mobility by $(8\pi^2)$. The relationship
395 between the NMA and PDB regions in the complex is depicted in the B-factor
396 diagram(Fig.12C).The eigenvalue associated to each normal mode represents the

397 motion stiffness. Its value is directly related to the energy required to deform the
398 structure. The eigenvalue in the eigenvalue plot is 9.353365e-05, which, according to
399 previous studies, indicates that the complex has low deformability and good
400 stability([Fig.12D](#)). The covariance matrix represents the coupling between pairs of
401 residues and the way in which certain parts of the macromolecule move, i.e. whether
402 they experience correlated (red), uncorrelated (white) or anti-correlated (blue)
403 motions([Fig.12E](#)). The elastic network model defines which pairs of atoms are
404 connected by springs. Each dot in the graph represents one spring between the
405 corresponding pair of atoms. Dots are colored according to their stiffness. A darker
406 shade of grey indicates higher stiffness, i.e. each chain of the MEV-TLR4 complex
407 has a higher stiffness([Fig.12F](#)), which indicates a more stable complex .

408 **Fig 12. The results of IMODs.**

409 (A-F) Molecular dynamics simulation results. (A) Deformability values. (B) The
410 variance associated to the modes. (C) B-factor and NMA graph. (D) Eigenvalues plot.
411 (E) Covariance matrix graph. (F) The elastic network models.

412 **Discussion**

413 Brucellosis is a debilitating zoonotic disease that can cause significant economic
414 losses in livestock populations worldwide^[38,39]. As there is currently no brucella
415 vaccine for humans, it is vital to develop a more effective and safer vaccine for
416 humans^[40]. The type IV secretion system (T4SS), encoded by the virB manipulator, is
417 an important virulence factor for *Brucella abortus*, while its core component consists
418 of VirB6-VirB1016. VirB8 is a two-site endosomal protein that plays a critical role in

419 the nucleation of T4SS channels^[41,42]. VirB10 is a bilayer protein inserted into the
420 bacterial endosome, and the proline-rich region plays a key role in core complex
421 assembly and substrate secretion^[43,44].

422 Following previous studies, the proteins required to construct novel MEVs must
423 be highly antigenic^[45]. In addition, stability, hydrophilicity and allergenicity have
424 been assessed. VirB8 and VirB10, the core components of the type IV secretion
425 system (T4SS), were selected to construct a novel multi-epitope vaccine. The
426 homology of the two proteins was verified during sequence alignment and met the
427 requirements for novel vaccine design. There are no reports of MEV construction
428 based on two proteins, VirB8 and VirB10.

429 Signal peptides usually contain 15-30 amino acids^[46,47]. They are usually located at the
430 N-terminal end of the protein and influence the start of protein translation, and the
431 different primary structures of the signal peptide even influence protein folding and
432 translocation^[48,47]. The expression level of a protein can be altered by replacing the
433 signal peptide^[49,47]. In our study, signal peptides were predicted for VirB8 and VirB10
434 using SignalP5.0 and LiPOP1.0. The results showed that neither protein had a signal
435 peptide and we would not need to remove the signal peptide sequence deliberately.
436 Therefore, we believe that we can proceed to the next step of the analysis.

437 The main goal to be achieved with vaccines is to provide lasting memory. It is
438 therefore crucial to activate B cells and T cells to achieve this aspect. To predict the
439 epitopes of CTL, HTL, LBE and CBE and to select suitable candidate vaccines,
440 different databases and online servers were used^[50,51]. Helper T lymphocytes initiate

441 humoral and cell-mediated immune responses, cytotoxic T lymphocytes prevent virus
442 transmission by killing virus-infected cells and producing antiviral cytokines, and B
443 lymphocytes are primarily involved in humoral immune responses^[52,53].

444 A multi-epitope vaccine consisting of CTL, HTL and B-cell epitopes triggers
445 broad immune protection, i.e. induces activation of cellular and humoral immune
446 responses and enhances their immunogenicity^[54,55,56]. We obtained 2 dominant CTL
447 epitopes from both proteins using IEDB and NetCTLpan1.1 server, 9 dominant HTL
448 epitopes using IEDB and NetMHC-IIpan-4.0, 6 B-cell linear epitopes using ABCpred
449 and 6 B-cell conformational epitopes using Ellipro of IEDB. cell conformational
450 epitopes using Ellipro of IEDB. Our MEV was then constructed by selecting the
451 superior epitopes obtained above. In the vaccine construction, the dominant epitopes
452 are connected by linkers. We linked the CTL, B-cell and HTL epitopes to the AAY,
453 KK and GPGPG linkers, respectively. The linker ensures that each epitope can trigger
454 the immune response independently and avoids the creation of new epitopes that
455 interfere with the immune response induced by the original epitope^[57]. However, the
456 immunogenicity of multi-epitope vaccines is poor when used alone and requires
457 adjuvants for coupling^[58]. Adjuvants are important components of vaccine
458 formulations, preventing infection and influencing the specific immune response to
459 antigens, maintaining the stability of peptides and enhancing their
460 immunogenicity^[59]. To improve the immunogenicity of MEV, the adjuvant human
461 beta-defensin-3 (hBD3) was fused to the N terminus with the help of the EAAAK
462 linker^[60]. Immediately followed by access to the PADRE sequence to reduce the role

463 of human HLA-DR polymorphisms^[61],Finally, the histidine sequence was added to
464 obtain the complete MEV.Molecular docking between the HLA allele and the T cell
465 epitope demonstrates the good affinity of the docking complex.

466 In structure-based reverse vaccinology, the protein molecular weight of our
467 designed vaccine is 56 KD, which is in the ideal range (<110 KD)^[62].The theoretical
468 pI of the vaccine construct was 9.39 and the number of amino acids was 537,
469 indicating the basic nature of the vaccine construct.Instability index and GRAVY
470 values indicate vaccine protein stability and hydrophobicity.Additionally,assessment
471 of sensitization and antigenicity showed that the vaccine was immunogenic and
472 highly antigenic (antigenicity of 0.8788 < 0.4) and that it was not allergenic.These
473 results show that our vaccine constructs are stable, hydrophilic, antigenic, soluble and
474 non-sensitising.In the next secondary structure predictions, β -turns and random coils
475 account for 5.03% and 49.53% respectively.The high proportion of beta-turned and
476 random coils in MEV suggests that the vaccine protein may form antigenic
477 epitopes^[63].The tertiary structure of the MEV was predicted by the RoseTTAFold
478 server and the quality of the tertiary structure of the MEV was verified by the
479 SWISS-MODEL structural assessment service.The results show that the three-stage
480 structure of the MEV has a high degree of accuracy and a high approximation factor,
481 and that the overall structure is reliable and of good quality.However,the predicted
482 β -turn angles and random coils are consistent with the secondary structure
483 predictions, which further suggests that our vaccine constructs are correct.Strong
484 interaction between antigenic molecules (MEV) and immune receptor molecules

485 (TLR4) is necessary to initiate an immune response^[64,65]. Toll-like receptor 4 (TLR4),
486 an innate immune receptor, is commonly involved in multi-epitope vaccine
487 construction^[66]. Protein-ligand docking analysis and molecular dynamics simulations
488 were performed on the MEV-TLR4 complex to examine the stability between the
489 protein and TLR-4 and to calculate the potential immune response. In the atomic
490 interaction diagram it is shown that there are strong interactions between molecules so
491 that they can be transported throughout the host body^[67]. We then used MD
492 simulations to explore the stability of the complexes, generating eigenvalue data
493 showing the stiffness and energy required to move the docked complexes. The results
494 indicate that MEV binds stably to TLR4. To verify that this structure can be involved
495 in the humoral and cellular responses studied, we performed immune simulations of
496 vaccine effects^[68]. With three vaccinations, we found that T and B cells in the body
497 increased with the number of injections and peaked at the third
498 vaccination. Furthermore, MEV increased the levels of cytokines (IFN- γ , TGF- β ,
499 IL-10, IL-12, IL-2), IgG and IgM. IFN- γ indicates cell-mediated immunity, a
500 chemokine that supports B cell proliferation, Ig isotype switching and humoral
501 responses. Antigen-presenting cells display HTL epitopes when using MHC class II
502 molecules, and the HTL epitopes produce associated cytokines (IFN- γ , IL-10) to kill
503 pathogens until they are completely eliminated^[69,70,71]. These results suggest that MEV
504 can be designed to trigger a robust immune response without producing an allergic
505 reaction and could be considered an excellent candidate for a brucellosis vaccine.
506 Efficient expression of MEV vaccine protein in the Escherichia coli system is

507 essential for the production of recombinant proteins^[72], We use the online codon
508 optimisation tool ExpOptimizer to optimise the amino acid sequence of the vaccine
509 for various parameters such as 5' region optimisation (translation initiation
510 efficiency), DNA repeat optimisation and GC content optimisation^[73,74]. The
511 optimised codon GC content (58.35%) and codon adaptation index (CAI=0.80)
512 showed a good probability of vaccine protein expression levels in *E. coli* hosts. XhoI
513 and BamHI restriction sites were then added to the 5' and 3' ends of the codon
514 sequence and primers were designed for them to facilitate the polymerase chain
515 reaction of the target gene. The final vaccine sequence was then cloned into the
516 pET28a(+) vector, yielding a 6946bp recombinant plasmid. Eventually, mock agarose
517 gel electrophoresis experiments were performed on the target gene, vector and
518 recombinant plasmid. Animal experiments need to be refined for this study to follow.

519 Overall, MEV exhibits desirable physicochemical properties and immune
520 response. Molecular dynamics simulations demonstrate the high stability of MEV.
521 Immunosimulations show that MEV triggers an immune response consistent with our
522 hypothesis. In summary, the novel MEV we constructed can be used as a candidate
523 vaccine for brucellosis and provide a theoretical basis for the development of future
524 brucellosis vaccines.

525

526 **DATA AVAILABILITY STATEMENT**

527 The data derived from public domain information: Uniprot database
528 (<https://www.uniprot.org/>) and PDB library (<https://www.rcsb.org/>). The data that

529 support the findings of this study are available in the methods and/or supplementary
530 material of this article. The data that support the findings of this study are available
531 from the corresponding author upon request. There are no restrictions on data
532 availability. If you have any questions, please contact me.

