

1 **Stanniocalcin 2 (STC2) is a potent biomarker of hepatocellular carcinoma with its expression 2 being augmented in Nrf1 α -deficient cells, but diminished in Nrf2-deficient cells**

3 Qiqi Bu^{1,2,3,4}, Yangxu Deng^{1,3,4}, Qing Wang^{1,3}, Rongzhen Deng^{1,3}, Shaofan Hu^{1,3}, Zhigang Pei² and Yiguo Zhang^{2,3,*}

4 ¹Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China

5 ²Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street,
6 Jiangjin District, Chongqing 402260, China

7 ³The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174
8 Shazheng Street, Shapingba District, Chongqing 400044, China

9 [#] the authors contributed equally to this work.

10 *Correspondence to YZ: yiguo Zhang@cqu.edu.cn

11 **Abstract**

12 For insights into the fact that liver-specific knockout of Nrf1 leads to development of non-alcoholic
13 steatohepatitis and spontaneous hepatoma, we previously found that loss of Nrf1 α (i.e., a full-length isoform
14 encoded by *Nfe2l1*) promotes HepG2-derived tumor growth in xenograft mice, but malgrowth of the xenograft
15 tumor is significantly suppressed by knockout of Nrf2 (encoded by *Nfe2l2*). The mechanism underlying such
16 marked distinctions in their pathologic phenotypes remains elusive, however, to date. Herein, we mined the
17 transcriptome data of liver cancer from the TCGA database to establish a prognostic model of liver cancer and
18 then calculated the predicted risk score of each cell line. The results indicated that knockout of Nrf1 α
19 significantly increased the risk score in HepG2 cells, whereas the risk score was reduced by knockout of Nrf2. Of
20 note, stanniocalcin 2 (STC2, a biomarker of liver cancer, that is up-expressed in hepatocellular carcinoma (HCC)
21 tissues with a reduction in the overall survival ratio of those patients) was augmented in *Nrf1 α* ^{-/-} cells, but
22 diminished in *Nrf2*^{-/-} cells. Thereby, it is inferable that STC2 is likely involved in mediating the distinction between
23 *Nrf1 α* ^{-/-} and *Nrf2*^{-/-}. Further investigation revealed that HIF1A is an upstream regulator of STC2 in *caNrf2*^{ΔN},
24 rather than *Nrf1 α* ^{-/-}, cells, and regulation of STC2 and HIF1A in *Nrf1 α* ^{-/-} is determined by Nrf2, but the regulation
25 of STC2 by Nrf2 may be independent on HIF1A. In turn, STC2 can regulate Nrf2 *via* the putative calcium-mediated
26 Keap1-p62 signaling so to form a feedback regulatory loop. Such potential function of STC2 was further
27 corroborated by a series of experiments combined with transcriptomic sequencing. The results unraveled that
28 STC2 manifests as a dominant tumor-promoter, because the STC2-leading increases in clonogenicity of hepatoma
29 cells and malgrowth of relevant xenograft tumor were almost completely abolished in *STC2*^{-/-} cells. Together,
30 these demonstrate that STC2 could be paved as a novel potent therapeutic target, albeit as a diagnostic marker,
31 for hepatocellular carcinoma.

32 **Keywords:** Nrf1 α ; Nrf2; HIF1A; STC2; Keap1; prognostic model; transcriptome; hepatocellular carcinoma

33

34 **1. Introduction**

35 Globally, liver cancer is a frequently-occurring malignant tumor with considerably high mortality. This is
36 owing to the lack of clear diagnostic markers, such that it is rather difficult in gaining early diagnosis of those
37 patients and also their prognosis is poor. Amongst all types of liver cancers, hepatocellular carcinoma (HCC) is the
38 most common form of hematoma accounting for more than 90% [1]. This occurred closely with those
39 increasingly unhealthy diets and lifestyles in humans, leading to non-alcoholic fatty liver disease (NAFLD),
40 metabolic disease and obesity, which are replacing viral- and alcohol-related liver disease so as to become a core
41 topic of HCC development [2, 3]. NAFLD is a continuum originated from the more benign course of non-alcoholic
42 fatty liver disease (i.e., simple steatosis) and non-alcoholic steatohepatitis (NASH), which is characterized by
43 excessive accumulation of triglycerides, with inflammation and hepatocyte damage and may culminate into liver
44 fibrosis, cirrhosis, and even HCC [4-6]. However, the mechanisms underlying the pathogenesis of NASH and its
45 malignant transformation to HCC remain elusive.

46 Coincidentally, liver-specific knockout of nuclear factor erythroid 2-related factor 1 (Nrf1, encoded by *Nfe2l1*)

47 in mice leads to NASH and ultimately spontaneous hepatoma [7]. Further studies unraveled that Nrf1 makes a
48 central contribution to the hepatic lipid (cholesterol) homeostasis by controlling the expression of transcriptional
49 coactivators for the expression of metabolic enzyme genes [8-11]. Subsequently, gene expression profiling
50 analyses revealed different pathophysiological roles of Nrf1 and Nrf2 (encoded by *Nfe2l2*) in the liver, because
51 the former Nrf1 has limited regulation of Nrf2-target genes [12, 13], although both factors share highly
52 evolutionary conserved homologies in the structure and function[14]. Our group found that loss of *Nrf1α*
53 significantly promotes the growth of HepG2-derived xenograft tumor in nude mice, but such malgrowth of the
54 xenograft tumor is almost completely abolished by loss of *Nrf2* [15]. Collectively, such differential and even
55 opposing phenotypes between *Nrf1α*^{-/-} and *Nrf2*^{-/-} are postulated to be attributable to a hitherto unknown
56 mechanism accounting for HCC development.

57 As a matter of fact, Nrf1 and Nrf2 are two principal members of the cap'n'collar (CNC) basic region-leucine
58 zipper (bZIP) transcription factor family, which are widely expressed in a variety of tissues and cell types [16].
59 When they are required for biological cues, a functional heterodimer of each factor with small Mafs or other
60 bZIP partners is formed for DNA-binding to antioxidant response elements (AREs) in their cognate gene promoter
61 regions before such target genes are transcriptionally activated or repressed [17]. As such, ever-accumulating
62 evidence revealed similar but distinctive roles of Nrf1 and Nrf2 in governing the transcriptional expression of
63 proteasome, antioxidant, detoxification, metabolic and cytoprotective genes, along with those critical for
64 maintaining cellular homeostasis. Of note, human and rodent *Nfe2l1* genes can be alternatively transcribed and
65 further subjected to selective splicing to yield various protein isoforms with different tempo-spatial topological
66 properties. Amongst them, the full-length Nrf1α is identified as a major player to transcriptionally regulate
67 Nrf1-target genes [18, 19]. By contrast, Nrf2 is accepted as a master regulator of antioxidant response, but under
68 basal conditions it is sequestered by Kelch-like ECH-associating protein 1 (Keap1) within the cytoplasm and
69 targeted to the ubiquitin-led proteasomal degradation. Upon stimulation by oxidative stress, Nrf2 is enabled to
70 dissociate from its inhibitor Keap1 and then translocated into the nucleus, in order to control the expression of
71 ARE-driven genes involved in cytoprotection, differentiation, proliferation and metabolism [20]. Apart from the
72 strong homology of between Nrf1 and Nrf2, their gene-targeting knockout experiments unraveled that they have
73 made significantly functional differences in their pathophysiology. Knockout of Nrf1 in the mouse results in
74 anemia due to defective erythropoiesis, leading ultimately to embryonic lethality [21], whereas *Nrf2*^{-/-} mice are
75 viable and fertile with the normal growth and development [22]. Moreover, it is of crucial significance to notice
76 that Nrf1α is endowed as a potent tumor-repressor of hepatoma [19, 23], while Nrf2 exerts a double-edged
77 sword's effect on cancer development, because activation of Nrf2 is likely to inhibit NASH by ameliorating
78 lipotoxicity, inflammation and cellular stress so to prevent liver carcinogenesis [24], but permanent oncogenic
79 activation of Nrf2 promotes tumorigenesis and cancer malignance [15, 25].

80 Recently, stanniocalcin 2 (STC2) has been shown to be a tumor biomarker, which is upregulated widely in
81 most of human cancers (e.g., hepatocellular carcinoma, esophageal carcinoma, gastric cancer, pancreatic cancer,
82 lung cancer and prostate cancer [26-30], albeit it was originally identified as a glycoprotein hormone to regulate
83 calcium and phosphate homeostasis. Clinical and pathological investigations also revealed that the expression
84 abundance of STC2 is correlated with tumor progression and even prognosis of the patients. This has been
85 exemplified by the high-level STC2 in sera from those patients with gastric cancer, which presages this
86 pathological diagnosis and poor prognosis [31]. STC2 also seems to be correlated with the tumor size of HCC [29];
87 this is supported by the evidence that the overexpression of STC2 promotes cancer cell proliferation and colony
88 formation, but conversely silencing of STC2 results in a cell-cycle delay in its G0/G1 phase. Similarly, the
89 expression levels of STC2 in pancreatic cancer were also reported to be positively correlated with the tumor sizes,
90 but negatively correlated with 5-year survival ratio of those patients [32]. Much to our surprise, the inducible

91 expression of STC2 in neuronal cells was also found to be activated for response to oxidative stress and hypoxia
92 [33]. Such hypoxia-inducible factor 1 (HIF1)-dependent expression of STC2 was further evidenced in proximal
93 tubular epithelial cells [34]. Chromatin immunoprecipitation uncovered that HIF1A binds to the hypoxia response
94 element (HRE) in the promoter of *STC2* gene [35]. Thereby, it is inferable that STC2 can serve as a direct target of
95 HIF1 to facilitate cell proliferation, migration and invasion under hypoxia [36, 37]. This raises an
96 interesting question of how STC2, Nrf1 and Nrf2 together exert their essential roles in mediating the cellular
97 response to oxidative stress, and their inter-regulatory relationship remains unknown.

98 To address this, we here found that STC2 can serve as a novel biomarker of hepatocellular carcinoma, with
99 its expression being augmented in *Nrf1 $\alpha^{-/-}$* cells, but diminished in *Nrf2 $\alpha^{-/-}$* cells. It is inferred, based on a
100 prognostic model of liver cancer, that loss of Nrf1 α led to a significant increase in the predicted risk score of
101 hepatoma, but the risk score was reduced by loss of Nrf2. This is a full coincidence with the opposing phenotypes
102 of their xenograft tumors in nude mice, thus implying that STC2 is likely involved in mediating such distinctions
103 between *Nrf1 $\alpha^{-/-}$* and *Nrf2 $\alpha^{-/-}$* . Further examinations revealed that upregulation of STC2 by Nrf2 in *Nrf1 $\alpha^{-/-}$* and
104 *caNrf2 ΔN* cell lines, occurs *via* HIF1A-dependent and independent pathways, albeit Nrf2 serves as a upstream
105 regulator of HIF1A. Conversely, STC2 regulates Nrf2 *via* a putative calcium-mediated Keap1-p62 signaling to form
106 a feedback regulatory loop. The potential function of STC2 was further corroborated by a series of experiments in
107 combination with transcriptomic sequencing. The results unraveled that like Nrf2, STC2 also manifests a
108 dominant tumor-promoter, because STC2-promoted increases in the clonogenicity of HepG2 cells and malignant
109 growth of its xenograft tumor were almost completely abolished in *STC2 $\alpha^{-/-}$* cells. Taken together, these
110 demonstrate that STC2 could be paved as a novel potent therapeutic target, except as a diagnostic marker, for
111 hepatocellular carcinoma.

112

113 **2. Materials and methods**

114 **2.1. Big data mining and processing**

115 The RNAseq data in the 'HTSeq-Counts' format and relative clinical information of 371 cases of
116 hepatocellular carcinoma, along with additional 50 normal controls, were downloaded from TCGA (the Cancer
117 Genome Atlas) website (<https://portal.gdc.cancer.gov/>). The normalization and differential expression analysis
118 was performed by using the 'DESeq2, LIMMA-voom and edgeR" packages [38]. By combination with the clinical
119 data, both the Kaplan-Meier survival analysis and the univariate COX regression analysis were subject to
120 establishing an eight-gene COX prognosis model for liver cancer (LIHC). The accuracy of this model was also
121 further evaluated by using the receiver operating characteristic (ROC) curve with the concordance index.

122 **2.2. Cell line culture, transfection and chemical treatment**

123 The human hepatocellular carcinoma (HepG2) cell line was obtained originally from ATCC (Zhong Yuan Ltd.,
124 Beijing, China). Three HepG2-derived *Nrf1 $\alpha^{-/-}$* , *Nrf2 $\alpha^{-/-}$* (with a deletion of its transactivation domains Neh4 and
125 Neh5) and *caNrf2 ΔN* (with a deletion of its N-terminal keap1-binding Neh2 domain by the gene-editing to yield
126 this constitutive activation mutant) cell lines were established in our laboratory [15, 39] and identified here
127 (Figure S1). Additional three cell lines, respectively with an insert mutant of STC2 (*STC2 insC*), a knockout (KO)
128 mutant (*STC2 $\alpha^{-/-}$*) or stably overexpressing STC2 (i.e. Lentiv-STC2), were here created from HepG2 cells and
129 confirmed by its genomic DNA-sequencing (Figure S2). In addition, MHCC97L cell line was obtained from the Live
130 Cancer Institute (Fudan University of China) and maintained in our laboratory.

131 All experimental cell lines were cultivated in DMEM (GIBCO, Life technologies) supplemented with 10% fetal
132 bovine serum (FBS, Biological Industries, Israel), penicillin and streptomycin (100 units/mL, Solarbio, Beijing,
133 China), in the 37°C incubator with 5% CO₂. Two expression plasmids for human HIF1A or STC2 were constructed
134 by cloning their cDNA sequences into the pcDNA3.1 vector. Three siRNAs (siSTC2, siNrf2 and siHIF1A) nucleotide

135 sequences (Table S1) were synthesized for silencing their endogenous gene expression. Each of these plasmids or
136 siRNAs was transfected into cells by incubating with Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) for 8 h.
137 Subsequently, the cells were allowed for a 24-h recovery from transfection in a fresh medium and then treated
138 with the following chemicals, such as thapsigargin (TG, a microsomal Ca^{2+} -ATPase inhibitor, from Sangon,
139 A616759, Shanghai, China), CoCl_2 (an inducer of HIF1A, from Aladdin C299372, Shanghai, China) and Oltipraz (an
140 Nrf2 activator, that inhibits HIF1A simultaneously, from MedChemExpress HY-12519, Shanghai, China).

141 **2.3. Real-time quantitative PCR**

142 Total RNAs (1 μg) of experimental cells were extracted with the RNA simple kit (Tiangen, Beijing, China) and
143 added to the reverse transcriptase reaction to obtain the first strand of cDNAs by using RevertAid First Strand
144 cDNA Synthesis kit (K1622, Thermo, USA). These cDNA templates and corresponding primers (synthesized by
145 Tsingke, Chengdu, China and listed in Table S2) were incubated with 20 μL of the real-time PCR reaction mixture
146 including GoTaq qPCR Master Mix (Promega, USA) at 95°C for 3 min, followed by 40 cycles at 95°C for 15 s and
147 then extending at 60°C for 30 s, in the CFX Connect Real-Time PCR Detection System (Bio-Rad, CA, USA). Therein,
148 β -actin was used as an internal control for normalization. Subsequently, the relative mRNA expression
149 abundances were calculated by using the $2^{-\Delta\Delta\text{Ct}}$ method.

150 **2.4. Western blotting with distinct antibodies**

151 The experimental cells were collected in a lysis buffer (0.5% SDS, 0.04 mol/L DTT, pH 7.5) supplemented
152 with the protease inhibitor EASYPacks (Roche, Germany). The lysates were diluted with 3 \times loading buffer (187.5
153 mmol/L Tris-HCl, pH 6.8, 6% SDS, 30% Glycerol, 150 mmol/L DTT, 0.3% Bromphenol Blue), denatured for 10 min
154 at 100°C and sonicated sufficiently. Equal amounts of protein extracts were loaded in each well of SDS-PAGE gels
155 containing 8% or 10% polyacrylamide, and transferred to the polyvinylidene fluoride membranes (Millipore Co.,
156 Tullagreen, Ireland). The protein-loaded membranes were immunoblotted with each of the primary antibodies
157 against STC2 (ab255610), Nrf2 (ab62352), HMOX1 (ab68477), NQO1(ab80588), GCLM (Ab126704) (all five
158 antibodies purchased from Abcam), HIF1A (#36169, from Cell Signaling Technology), V5 tag (R960-25, from
159 Thermo Fisher), Nrf1 (this specific antibody made in our own laboratory [40]), or β -actin (TA-09, from ZSGB-BIO,
160 Beijing, China) overnight at 4°C and then the secondary antibodies [HRP-labeled goat anti-rabbit or anti-mouse
161 IgG (H+L), ZB-2301, from ZSGB-BIO, Beijing, China] for 2 h at 37°C. The immunoblots were lastly exposed to the
162 ECL light system and calculated by using the ImageJ software.

163 **2.5. The STC2 gene-editing by CRISPR/Cas9 to yield $STC2^{insC}$ and $STC2^{-/-}$**

164 The gRNA-target sequences were designed online (<http://crispr.dbcls.jp/>) (Table S3) and then cloned into
165 the Cas9/Grna (puro-GFP) Vector (Wiewsolid Biotech, China). The indicated plasmids were confirmed by
166 sequencing and co-transfected into HepG2 cells for 8 h, before the cells were allowed for a 24-h recovery from
167 transfection in a complete medium containing 10% FBS. The transfected cells were screened with puromycin
168 (Solarbio, Beijing, China), diluted and inoculated into 96-well cell culture plates (with a probability of one cell per
169 well). The positively-selected monoclonal cell lines were subjected to the genomic DNA extraction and PCR
170 amplification of the gRNA-target-adjoining sequences to identify their genotypes, called $STC2^{insC}$ and $STC2^{-/-}$,
171 respectively.

172 **2.6. STC2-overexpressing cell lines were established by lentivirus**

173 The STC2-encoding cDNA was cloned into the pLJM1-EGFP vector to yield a STC2-expressing construct,
174 called pLJM1-STC2, that was verified by sequencing. The pLJM1-STC2, together with the virus-packaging
175 plasmids psPAX2 and pMD2G, was co-transfected into 293T cells for 8 h, before these cells were allowed for a
176 24-h recovery from transfection in a complete medium containing 10% FBS. The cells continued to culture for

177 additional 24 h and their supernatants were collected to obtain a certain amount of lentivirus. The lentivirus titer
178 was then evaluated, prior to an efficient infection of the STC2-expressing lentivirus into HepG2 cells. The positive
179 monoclonal cells (called Lentiv-STC2) were selected and saved for subsequent experiments.

180 **2.7. The colony formation assay**

181 Experimental cells (750 cells/well seeded in 6-well plates) were allowed for growing for two weeks at 37 °C
182 with 5% CO₂. The cells were subjected to fixation by 4% paraformaldehyde before being stained with 1% crystal
183 violet reagent (Sigma), and then the colony number was counted.

184 **2.8. Analysis of cell cycle by flow cytometry**

185 The experimental cells were collected by centrifuging at 1000 rpm for 5 min, and suspended in 300 µL of
186 pre-cooled PBS, before being slowly added in 700 µL of absolute ethanol, gently mixed, and then incubated at
187 4°C overnight. The cells were re-centrifuged at 4°C and re-suspended in 100 µL of a binding buffer. The cell
188 suspensions were incubated in the dark with 5 µL of propidium iodide (PI)-staining solution and 5 µL of annexin
189 V-FITC at room temperature for 15 min. Additional 400 µL of binding buffer was added to the cell sample and
190 mixed fully before analysis of the cell cycle by flow cytometer.

191 **2.9. Subcutaneous tumor xenografts in nude mice**

192 Mouse xenograft tumor models were made by subcutaneously heterotransplanting the wild type (WT)
193 HepG2 and its derived STC2^{insC}, STC2^{-/-} and Lentiv-STC2 cell lines into nude mice, as described [41]. Each of
194 experimental cell lines (1×10⁸) in exponential growth phase were suspended in 0.1 mL of phosphate buffer
195 solution, before being inoculated subcutaneously into the indicated axilla region of male nude mice (BALB/C^{nu/nu},
196 6 weeks, 18 g, from HFK Bioscience, Beijing, China) at a single site (n = 5 per group). The inoculated procedure
197 into all mice was completed within 30 min, and the formation of subsequent subcutaneous tumor xenografts
198 was observed. The tumor sizes were measured every two days until the 30nd day when all mice were sacrificed
199 and also their transplanted tumors were excised. The sizes of all xenograft tumors were calculated by a standard
200 formula (i.e., V = ab²/2). Notably, all mice were maintained under standard diets and living conditions. All
201 relevant studies were carried out on the mice (with the license No. PIL60/13167) in accordance with United
202 Kingdom Animal (Scientific Procedures) Act (1986) and the guidelines of the Animal Care and Use Committees of
203 Chongqing University and the Third Military Medical University, both of which were subjected to the local ethical
204 review (in China). All relevant experimental protocols were approved by the University Laboratory Animal
205 Welfare and Ethics Committee (with two institutional licenses SCXK-PLA-20120011 and SYXK-PLA-20120031).

206 **2.10. Analysis of transcriptome sequencing**

207 Total RNAs were extracted from WT, STC2^{-/-} and Lentiv-STC2 cell lines and subjected to their transcriptome
208 sequencing (by Beijing Genomics Institute, Shenzhen, China) on the DNBSEQ platform. After the data were
209 filtered, those clean reads are obtained and then mapped to the relevant reference sequences of *Homo sapiens*'
210 genome (GCF_000001405.38_GRCh38.p12) by using both tools HISAT [42] and Bowtie2 [43]. The relative gene
211 expression levels of each sample were calculated by using the RSEM method [44]. Consequently, the
212 differentially expressed genes (DEGs) were identified, with a criteria Log₂fold-changes ≥1 and Q-value ≤0.05, by
213 using the DESeq2 tool. Those DEGs were further subjected to both the Gene Ontology (GO [45]) functional
214 enrichment analysis (including biological processes, cellular components and molecular functions) and also the
215 Kyoto Encyclopedia of Genes and Genomes (KEGG) [46] pathway enrichment analysis.

216 **2.11. Statistical analysis**

217 All relevant data in this study were obtained from at least three independent experiments, each of which
218 was performed in triplicates and shown as fold changes (mean±SD), before being analyzed by using the

219 Origin8.0 tool. The statistic differences between the various experimental groups and within groups were
220 calculated by one-way ANOVA, and the results at the value $p < 0.01$ were considered to have significant
221 differences.

222 **3. Results**

223 **3.1. Involvement of STC2 in mediating the distinction between *Nrf1α*^{-/-} and *Nrf2*^{-/-}**

224 To gain insight into distinct phenotypes of those tumor xenograft mice inoculated with *Nrf1α*^{-/-}, rather than
225 *Nrf2*^{-/-}, hepatoma cell lines, we first analyzed the data obtained from the TCGA database by using distinct
226 packages (Figures S3 & S4). The results of principal component analysis (PCA) of HCC and normal cases indicated
227 in the TCGA database were shown (Figure S4A), along with a volcano map of their DEGs (Figure S4B) and another
228 heat map of those expression values of top 30 amongst the most significant DEGs (Figure S4C). The impact of
229 each of such DEGs (e.g., STC2, CBX2, ADAM1, and AKR1D1, Figure S4D) on the overall survival rate of HCC
230 patients was evaluated by the Kaplan-Meier's method and another single-gene-based Cox's proportional hazards
231 regression method (simply referred as to COX model). On this base, we have here established an
232 eight-gene-based Cox's prognostic model for HCC, with global *p*-value (<< 0.01) and *C*-index (0.73) (Figure 1A), as
233 well as the area under ROC curve (AUC=0.788, Figure 1B), manifesting a rather reliable performance of this
234 model at predicting the overall survival rate (*p*=2.578e-08, Figure 1C). The survival status of patients grouped
235 within high and low risk scores was further analyzed by the Kaplan-Meier's method to construct their survival
236 curves. The results revealed that the overall survival rate of the high-risk patients was significantly lower than
237 that of those patients in the low-risk group (Figure 1C). By analyzing their survival time of two distinct risk groups,
238 it was found that the number of death cases with the high risk scores was significantly higher than that of the
239 low risk cases (Figure 1D). The expression levels of the model eight genes in the liver cancer tissues of distinct
240 risk patients were illustrated in the heat map (Figure 1E), along with the specific parameters of this COX model
241 being listed (in Table S4). Collectively, these demonstrate that the prognosis of HCC patients with distinct risks
242 can be accurately predicted by this eight-gene-based prognostic model.

243 By comparative transcriptomic analysis of significant DEGs in the TCGA-LIHC tissues with those selected in
244 *Nrf1α*^{-/-}, *Nrf2*^{-/-} or *caNrf2*^{ΔN} (versus *WT*) cell lines (Figures S5 & S6), we found distinct expression levels of the
245 COX-modeled genes (but only STC2 with a probability of 1.00) in each indicated cell line (Tables S5-S7). As a result,
246 the predicted risk score of each cell line (Table 1) was calculated by multiplying all those gene coefficients by all
247 their expression levels. Of note, a significant increase in the risk score was caused by loss of *Nrf1α*^{-/-} in HepG2
248 cells, but the risk score was markedly reduced by loss of *Nrf2*^{-/-}; this seems to be consistent with discrepant
249 phenotypes of their xenograft tumors in nude mice as described previously [15]. Further examination of the
250 COX-modeled eight genes unraveled that *GAGE2A*, *SPP1*, *TKTL1*, *ZDHHC22*, *PYDC1* were very less or not
251 expressed in all four examined cell lines, while the expression levels of *CBX2* and *HOXD9* (albeit both may also
252 serve markers) in *Nrf1α*^{-/-} or *Nrf2*^{-/-} cell lines were not obviously different from those in *WT* cell line (Tables
253 S5-S7, and Figure S6,E & F). However, it is, to our surprise, discovered that *STC2* was significantly up-regulated in
254 both cell lines of *Nrf1α*^{-/-} (retaining hyper-active Nrf2) and *caNrf2*^{ΔN}, but significantly down-regulated in *Nrf2*^{-/-}
255 cells as compared with that in *WT* cells (Figure 1F). Accordantly, *STC2* was also significantly up-expressed in HCC
256 when compared to the normal liver tissues by the Ualcan database [47]. Such increased expression of *STC2*
257 appears to presage a striking reduction in the overall survival rate of HCC patients (Figure 1, G & H), by using the
258 Kaplan-Meier Plotter database [48].

259 Next, the mRNA and protein abundances of *STC2* in all examined *WT*, *Nrf1α*^{-/-}, *Nrf2*^{-/-} and *caNrf2*^{ΔN} cell lines
260 were further validated by RT-qPCR and western blotting, respectively. As expected, the results demonstrated that
261 both mRNA and protein expression levels of *STC2* were significantly up-regulated in *Nrf1α*^{-/-} and *caNrf2*^{ΔN} cell
262 lines, whereas obviously down-expressed *STC2* mRNA levels were determined in *Nrf2*^{-/-} cells, but with an

263 exception of no obvious changes in its protein expression, as compared with their control values obtained from
264 WT cells (Figure 1, I & J). Herein, it is noteworthy that the validity of STC2 antibody was also verified by
265 thapsigargin (TG)-stimulated expression of endogenous STC2 proteins, which was manifested with three distinct
266 isoforms between 34-kDa and 39-kDa (Figure S1C). Altogether, it is inferable that STC2 is likely implicated in
267 mediating the distinction between *Nrf1*^{-/-} and *Nrf2*^{-/-}.

268 **3.2. HIF1A-dependent expression of STC2 was affected by Nrf1 α or Nrf2 in distinct genotypic cell lines**

269 A gene expression profiling interactive analysis (GEPIA [49]) of the liver cancer database was herein
270 subjected to evaluating whether changes in the expression levels of STC2 are correlated with Nrf1, Nrf2, HIF1A
271 and AHR (aryl hydrocarbon receptor), since they all are required for cytoprotection against oxidative stress [33,
272 50]. As shown in Figure S7 (A to D), the mRNA expression levels of *Nrf1* and two known downstream genes *GCLM*
273 and *PSMB7* were significantly correlated ($R > 0.2$, $p < 0.01$), while the mRNA expression abundances of *Nrf2* and
274 typical downstream gene *GCLM*, as well as *Nrf1*, were positively correlated. Similarly, the mRNA expression levels
275 of *STC2* also appeared to be significantly correlated with Nrf1, Nrf2, HIF1A and AHR (Figure S7, E to H). The latter
276 two transcription factors (albeit with relatively lower R values than those of the former two factors) had been
277 reported to enable for directly binding the promoter region of the *STC2* gene and hence considered as its direct
278 upstream regulators [35, 51].

279 In accordance to the ChIP-Atlas database, HIF1A can directly bind to the promoter region of 5-kb before and
280 after its transcription start site of *STC2* in HepG2 cells (Figure 2A), but no similar binding data for AHR, Nrf1 or
281 Nrf2 or AHR were found in this database. Rather, by further comparison of another ChIP-sequencing data for
282 Nrf1 (from the Encode database) binding to the promoter regions of *GCLM* or *STC2* in HepG2 cells (Figure S8, cf.
283 A1 with A2), it is suggested that Nrf1 has a DNA-binding activity to *STC2* as similar to binding its downstream
284 *GCLM*. By contrast, Nrf2 possesses a significantly strong binding activity to *GCLM* rather than *STC2* (Figure S8, cf.
285 B1 with B2).

286 The expression abundances of HIF1A and Nrf2 were further validated by Western blotting of distinct
287 genotypic cell lysates, as the resulting data revealed that both factors were significantly highly expressed in
288 *Nrf1*^{-/-} and *caNrf2*^{ΔN} cell lines (Figure 2B). Next, the real-time qPCR analysis unraveled that, upon silencing of
289 HIF1A in *Nrf1*^{-/-} or *caNrf2*^{ΔN} cell lines, its downstream *STC2* expression levels were markedly down-regulated by
290 *siHIF1A* in *caNrf2*^{ΔN} cells, but partially decreased by *siHIF1A* in *Nrf1*^{-/-} cells (albeit with hyper-active Nrf2
291 accumulation) (Figure 2C). Similarly, the protein abundance of STC2 was significantly suppressed by *siHIF1A* in
292 *caNrf2*^{ΔN} cells, but conversely elevated by knockdown of *HIF1A* in *Nrf1*^{-/-} cells (Figure 2D). Such nuanced
293 expression levels of STC2 imply a differential or even opposing response of this hormone to silencing of its
294 upstream regulator HIF1A in distinct contexts between *caNrf2*^{ΔN} and *Nrf1*^{-/-} cell lines.

295 Further examination of HIF1A-silenced WT HepG2 cells by real-time qPCR revealed that its downstream
296 genes *STC2*, *VEGFA* (vascular endothelial growth factor A) and *GLUT1* (glucose transporter 1, also called *SLC2A1*
297 (solute carrier family 2 member 1) were only marginally down-regulated by *siHIF1A*, except that *HILPDA* (hypoxia
298 inducible lipid droplet associated) was significantly repressed by silencing of *HIF1A* (Figure 2E). Such being the
299 case, almost no changes in the protein expression of STC2 were observed in *siHIF1A*-treated HepG2 cells, but the
300 abundance of STC2 in MHCC97L (from a low metastatic HCC) cell line was markedly down-regulated by silencing
301 of *HIF1A* (Figure 2F). Collectively, such differential responses of STC2 (along with other downstream genes) to
302 silencing of HIF1A in different types of cells demonstrate that it may also be regulated by another
303 HIF1A-independent pathway.

304 Forced expression of HIF1A in WT HepG2 cells led to increased expression of STC2 at its protein and mRNA
305 levels (Figure 2,G & H), while the mRNA levels of *GLUT1* were modestly increased by overexpression of HIF1A,

306 but with almost no changes in the mRNA abundances of *VEGFA* and *HILPDA* (Figure 2H). Next, to address such
307 distinct responses of STC2 and other HIF1A-target genes, HepG2 and MHCC97L cell lines were treated with cobalt
308 chloride (CoCl_2 , as a hypoxia inducer to stabilize endogenous HIF1A [52, 53]). As anticipated, the results revealed
309 significant increases in the protein abundances of HIF1A and STC2 following CoCl_2 treatment of HepG2 and
310 MHCC97L cell lines for 6 h or 12 h (Figure 2I). However, it was, much to our surprise, found that such
311 CoCl_2 -stimulated expression of HIF1A and STC2 was also accompanied by significant increases of Nrf2, but with
312 obvious decreases of its negative regulator Keap1 (Figure 2I, cf. *i3* with *i4*). Taken altogether, these indicate that
313 the transcriptional expression of STC2 and/or HIF1A may also be regulated by Nrf2, except that all these protein
314 expression levels are, *de facto*, tightly controlled by Nrf1 α -target proteasomes.

315 **3.3. Distinct roles of Nrf2 and Nrf1 α for regulating the expression of STC2 in distinct genotypic contexts**

316 The above-described data suggested a HIF1-independent mechanism accounting for differential
317 up-regulation of STC2 between *Nrf1 $\alpha^{-/-}$* and *caNrf2 AN* cell lines may also exist. To gain an insight into this, we first
318 compared the transcriptomic data of two HEK293 cell lines, that had been allowed for the tetracycline-inducibly
319 stable expression of *Nrf1 α* or *Nrf2*, respectively [19]. As shown in Figure 3A, a significant increase in the
320 expression of *STC2*, but not of *STC1*, was determined in *Nrf2*-, rather than *Nrf1 α* -, expressing cell lines, even
321 although their co-target *HO-1* was up-regulated in both cell lines, when compared with that of *WT* cells. Next,
322 inducible increases in the endogenous expression of Nrf2, as well as its targets *HO-1* and *NQO1*, in HepG2 cells
323 MHCC97L cell lines were stimulated by oltipraz (as a known activator of Nrf2) (Figure 3B, *b1*, *b4* & *b5*).
324 Interestingly, such oltipraz-stimulated increase of Nrf2 was accompanied by a significant increment of STC2,
325 along with another significant decrease of HIF1A, (Figure 3B, cf. *b1*, *b2* with *b3*), all of which occurred at 24 h to
326 48 h after oltipraz treatment. Collectively, these demonstrate that except from HIF1A, Nrf2 is also required for
327 mediating the transcriptional expression of STC2.

328 Such putative role of Nrf2 in the regulation of STC2 was further corroborated by silencing of this CNC-bZIP
329 factor in the subsequent experiments. As shown in Figure 3(C & D), knockdown of Nrf2 led to obvious decreases
330 in the protein and mRNA expression levels of STC2 in *Nrf1 $\alpha^{-/-}$* cells, along with decreased expression of those
331 known Nrf2-target *HO-1*, *GCLC*, *GCLM* and *NQO1*. Such being the case, HIF1A was also significantly reduced by
332 *siNrf2* at its protein abundance, but not its mRNA levels. By contrast, in *caNrf2 AN* cells the mRNA expression of
333 STC2 was not decreased, but conversely modestly increased by *siNrf2*, while its protein abundance was partially
334 down-regulated by silencing Nrf2 (Figure 3,E & F). However, both the mRNA and protein expression levels of
335 HIF1A appeared to be unaffected by knockdown of Nrf2 in *caNrf2 AN* cells (but with a marginal increase of Nrf1
336 retained). Altogether, with the CHIP-sequencing data (from the Encode database) for binding of Nrf1 or Nrf2 to
337 the promoter regions of *STC2* and *HIF1A* (Figures S8 and S9A), these indicate distinct roles of Nrf2 and Nrf1 for
338 monitoring the expression of STC2 and its upstream regulator HIF1A at distinct layers (from mRNA to protein
339 levels) in different contexts.

340 When compared with *WT* cells, almost no changes in the basal expression of HIF1A and STC2 was observed
341 in *Nrf2 $^{-/-}$* cells (Figure 3G, also see Figure 1J & 2B), implying another possible role of Nrf1 in regulating STC2. Yet,
342 it is disappointing that the expression levels of STC2 and HIF1 were almost unaltered, although its target genes
343 *HO-1* and *GCLM* were up-regulated, by restoration of Nrf1 in *Nrf1 $\alpha^{-/-}$* cells (with an aberrant increase of Nrf2)
344 (Figure 3,H & I). However, overexpression of Nrf1 (and Nrf2) in *WT* HepG2 cells resulted in marked increases in
345 the mRNA expression of *STC2* as well as *HO-1* (Figure 3J), but with no obvious changes in the STC2 protein
346 expression (Figure 3K). Lastly, a series of luciferase reporter assays unraveled that Nrf1, Nrf2 and HIF1A enabled
347 distinct lengths of *STC2* promoter-driven genes to be *trans*-activated (Figure S9B). Collectively, these
348 demonstrate that like Nrf2, Nrf1 is involved in mediating the transcriptional expression of STC2, but in the
349 meantime, its basal protein expression abundance may be also further monitored, to a certain constant extent,

350 by Nrf1-target proteasomes in a negative feedback regulatory loop.

351 **3.4. STC2 mediates a feedback regulatory loop to monitor the expression of HIF1A and Nrf2**

352 Since the aforementioned data have manifested that Nrf1 and Nrf2 enable to promote differential
353 expression levels of STC2 in HIF1-dependent and -independent fashions, thus we investigated whether there
354 exists a feedback regulatory mechanism accounting for STC2 to maintain the redox homeostasis system involving
355 HIF1A, Nrf1, Nrf2 and Keap1. As shown in Figure 4A, a significant increase of Keap1 resulted from silencing the
356 expression of STC2 by *siSTC2* in *WT* HepG2 cells; this was accompanied by marked decreases of Nrf2 and its
357 downstream HO-1 (*cf. a1 to a4*). Interestingly, such silencing of STC2 also led to a striking decrease of HIF1A, but
358 not Nrf1 (Figure 4B). Further real-time qPCR analysis revealed that the mRNA expression of *HIF1A* was
359 significantly suppressed by *siSTC2*, along with partial down-regulation of *HO-1* and *GCLM* (Figure 4C). However, it
360 is intriguing that almost no changes in the mRNA levels of *Nrf2* and *Keap1*, but with a significant increment of
361 *Nrf1*. Collectively, these demonstrate a positive feedback loop between STC2 and HIF1. But those disparities
362 between the protein and mRNA expression levels of Nrf1, Nrf2, Keap1 and their co-target HO-1 in the
363 STC2-silenced HepG2 cells suggest at least two distinct feedback regulatory mechanisms at distinct strata (from
364 mRNA to protein) existing among them within a multi-hierarchical endogenous network.