533 **ACKNOWLEDGMENTS**

534 The authors are thankful to the State Key Laboratory of Pathogenesis, Prevention,
535 Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of
536 Xinjiang Medical University, PR China.

537 **CONFLICT OF INTERESTS**

538 The authors declared no potential conflicts of interest.

539 **AUTHORS' CONTRIBUTIONS**

540 This study was conceived and designed by Jianbing Ding and Fengbo Zhang.
541 Bioinformatic analysis was performed by Zhengwei Yin, Min Li, Ce Niu, Mingkai
542 Yu, Xinru Xie, Gulishati Haimiti, Wenhong Guo, Juan Shi and Yueyue He. The
543 manuscript was drafted by Zhengwei Yin and edited by Jianbing Ding and Fengbo
544 Zhang. All the authors contributed to the article and approved the manuscript.

545 **ORCID**

546 Jianbing Ding: <http://orcid.org/0000-0001-5506-7665>

547 Fengbo Zhang: <https://orcid.org/0000-0001-5795-8672>

548 **References**

[1] Paul S, Peddayelachagiri BV, Gogoi M, Nagaraj S, Ramlal S, Konduru B, et al. Genome-wide unique insertion sequences among five *Brucella* species and demonstration of differential identification of *Brucella* by multiplex PCR assay. *Sci Rep.* 2020 Apr 14;10(1):6368. doi: 10.1038/s41598-020-62472-3.

[2] Kanani A, Dabhi S, Patel Y, Chandra V, Kumar ORV, Shome R. Seroprevalence of brucellosis in small ruminants in organized and unorganized sectors of Gujarat state, *India. Vet World.* 2018;11(8):1030-1036. doi:10.14202/vetworld.2018.1030-1036

[3] Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, et al. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. *PLoS Med.* 2007 Dec;4(12):e317. doi: 10.1371/journal.pmed.0040317.

[4] Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. *Lancet Infect Dis.* 2006;6(2):91-99. doi:10.1016/S1473-3099(06)70382-6

[5] Zheng R, Xie S, Lu X, Sun L, Zhou Y, Zhang Y, et al. A Systematic Review and Meta-Analysis of Epidemiology and Clinical Manifestations of Human Brucellosis in China. *Biomed Res Int.* 2018 Apr 22;2018:5712920. doi: 10.1155/2018/5712920.

[6] De Massis F, Di Girolamo A, Petrini A, Pizzigallo E, Giovannini A. Correlation between animal and human brucellosis in Italy during the period 1997-2002. *Clin Microbiol Infect.* 2005;11(8):632-636. doi:10.1111/j.1469-0691.2005.01204.x

[7] Mangalgi SS, Sajjan AG, Mohite ST, Gajul S. Brucellosis in Occupationally Exposed Groups. *J Clin Diagn Res.* 2016;10(4): DC24-DC27. doi:10.7860/JCDR/2016/15276.7673

[8] Jiang H, O'Callaghan D, Ding JB. Brucellosis in China: history, progress and challenge. *Infect Dis Poverty.* 2020;9(1):55. Published 2020 May 24. doi:10.1186/s40249-020-00673-8

[9] Ulu-Kilic A, Metan G, Alp E. Clinical presentations, and diagnosis of brucellosis. *Recent Pat Antiinfect Drug Discov.* 2013;8(1):34-41.

[10] Kurmanov B, Zincke D, Su W, Hadfield TL, Aikimbayev A, Karibayev T, et al. Assays for Identification and Differentiation of *Brucella* Species: A Review. *Microorganisms.* 2022 Aug 6;10(8):1584. doi: 10.3390/microorganisms10081584.

[11] Shaker B, Ahmad S, Shen J, Kim HW, Na D. Computational Design of a Multi-Epitope Vaccine Against *Porphyromonas gingivalis*. *Front Immunol.* 2022; 13:806825. Published 2022 Feb 18. doi:10.3389/fimmu.2022.806825

[12] Delany I, Rappuoli R, Seib KL. Vaccines, reverse vaccinology, and bacterial pathogenesis. *Cold Spring Harb Perspect Med.* 2013;3(5): a012476. Published 2013 May 1. doi:10.1101/cshperspect. a012476

[13] Moxon R, Reche PA, Rappuoli R. Editorial: Reverse Vaccinology. *Front Immunol.* 2019; 10:2776. Published 2019 Dec 3. doi:10.3389/fimmu.2019.02776

[14] De Groot AS, Moise L, Terry F, Gutierrez AH, Hindocha P, Richard G, et al. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. *Front Immunol.* 2020 Apr 7;11:442. doi: 10.3389/fimmu.2020.00442.

[15] Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of *Brucella* spp. and its effectors. *Front Cell Infect Microbiol.* 2015; 5:72. Published 2015 Oct 13. doi:10.3389/fcimb.2015.00072

[16] Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, et al. The VirB System Plays a

Crucial Role in *Brucella* Intracellular Infection. *Int J Mol Sci.* 2021 Dec 20;22(24):13637. doi: 10.3390/ijms222413637.

[17] Zai X, Yin Y, Guo F, Yang Q, Li R, Li Y, et al. Screening of potential vaccine candidates against pathogenic *Brucella* spp. using composite reverse vaccinology. *Vet Res.* 2021 Jun 2;52(1):75. doi: 10.1186/s13567-021-00939-5.

[18] Villamil Giraldo AM, Mary C, Sivanesan D, Baron C. VirB6 and VirB10 from the *Brucella* type IV secretion system interact via the N-terminal periplasmic domain of VirB6. *FEBS Lett.* 2015;589(15):1883-1889. doi: 10.1016/j.febslet.2015.05.051

[19] Palomares-Resendiz E, Arellano-Reynoso B, Hernández-Castro R, Tenorio-Gutiérrez V, Salas-Téllez E, Suárez-Güemes F, et al. Immunogenic response of *Brucella canis* virB10 and virB11 mutants in a murine model. *Front Cell Infect Microbiol.* 2012 Apr 19;2:35. doi: 10.3389/fcimb.2012.00035.

[20] Kolla HB, Tirumalasetty C, Sreerama K, Ayyagari VS. An immunoinformatics approach for the design of a multi-epitope vaccine targeting super antigen TSST-1 of *Staphylococcus aureus*. *J Genet Eng Biotechnol.* 2021;19(1):69. Published 2021 May 11. doi:10.1186/s43141-021-00160-z

[21] Skwarczynski M, Toth I. Peptide-based synthetic vaccines. *Chem Sci.* 2016;7(2):842-854. doi:10.1039/c5sc03892h

[22] Xiang Z, He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. *BMC Bioinformatics.* 2013;14 Suppl 4(Suppl 4): S2. doi:10.1186/1471-2105-14-S4-S2

[23] Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics.* 2009;25(9):1189-1191. doi:10.1093/bioinformatics/btp033

[24] Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. *Protein Sci.* 2003;12(8):1652-1662. doi:10.1110/ps.0303703

[25] Ahmed RK, Maeurer MJ. T-cell epitope mapping. *Methods Mol Biol.* 2009; 524:427-438. doi:10.1007/978-1-59745-450-6_31

[26] Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and Methods for T- and B-Cell Epitope Prediction. *J Immunol Res.* 2017; 2017:2680160. doi:10.1155/2017/2680160

[27] Shen CM, Zhu BF, Deng YJ, Ye SH, Yan JW, Yang G, et al. Allele polymorphism and haplotype diversity of HLA-A, -B and -DRB1 loci in sequence-based typing for Chinese Uyghur ethnic group. *PLoS One.* 2010 Nov 4;5(11):e13458. doi: 10.1371/journal.pone.0013458.

[28] Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. *Nucleic Acids Res.* 2020;48(W1):W449-W454. doi:10.1093/nar/gkaa379

[29] Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. *Immunogenetics.* 2010;62(6):357-368. doi:10.1007/s00251-010-0441-4

[30] Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif

Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. *J Proteome Res.* 2020;19(6):2304-2315. doi: 10.1021/acs.jproteome.9b00874

[31] Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against *Acinetobacter baumannii*. *Sci Rep.* 2018;8(1):9044. Published 2018 Jun 13. doi:10.1038/s41598-018-26689-7

[32] Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. *Bioinformatics.* 2009;25(17):2200-2207. doi:10.1093/bioinformatics/btp386

[33] Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a three-track neural network. *Science.* 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754.

[34] Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. *Nucleic Acids Res.* 2017;45(W1): W365-W373. doi:10.1093/nar/gkx407

[35] Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. *PLoS One.* 2010;5(4): e9862. Published 2010 Apr 16. doi: 10.1371/journal.pone.0009862

[36] Chand Y, Singh S. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant *Salmonella Typhi* str. CT18: A subtractive proteomics and immunoinformatics approach. *Microb Pathog.* 2021; 159:105150. doi: 10.1016/j.micpath.2021.105150

[37] López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. iMODS: internal coordinates normal mode analysis server. *Nucleic Acids Res.* 2014;42(Web Server issue): W271-W276. doi:10.1093/nar/gku339

[38] Ghanbari MK, Gorji HA, Behzadifar M, Sanee N, Mehedi N, Bragazzi NL. One health approach to tackle brucellosis: a systematic review. *Trop Med Health.* 2020; 48:86. Published 2020 Oct 20. doi:10.1186/s41182-020-00272-1

[39] Njeru J, Wareth G, Melzer F, Henning K, Pletz MW, Heller R, et al. Systematic review of brucellosis in Kenya: disease frequency in humans and animals and risk factors for human infection. *BMC Public Health.* 2016 Aug 22;16(1):853. doi: 10.1186/s12889-016-3532-9.