365 Further examination of STC2-silenced *Nrf1 $\alpha^{-/-}$* cells also unraveled that the protein abundances of Nrf2 and
366 HO-1 were significantly decreased by *siSTC2*, as accompanied by a significant increase of Keap1 (Figure 4D, *cf. d1*
367 to *d4*). This occurred concomitantly with almost complete abolishment of HIF1 by *siSTC2* (Figure 4E, *cf. e2 with*
368 *e1*), but its mRNA expression appeared to be unaffected by *siSTC2* (Figure 4F). Moreover, it is also hard to
369 understand that *siSTC2* led to a modest increase in the mRNA levels of *Nrf2*, but with a modest decrease of *HO-1*
370 in *Nrf1 $\alpha^{-/-}$* cells (with hyper-active Nrf2 retained), while the mRNA levels of *Keap1*, along with the remnant *Nrf1*,
371 were roughly unaltered by *siSTC2* (Figure 4F). These ostensibly contradictory results suggest that the STC2
372 signaling feedback to HIF1A, Nrf1, Nrf2 and Keap1 is much likely to occur predominantly at their protein rather
373 than mRNA strata.

374 By contrast, silencing of the STC2 expression in *caNrf2 ΔN* cells led to significant decreases in the protein
375 levels of HIF1A, Nrf2 and NQO1, but with no obvious changes in the abundance of Keap1 (Figure 4G). In addition,
376 their mRNA expression levels were largely unaffected by *siSTC2* (Figure 4H). Strikingly, induction of the
377 endogenous STC2 expression by TG (a microsomal Ca^{2+} -ATPase inhibitor) in all examined *WT*, *Nrf1 $\alpha^{-/-}$* and *Nrf2 $^{-/-}$*
378 cell lines resulted in significant decreases of Keap1 (Figure 4I). Altogether, these results demonstrate that STC2
379 mediates a feedback regulatory loop to promote the protein expression of Nrf2, as well as HIF1A, by antagonizing
380 Keap1 and/or *via* a putative Ca^{2+} -mediated signaling pathway. This is due to a fact that TG, as a classic
381 endoplasmic reticulum stressor, can inhibit the transport of free Ca^{2+} and hence increase the intracellular Ca^{2+}
382 levels [54], so that the Ca^{2+} -mediated signaling was activated and/or prolonged insomuch as to monitor STC2 and
383 Keap1.

384 **3.5. STC2 augments hepatoma cell proliferation and its malgrowth *in vitro* and *in vivo***

385 To clarify the biological role of STC2 in HCC, its gene-editing by CRISPR/Cas9 in HepG2 cells was employed to
386 establish two mutant cell lines, designated *STC2 insC* and *STC2 $^{-/-}$* , that were further confirmed by their genomic
387 DNA-sequencing (Figure S2A), real-time qPCR and Western blotting (Figure 5,A & B). By contrast with *STC2 $^{-/-}$* ,
388 *STC2 insC* remained to yield the smallest polypeptide of STC2 among its three distinct isoforms (Figure 5B), which is
389 similar to the minor polypeptide arising from a mutant of STC2 (at the first translation starting codon into CTG,
390 Figure S2C, #1). Another stably STC2-expressing cell line was established using a lentiviral system, and the
391 expression efficiency of STC2 were further identified by Western blotting (Figure 5C) and real-time qPCR (Figure
392 5D). Of note, one cell line with its better validated effects was selected and named Lentiv-STC2 to use for the

393 subsequent experiments.

394 Next, the biological functioning of STC2 in hepatoma cell growth and proliferation was assessed on the base
395 of the above-established cell lines $STC2^{insc}$, $STC2^{-/-}$ and Lentiv-STC2. As shown in Figure 5(E & F), the clone
396 formation rate of HepG2 cells was almost completely suppressed by knockout of $STC2^{-/-}$, but largely unaffected
397 by the knockin mutant $STC2^{insc}$. By contrast, the colony formation rate of Lentiv-STC2 cells was significantly
398 enhance by ectopically-expressing STC2 (Figure 5F). Subsequently, the changes in the cell-cycle of four distinct
399 cell lines were determined by flow cytometry (Figure 5G). The results revealed that, when compared with the *WT*
400 controls, $STC2^{-/-}$ and $STC2^{insc}$ cell lines were significantly arrested at their G0/G1 phases, but conversely their
401 G2/M phases were thus shortened (Figure 5H), so as to enable the cell growth to be decelerated. By sharp
402 contrast, the S-phase of Lentiv-STC2 cells was shortened, while its G2/M phase was accordingly lengthened
403 (Figure 5H), such that the number of cells at the division phase increased, and the cell growth were thus
404 accelerated (Figure 5,F & G). Collectively, these indicate that STC2 promotes the cell division and proliferation of
405 hepatoma and its clonogenicity.

406 In order to further investigate the *in vivo* effect of STC2 on hepatoma cell growth, the relevant xenograft
407 models were established by subcutaneously injecting each of the indicated cell lines into nude mice. The cell
408 proliferation *in vivo* was evaluated by measuring tumor volumes and weights. All the tumor sizes were measured
409 every two days, until the 30nd day when all mice were sacrificed and their transplanted tumors were then excised.
410 As shown in Figure 5I, the results revealed that knockout of $STC2^{-/-}$ resulted in a significant blockage of the tumor
411 growth in mice, while Lentiv-STC2 overexpression enabled for promotion of its tumor malgrowth, but the
412 $STC2^{insc}$ -derived tumor growth changed negligibly, when compared with *WT* controls. Of note on the 30th day,
413 the average volume and weight of those tumors derived from $STC2^{-/-}$ cells were substantially lowered than those
414 from the *WT* controls (Figure 5J). By contrast, Lentiv-STC2-derived tumors were significantly larger in size and
415 also heavier in weight than all other tumors (Figure 5, J & K). Moreover, histological examination unraveled a
416 mass of the coagulative necrosis in $STC2^{-/-}$ -derived tumors, but not in other tumors (Figure 5L). Taken together,
417 these results demonstrate that STC2 has a potent tumorigenicity in HCC to promote the cell proliferation and its
418 malgrowth *in vivo* and *in vitro*.

419 3.6. Functional annotation of DEGs in $STC2^{-/-}$ or Lentiv-STC2 versus *WT* cells by transcriptome sequencing

420 To gain an insight into the pathobiological role of STC2 in distinct hepatoma phenotypes, $STC2^{-/-}$,
421 Lentiv-STC2 and *WT* cell lines were further subjected to transcriptome sequencing. Figure S10(A & B) showed a
422 correlation heatmap of all examined samples and another boxplot of their expression-quantified distribution,
423 respectively. The TPM values of STC2 were determined in the examined cell lines (Figure 6A); this indicates that
424 the STC2 mRNA levels in each sample were fully consistent with the results from transcriptome sequencing.
425 Subsequently, all those differentially expressed genes (DEGs) were defined by detecting their expression levels of
426 $|\text{Log}_2[\text{fold changes}]| \geq 2$, calibrated *p*-value (Q-value) ≤ 0.05 and diverged probability of ≥ 0.8 , relative to
427 equivalents measured from control cells (Figure 6B). Of note, 204 DEGs were upregulated and 222 DEGs were
428 downregulated in $STC2^{-/-}$ cells compared with *WT* cells, while 234 genes were upregulated and 226 genes were
429 downregulated in Lentiv-STC2 cells (Figure S10,C & D). In contrast with $STC2^{-/-}$, Lentiv-STC2 cells were manifested
430 with 257 of upregulated genes and 251 of downregulated genes (Figures 6B and S10E). In Venn diagram (Figure
431 6C), 149 DEGs were detected identically in both $STC2^{-/-}$ and Lentiv-STC2 cell lines, of which 50 DEGs were further
432 scrutinized in distinct combinations of every two groups.

433 The terms of the biological process, cellular component and molecular function, along with putative
434 pathways mediated by STC2, were annotated by enriching those significant DEGs based on both GO and KEGG
435 and databases, respectively. The results were illustrated within histograms and scatterplots (Figure S11). The GO
436 analysis revealed that the top 20 biological process terms of $STC2^{-/-}$ vs *WT* cells and Lentiv-STC2 vs *WT* cells

437 corporately associated with angiogenesis, cell adhesion, multicellular organism development and extracellular
438 matrix (ECM) organization. The cellular component terms associated with ECM, components of membrane,
439 cytoskeleton and the endoplasmic reticulum lumen. The molecular function terms associated with structural
440 constitution of ECM, oleamide hydrolase activity and anandamide amidohydrolase activity (Figure S11A). The
441 KEGG enrichment analysis unraveled the main enrichments of those DEGs in axon guidance, protein digestion
442 and absorption, advanced glycation endproducts (AGE)-RAGE (the receptor of AGE) signaling pathway in
443 diabetics, fatty acid degradation, PI3K-AKT pathway, focal adhesion and ECM-receptor interaction (Figure S11B).
444 These results indicate that STC2 has certain potential effects on substance-energy metabolism, extracellular
445 signaling and cancer-related pathways. Overall, STC2 can influence relevant signaling and enzyme activity, as well
446 as cell membrane structure, cytoskeleton and ECM, and thus affect cell proliferation and behavior, development
447 and growth, and even pathological process.

448 By further scrutinizing those critical genes for those important pathways and functional modules
449 significantly enriched for DEGs in *STC2*^{-/-}, Lentiv-STC2 vs *WT* cell lines, such key genes of 67 were carefully
450 selected and their expression levels with their functional enrichments of 15 were shown (in Figure 6D). Among
451 them, the core Cluster-1 genes of 10 were substantially down-regulated in *STC2*^{-/-} cells, but mostly up-regulated
452 or rarely unaffected in Lentiv-STC2 cells, by comparison with those measured in *WT* cells. The Cluster-1 genes
453 include *MAPK9*, *HIST1H2AE* (encoding histone H2AC8), *CDH2* (cadherin 2), *PCDH7* (protocadherin 7), *LRRN2*
454 (leucine rich repeat neuronal 2, a cell-adhesion molecule and/or signal transduction receptor), *SPOCK1* (a
455 proteoglycan to act as a protease inhibitor), *PTGS1* (prostaglandin-endoperoxide synthase 1, also known as
456 cyclooxygenase 1 [COX1]), *ECI2* (enoyl-CoA delta isomerase 2), *FGFR4* and *SQSTM1* (i.e., p62, as a scaffolding
457 protein required for autophagy of Keap1). Conversely, those Cluster-2 genes were significantly up-regulated in
458 *STC2*^{-/-} cells, but substantially down-regulated or even completely abolished in Lentiv-STC2 cells, when compared
459 to their equivalents measured in *WT* cells. Such 13 of Cluster-2 genes include *GSTO2* (glutathione S-transferase
460 omega 2), *SOHLH2* (encoding a bHLH transcription factor involved in spermatogenesis, oogenesis and
461 folliculogenesis), *COL15A1* (collagen 15 α 1 chain), *CSPG4* (chondroitin sulfate proteoglycan 4, stabilizing a
462 cell-substratum interaction on the endothelial basement membranes), *KALRN* (kalirin RhoGEF kinase, that
463 interacts with HAP1 [huntingtin-associated protein 1] for vesicle trafficking), *MYH10* (myosin heavy chain 10),
464 *FN1* (fibronectin 1), *DUSP9* (dual specificity phosphatase 9, enabling for inactivation of its target MAPK family),
465 *HK1* (hexokinase 1), *ACSL5* (acyl-CoA synthetase long chain family member 5), and *FABP3* (fatty acid binding
466 protein 3, that participates in the long-chain fatty acid uptake, metabolism and transport), plus two Cluster-2b
467 genes *WNT7B* (Wnt7B, a secreted signal to regulate cell fate and patterning in embryogenesis, oncogenesis and
468 developmental processes) and *NR4A1* (nuclear receptor 4A1, that serves as a transcription factor of the
469 steroid-thyroid hormone-retinoid receptor superfamily to induce apoptosis after being translocated to the
470 mitochondria).

471 Furthermore, those Cluster-3 genes were also substantially up-regulated in *STC2*^{-/-} cells, but largely unaffected
472 or marginally altered in Lentiv-STC2 cells, when compared with their equivalents of *WT* control cells (Figure 6D).
473 Such 10 genes are *ERBB3* (an EGFR family member called ErbB2-3 or HER3), *LAMA1* (laminin subunit alpha 1, a
474 portion of extracellular matrix glycoproteins), *TGFB3* (transforming growth factor β 3, a secreted ligand to bind
475 various TGF β receptors leading to recruitment and activation of SMAD family transcription factors that regulate
476 gene expression), *JUN* (a proto-oncogene subunit of AP-1 transcription factor directly interacting with specific
477 target genes), *ENO2* (enolase 2, acting as an isoenzyme homodimer in mature neurons or cells of neuronal
478 origin), *DDIT4* (DNA damage inducible transcript 4, that negatively regulates the mTOR signaling in response to
479 hypoxia, besides binding 14-3-3 protein), *HEY1* (hair-like division-related enhancer 1, a bHLH transcription
480 repressor of the HESR family required for embryonic development, neurogenesis and somitogenesis), *DUSP5*

481 (dual specificity phosphatase 5), *LOXL2* (lysyl oxidase like 2, a member of the family essential for the biogenesis
482 of connective tissue by catalyzing the first step in the formation of crosslinks in collagens and elastin), and
483 *ANGPTL4* (angiopoietin like 4, a secreted protein with a C-terminal fibrinogen domain to regulate glucose
484 homeostasis, lipid metabolism, and insulin sensitivity).

485 Several genes were significantly up-regulated in Lentiv-*STC2* cells, but roughly unaffected or modestly
486 altered in *STC2*^{-/-} cells, when compared to their equivalent *WT* controls (Figure 6D). Such 5 genes (in Cluster-4)
487 are *MORC4* (a member of the MORC [microrchidia] family sharing an N-terminal ATPase-like ATP-binding region
488 and a CW four-cysteine zinc-finger motif, also with a nuclear matrix binding domain and a two-stranded
489 coiled-coil motif near its C-terminus), *TFPI* (tissue factor pathway inhibitor, serves a Kunitz-type serine protease
490 inhibitor to regulate the tissue factor-dependent pathway of blood coagulation), *DUSP6* (dual specificity
491 phosphatase 6), *ALCAM* (activated leukocyte cell adhesion molecule, also known as CD166 [cluster of
492 differentiation 166]), and *C3* (complement C3, playing a central role in the activation of complement system).
493 Conversely, 13 genes (in Cluster-5) were significantly down-regulated in Lentiv-*STC2* cells, but almost unaffected
494 in *STC2*^{-/-} cells, when compared to those equivalents in *WT* cells (Figure 6D). They were *MFSD12* (major facilitator
495 superfamily domain containing 12, that enables cysteine transmembrane transporter activity and regulates
496 melanin biosynthesis and pigment metabolism), *ENO3* (enolase 3, involved in muscle development and
497 regeneration), *BMP2* (bone morphogenetic protein 2, a secreted ligand of the TGF- β superfamily that binds its
498 receptors leading to recruitment and activation of SMAD family transcription factors), *ACKR3* (atypical chemokine
499 receptor 3, a G-protein-coupled receptor family member), *CCND1* (cyclin D1, as a regulatory subunit of CDK4 or
500 CDK6), *COL4A2* (collagen 4 α 2 chain), *NGEF* (neuronal guanine nucleotide exchange factor), *MGLL* (monoglyceride
501 lipase), *TNNC1* (troponin C1, a subunit of troponin exerting a central role in striated muscle contraction by
502 binding calcium to abolish the inhibitory action, allowing actin interaction with myosin to generate tension),
503 *HIST2H2AC* (histone H2AC), *CTSF* (cathepsin F, a cysteine proteinase of papain family serving as a major
504 component of the lysosomal proteolytic system), *ADAMTSL4* (the ADAMTS [*a* disintegrin and metalloproteinase
505 with thrombospondin motifs]-like gene family member 4, with seven thrombospondin type 1 repeats that may
506 exert diverse roles in cell adhesion, angiogenesis, and the developing nervous patterning), and *NRP2* (neuropilin
507 2, a transmembrane protein that binds to SEMA3C and SEMA3F proteins and interacts with VEGF).

508 Collectively, these demonstrate that distinct pathological phenotypes of between *STC2*^{-/-} and
509 Lentiv-*STC2*-derived hepatoma cell lines are determined principally by their key DEGs in Cluster-1 and Cluster-2
510 (Figure 6E). The *STC2*^{-/-} defective phenotype was also strengthened by alterations of its specific genes in
511 Cluster-3, while the Lentiv-*STC2*-expressing phenotype was further enhanced by changes in its specific gene
512 expression profiling of Cluster-4 and Cluster-5 (Figure 6E, *right panel*). In addition to a Pearson correlation
513 analysis of those core genes expressed in all the examined cell lines (Figures 7A and S12),
514 the relativity between those cell lines was also evaluated (Table S8). As expected, the results unveiled that, on a
515 whole, Lentiv-*STC2* overexpressing cell line has a closer relevance to *Nrf1* α ^{-/-} or *caNrf2*^{AN} cell lines (both with
516 hyper-expressed *STC2*), whereas *STC2*^{-/-} cell line is only slightly relevant to *Nrf2*^{-/-} cell line (albeit with a striking
517 diminishment of *STC2*), but largely not to *caNrf2*^{AN} cells (Figure 7B). Since such distinct pathological phenotypes
518 are determined by altered programming of key gene transcription to mRNA translation into proteins, those DEGs
519 governing critical transcription factors (Figures S13 & S14) and Ca^{2+} signaling molecules (Figure S15) regulated by
520 *Nrf1*, *Nrf2* and *STC2* were further scrutinized, respectively.

521 4. Discussion

522 In the present study, we have established a prognostic model of liver cancer by mining the transcriptome
523 data saved in the TCGA database and calculated the predictive risk scores of *WT*, *Nrf1* α ^{-/-}, *Nrf2*^{-/-} and
524 *caNrf2*^{AN}-derived tumors. The resulting evidence clearly demonstrates that loss of *Nrf1* α leads to a significant

525 increase in the risk score, but the risk score is strikingly reduced by loss of *Nrf2*. Such distinction between
526 *Nrf1α*^{-/-} and *Nrf2*^{-/-} is fully consistent with our previously-reported phenotypic disparities of their xenograft
527 tumors in nude mice [15]. Thus, based on the mathematic models of systems biology developed by Ao's group
528 [55-58], it is inferable that discrepant phenotypes between *Nrf1α*^{-/-} and *Nrf2*^{-/-}-derived xenograft tumors are
529 determined by different profiling of those key differential expression genes at distinct intrinsic status of a robust
530 endogenous molecular-cellular network (as illustrated in Figure 7C). Therein, differential expression of a
531 minimum set of key genes at distinct strata (e.g., from mRNAs to proteins) is *de facto* exhibited at their
532 abundances, activities and topoforms in different phase transition, along with their intricate interactions
533 between those core modular molecules in different subcellular contexts.