[40] Sharma P, Sharma P, Sheeba, Kumar A. Top-Down Computational Approach: A Vaccine Development Step to Find Novel Superantigenic HLA Binding Epitopes from Dengue Virus Proteome. *Int J Pept Res Ther.* 2021;27(2):1469-1480. doi:10.1007/s10989-021-10184-1

[41] Buhrdorf R, Förster C, Haas R, Fischer W. Topological analysis of a putative virB8 homologue essential for the cag type IV secretion system in *Helicobacter pylori*. *Int J Med Microbiol.* 2003;293(2-3):213-217. doi:10.1078/1438-4221-00260

[42] Baron C. VirB8: a conserved type IV secretion system assembly factor and drug target. *Biochem Cell Biol.* 2006;84(6):890-899. doi:10.1139/o06-148

[43] Das A, Xie YH. Construction of transposon Tn3phoA: its application in defining the membrane topology of the *Agrobacterium tumefaciens* DNA transfer proteins. *Mol Microbiol.* 1998;27(2):405-414. doi:10.1046/j.1365-2958.1998.00688.x

[44] Jakubowski SJ, Kerr JE, Garza I, Krishnamoorthy V, Bayliss R, Waksman G, et

al. Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. *Mol Microbiol*. 2009 Feb;71(3):779-94. doi: 10.1111/j.1365-2958.2008.06565.x. Epub 2008 Dec 1.

[45] Aldakheel FM, Abrar A, Munir S, Aslam S, Allemailem KS, Khurshid M, et al. Proteome-Wide Mapping and Reverse Vaccinology Approaches to Design a Multi-Epitope Vaccine against *Clostridium perfringens*. *Vaccines (Basel)*. 2021 Sep 26;9(10):1079. doi: 10.3390/vaccines9101079.

[46] Nyathi Y, Wilkinson BM, Pool MR. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. *Biochim Biophys Acta*. 2013;1833(11):2392-2402. doi: 10.1016/j.bbamcr.2013.02.021

[47] Lu R, Zhang T, Song S, Zhou M, Jiang L, He Z, et al. Accurately cleavable goat β -lactoglobulin signal peptide efficiently guided translation of a recombinant human plasminogen activator in transgenic rabbit mammary gland. *Biosci Rep*. 2019 Jun 28;39(6):BSR20190596. doi: 10.1042/BSR20190596.

[48] Li Y, Luo L, Schubert M, Wagner RR, Kang CY. Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. *J Virol*. 1993;67(7):4415-4420. doi:10.1128/JVI.67.7.4415-4420.1993

[49] Güler-Gane G, Kidd S, Sridharan S, Vaughan TJ, Wilkinson TC, Tigue NJ. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids. *PLoS One*. 2016;11(5): e0155340. Published 2016 May 19. doi: 10.1371/journal.pone.0155340

[50] Cooper NR, Nemerow GR. The role of antibody and complement in the control of viral infections. *J Invest Dermatol*. 1984;83(1 Suppl):121s-127s. doi:10.1111/1523-1747.ep12281847

[51] Al Tbeishat H. Novel in Silico mRNA vaccine design exploiting proteins of M. tuberculosis that modulates host immune responses by inducing epigenetic modifications. *Sci Rep*. 2022;12(1):4645. Published 2022 Mar 17. doi:10.1038/s41598-022-08506-4

[52] Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, et al. The optimization of helper T lymphocyte (HTL) function in vaccine development. *Immunol Res*. 1998;18(2):79-92. doi: 10.1007/BF02788751. PMID: 9844827.

[53] Jespersen MC, Mahajan S, Peters B, Nielsen M, Marcatili P. Antibody Specific B-Cell Epitope Predictions: Leveraging Information from Antibody-Antigen Protein Complexes. *Front Immunol*. 2019; 10:298. Published 2019 Feb 26. doi:10.3389/fimmu.2019.00298

[54] Deng H, Yu S, Guo Y, Gu L, Wang G, Ren Z, et al. Development of a multivalent enterovirus subunit vaccine based on immunoinformatic design principles for the prevention of HFMD. *Vaccine*. 2020 Apr 29;38(20):3671-3681. doi: 10.1016/j.vaccine.2020.03.023.

[55] Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. *Cell Mol Immunol*. 2018;15(2):182-184. doi:10.1038/cmi.2017.92

[56] Chauhan V, Rungta T, Goyal K, Singh MP. Designing a multi-epitope-based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. *Sci Rep*. 2019;9(1):2517. Published 2019 Feb 21. doi:10.1038/s41598-019-39299-8

[57] Shamriz S, Ofoghi H, Moazami N. Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. *Comput Biol Med*. 2016; 76:24-29. doi: 10.1016/j.combiomed.2016.06.015

[58] Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo C. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in-silico approach. *Infect Genet Evol.* 2017; 49:309-317.
doi:10.1016/j.meegid.2017.02.007

[59] Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. *Immune Netw.* 2015;15(2):51-57. doi:10.4110/in.2015.15.2.51

[60] Cui D, Lyu J, Li H, Lei L, Bian T, Li L, et al. Human β -defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. *Mol Immunol.* 2017 Nov;91:65-74. doi: 10.1016/j.molimm.2017.08.012. Epub 2017 Sep 5. PMID: 28886588.

[61] Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against *Acinetobacter baumannii*. *Sci Rep.* 2018;8(1):9044. Published 2018 Jun 13.
doi:10.1038/s41598-018-26689-7

[62] Barh D, Barve N, Gupta K, Chandra S, Jain N, Tiwari S, et al. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in *Vibrio cholerae* targeted by *Piper betel* derived compounds. *PLoS One.* 2013;8(1):e52773.
doi: 10.1371/journal.pone.0052773. Epub 2013 Jan 30. PMID: 23382822; PMCID: PMC3559646.

[63] Yu M, Zhu Y, Li Y, Chen Z, Sha T, Li Z, et al. Design of a Novel Multi-Epitope Vaccine Against *Echinococcus granulosus* in Immunoinformatics. *Front Immunol.* 2021 Aug 12;12:668492. doi: 10.3389/fimmu.2021.668492.

[64] Chaplin DD. Overview of the immune response. *J Allergy Clin Immunol.* 2010;125(2 Suppl 2):S3-S23. doi:10.1016/j.jaci.2009.12.980

[65] Fadaka AO, Aruleba RT, Sibuyi NRS, Klein A, Madiehe AM, Meyer M. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: a computational-aided approach. *J Biomol Struct Dyn.* 2022;40(8):3416-3427.
doi:10.1080/07391102.2020.1847197

[66] Bayani F, Safaei Hashkavaei N, Karamian MR, Uskoković V, Sefidbakht Y. *In silico* design of a multi-epitope vaccine against the spike and the nucleocapsid proteins of the Omicron variant of SARS-CoV-2 [published online ahead of print, 2023 Jan 26]. *J Biomol Struct Dyn.* 2023;1-15. doi:10.1080/07391102.2023.2170470

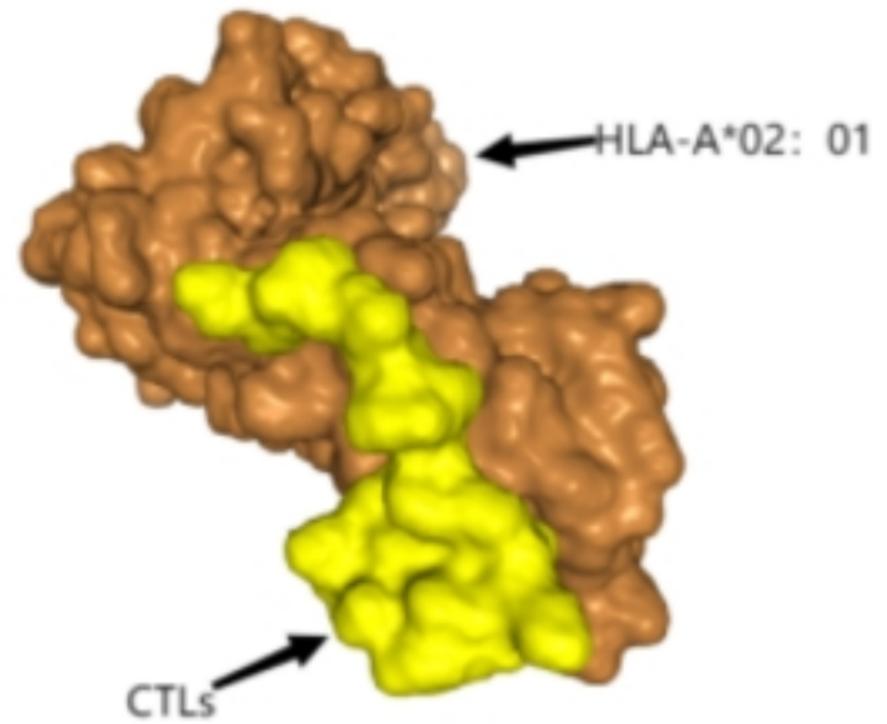
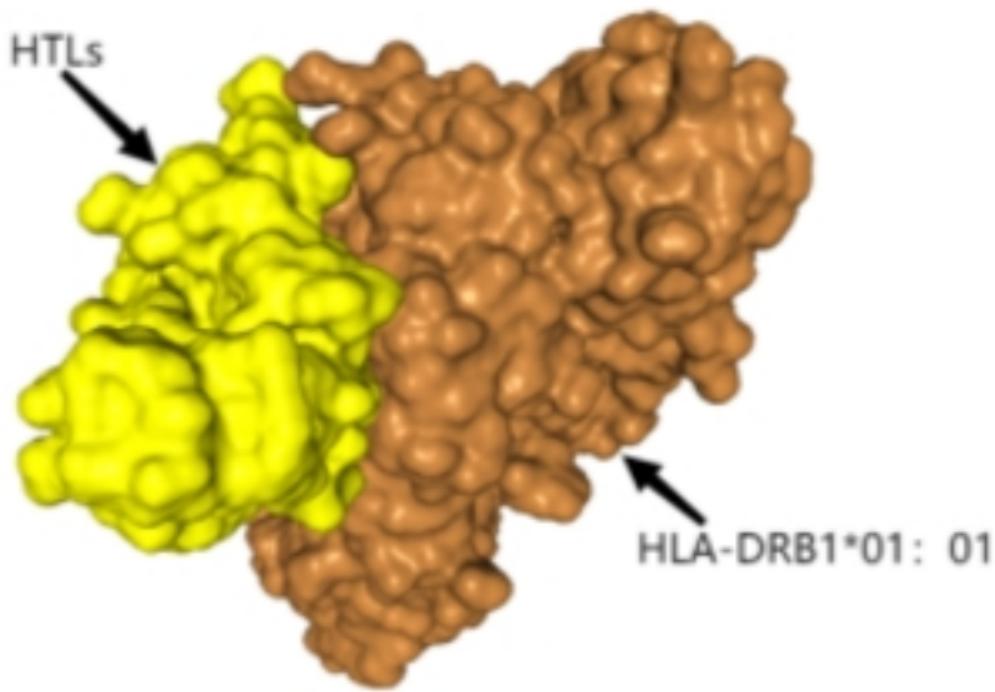
[67] Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. *BMC Bioinformatics.* 2010;11:431. Published 2010 Aug 18. doi:10.1186/1471-2105-11-431

[68] Singh R, Kang A, Luo X, Jeyanathan M, Gillgrass A, Afkhami S, et al. COVID-19: Current knowledge in clinical features, immunological responses, and vaccine development. *FASEB J.* 2021 Mar;35(3):e21409. doi: 10.1096/fj.202002662R.

[69] Dittmer U, Peterson KE, Messer R, Stromnes IM, Race B, Hasenkrug KJ. Role of interleukin-4 (IL-4), IL-12, and gamma interferon in primary and vaccine-primed immune responses to Friend retrovirus infection. *J Virol.* 2001;75(2):654-660. doi:10.1128/JVI.75.2.654- 660.2001

[70] Luckheeram RV, Zhou R, Verma AD, Xia B. CD4 $^{+}$ T cells: differentiation and functions. *Clin Dev Immunol.* 2012;2012:925135. doi:10.1155/2012/925135

[71] Kaech SM, Ahmed R. Memory CD8 $^{+}$ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. *Nat Immunol.* 2001;2(5):415-422. doi:10.1038/87720

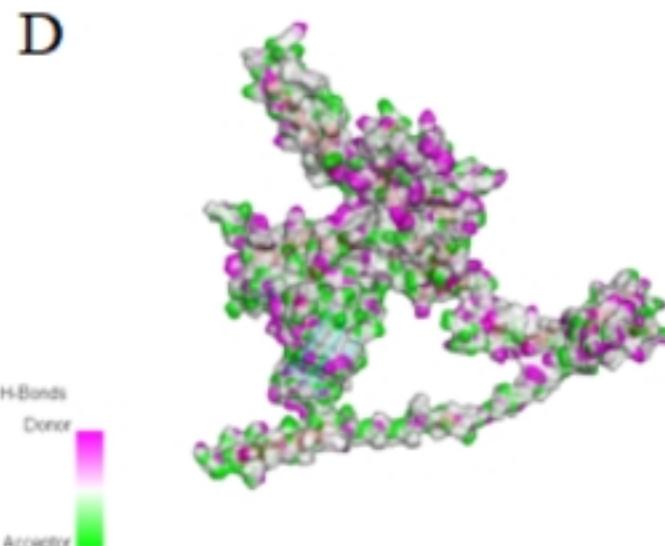
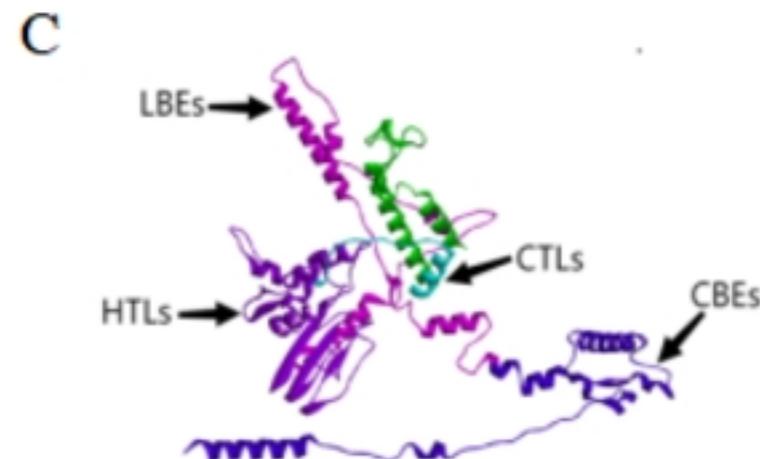
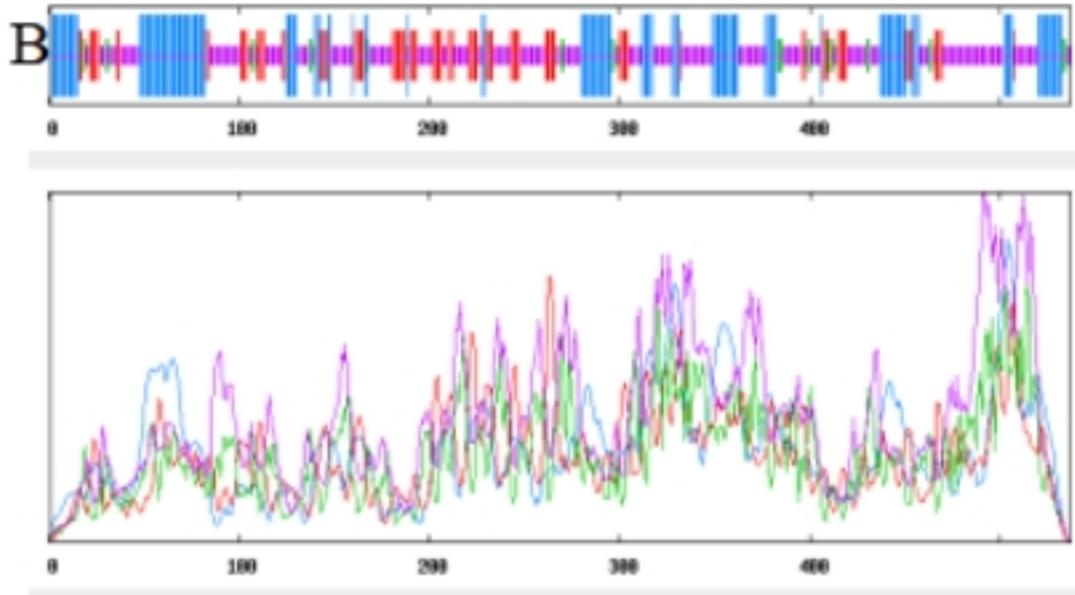


[72] Chen R. Bacterial expression systems for recombinant protein production: *E. coli*

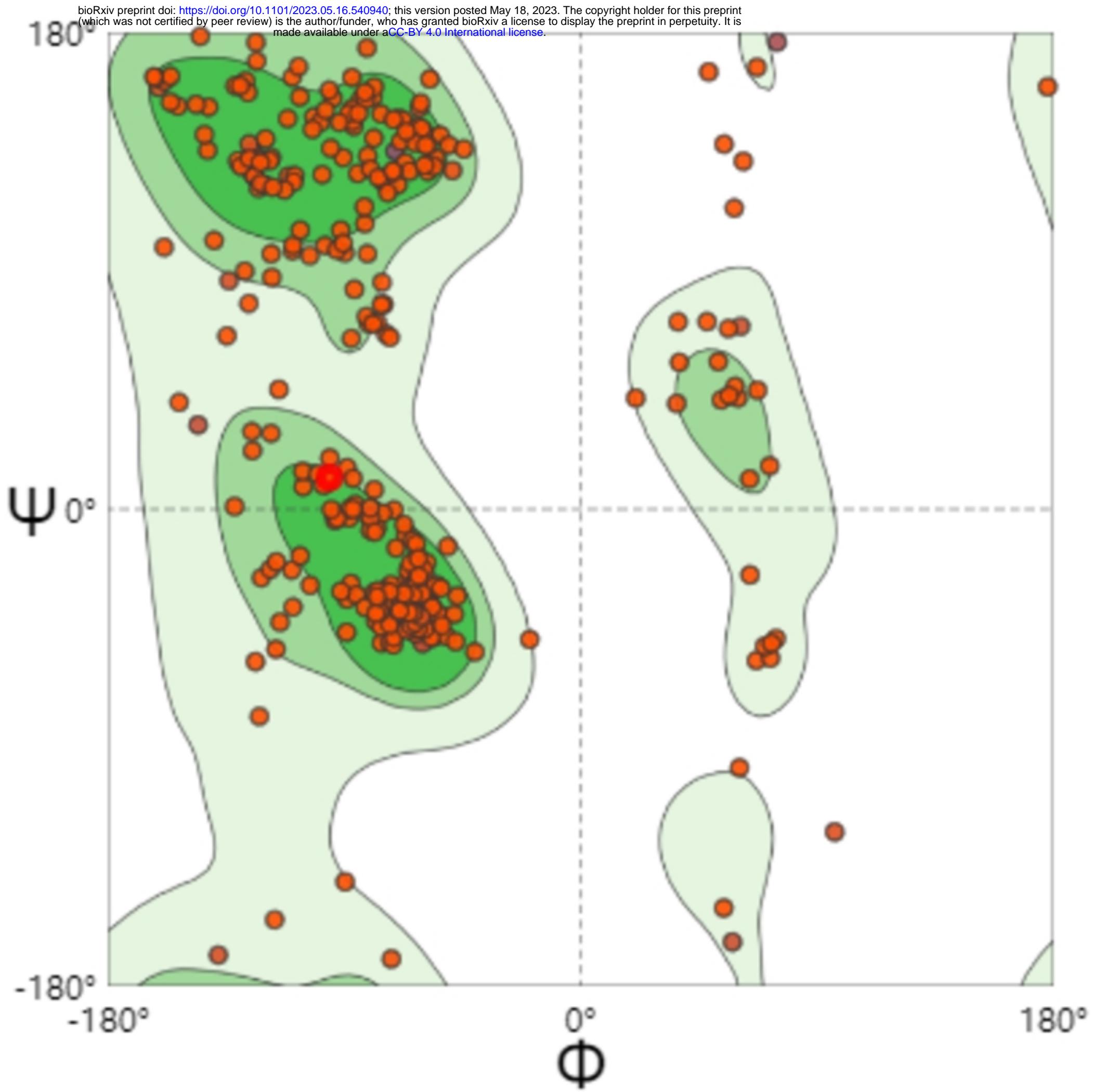
and beyond. *Biotechnol Adv.* 2012;30(5):1102-1107.
doi:10.1016/j.biotechadv.2011.09.013