534 Of note, the expression of *STC2* was upregulated in liver cancer tissues and also coincided with a reduction
535 of the overall survival rate of patients with hepatomas. This is also completely consistent with those previous
536 reports of *STC2* being upregulated in multiple types of cancers [28, 59-61]. So highly up-regulated expression
537 levels of *STC2* in liver cancer are also associated with the poor prognosis of relevant patients [59-63]. Importantly,
538 significant up-regulation of *STC2* was examined in *Nrf1α*^{-/-} cells (with an aberrant *Nrf2* accumulation) and
539 *caNrf2*^{ΔN} cells (in which *Nrf2* is constitutively activated owing to a loss of its N-terminal keap1-binding Neh2
540 domain). By contrast, a lower mRNA expression level of *STC2* in *WT* cells was determined to be only about
541 one-tenth of that measured in *Nrf1α*^{-/-} cells. However, down-regulated mRNA expression levels of *STC2* in *Nrf2*^{-/-}
542 cells were accompanied by no significant changes in its protein levels when compared to *WT* controls, implying
543 there exists a nonlinear stochastic feedback regulation of between mRNA and protein expression of *STC2* by, at
544 least, *Nrf2* and its target genes. As such, these collective results demonstrate that *STC2* is, as a potent biomarker
545 for hepatocellular carcinoma, also implicated in mediating distinct phenotypes of between *Nrf1α*^{-/-} and
546 *Nrf2*^{-/-}-derived tumors.

547 *STC2* has been widely accepted as a regulator of both calcium and phosphorus homeostasis, of which
548 calcium ion (Ca^{2+} , as the second messenger to initiate signaling networks) can regulate a variety of cellular
549 processes, such as gene transcription, mRNA translation into protein, protein folding and quality control, cell
550 metabolism, division and proliferation [64]. Interestingly, the inducible expression of *STC2* is also evidently
551 stimulated by oxidative stress and hypoxia [33], leading to a limitation of the STIM1-mediated store-operated
552 Ca^{2+} entry (SOCE) into the triggered cells during cellular stress in order to promote cellular survival [44]. Our
553 experimental evidence has been presented, together with another previous study [35], revealing that *HIF1A* is an
554 upstream regulator of *STC2* by directly binding the promoter of *STC2*, and this molecular event is also monitored
555 by *Nrf2* (Figures 7C & 8A), albeit *HIF1A* and *Nrf2* are two known master regulators of hypoxia and oxidative stress,
556 respectively [65, 66]. Besides, induction of *STC2* is significantly stimulated by the endoplasmic reticulum stressor
557 *TG* (as a microsomal Ca^{2+} -ATPase inhibitor to cause an accumulation of Ca^{2+} in the oxidative lumen of this
558 organelle required for the local mRNA translation into protein, and its quality control). The induction is inferable
559 to be also accompanied by *TG*-stimulated expression of the redox-determining factor *Nrf1* integrated in the
560 endoplasmic reticulum [67]. Specific knockout of *Nrf1α* leads to an severe increase in the intracellular reactive
561 oxygen species (ROS) [15, 68]. Such overproduction of ROS causes inactivation of *PHD2* by oxidation of the
562 ferrous ion essential for the central catalytic hydroxylation of prolines, so to inhibit the hydroxylation of *HIF1α*
563 and hence stabilize its protein expression [69]. This, as a result, leads to the increased *STC2* protein expression in
564 *Nrf1α*^{-/-} cells. The stabilization of *HIF1α* protein is also reinforced by proteasomal dysfunction in *Nrf1α*^{-/-} cells
565 (Figures 7C and 8B).

566 Intriguingly, we also found that the *STC2* expression is promoted by *Nrf2*, independently of *HIF1A*. This is
567 due to the supportive evidence showing that the expression of *STC2* protein was significantly up-regulated by
568 *oltipraz*, albeit the protein abundance of *HIF1A* was markedly inhibited by this inducer (of *Nrf2* that had been

569 shown to facilitate the ubiquitin-mediated degradation of HIF-1 α [70, 71]), as accompanied by promoted
570 expression levels of Nrf2 and its targets HO-1 and NQO1. Similarly, the abundance of STC2 was not reduced by
571 silencing of HIF1A in *Nrf1 $\alpha^{-/-}$* cells (retaining hyper-active Nrf2 and HIF1A), albeit it was significantly
572 down-regulated by knockdown of HIF1A by *siHIF1A* in *caNrf2 ΔN* cells. Besides, such a genomic loss of the
573 N-terminal keap1-binding Neh2 domain in *caNrf2 ΔN* cells also enables prevention of putative Keap1-mediated
574 degradation of this mutant factor, leading to the increased expression of STC2. However, a role for Nrf1 in
575 augmenting STC2 and HIF1A cannot also be ruled out, because this CNC-bZIP factor is up-regulated in *caNrf2 ΔN*
576 cells (Figure 8C). Further examinations revealed that Nrf1 and Nrf2 can bind to the promoter region of STC2, as
577 well as HIF1A, and also mediate its transcriptional expression (Figures S8 and S9).

578 Conversely, STC2 had been also shown to interact with Nrf2 in mesenchymal stem cells [72]. In this study,
579 our evidence has been presented revealing that the protein expression levels of Nrf2 was reduced by silencing of
580 STC2 to antagonize Keap1 in *WT* and *Nrf1 $\alpha^{-/-}$* cell lines. This is also supported by further evidence that
581 up-regulation of STC2 by TG was accompanied by significant down-regulation of Keap1 in *WT*, *Nrf1 $\alpha^{-/-}$* , and
582 *Nrf2 $\alpha^{-/-}$* cell lines. Based on the fact that TG can also inhibit the transport of free Ca^{2+} into the endoplasmic
583 reticulum so as to increase the intracellular Ca^{2+} level and thus activate and/or prolong the Ca^{2+} -mediated
584 signaling pathways [54], it is inferable that STC2-triggered Ca^{2+} signaling may also play a role in the cytoprotective
585 response to crosstalk with the Keap1-Nrf2 antioxidant pathway against various cellular stress (Figures 7C & 8A).
586 As such, the protein abundance of Nrf2 in *caNrf2 ΔN* cells (albeit its Keap1-binding domain lacks) remained to be
587 down-regulation by silencing of STC2, as also accompanied by almost no changes in Keap1, implying an
588 involvement of other targets except Keap1, such as Hrd1 or β -TrCP [73-75]. In addition, it should also be noted
589 that the mRNA expression levels of Keap1 were largely unaltered in all examined cell lines (Figures S10F and S12),
590 while its interactor p62 (called SQSTM1) at its mRNA levels was obviously down-regulated in *STC2 $\alpha^{-/-}$* and *Nrf2 $\alpha^{-/-}$*
591 cell lines, albeit the upstream regulator TFEB is modestly up-regulated in both *Nrf1 $\alpha^{-/-}$* and lentiv-STC2 cell lines
592 (Table S8). These suggest that STC2 is also likely involved in p62-mediated autophagy signaling (bi-directionally
593 modulated by TFEB, Nrf1 α and Nrf2) to monitor the abundance of Keap1. Moreover, modest up-regulation of
594 Nrf1 by STC2 also occurred concomitantly with an exception of Keap1 and HIF1A that were marginally increased
595 (Figure S10, F & G), but the detailed mechanism requires to be explored.

596 In further investigation of the biological role of STC2 in cell growth and proliferation, we have obtained a
597 series of experimental evidence revealing that the clonogenicity of hepatoma and its cell-cycle turnover were
598 evidently promoted by lentiv-STC2 overexpression, as well as the malignant growth of its xenograft tumors, but
599 all opposite effects were manifested by knockout of *STC2 $\alpha^{-/-}$* . These demonstrate that STC2 is a potent
600 tumor-promotor that plays a critical role in the progression of liver cancer. This is also supported by a previous
601 study showing that ectopic STC2 expression markedly promoted hepatoma cell proliferation [29]. Altogether,
602 these provide a clear explanation for discrepant phenotypes between *Nrf1 $\alpha^{-/-}$* and *Nrf2 $\alpha^{-/-}$* -derived xenograft
603 tumors. In *Nrf1 $\alpha^{-/-}$* cells, the increased expression of STC2 significantly promotes cell proliferation and *in vivo*
604 malgrowth of its xenograft tumor. Conversely, such tumor malgrowth is almost completely abolished by loss of
605 *STC2 $\alpha^{-/-}$* , in line with the observation of nude mice inoculated *Nrf2 $\alpha^{-/-}$* cells owing to loss of its tumor-promoting
606 function [76, 77]. In addition, significantly increased expression of STC2 can promote the pathogenic progression
607 from steatosis to nonalcoholic steatohepatitis (NASH) [78], coincidently similar to the pathological phenotype of
608 spontaneous NASH in liver-specific *Nrf1 $\alpha^{-/-}$* mice, along with its subsequent malignant transformation into
609 hepatoma [7, 79].

610 In summary, this study provides a holistic perspective of the realistic scenario analysis integrated different
611 sets of big data-mining with routine reductionist approaches, aiming to give a better understanding of the
612 mechanisms underlying distinction pathophysiological phenotypes among all the examined *Nrf1 $\alpha^{-/-}$* , *caNrf2 ΔN* ,

613 *Nrf2*^{-/-}, *STC2*^{-/-}, lentiv-*STC2* cell lines, as compared with *WT* cells. Such distinct phenotypes should also be
614 determined by different intrinsic status of a robust self-organized endogenous molecular-cellular network, with
615 distinct feedback regulatory mechanisms (Figures 7C and 8). These selected stable states are predominantly
616 dictated by altered programming from key gene transcription to mRNA translation into proteins at those core
617 modular (and signaling) nodes of this network, along with their distinct topomorphisms shaped by a variety of
618 post-transcriptional and post-translational modifications so to exert their different or even opposing functions in
619 diverse subcellular topospatiotemporal self-organization systems. The overall homeodynamic states of such
620 self-organizing systems are determined principally by their robustness and plasticity, i.e., two naturally-selecting
621 but apparently-conflicting properties of the biological systems [80, 81], and can also be characterized by their
622 nonlinear stochastic mathematic models [55-58]. Thereby, the robust homeostasis is successfully maintained by
623 those evolutionally-conserved modular molecules and their interactive signaling pathways with distinct feedback
624 regulatory mechanisms. The plasticity of the homeodynamic states are manifested primarily by a vast variety of
625 adaptive responses to diverse cell stresses in different changing environments. From it, it is inferable that the
626 existence of several nonlinear stochastic molecular events occurring at distinct strata (e.g., from gene
627 transcription to mRNA translation into proteins) is uncovered by some seemingly-paradoxical data obtained from
628 several databases and also in this study, to be presented in a holographic functional landscape as done as
629 possible in reality. Such apparently-conflicting stochastic events are also likely triggered by potential double-edge
630 effects of key modular molecules and their bi-directional feedback regulatory mechanisms. Altogether, all genetic
631 and non-genetic drivers could be integrated as a selection force in *Darwinian* dynamics to enable for a
632 stochastic speciation of *Nrf1α*^{-/-}-deficient cells during carcinogenesis and ensuing cancer progression. Herein,
633 our evidence demonstrates that significant upregulation of *STC2* by hyper-expressed *Nrf2*, rather than its
634 downstream *HIF1A*, in *Nrf1α*^{-/-} cells, as well in HCC tissues, leads to promotion of hepatoma cell proliferation and
635 malgrowth of its xenograft tumor in nude mice. By contrast, upregulation of *STC2* by *HIF1A* is also determined in
636 *caNrf2*^{AN} cells. In turn, *STC2* can also regulate *Nrf2* by antagonizing its negative regulator *Keap1*, but conversely
637 the latter *Keap1* is also negatively regulated by *Nrf2*-target *p62* so to form a dual feedback regulatory circuit.
638 However, loss of *STC2*^{-/-} results in almost complete abolition of both its deficient cell clonogenicity and
639 xenograft tumor malgrowth, resembling the pathological phenotype of *Nrf2*^{-/-}. Overall, this study highlights that
640 like *Nrf2*, *STC2* can serve as a potent tumor promotor, particularly in *Nrf1α*^{-/-}-deficient tumors, and may also be
641 paved as a potential therapeutic target for relevant liver cancer.

642 **Supplemental Materials**

643 The supporting information includes 15 supplemental figures and also eight supplemental tables.

644 **Acknowledgements**

645 We are greatly thankful to all other members of Prof. Zhang's laboratory (Chongqing University, China) for giving
646 their invaluable help in this study. This work was funded by the National Natural Science Foundation of China
647 (NSFC, 82073079, 81872336 and 91429305) awarded to Prof. Yiguo Zhang (at Chongqing University), and also
648 was in part supported by the Initiative Foundation of Jiangjin Hospital affiliated to Chongqing University
649 (2022qdjfxm001).

650 **Author Contributions**

651 Both Q.B. and Y.D. designed and performed most of the experiments, and wrote the manuscript draft. Q.W. and
652 R.D. participated in bioinformatic analysis. S.H. provided critical suggestions for this work. Z.P. did
653 pathohistological analysis. Lastly, Y.Z. designed and supervised this study, parsed all the data, helped to prepare
654 all the figures, wrote and revised this manuscript. All authors have read and approved this version of the

655 manuscript for publication.

656 **Author disclosure statement**

657 The authors declare no conflict of interest.

658 **Data availability statement**

659 The datasets analyzed for this study can be found in online repositories. The names of the
660 repository/repositories and accession number(s) can be found in the article, along within Supplementary
661 Material.

662 **Ethics statement**

663 The animal study was reviewed and approved by the University Laboratory Animal Welfare and Ethics Committee
664 (with two institutional licenses SCXK-PLA-20120011 and SYXK-PLA-20120031).

665 **References**

- 666 1. Anwanwan, D., et al., *Challenges in liver cancer and possible treatment approaches*. *Biochim Biophys Acta Rev*
667 *Cancer*, 2020. **1873**(1): p. 188314.
- 668 2. Marengo, A., C. Rosso, and E. Bugianesi, *Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis*.
669 *Annu Rev Med*, 2016. **67**: p. 103-17.
- 670 3. Sheka, A.C., et al., *Nonalcoholic Steatohepatitis: A Review*. *Jama*, 2020. **323**(12): p. 1175-1183.
- 671 4. Huang, D.Q. and H.B. El-Serag, *Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and*
672 *prevention*. 2021. **18**(4): p. 223-238.
- 673 5. Raza, S., et al., *Current treatment paradigms and emerging therapies for NAFLD/NASH*. *Front Biosci*
674 *(Landmark Ed)*, 2021. **26**(2): p. 206-237.
- 675 6. Foerster, F., et al., *NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options*. *J*
676 *Hepatol*, 2022. **76**(2): p. 446-457.
- 677 7. Xu, Z., et al., *Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis*
678 *and hepatic neoplasia*. *Proc Natl Acad Sci U S A*, 2005. **102**(11): p. 4120-5.
- 679 8. Widenmaier, S.B., et al., *NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis*. *Cell*,
680 2017. **171**(5): p. 1094-1109 e15.
- 681 9. Bartelt, A., et al., *Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity*.
682 *Nat Med*, 2018. **24**(3): p. 292-303.
- 683 10. Hou, Y., et al., *Adipocyte-specific deficiency of Nfe2l1 disrupts plasticity of white adipose tissues and metabolic*
684 *homeostasis in mice*. *Biochem Biophys Res Commun*, 2018.
- 685 11. Xue, P., et al., *Long isoforms of NRF1 negatively regulate adipogenesis via suppression of PPARgamma*
686 *expression*. *Redox Biol*, 2020. **30**: p. 101414.
- 687 12. Hirotsu, Y., et al., *NF-E2-related factor 1 (Nrf1) serves as a novel regulator of hepatic lipid metabolism through*
688 *regulation of the Lipin1 and PGC-1 β genes*. *Mol Cell Biol*, 2012. **32**(14): p. 2760-70.
- 689 13. Katsuoka, F., H. Yamazaki, and M. Yamamoto, *Small Maf deficiency recapitulates the liver phenotypes of Nrf1-*
690 *and Nrf2-deficient mice*. *Genes Cells*, 2016. **21**(12): p. 1309-1319.
- 691 14. Zhang, Y. and Y. Xiang, *Molecular and cellular basis for the unique functioning of Nrf1, an indispensable*
692 *transcription factor for maintaining cell homeostasis and organ integrity*. *Biochem J*, 2016. **473**(8): p.
693 961-1000.
- 694 15. Qiu, L., et al., *Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by*
695 *Specific Knockout of the Full-Length Nrf1 α that Acts as a Dominant Tumor Repressor*. 2018. **10**(12).
- 696 16. Sekine, H. and H. Motohashi, *Roles of CNC Transcription Factors NRF1 and NRF2 in Cancer*. 2021. **13**(3).
- 697 17. Cui, Q., et al., *Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic β cells to arsenite-induced*

698 *cytotoxicity*. *Toxicol Appl Pharmacol*, 2017. **329**: p. 67-74.

699 18. Ren, S., et al., *The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse*
700 *models*. *Redox Biol*, 2021. **44**: p. 102015.

701 19. Wang, M., et al., *TCF11 Has a Potent Tumor-Repressing Effect Than Its Prototypic Nrf1 α by Definition of Both*
702 *Similar Yet Different Regulatory Profiles, With a Striking Disparity From Nrf2*. *Front Oncol*, 2021. **11**: p.
703 707032.

704 20. Bellezza, I., et al., *Nrf2-Keap1 signaling in oxidative and reductive stress*. *Biochim Biophys Acta Mol Cell Res*,
705 2018. **1865**(5): p. 721-733.

706 21. Chan, J.Y., et al., *Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia*
707 *and embryonic lethality in mice*. *Embo J*, 1998. **17**(6): p. 1779-87.

708 22. Chan, K., et al., *NRF2, a member of the NFE2 family of transcription factors, is not essential for murine*
709 *erythropoiesis, growth, and development*. *Proc Natl Acad Sci U S A*, 1996. **93**(24): p. 13943-8.

710 23. Chen, J., et al., *Nrf1 Is Endowed with a Dominant Tumor-Repressing Effect onto the*
711 *Wnt/beta-Catenin-Dependent and Wnt/beta-Catenin-Independent Signaling Networks in the Human Liver*
712 *Cancer*. *Oxid Med Cell Longev*, 2020. **2020**: p. 5138539.

713 24. Bathish, B., et al., *Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the*
714 *CNC-bZIP transcription factor Nrf2*. *Free Radic Biol Med*, 2022. **188**: p. 221-261.

715 25. DeNicola, G.M., et al., *Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis*.
716 *Nature*, 2011. **475**(7354): p. 106-9.

717 26. Na, S.S., et al., *Stanniocalcin-2 (STC2): A potential lung cancer biomarker promotes lung cancer metastasis and*
718 *progression*. *Biochim Biophys Acta*, 2015. **1854**(6): p. 668-76.

719 27. Kita, Y., et al., *STC2: a predictive marker for lymph node metastasis in esophageal squamous-cell carcinoma*.
720 *Ann Surg Oncol*, 2011. **18**(1): p. 261-72.

721 28. Tamura, K., et al., *Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive*
722 *prostate cancer*. *Cancer Sci*, 2009. **100**(5): p. 914-9.

723 29. Wang, H., et al., *STC2 is upregulated in hepatocellular carcinoma and promotes cell proliferation and*
724 *migration in vitro*. *BMB Rep*, 2012. **45**(11): p. 629-34.

725 30. Yokobori, T., et al., *Clinical significance of stanniocalcin 2 as a prognostic marker in gastric cancer*. *Ann Surg*
726 *Oncol*, 2010. **17**(10): p. 2601-7.

727 31. Wang, Y.Y., et al., *Clinical utility of measuring expression levels of KAP1, TIMP1 and STC2 in peripheral blood of*
728 *patients with gastric cancer*. *World J Surg Oncol*, 2013. **11**: p. 81.

729 32. Lin, C. and L. Sun, *STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and*
730 *Invasion by Inducing Epithelial-Mesenchymal Transition*. 2019. **2019**: p. 8042489.

731 33. Ito, D., et al., *Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response*
732 *with cytoprotective properties*. *Mol Cell Biol*, 2004. **24**(21): p. 9456-69.