[73] Jin H, Zhao Q, Gonzalez de Valdivia EI, Ardell DH, Stenström M, Isaksson LA. Influences on gene expression in vivo by a Shine-Dalgarno sequence. *Mol Microbiol.* 2006;60(2):480-492. doi:10.1111/j.1365-2958.2006.05110.x

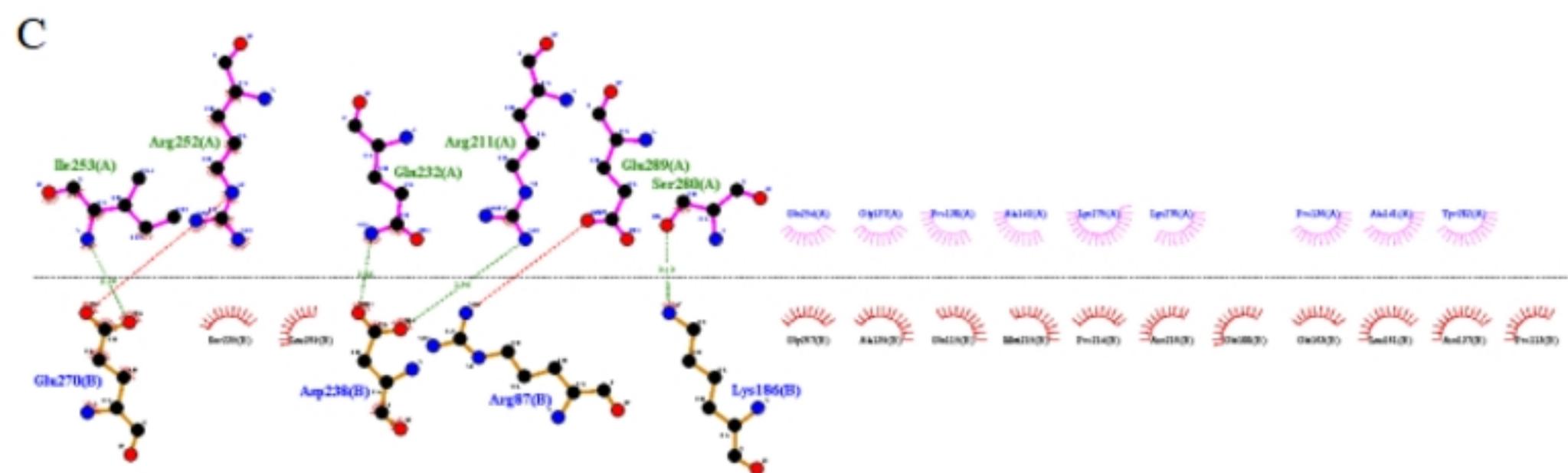
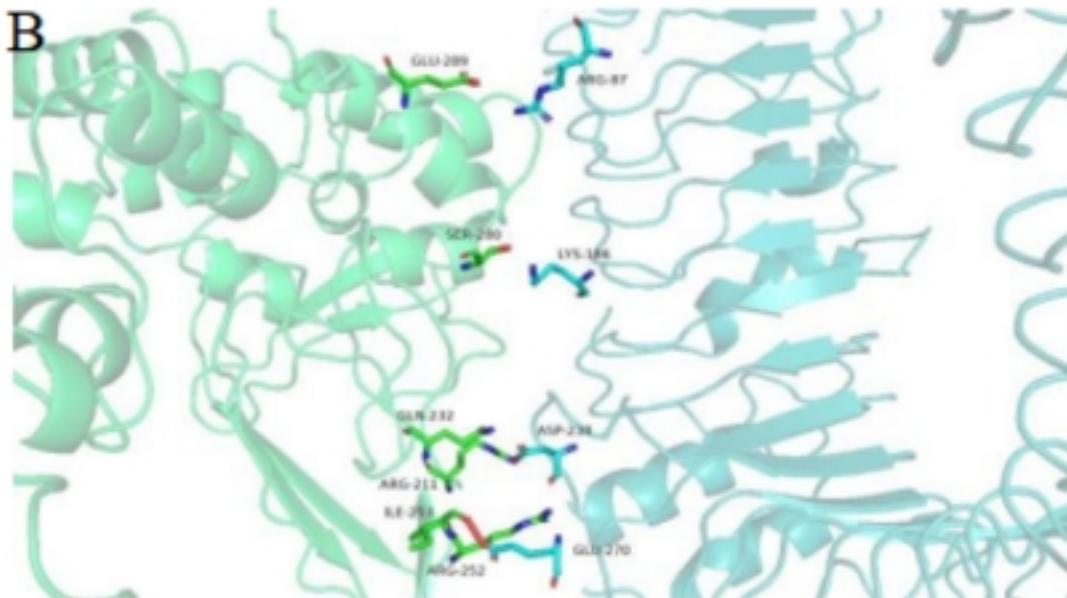
[74] Lithwick G, Margalit H. Hierarchy of sequence-dependent features associated with prokaryotic translation. *Genome Res.* 2003;13(12):2665-2673.
doi:10.1101/gr.1485203