733 34. Leonard, M.O., et al., *The role of HIF-1 alpha in transcriptional regulation of the proximal tubular epithelial cell*
734 *response to hypoxia*. *J Biol Chem*, 2003. **278**(41): p. 40296-304.

735 35. Law, A.Y., et al., *Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells*. *Exp Cell*
736 *Res*, 2008. **314**(8): p. 1823-30.

737 36. Law, A.Y. and C.K. Wong, *Stanniocalcin-2 promotes epithelial-mesenchymal transition and invasiveness in*
738 *hypoxic human ovarian cancer cells*. *Exp Cell Res*, 2010. **316**(20): p. 3425-34.

739 37. Law, A.Y. and C.K. Wong, *Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia*. *Exp*
740 *Cell Res*, 2010. **316**(3): p. 466-76.

741 38. Love, M.I., W. Huber, and S. Anders, *Moderated estimation of fold change and dispersion for RNA-seq data*
742 *with DESeq2*. *Genome Biol*, 2014. **15**(12): p. 550.

743 39. Ren, Y., et al., *TALENs-directed knockout of the full-length transcription factor Nrf1a that represses malignant*
744 *behaviour of human hepatocellular carcinoma (HepG2) cells* *Scientific Reports*, 2016. **7**: p. Accepted for
745 publication.

746 40. Zhang, Y. and J.D. Hayes, *Identification of topological determinants in the N-terminal domain of transcription*
747 *factor Nrf1 that control its orientation in the endoplasmic reticulum membrane*. *Biochem J*, 2010. **430**(3): p.
748 497-510.

749 41. Morton, C.L. and P.J. Houghton, *Establishment of human tumor xenografts in immunodeficient mice*. *Nat*
750 *Protoc*, 2007. **2**(2): p. 247-50.

751 42. Kim, D., B. Langmead, and S.L. Salzberg, *HISAT: a fast spliced aligner with low memory requirements*. 2015.
752 **12**(4): p. 357-60.

753 43. Langmead, B. and S.L. Salzberg, *Fast gapped-read alignment with Bowtie 2*. *Nat Methods*, 2012. **9**(4): p.
754 357-9.

755 44. Zeiger, W., et al., *Stanniocalcin 2 is a negative modulator of store-operated calcium entry*. *Mol Cell Biol*, 2011.
756 **31**(18): p. 3710-22.

757 45. *The Gene Ontology Resource: 20 years and still GOing strong*. *Nucleic Acids Res*, 2019. **47**(D1): p. D330-d338.

758 46. Kanehisa, M. and S. Goto, *KEGG: kyoto encyclopedia of genes and genomes*. *Nucleic Acids Res*, 2000. **28**(1): p.
759 27-30.

760 47. Chandrashekhar, D.S., et al., *UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival*
761 *Analyses*. *Neoplasia*, 2017. **19**(8): p. 649-658.

762 48. Menyhárt, O. and Á. Nagy, *Determining consistent prognostic biomarkers of overall survival and vascular*
763 *invasion in hepatocellular carcinoma*. 2018. **5**(12): p. 181006.

764 49. Tang, Z., et al., *GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses*.
765 *Nucleic Acids Res*, 2017. **45**(W1): p. W98-W102.

766 50. Kim, P.H., et al., *Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress*. *BMB*
767 *Rep*, 2015. **48**(12): p. 702-7.

768 51. Harper, T.A., Jr., A.D. Joshi, and C.J. Elferink, *Identification of stanniocalcin 2 as a novel aryl hydrocarbon*
769 *receptor target gene*. *J Pharmacol Exp Ther*, 2013. **344**(3): p. 579-88.

770 52. Vengellur, A. and J.J. LaPres, *The role of hypoxia inducible factor 1alpha in cobalt chloride induced cell death in*
771 *mouse embryonic fibroblasts*. *Toxicol Sci*, 2004. **82**(2): p. 638-46.

772 53. Zhang, N., et al., *Cobalt Chloride-induced Hypoxia Induces Epithelial-mesenchymal Transition in Renal*
773 *Carcinoma Cell Lines*. *Ann Clin Lab Sci*, 2017. **47**(1): p. 40-46.

774 54. Jaskulska, A., A.E. Janecka, and K. Gach-Janczak, *Thapsigargin-From Traditional Medicine to Anticancer Drug*.
775 2020. **22**(1).

776 55. Ao, P., et al., *Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution*.
777 *Med Hypotheses*, 2008. **70**(3): p. 678-84.

778 56. Yuan, R., et al., *Cancer as robust intrinsic state shaped by evolution: a key issues review*. *Rep Prog Phys*, 2017.
779 **80**(4): p. 042701.

780 57. Wang, G., et al., *Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach*.
781 *Methods Mol Biol*, 2018. **1702**: p. 215-245.

782 58. Wang, G., et al., *Quantitative implementation of the endogenous molecular-cellular network hypothesis in*
783 *hepatocellular carcinoma*. *Interface Focus*, 2014. **4**(3): p. 20130064.

784 59. Meyer, H.A., et al., *Identification of stanniocalcin 2 as prognostic marker in renal cell carcinoma*. *Eur Urol*,
785 2009. **55**(3): p. 669-78.

786 60. Zhang, C., et al., *Upregulation of STC2 in colorectal cancer and its clinicopathological significance*. *Onco*
787 *Targets Ther*, 2019. **12**: p. 1249-1258.

788 61. Fang, Z., et al., *Clinical significance of stanniocalcin expression in tissue and serum of gastric cancer patients.*
789 *Chin J Cancer Res*, 2014. **26**(5): p. 602-10.

790 62. Arigami, T., et al., *Clinical significance of stanniocalcin 2 expression as a predictor of tumor progression in*
791 *gastric cancer*. *Oncol Rep*, 2013. **30**(6): p. 2838-44.

792 63. Lin, S., et al., *Survival analyses correlate stanniocalcin 2 overexpression to poor prognosis of nasopharyngeal*
793 *carcinomas*. *J Exp Clin Cancer Res*, 2014. **33**(1): p. 26.

794 64. Clapham, D.E., *Calcium signaling*. *Cell*, 2007. **131**(6): p. 1047-58.

795 65. Infantino, V., et al., *Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target*.
796 *Int J Mol Sci*, 2021. **22**(11).

797 66. Baird, L. and M. Yamamoto, *The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway*. *Mol Cell Biol*,
798 2020. **40**(13).

799 67. Xiang, Y., et al., *Mechanisms controlling the multistage post-translational processing of endogenous*
800 *Nrf1alpha/TCF11 proteins to yield distinct isoforms within the coupled positive and negative feedback circuits*.
801 *Toxicol Appl Pharmacol*, 2018. **360**: p. 212-235.

802 68. Chen, L., et al., *Nrf1 is critical for redox balance and survival of liver cells during development*. *Mol Cell Biol*,
803 2003. **23**(13): p. 4673-86.

804 69. Gao, P., et al., *HIF-dependent antitumorigenic effect of antioxidants in vivo*. *Cancer Cell*, 2007. **12**(3): p. 230-8.

805 70. Lee, W.H., et al., *Oltipraz and dithiolethione congeners inhibit hypoxia-inducible factor-1alpha activity through*
806 *p70 ribosomal S6 kinase-1 inhibition and H2O2-scavenging effect*. *Mol Cancer Ther*, 2009. **8**(10): p. 2791-802.

807 71. Eba, S., et al., *The nuclear factor erythroid 2-related factor 2 activator oltipraz attenuates chronic*
808 *hypoxia-induced cardiopulmonary alterations in mice*. *Am J Respir Cell Mol Biol*, 2013. **49**(2): p. 324-33.

809 72. Lv, H., et al., *Mesenchymal stromal cells ameliorate acute lung injury induced by LPS mainly through*
810 *stanniocalcin-2 mediating macrophage polarization*. *Ann Transl Med*, 2020. **8**(6): p. 334.

811 73. Wu, T., et al., *Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis*. *Genes Dev*, 2014. **28**(7):
812 p. 708-22.

813 74. Chowdhry, S., et al., *Nrf2 is controlled by two distinct β -TrCP recognition motifs in its Neh6 domain, one of*
814 *which can be modulated by GSK-3 activity*. *Oncogene*, 2013. **32**(32): p. 3765-81.

815 75. Rada, P., et al., *SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2*
816 *transcription factor in a Keap1-independent manner*. *Mol Cell Biol*, 2011. **31**(6): p. 1121-33.

817 76. Zhang, M., et al., *Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human*
818 *hepatocellular carcinoma*. *BMC Cancer*, 2015. **15**: p. 531.

819 77. Raghunath, A., et al., *Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and*
820 *Chemoresistance*. *Cancers (Basel)*, 2018. **10**(12).

821 78. Lake, A.D., et al., *The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human*
822 *nonalcoholic fatty liver disease*. *Toxicol Sci*, 2014. **137**(1): p. 26-35.

823 79. Ohtsuji, M., et al., *Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent*
824 *genes*. *J Biol Chem*, 2008. **283**(48): p. 33554-62.

825 80. Camazine, S., et al., *Self-Organization in Biological Systems*. Princeton University Press, 2003.

826 81. Misteli, T., *The Self-Organizing Genome: Principles of Genome Architecture and Function*. *Cell*, 2020. **183**(1): p.
827 28-45.

828

829 **Figure legends**

830 **Fig. 1. An involvement of STC2 in mediating the distinction between $Nrf1\alpha^{-/-}$ and $Nrf2^{-/-}$.**

831 (A) A forest-map of the Hazard ratio of those genes included in the multi-gene prognostic model.

832 (B) The ROC curve of the multi-gene prognostic model.
833 (C) The overall survival rates of patients grouped within the high and low risks were analyzed by Kaplan-Meier.
834 (D) Two graphical representations of the COX model with the risk score of patients and their survival times.
835 (E) A heat-map of the expression levels of eight genes indicated for the prognostic model of liver cancer tissues.
836 (F) The mean FPKM values of *CBX2*, *HOXD9* and *STC2* expressed in *WT* (i.e., HepG2), and its derivative *Nrf1* $\alpha^{-/-}$,
837 *Nrf2* $\alpha^{-/-}$ and *caNrf2* AN cell lines were shown graphically (n = 3).
838 (G) The transcriptional expression levels of *STC2* in liver cancer (LIHC) were obtained from the Ualcan database.
839 (H) The effect of *STC2* on the survival of HCC patients was analyzed by the Kaplan-Meier Plotter method.
840 (I) The mRNA expression levels of *STC2* in *WT*, *Nrf1* $\alpha^{-/-}$, *Nrf2* $\alpha^{-/-}$ and *caNrf2* AN cell lines were detected by RT-PCR.
841 Data are reported as mean \pm SD (n = 3 \times 3, *p < 0.05, **p < 0.01, \$\$p < 0.01, NS = no statistical difference).
842 (J) The protein abundances of *STC2* in *WT*, *Nrf1* $\alpha^{-/-}$, *Nrf2* $\alpha^{-/-}$ and *caNrf2* AN cell lines were determined by Western
843 blotting with its specific antibody.
844

845 **Fig. 2. HIF1A-dependent expression of STC2 was affected by Nrf1 α and/or Nrf2 in distinct genotypic cell lines.**
846 (A) HIF1A binds to the 5-Kbp promotor region adjoining the transcription start site of *STC2* in HCC cells. The data
847 were obtained from the ChIP-Atlas (at <http://chip-atlas.org/>).
848 (B) The protein abundances of both HIF1A and Nrf2 in *WT*, *Nrf1* $\alpha^{-/-}$, *Nrf2* $\alpha^{-/-}$ and *caNrf2* AN cell lines were
849 determined by Western blotting with their specific antibodies.
850 (C) After transfection of HIF1A-targeting siRNA (*siHIF1A*) in *Nrf1* $\alpha^{-/-}$ and *caNrf2* AN cell lines, the mRNA levels of
851 *HIF1A* and *STC2* were examined by RT-qPCR. Data are reported as mean \pm SD (n = 3 \times 3, *p < 0.05, **p <
852 0.01).
853 (D) After transfection of *siHIF1A* in *Nrf1* $\alpha^{-/-}$ and *caNrf2* AN cells, the protein abundances of HIF1A and STC2 were
854 determined by Western blotting.
855 (E) HepG2 cells were transfected with *siHIF1A* and then subjected to RT-qPCR analysis of the mRNA levels of
856 *HIF1A*, *STC2*, *GLUT1*, *HILPDA* and *VEGFA*. Data are reported as mean \pm SD (n = 3 \times 3, *p < 0.05, **p < 0.01).
857 (F) Both HepG2 and MHCC97L cell lines were transfected with *siHIF1A*, the protein levels of HIF1A and STC2 were
858 detected by Western blotting.
859 (G) HepG2 cells were transfected with a HIF1A-expressing construct and then subjected to immunoblotting
860 analysis of the protein expression levels of both HIF1A and STC2.
861 (H) The mRNA levels of *HIF1A*, *STC2*, *GLUT1*, *HILPDA* and *VEGFA* in HepG2 cells transfected with HIF1A-expressing
862 construct were analyzed by RT-qPCR. Data are reported as mean \pm SD (n = 3 \times 3, \$ p < 0.05, \$\$ p < 0.01, NS =
863 no statistical difference).
864 (I) Both HepG2 and MHCC97L cell lines were treated with (10 μ M dose of) cobalt chloride CoCl₂ for 6 h or 12 h,
865 and then subjected to Western blotting analysis of HIF1A, STC2, Keap1, Nrf2 and NQO1.
866

867 **Fig. 3. Distinct roles of Nrf2 and Nrf1 α for regulating the STC2 expression in distinct genotypic contexts.**
868 (A) The expression RPKM values of *STC2* and other indicated genes in *Nrf1* α - or *Nrf2*-induced HEK 293T cell lines
869 were shown graphically (n = 3).
870 (B) Both HepG2 and MHCC97L cell lines were treated with (10 μ M dose of) Oltipraz for 24 h or 48 h, and then
871 subjected to Western blotting analysis of Nrf2, STC2, HIF1A, HO-1 and NQO1 proteins.
872 (C) The Effect of Nrf2-targeting siRNA (*siNrf2*) on the protein expression levels of Nrf2, STC2, HIF1A, GCLC and
873 HO-1 in *Nrf1* $\alpha^{-/-}$ cells was analyzed by Western blotting.
874 (D) *Nrf1* $\alpha^{-/-}$ cells were transfected with *siNrf2* and then subjected to RT-qPCR analysis of the mRNA levels of *Nrf2*,
875 *Nrf1*, *HO-1*, *NQO1*, *GCLM*, *Keap1*, *STC2*, *STC1* and *HIF1A*. Data are reported as mean \pm SD (n = 3 \times 3, *p < 0.05,

876 **p < 0.01).

877 (E) After transfection of *caNrf2^{ΔN}* cells with *siNrf2*, the mRNA levels of *Nrf2*, *Nrf1*, *HO-1*, *NQO1*, *GCLM*, *Keap1*,
878 *STC2*, *STC1* and *HIF1A* were determined by RT-qPCR. Data are reported as mean ± SD (n = 3 × 3, *p < 0.05,
879 **p < 0.01).

880 (F) The effect of *siNrf2* on the protein expression of *Nrf2*, *STC2*, *HIF1A* and *NQO1* in *caNrf2^{ΔN}* cells was detected
881 by Western blotting.

882 (G) The protein abundances of *Nrf2*, *NQO1*, *HIF1A*, *STC2* and *Keap1* in *WT* and *Nrf2^{-/-}* cell lines were detected by
883 Western blotting

884 (H) *Nrf1α^{-/-}* cells were transfected with a *Nrf1*-expressing plasmid, and then subjected to RT-qPCR detection of
885 the mRNA levels of *Nrf1*, *STC2*, *Nrf2*, *HO-1*, *GCLM*, *Keap1*, *STC1* and *HIF1A*. Data are reported as mean ± SD (n
886 = 3 × 3, \$ p < 0.05, \$\$ p < 0.01).

887 (I) After overexpression of *Nrf1* was allowed in *Nrf1α^{-/-}* cells, subsequent changes of both *STC2* and *Nrf1* proteins
888 were determined by Western blotting.

889 (J) HepG2 cells were transfected with *Nrf1* or *Nrf2* expression constructs and then subjected to RT-PCR analysis
890 of the mRNA levels of *Nrf1*, *Nrf2*, *HO-1*, *Keap1*, *STC2* and *STC1*, as shown as mean ± SD (n = 3 × 3, \$ p < 0.05,
891 \$\$ p < 0.01).

892 (K) After *Nrf1* expression plasmid were transfected into HepG2 cells, the changes of both *Nrf1* and *STC2* protein
893 abundances were examined by Western blotting.

894

895 **Fig. 4. STC2 monitors the expression of HIF1A and Nrf2 through a putative feedback regulatory loop**

896 (A) HepG2 cells were transfected with *STC2*-targeting siRNA (*siSTC2*), and then subjected to Western blotting
897 analysis of *STC2*, *Keap1*, *Nrf2* and *HO-1* protein levels.

898 (B) The protein levels of *HIF1A* and *Nrf1* in *siSTC2*-transfected HepG2 cells were detected by Western blotting.

899 (C) The mRNA expression levels of *STC2*, *Nrf2*, *Nrf1*, *HO-1*, *GCLM*, *Keap1* and *HIF1A* in *siSTC2*-transfected HepG2
900 cells, were determined by RT-qPCR, and shown as mean ± SD (n = 3 × 3, *p < 0.05, **p < 0.01, \$\$ p < 0.01).

901 (D) Western blotting analysis of *STC2*, *Keap1*, *Nrf2* and *HO-1* protein levels in *siSTC2*-transfected *Nrf1α^{-/-}* cells.

902 (E) The effect of *siSTC2* on *HIF1A* (and *STC2*) protein abundance in *siSTC2*-transfected *Nrf1α^{-/-}* cells was
903 determined by Western blotting.

904 (F) The mRNA levels of *STC2*, *Nrf2*, *Nrf1*, *HO-1*, *GCLM*, *Keap1* and *HIF1A* in *siSTC2*-transfected *Nrf1α^{-/-}* cells
905 *Nrf1α^{-/-}* cells were detected by RT-qPCR. Data are reported as mean ± SD (n = 3 × 3, *p < 0.05, \$ p < 0.05).

906 (G) Distinct effects of *siSTC2* on *STC2*, *HIF1A*, *Keap1*, *Nrf2* and *NQO1* proteins in *caNrf2^{ΔN}* cells were examined by
907 Western blotting.

908 (H) The mRNA levels of *STC2*, *Nrf2*, *Nrf1*, *HO-1*, *NQO1*, *Keap1* and *HIF1A* in *siSTC2*-transfected *caNrf2^{ΔN}* cells were
909 determined by RT-qPCR and shown graphically as mean ± SD (n = 3 × 3, **p < 0.01).

910 (I) The inhibitory effect of Thapsigargin (TG) on the protein expression of *Keap1* and *STC2* was detected by
911 Western blotting after HepG2 cells had been treated with this chemical (1μM dose).

912 **Fig. 5. STC2 augments hepatoma cell proliferation and its malgrowth *in vitro* and *in vivo*.**

913 (A) The mRNA levels of *STC2* in *WT*, *STC2^{insC}* and *STC2^{-/-}* cell lines were determined by RT-qPCR and shown as
914 mean ± SD (n = 3 × 3, **p < 0.01).

915 (B) The protein levels of *STC2* in *WT*, *STC2^{insC}* and *STC2^{-/-}* cell lines were examined by Western blotting.

916 (C) Western blotting analysis of the *STC2* protein in HepG2 cells that had been transfected with the Lentiv-*STC2*
917 (#1 and #2) or an empty vector.

918 (D) RT-qPCR analysis of the *STC2* mRNA levels in HepG2 cells that had been transfected with Lentiv-*STC2* (#1 and
919 #2) or an empty vector. Data are reported as mean ± SD (n = 3 × 3, \$\$ p < 0.01).

920 (E, F) Colony formation of *WT*, *STC2*^{insC}, *STC2*^{-/-} and Lentiv-*STC2* cell lines and their clone clusters were counted.
921 Data are presented as mean \pm SD (n = 3; **p < 0.01, \$ p < 0.05; NS = no statistical difference).
922 (G,H) Distinct cell cycles were measured by flow cytometry. The data are obtained from two different
923 experiments (n = 3) and shown graphically.
924 (I) Different growth curves of mouse subcutaneous xenograft tumors derived from *WT*, *STC2*^{insC}, *STC2*^{-/-} and
925 Lentiv-*STC2* cell lines and measured in size every two days, before being sacrificed on the 30th day. Data are
926 shown as mean \pm SD (n = 5 per group, **p < 0.01; \$ p < 0.05, NS = no statistical difference).
927 (J) All those final tumor weights of distinct cell groups were calculated and shown as mean \pm SD (n = 5, **p < 0.01;
928 \$ p < 0.05, NS = no statistical difference).
929 (K) Representation of distinct xenograft tumors derived from *WT*, *STC2*^{insC}, *STC2*^{-/-} and Lentiv-*STC2* cell lines.
930 (L) The histological photographs of indicated tumors were achieved by HE (hematoxylin & eosin) staining. Distinct
931 scale bars = 500 μ m in \times 40 pictures, 100 μ m in \times 200 pictures and 50 μ m in \times 400 pictures.
932

933 **Fig. 6. Transcriptome sequencing to identify DEGs significantly in *STC2*^{-/-} or Lentiv-*STC2* vs *WT* cell lines.**
934 (A) Graphical illustration of the *STC2* expression at its TPM values (n = 3, **p < 0.01; \$\$, p < 0.01) in *WT*, *STC2*^{-/-}
935 and Lentiv-*STC2* cell lines
936 (B) Quantitative statistics of DEGs between every two groups of *WT*, *STC2*^{-/-} and Lentiv-*STC2* cell lines.
937 (C) Venn diagram of DEGs between every two groups of *WT*, *STC2*^{-/-} and Lentiv-*STC2* cell lines.
938 (D) Significant DEGs of 67 (at their TPM values) with distinct functional annotation in important signaling
939 pathways and key modules enriched in Lentiv-*STC2*, *STC2*^{-/-} and *WT* cell lines.
940 (E) Five major clusters of DEGs determine discrepant pathological phenotypes between *STC2*^{-/-} and Lentiv-*STC2*
941 cells as compared with *WT* cells.
942

943 **Fig. 7. A model is proposed for a better understanding of *STC2*'s function in mediating discrepant phenotypes**
944 **of between *Nrf1*^{-/-} and *Nrf2*^{-/-}.**
945 (A) The Pearson correlation analysis of key genes expressed significantly in *WT*, *Nrf1*^{-/-}, *Nrf2*^{-/-}, *caNrf2*^{AN}, *STC2*^{-/-}
946 and Lentiv-*STC2* cell lines, along with the relevant coefficients between every two of those genes.
947 (B) The relevance coefficients between every two of *Nrf1*^{-/-}, *Nrf2*^{-/-}, *caNrf2*^{AN}, *STC2*^{-/-} and Lentiv-*STC2* cell lines
948 was calculated as shown (in big numbers) along with their p-values (in small numbers).
949 (C) A model proposed for a better understanding of those key molecular inter-regulatory networks accounting for
950 the role of *STC2* in mediating distinctive phenotypes between *Nrf1*^{-/-} and *Nrf2*^{-/-}. Distinct intrinsic status of
951 such a robust endogenous molecular-cellular network was further deciphered in Fig. 8.
952

953 **Fig. 8. Distinct intrinsic status of key molecular-cellular regulatory models to provide a better understanding of**
954 **distinction pathophysiological phenotypes.**
955 (A) A wild-type cellular-molecular inter-regulatory network is proposed for a better explanation of those key
956 gene transcription (indicated by dark red lines) to core protein functions (illustrated by all other ways) in
957 maintaining normal cellular homeostasis and even organ integrity.
958 (B) The putative *Nrf1*^{-/-}-specific cellular-molecular inter-regulatory network to give a better understanding of
959 the mechanism dictating its unique pathological phenotype.
960 (C) The *caNrf2*^{AN}-led key molecular inter-regulatory network to explain its specific phenotype.
961 (D) The *Nrf2*^{-/-}-specific cellular-molecular inter-regulatory network to determine its phenotype.
962 (E) A model proposed to explain the inter-regulatory network of between those core genes in *STC2*^{-/-} cells.
963 (F) The lentiv-*STC2*-leading molecular inter-regulatory network amongst those indicated key genes.

964

965 **Fig. S1. Identification of *Nrf1*^{-/-}, *Nrf2*^{-/-}, *caNrf2*^{ΔN} cell lines and STC2-specific antibody.**

966 (A) The protein expression abundances of Nrf1 α and Nrf2 in WT HepG2 cells and its derivative *Nrf1*^{-/-}, *Nrf2*^{-/-}
967 and *caNrf2*^{ΔN} cell lines were determined by Western blotting.

968 (B) WT cells were transfected with a STC2 expression construct or empty vector and then subjected to Western
969 blotting to verify the accuracy of STC2-specific antibody and its V5-tagged proteins.

970 (C) WT cells were treated or not treated with (1 μ M dose) TG to induce the STC2 expression and subjected to
971 Western blotting to verify the accuracy of STC2-specific antibody.

972

973 **Fig. S2. Establishment of *STC2*^{insC} and *STC2*^{-/-} cell lines.**

974 (A) The genomic DNA sequencing to identify two mutants of *STC2* in selected cell lines, which is thus designated
975 as *STC2*^{insC} and *STC2*^{-/-} cell lines, respectively.

976 (B) The mutagenesis mapping of ATGs (as putative translation start codons at #1, #2 and #3 positions mutated
977 into CTGs) within the open reading frame of *STC2*.

978 (C) HepG2 cells were transfected with the above-described *STC2* mutants #1, #2 and #3, and then subjected to
979 Western blotting analysis of the *STC2* protein expression levels.

980

981 **Fig. S3. The enrichment analysis of DEGs in liver cancer tissues compared to normal liver tissues.**

982 (A, B) Two VENN maps of DEGs significantly up-regulated or down-regulated in liver cancer tissues as compared
983 to the normal liver tissues, which were obtained by distinct analysis packages DESeq2, LIMMA and edgeR.

984 (C to E) Those up-regulated DEGs enriched respectively in the GO cell components, biological processes and the
985 KEGG pathways in liver cancer tissues when compared with the normal tissues.

986 (F to H) Those down-regulated DEGs enriched respectively in the GO cell components, biological processes and
987 the KEGG pathways in liver cancer tissues when compared with the normal tissues.

988

989 **Fig. S4. Analysis of liver cancer data obtained from TCGA.**

990 (A) Principal component analysis of HCC samples obtained from the TCGA database.

991 (B) A volcano map of DEGs in HCC analyzed by the DESeq2 package.

992 (C) A heat-map of the expression values of 30 top DEGs significantly in HCC.

993 (D) The impact of *STC2*, *CBX2*, *ADAM1* or *AKR1D1* on the overall survival rate of HCC patients was evaluated by
994 the Kaplan-Meier's method.

995

996 **Fig. S5. The DEGs in TCGA-LIHC tissues and *Nrf1*^{-/-} or *Nrf2*^{-/-} cell lines as compared with their controls.**

997 (A to C) Three VENN maps of DEGs in the TCGA-LIHC tissues intersected with other DEGs in *Nrf1*^{-/-}, *Nrf2*^{-/-} or
998 *caNrf2*^{ΔN} cell lines selected by comparison with their WT counterparts.

999 (D) The FPKM values of DEGs in WT and *Nrf1*^{-/-} cell lines, all of which are up-regulated in LIHC and *Nrf1*^{-/-}
1000 cells.

1001 (E) The FPKM values of DEGs in WT and *Nrf1*^{-/-} cell lines, all that are down-regulated in LIHC and *Nrf1*^{-/-} cells.

1002 (F) The FPKM values of DEGs in WT and *Nrf1*^{-/-} cell lines, all of which are up-regulated in LIHC but
1003 down-regulated in *Nrf1*^{-/-} cells.

1004 (G) The FPKM values of DEGs in WT and *Nrf1*^{-/-} cell lines, that are all down-regulated in LIHC but also
1005 up-regulated in *Nrf1*^{-/-} cells.

1006 (H) The FPKM values of DEGs in WT and *Nrf2*^{-/-} cell lines, that are all up-regulated in LIHC and *Nrf2*^{-/-} cells.

1007 (I) The FPKM values of DEGs in WT and *Nrf2*^{-/-} cell lines, that are all up-regulated in LIHC but also down-regulated

1008 in $Nrf2^{-/-}$ cells.

1009 (J) The FPKM values of DEGs in *WT* and $Nrf2^{-/-}$ cell lines, that are all down-regulated in LIHC, but also down- or
1010 up-regulated in $Nrf2^{-/-}$ cells respectively.

1011

1012 **Fig. S6. Comparative analysis of LIHC data in TCGA and transcriptome data of *WT* and $caNrf2^{AN}$ cell lines.**

1013 (A) The FPKM values of DEGs selected in *WT* and $caNrf2^{AN}$ cell lines, that are all up-regulated in LIHC but also
1014 down-regulated in $caNrf2^{AN}$ cells.

1015 (B) The FPKM values of DEGs in *WT* and $caNrf2^{AN}$ cell lines, that are all up-regulated in LIHC and $caNrf2^{AN}$ cells.

1016 (C) The FPKM values of DEGs in *WT* and $caNrf2^{AN}$ cell lines, that are all down-regulated in LIHC and $caNrf2^{AN}$ cells.

1017 (D) The FPKM values of DEGs in *WT* and $caNrf2^{AN}$ cell lines, that are all down-regulated in LIHC but up-regulated
1018 in $caNrf2^{AN}$ cells.

1019 (E) The expression levels of *CBX2* in LIHC obtained from the Ualcan database and its effect on the survival of HCC
1020 patients evaluated by the Kaplan-Meier Plotter database.

1021 (F) The expression levels of *HOXD9* in LIHC obtained from the Ualcan database and its effect on the survival of
1022 HCC patients evaluated by the Kaplan-Meier Plotter database.

1023

1024 **Fig. S7. The correlation between those key gene expression levels in the liver cancer database.**

1025 (A, B) The correlation between the expression levels of *Nrf1* and *GCLM*, *PSMB7* in the LIHC database.

1026 (C, D) The correlation between the expression levels of *Nrf2* and *GCLM*, *Nrf1* in the LIHC database.

1027 (E to H) The correlation between the expression levels of *Nrf1*, *Nrf2*, *HIF1A*, *AHR* and *STC2* in the LIHC database.

1028

1029 **Fig. S8. The ChIP-Sequencing analysis of *Nrf1* and *Nrf2* on the Encode database.**

1030 (A) *Nrf1* binds to the promoter regions of *GCLM* or *STC2* in HepG2 cells (data obtained from the Encode
1031 database).

1032 (B) *Nrf2* binds to the promoter regions of *GCLM* or *STC2* in HepG2 cells (data obtained from the Encode
1033 database).

1034

1035 **Fig. S9. Analysis of transcription factors binding to the promoter region of genes.**

1036 (A) *Nrf1* and *Nrf2* bind to the promoter region of *HIF1A* in HepG2 cells (data obtained from the Encode database).

1037 (B) Distinct effects of *Nrf1*, *Nrf2* and *HIF1A* on distinct lengths of the *STC2* promoter were detected by their
1038 relevant luciferase reporter genes that are co-transfected into HepG2 cells. The resulting data are shown
1039 graphically ($n = 3 \times 3$, $\$ p < 0.05$, $\$$ $p < 0.01$, NS = no statistical difference).$

1040

1041 **Fig. S10. Analysis of gene expression changes in HepG2 cells after knockout or overexpression *STC2*.**

1042 (A) The correlative heat-map of samples employed for transcriptome sequencing.

1043 (B) A boxplot of their expression quantification distribution in the examined samples.

1044 (C to E) Three volcano maps of DEGs in $STC2^{-/-}$ vs *WT*, Lentiv-*STC2* vs *WT* or $STC2^{-/-}$ cell lines are illustrated,
1045 respectively.

1046 (F) The TPM values of those indicated genes, including *STC2*, *Nrf1*, *Nrf2*, *HO-1*, *HO-2*, *NQO1*, *GCLC*, *GCLM*,
1047 *SQSTM1*, *HIF1A*, *HIF1AN*, *HILPAD*, *SLC2A1*, *VEGFA* and *Keap1* in *WT*, $STC2^{-/-}$ and Lentiv-*STC2* cells.

1048 (G) The *WT* HepG2 cells were transfected with a *STC2*-expressing plasmid and then subjected to Western blotting
1049 analysis of the protein expression changes of *STC2*, *Nrf1*, *HIF1A* and *Keap1*.

1050

1051 **Fig. S11. The enrichment analysis of significantly DEGs in $STC2^{-/-}$ or Lentiv-*STC2* cells by GO and KEGG methods.**

1052 (A) The gene ontology (GO) enrichment analysis of DEGs for cell components, biological processes, and molecular
1053 functions in *STC2*^{-/-} (*left panel*) or Lentiv-*STC2* (*right panel*) vs *WT* cell lines. The top 20 highly representative
1054 GO terms are shown to be classified in DEGs.

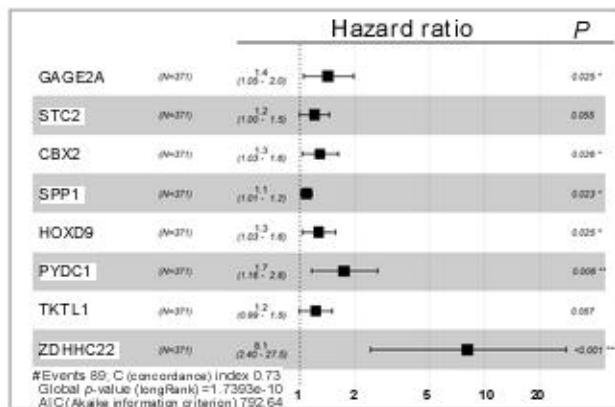
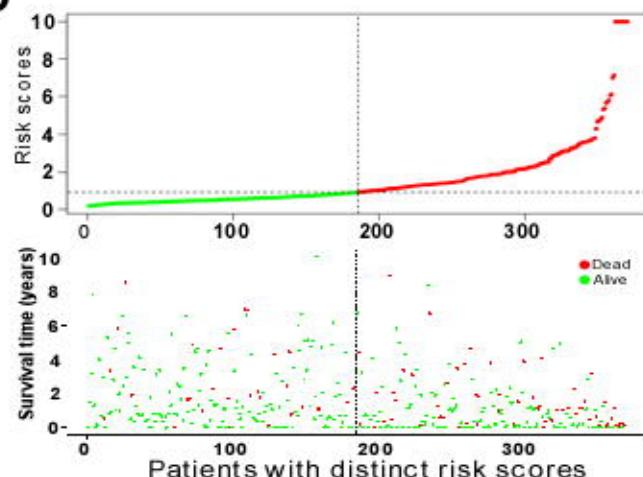
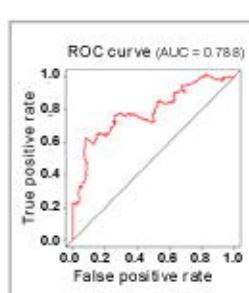
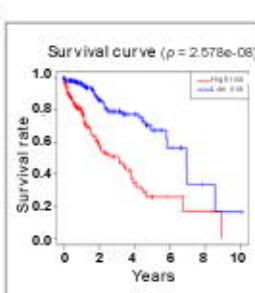
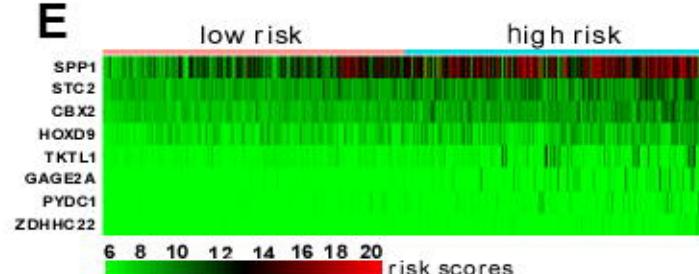
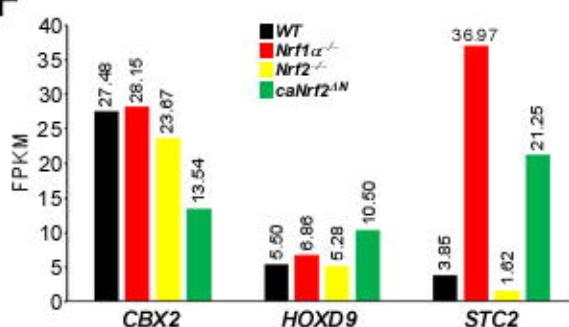
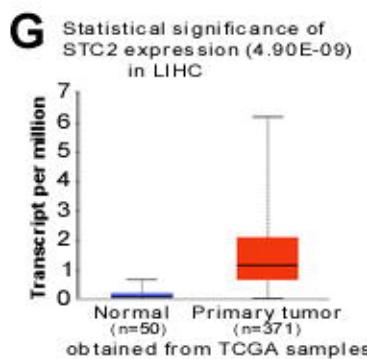
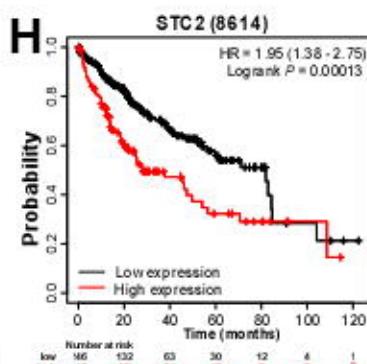
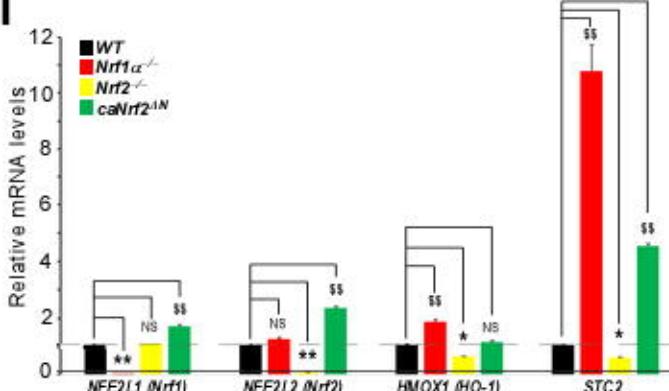
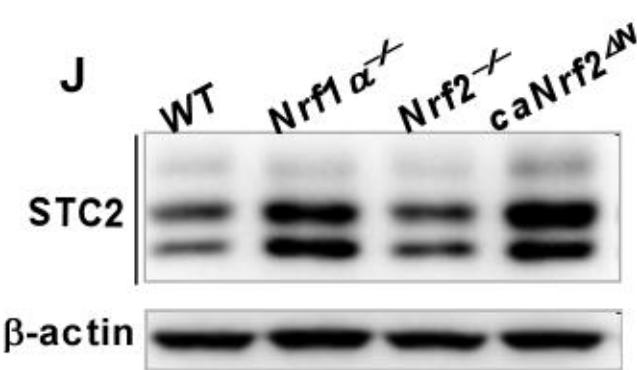
1055 (B) The KEGG pathway enrichment of DEGs between *STC2*^{-/-} or Lentiv-*STC2* vs *WT* cell lines. The graph shows the
1056 top 20 significantly enriched KEGG pathways.