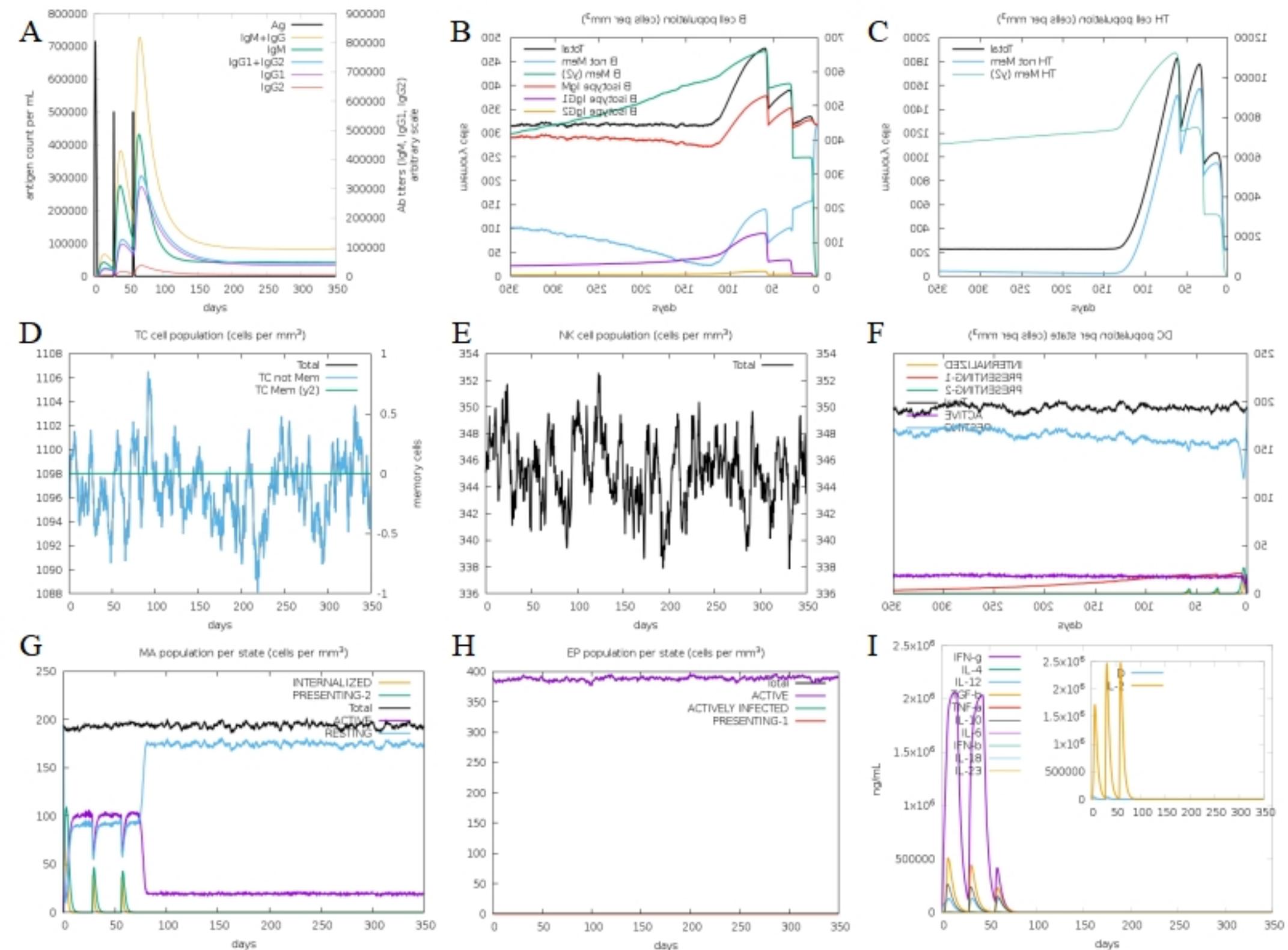
A**B****Figure**

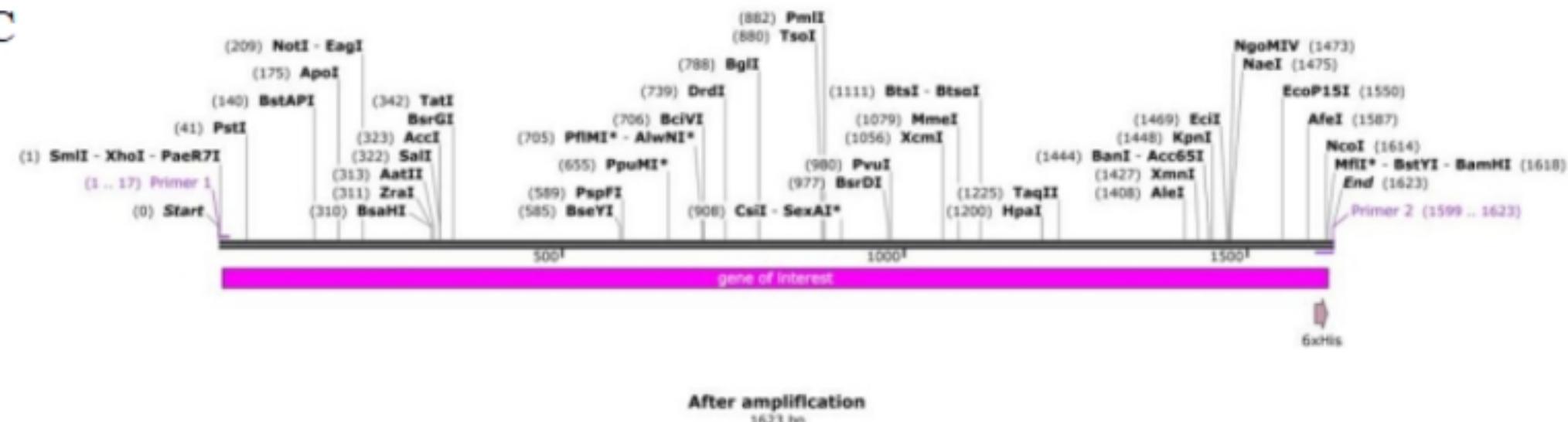
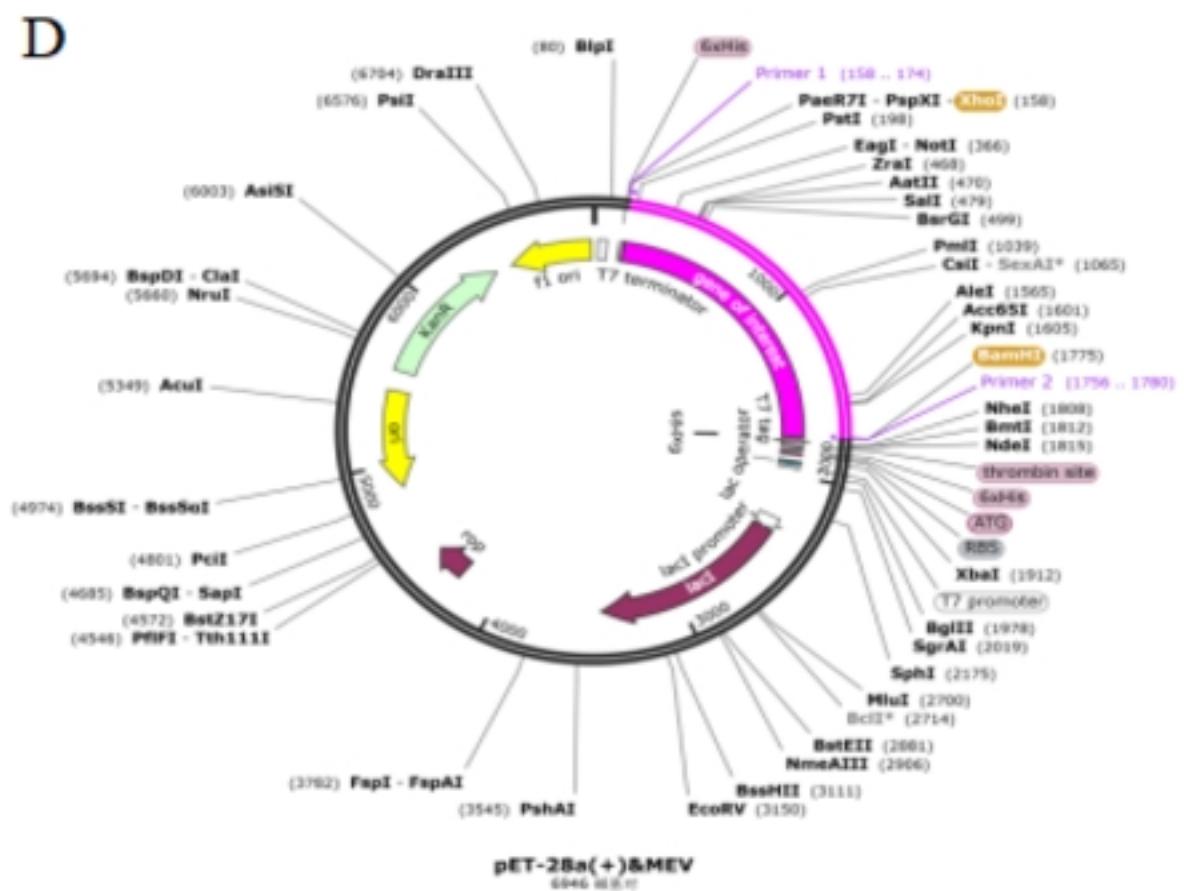
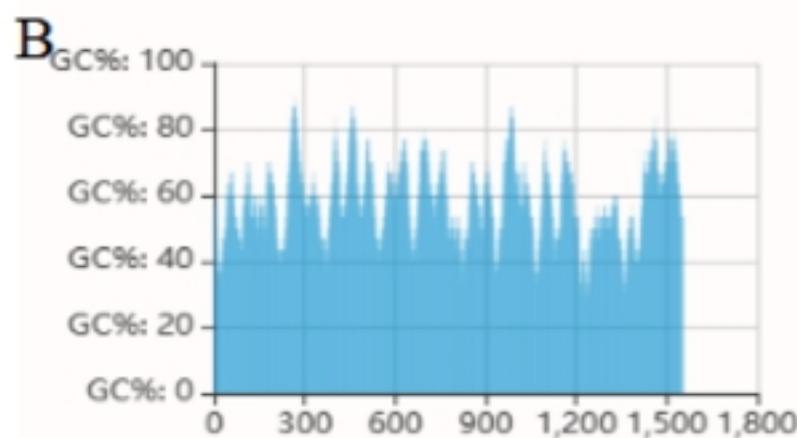
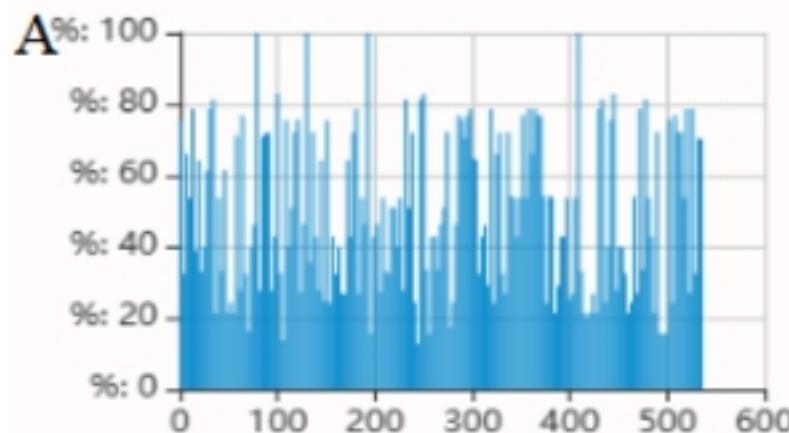