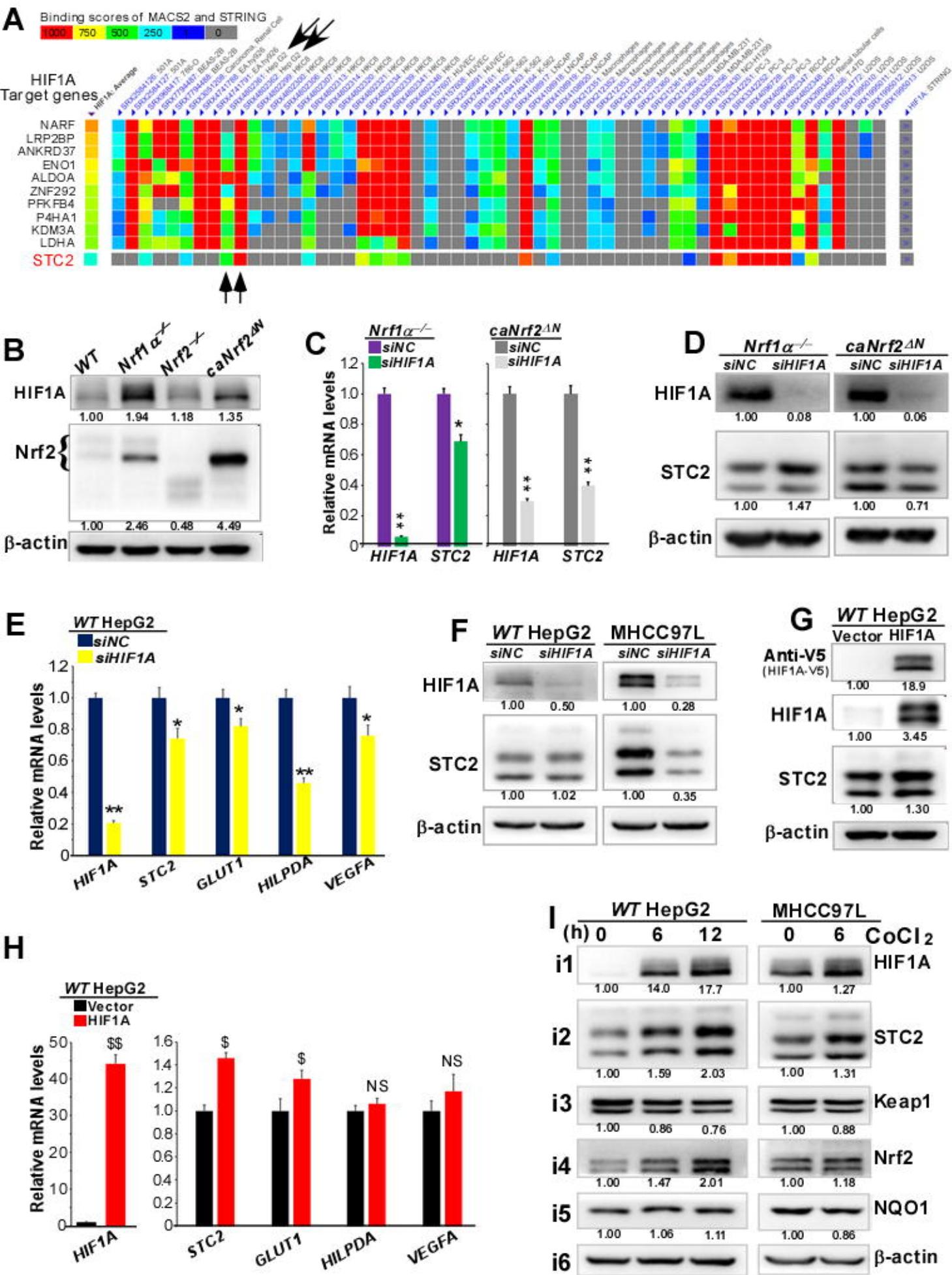
1057

1058 **Fig. S12.** The FPKM values of key genes in *WT*, *Nrf1*^{-/-}, *Nrf2*^{-/-} and *caNrf2*^{ΔN} cell lines, as they were deciphered
1059 in *STC2*^{-/-} or Lentiv-*STC2* cell lines when compared with *WT* controls (Figure 6D).

1060

1061 **Fig. S13.** The changes of those DEGs governing critical transcription factors regulated by *Nrf1*, *Nrf2* and *STC2* in
1062 Lentiv-*STC2*, *Nrf1*^{-/-}, *caNrf2*^{ΔN} and *Nrf2*^{-/-} cell lines when compared with *WT* controls.











1063


1064 **Fig. S14.** The changes of those DEGs governing critical transcription factors regulated by *Nrf1*, *Nrf2* and *STC2* in
1065 *STC2*^{-/-}, *Nrf1*^{-/-}, *caNrf2*^{ΔN} and *Nrf2*^{-/-} cell lines when compared with *WT* controls.

1066

1067 **Fig. S15.** The changes of those DEGs possibly involved in the Ca^{2+} -relevant pathways in *Nrf1*^{-/-}, *Nrf2*^{-/-},
1068 *caNrf2*^{ΔN}, Lentiv-*STC2* and *STC2*^{-/-} cell lines as compared with *WT* controls.

1069

Figure 1**A****D****B****C****E****F****G****H****I****J**

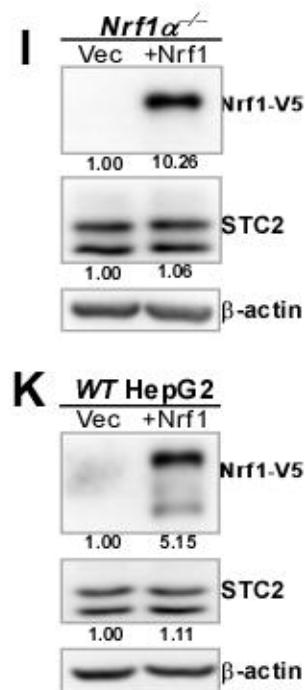
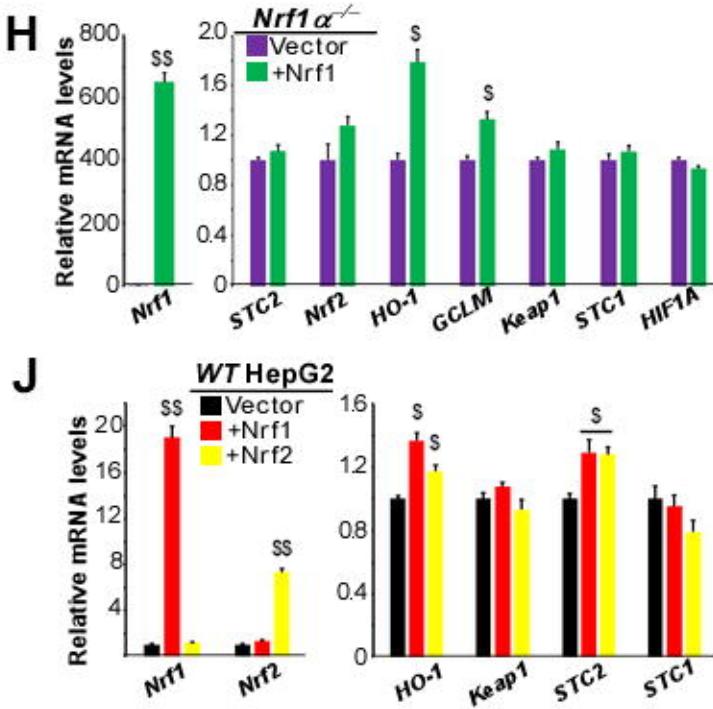
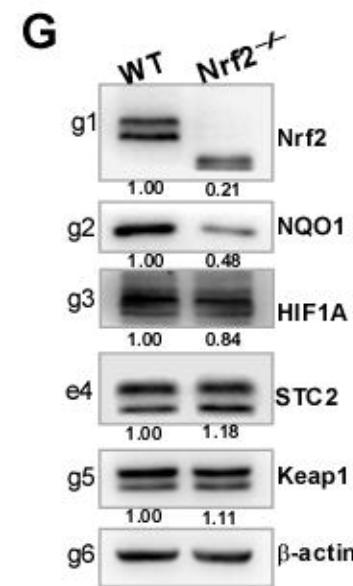
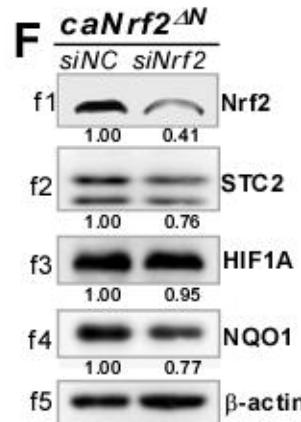
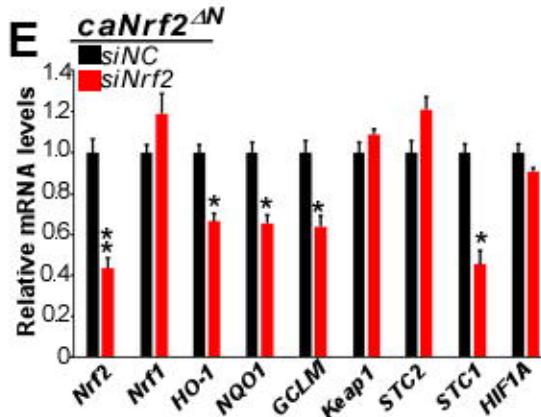
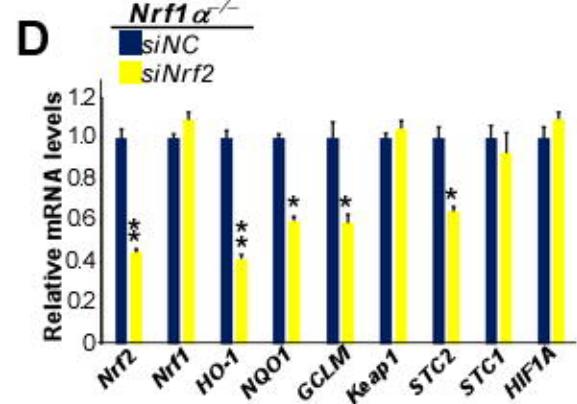
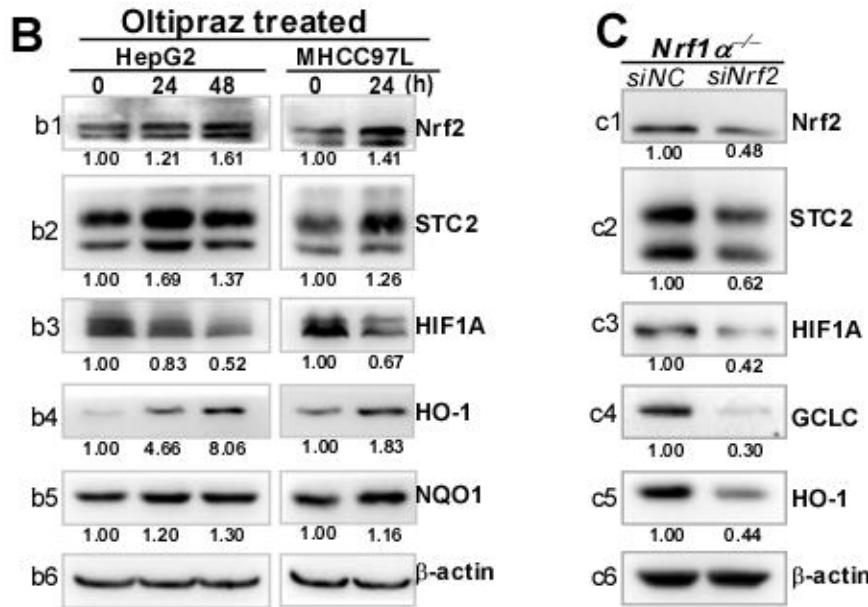
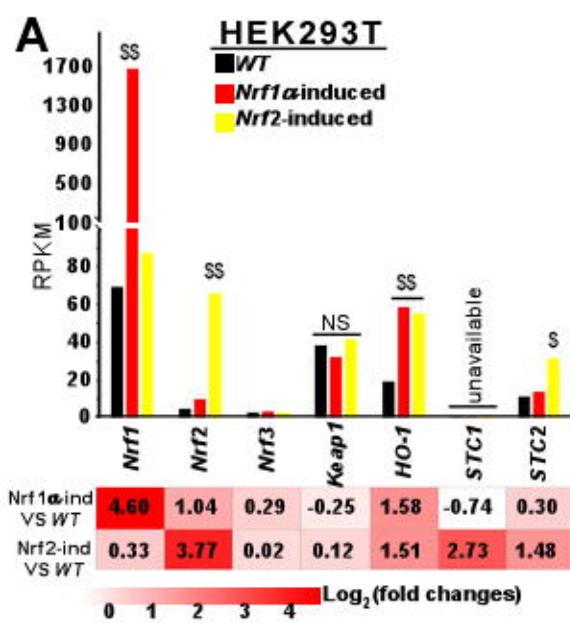
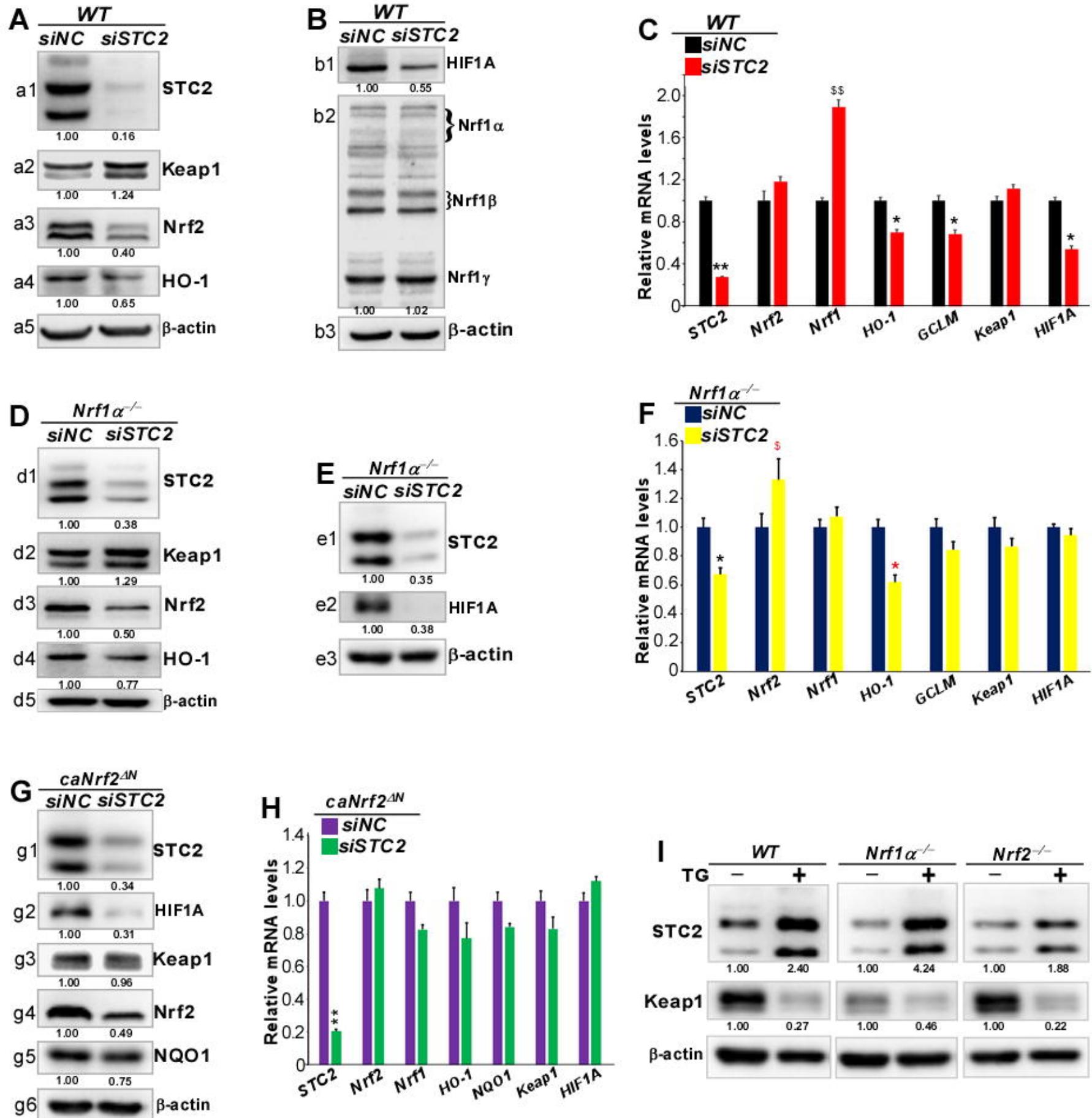









Figure 3

Figure 4

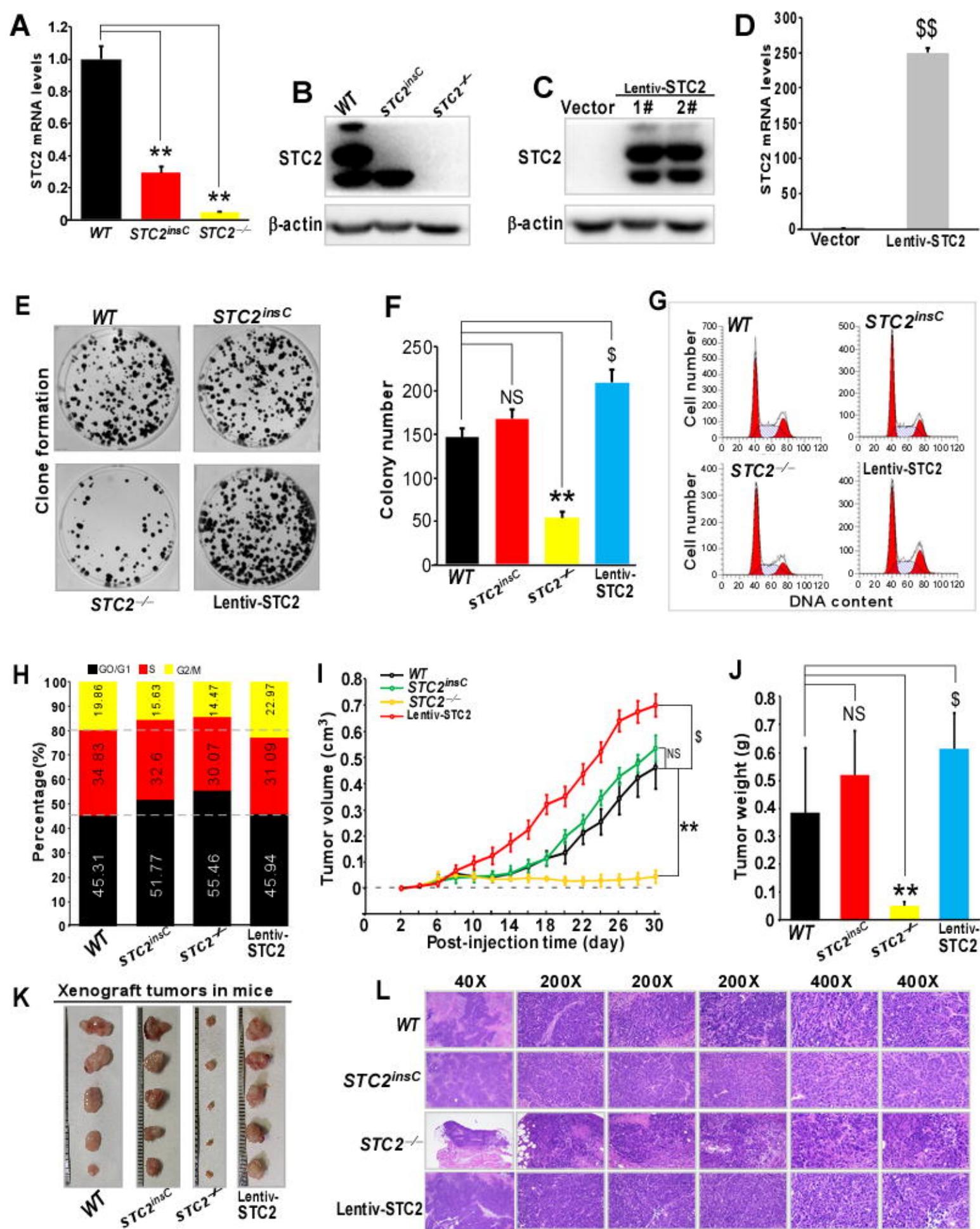
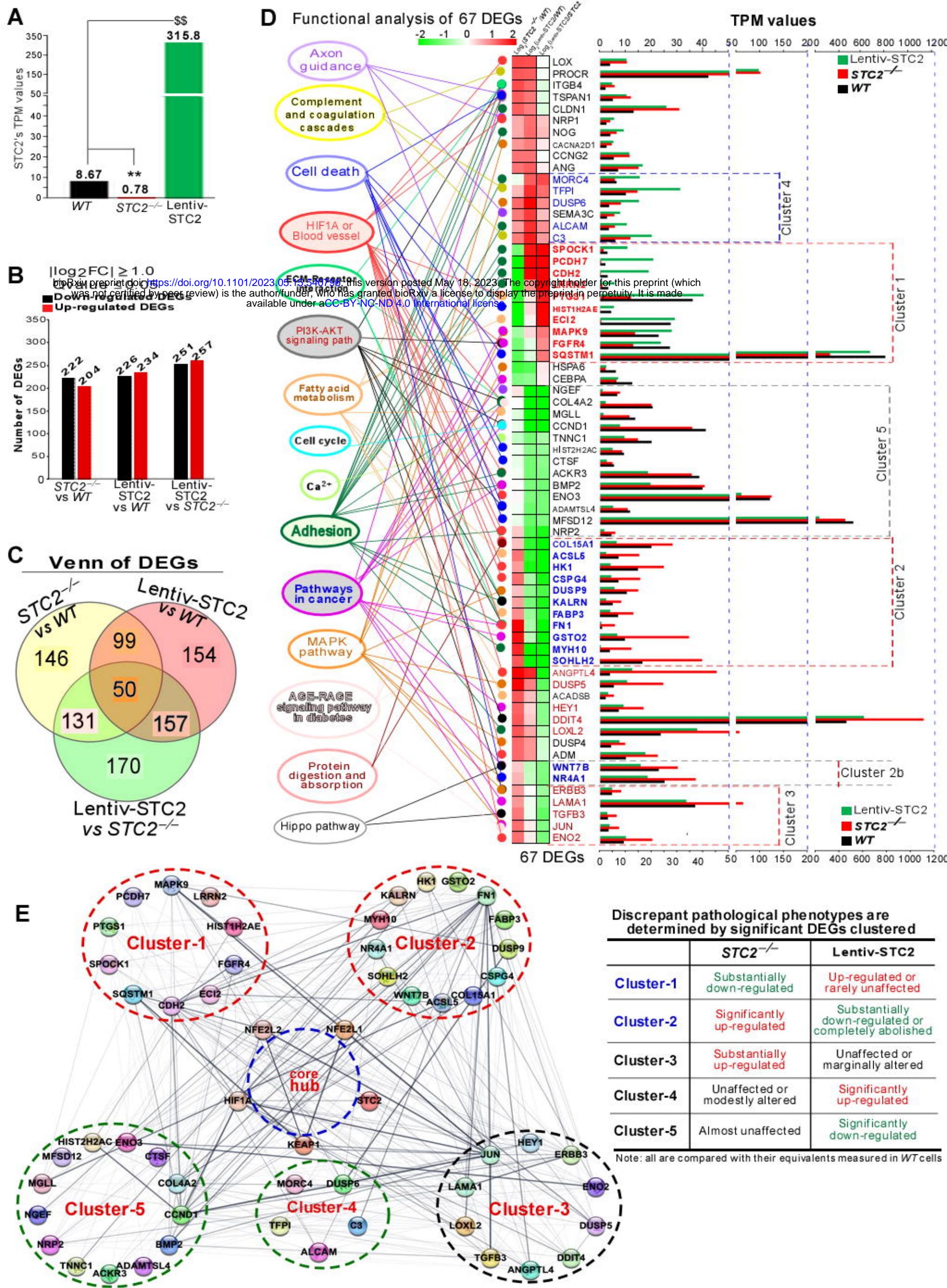
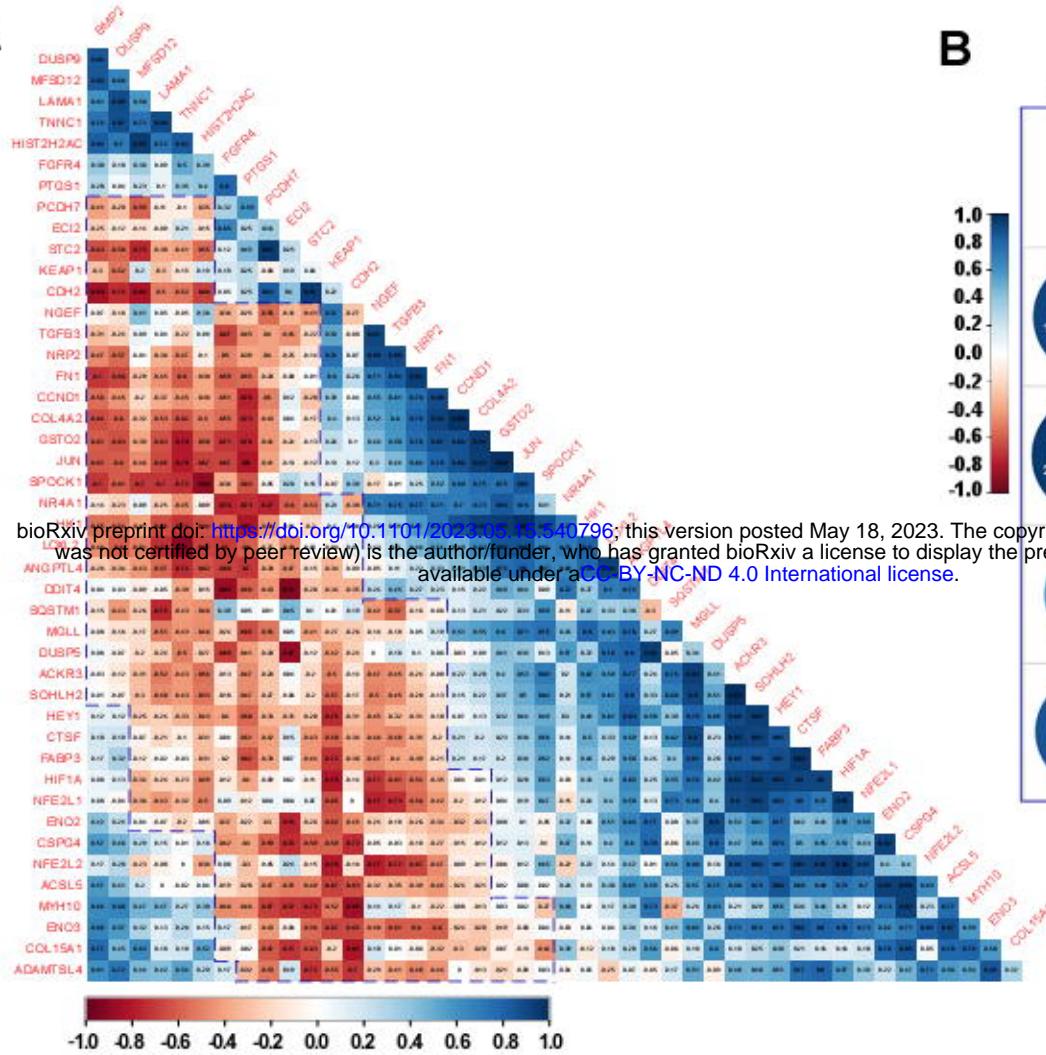
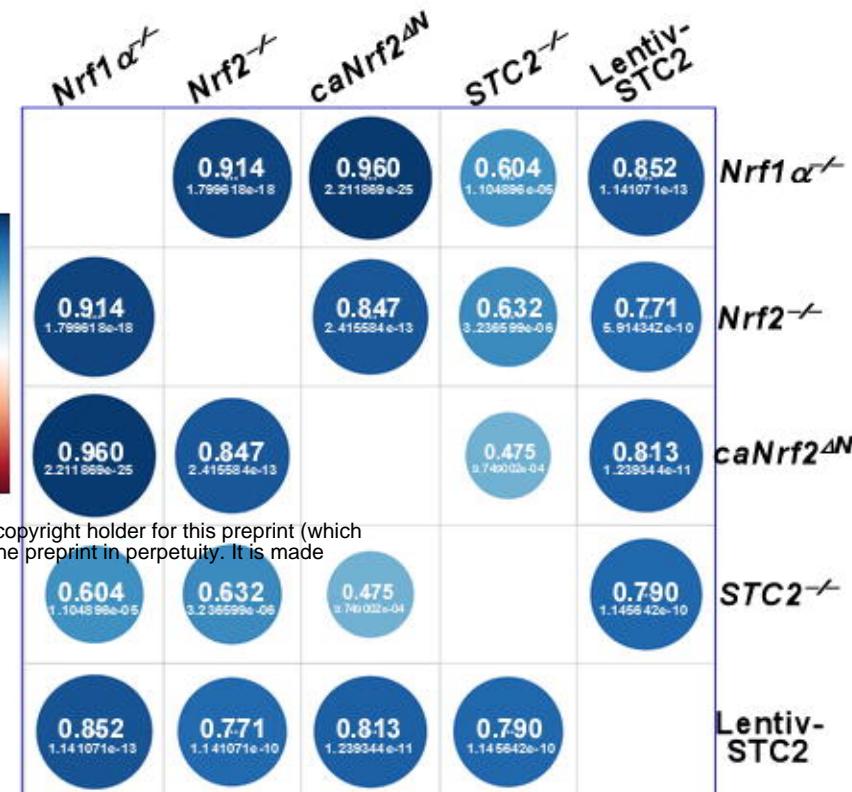

Figure 5

Figure 6


Figure 7

A

bioRxiv preprint doi: <https://doi.org/10.1101/2023.05.15.540796>; this version posted May 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B

C

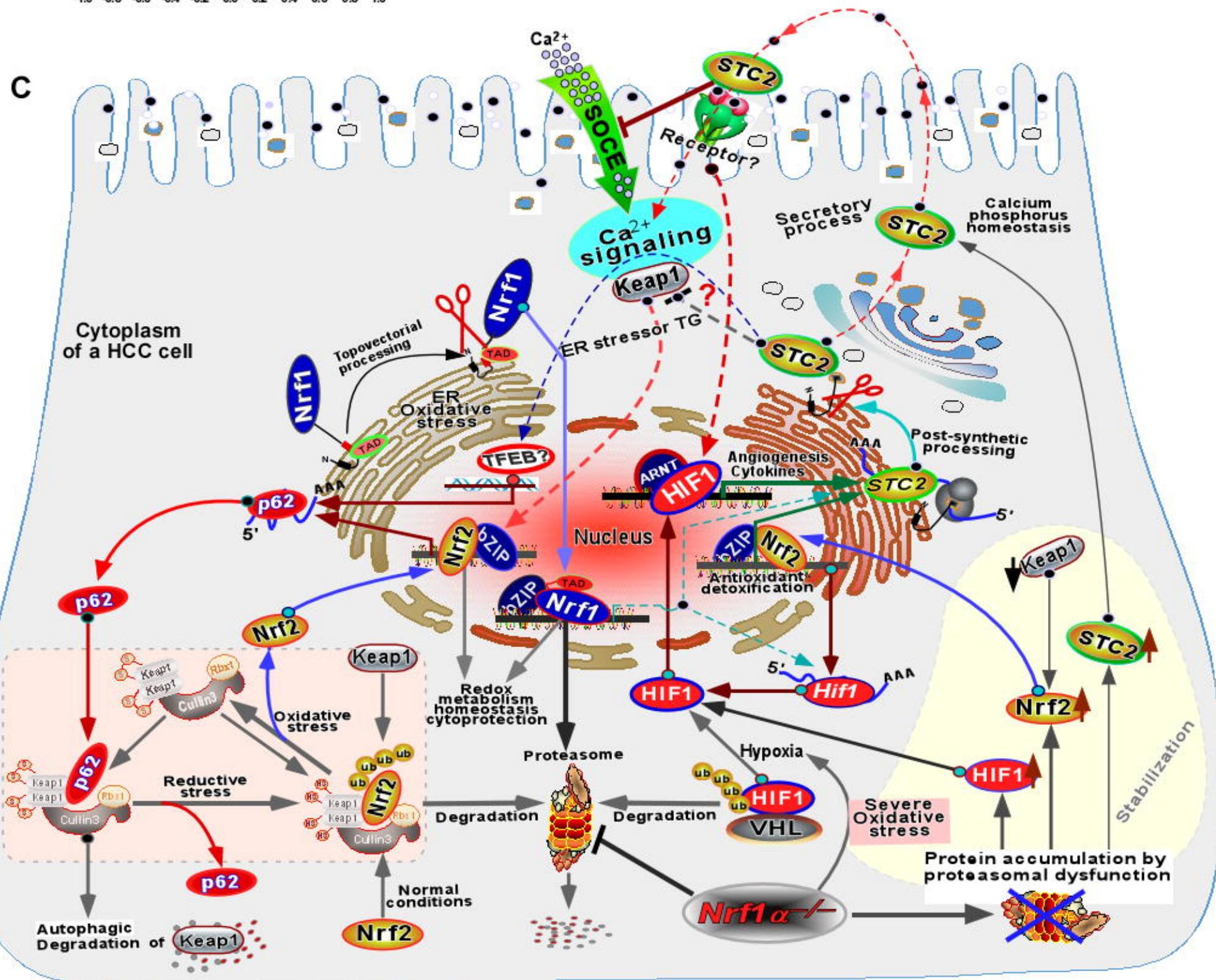
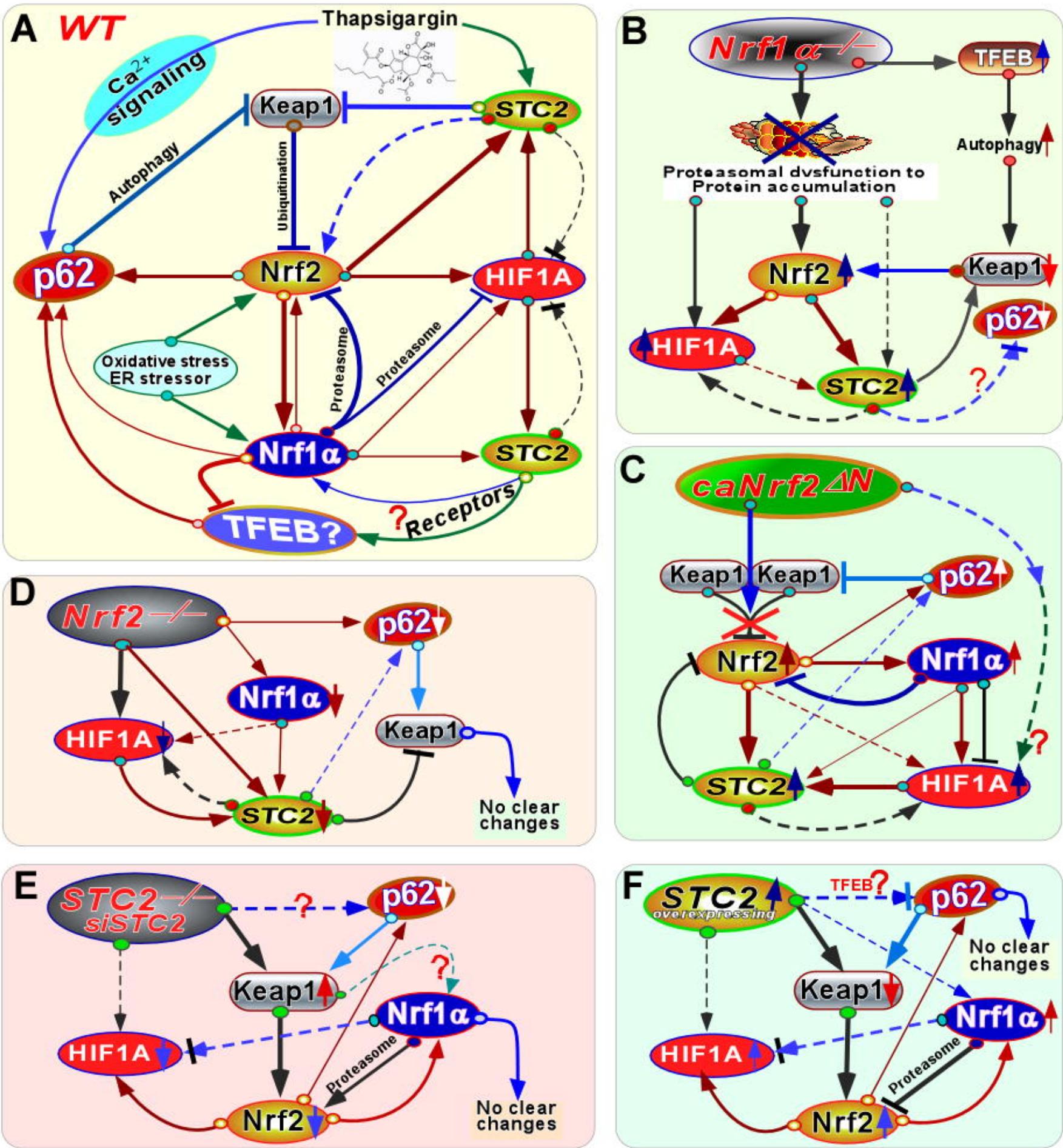



Figure 8

Table 1. Predicted risk scores of distinct hepatoma cell lines

Cell lines	Predicted risk scores
WT	9.211808799
<i>Nrf1</i> $\alpha^{-/-}$	15.95171908
<i>Nrf2</i> $^{-/-}$	7.745601931
<i>caNrf2</i> $^{\Delta N}$	10.2258014