Figure

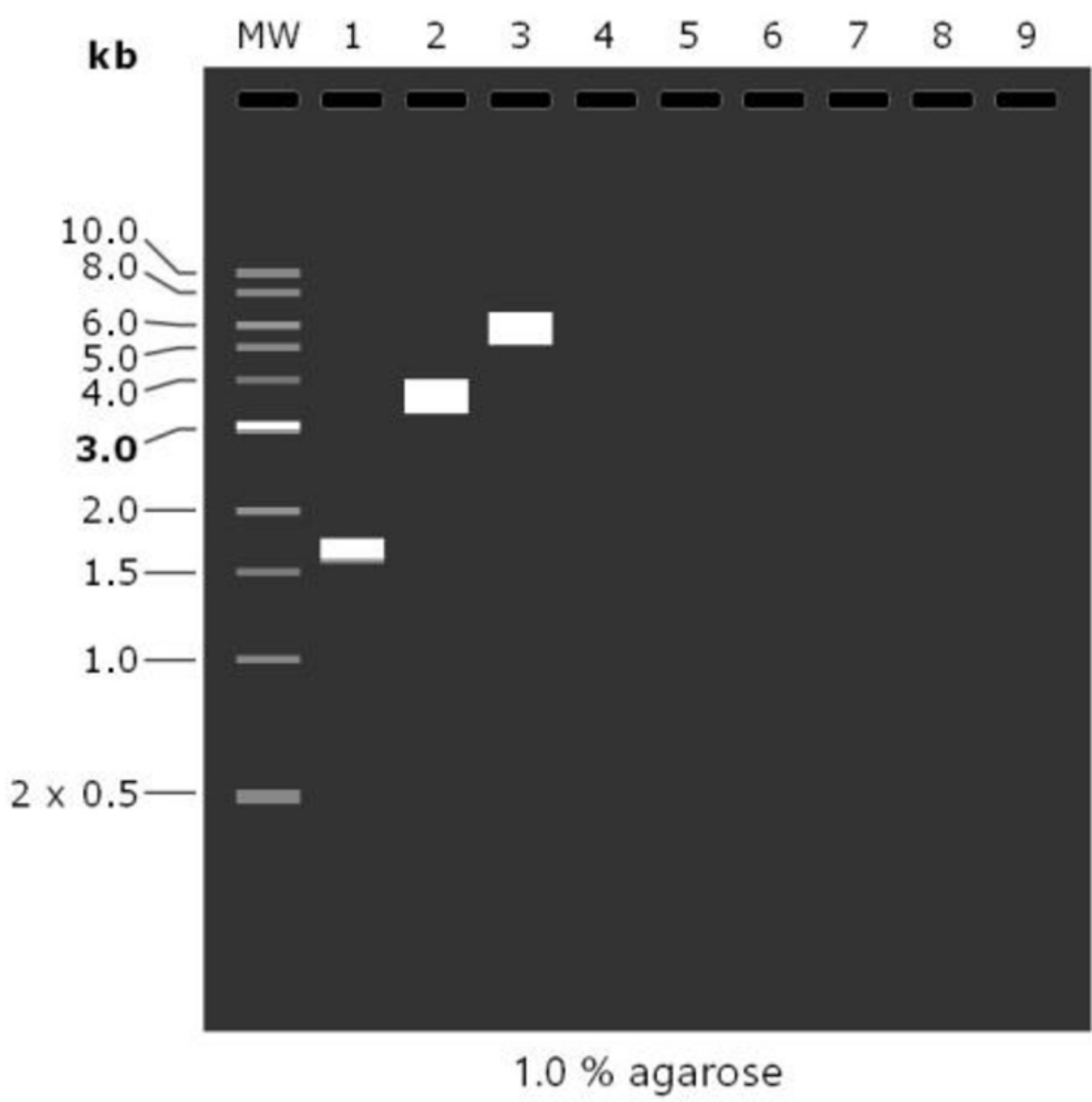

Sequence length : 537

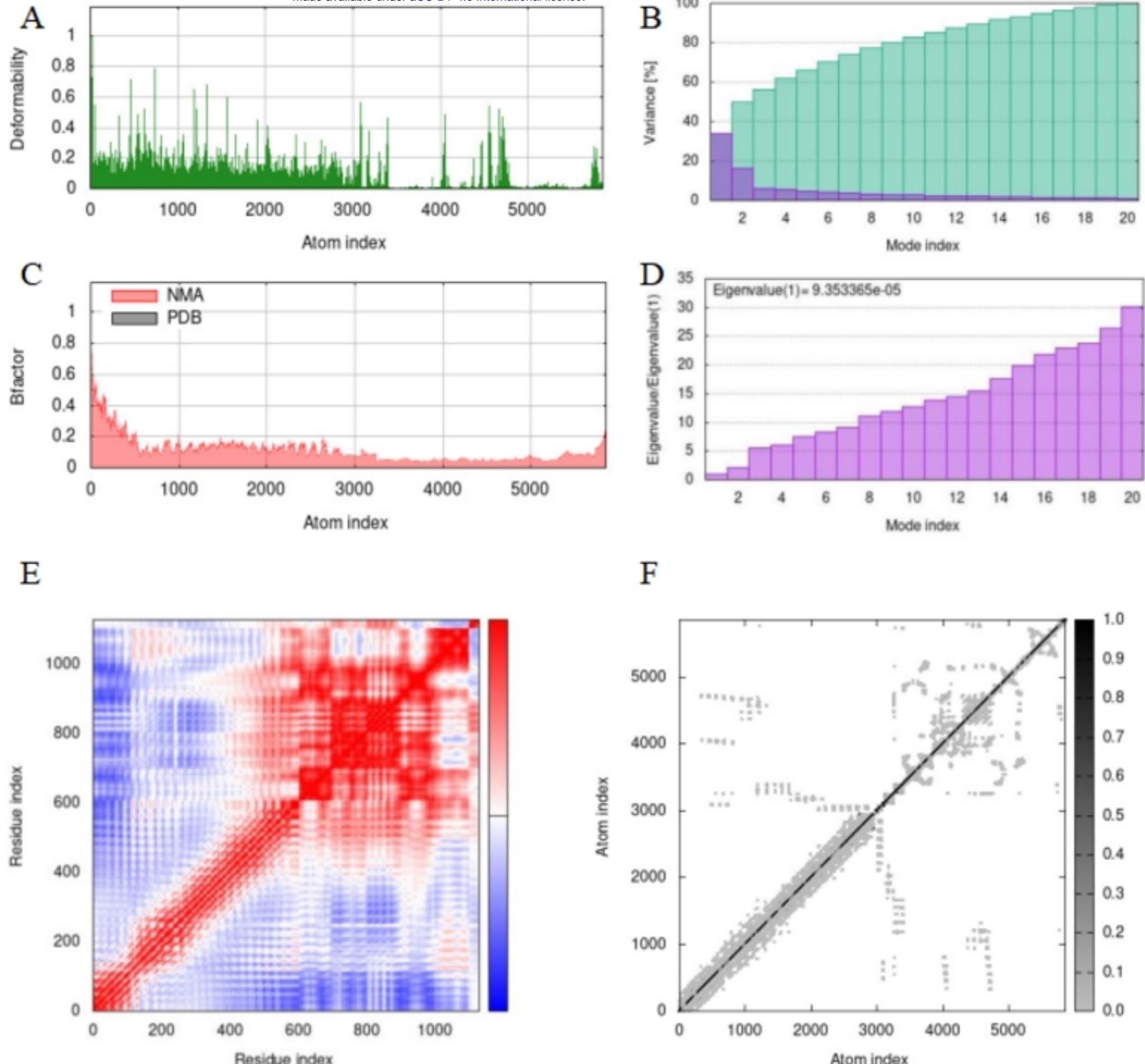
SOPMA :

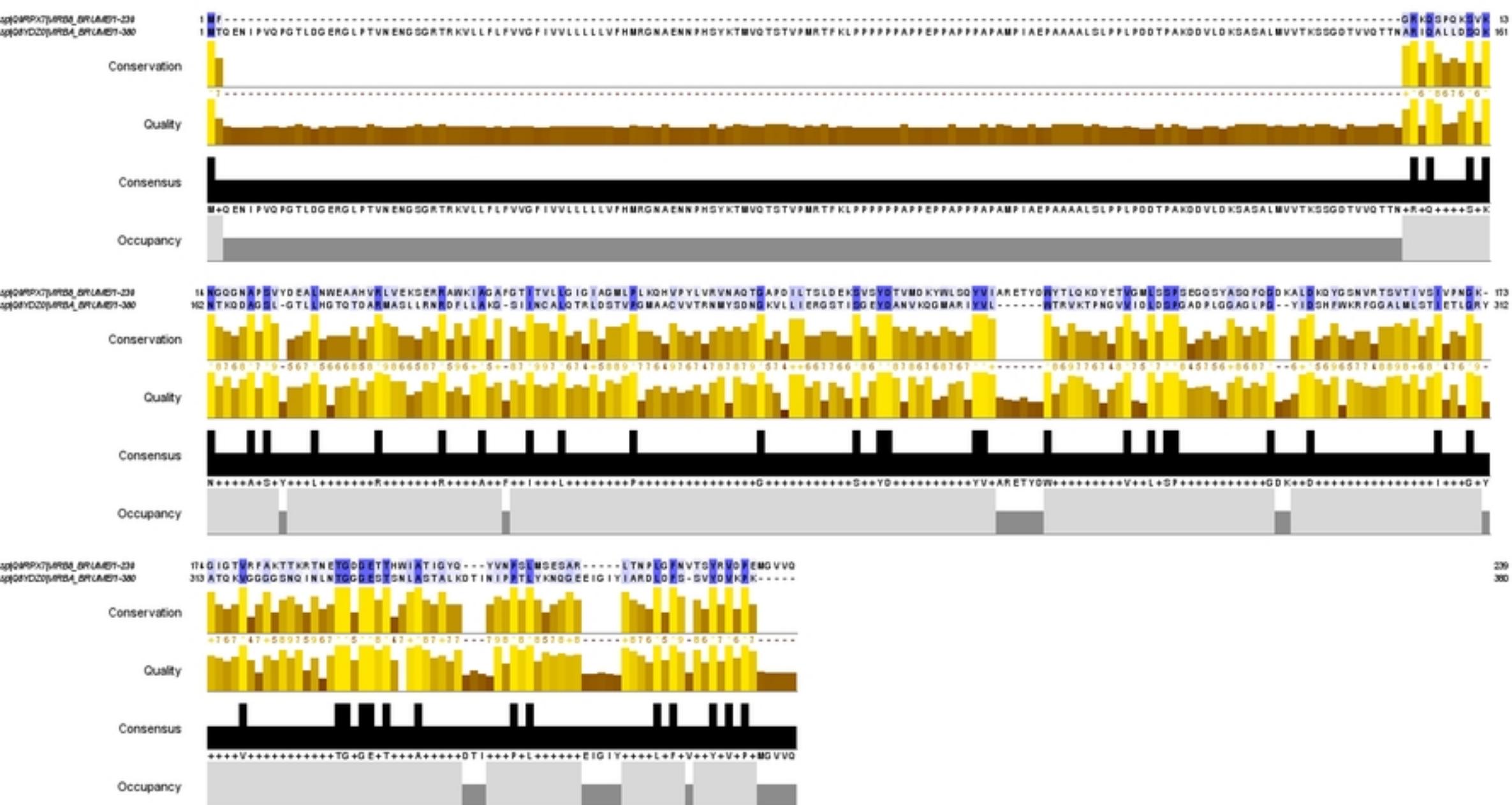


Alpha helix (Hh) :	151 is 28.12%
Beta helix (Bh) :	0 is 0.00%
Pi helix (Hh) :	0 is 0.00%
Beta bridge (Bb) :	0 is 0.00%
Extended strand (Ee) :	93 is 17.32%
Beta turn (Tt) :	27 is 5.05%
Bend region (Ss) :	0 is 0.00%
Random coil (Cc) :	266 is 49.53%
Ambiguous states (?) :	0 is 0.00%
Other states :	0 is 0.00%

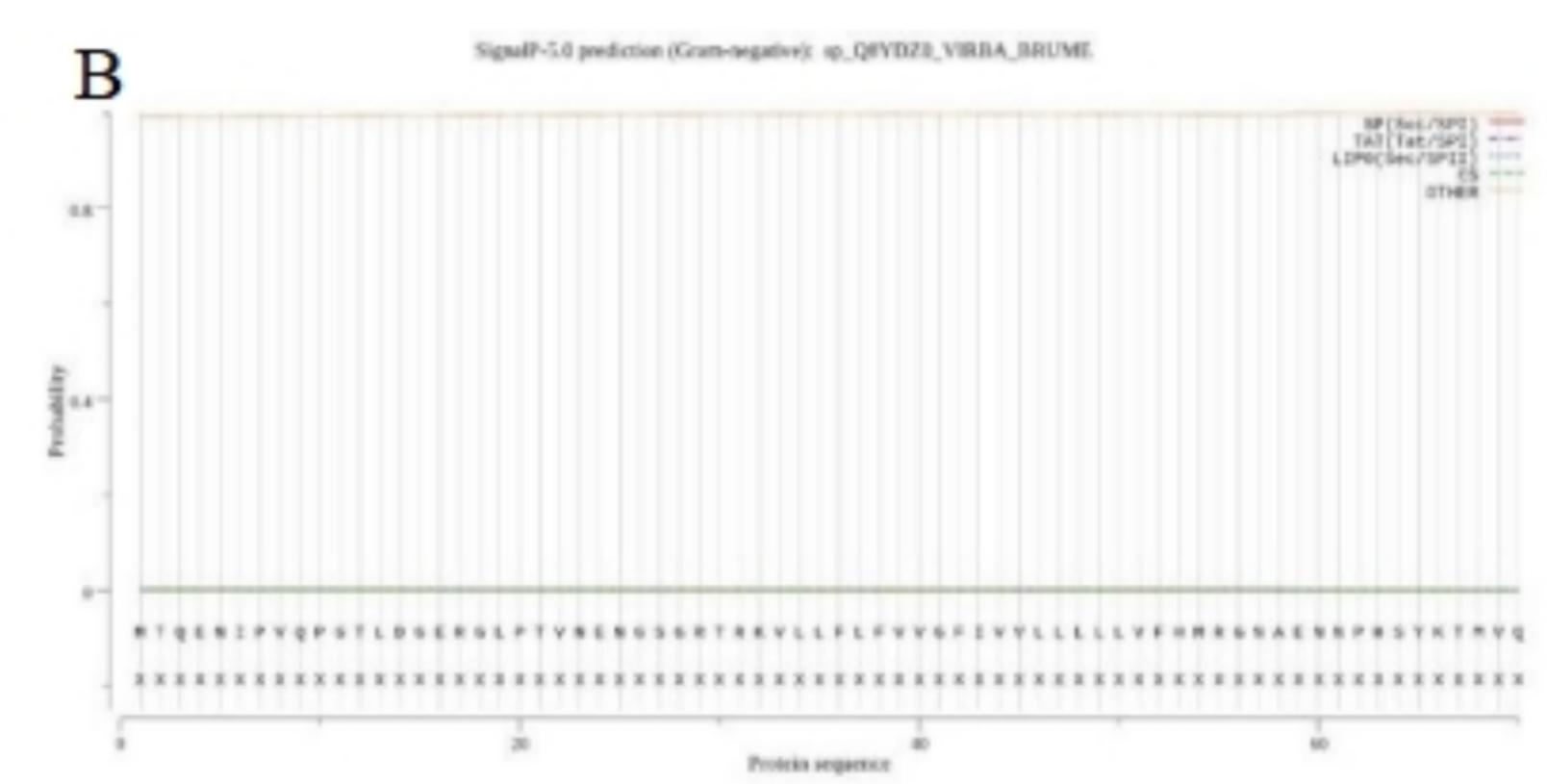
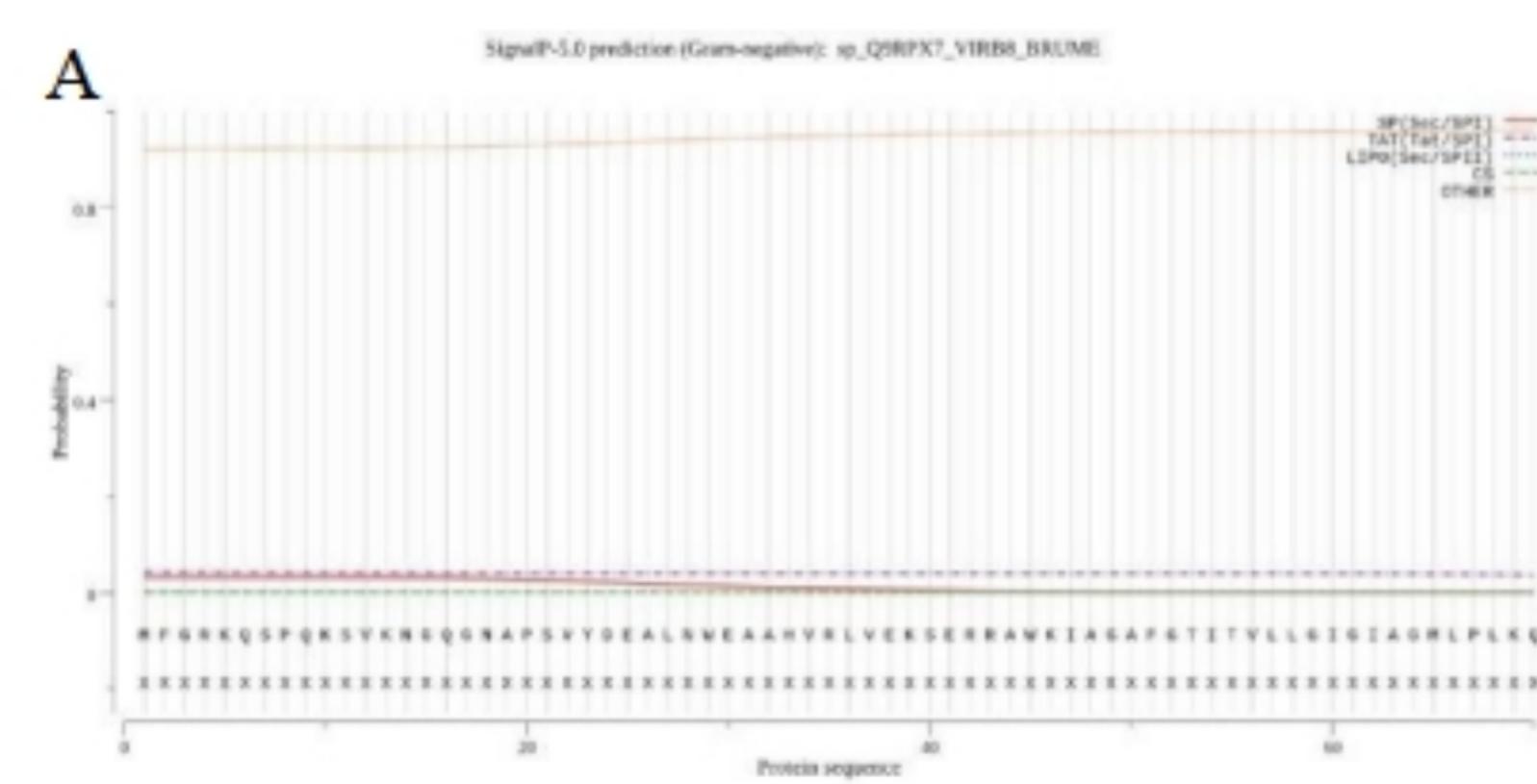

Figure

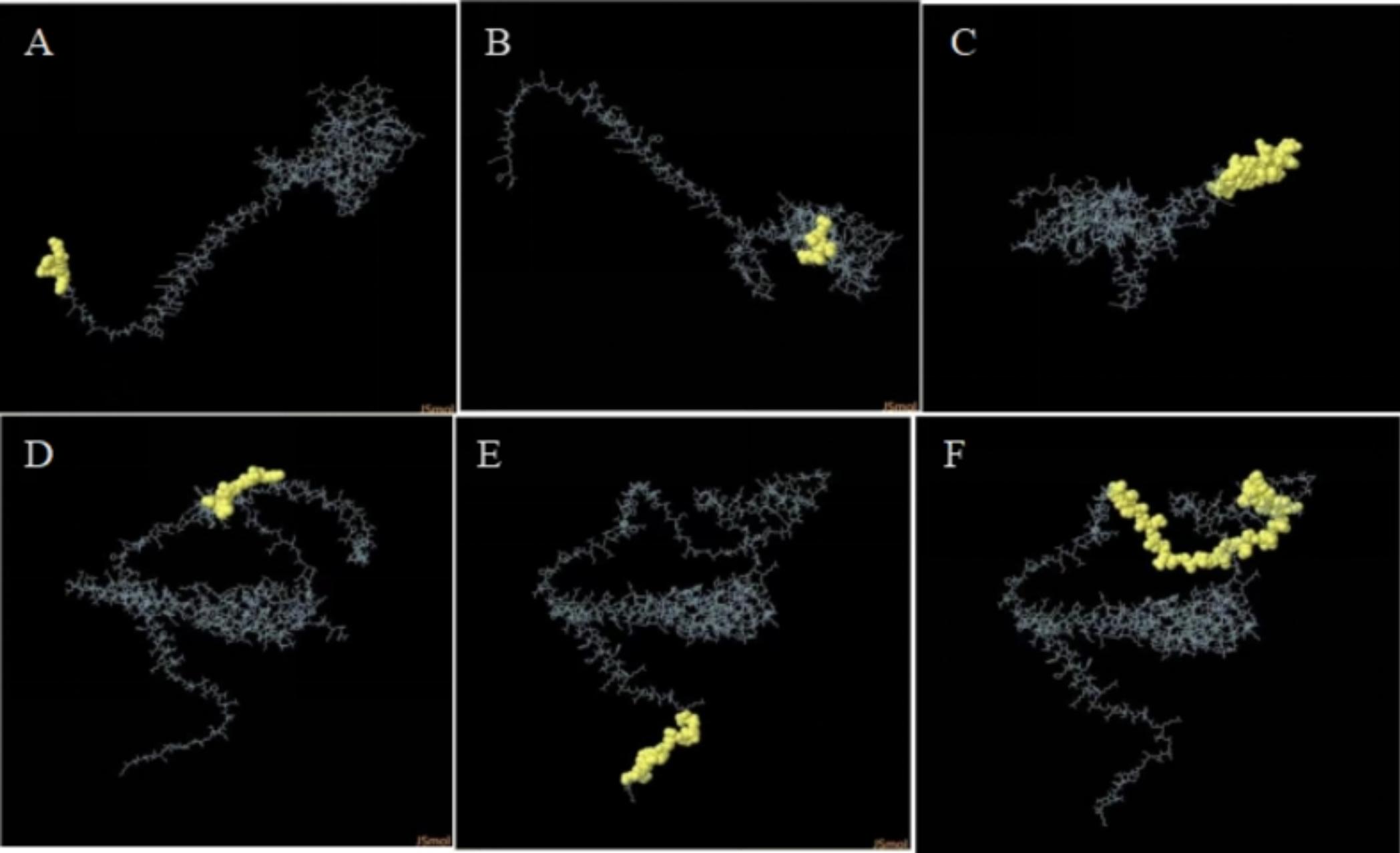




Figure


Figure


Figure


Figure



Figure


Figure

Figure

Figure

