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ABSTRACT

Senotrophomonas maltophilia, an emerging multidrug-resistant opportunistic bacterium in
humans is of major concern for immunocompromised individuals for causing pneumonia and
bloodborne infections. This bacterial pathogen is associated with a considerable fatality/case
ratio, with up to 100%, when presented as hemorrhagic fever. It is resistant to commonly used
drugs as well asto antibiotic combinations. In-silico based functional network analysisis a key
approach to get novel insights into virulence and resistance in pathogenic organisms. This study
included the protein-protein interaction (PPI) network analysis of 150 specific genes identified
for antibiotic resistance mechanism and virulence pathways. Eight proteins, namely, pilL, fliA,
Smit2260, SMIt2267, cheW, Smit2318, cheZ, and fliM were identified as hub proteins. Further
docking studies of selected phytochemicals were performed against the identified hub proteins.
Deoxytubulosine and Corosolic acid were found to be potent inhibitors of hub proteins of
pathogenic S. maltophilia based on protein-ligand interactive study. Further pharmacophore
studies are warranted with these molecules to develop them as novel antibiotics against S,

maltophilia.

Keywords: Antimicrobial resistance, Functional network analysis, Protein-protein interaction,

Virulence
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1. INTRODUCTION

Senotrophomonas maltophilia is a waterborne aerobic Gram-negative bacterium that is rod-
shaped and motile due to polar flagella. S. maltophilia has known to be an emerging pathogenic
in immunocompromised people (Patterson et al., 2020). Exposure to this bacterium can happen
both within and outside of the clinical environment (Brooke, 2012). The two most typical
manifestations, bacteremia and pneumonia, have both been linked to considerable death rates
during the past 20 years (Senol, 2004). Other clinical syndromes associated with this bacterium
are skin and soft-tissue infections (Sakhnini et al., 2002), endocarditis, urinary tract infection,
meningitis, mastoiditis, etc. (Senol, 2004).

According to estimates, there are between 5.7 and 37.7 infections for every 10,000 hospital
discharges worldwide, which is considerably greater than previously thought during the years
since the 1970s (Patterson et al., 2020; Said et al., 2022). The rise in immunocompromised
individuals and widespread usage of broad-spectrum antibiotics are believed to be the principal
causes for this growing infection rate (Said et al., 2022).

Infection management efforts are made more difficult by S. maltophilia’s capacity to grow
biofilms on biotic surfaces and fomites. Additionally, the blurred lines between colonization
and infection, and the frequent polymicrobial presentation of S. maltophilia, particularly in
immunocompromised hosts, lead to delay in the administration of the proper antimicrobial
therapy. In turn, this contributes to the overuse and abuse of antibiotics in cases of non-
infection without appropriate diagnosis. Furthermore, the abundance of innate and acquired

resistance mechanisms restrict the range of curative alternatives (Kullar et al., 2022).

Senotrophomonasis intrinsically resistant to an assortment of antibiotics, including
carbapenems, aminoglycosides, macrolides, 3-lactams, tetracyclines, trimethoprim-
sulfamethoxazole (TMP-SM X), chloramphenicol, and fluoroquinolones (Appaneal et al.,
2020). Some of the most important molecular variables affecting this organism'’s resistance to
antibiotics are the expression of gnr genes, the generation of [3-lactamases, the presence of
class 1 integrons, and efflux pumps. While most studies show that S. maltophilia is sensitive
to TMP/SMX (Chang et al., 2015), a few studies have found resistance indicating the
emergence of antimicrobial resistance (AMR) in S. maltophilia (Patterson et al., 2020; Saleh
etal., 2021).
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Given the emergence of AMR in S maltophilia, drug resistance determinants are of great
interest. Crossman et al. (2008) found nine potential antimicrobial efflux systems of the
resistance-nodulation-division (RND) type were present, in addition to a number of genes that

confer resistance to antimicrobial drugs of different sorts via other pathways.

In this work, the opportunistic pathogen S. maltophilia K279a was investigated using gene
interaction network analysisto look into several antimicrobial resistance (AMR) and
virulence genes. The exceptional ability of this specific strain to withstand drugs and heavy
metals along with its pathogenicity were the reasons why it was chosen. We found
biologically relevant genes involved in resistance and virulence mechanisms. Prospectively,
this research will benefit wet lab researchers in designing cutting-edge therapeutic approaches

to counteract S. maltophilia pathogenicity.

2.METHODOLOGY

2.1 Sequence acquisition

The complete genome reference sequences (RefSegs, atotal of 72) for al S. maltophilia were
downloaded from the NCBI website (https://www.ncbhi.nim.nih.gov/, last accessed on Apr 27,
2023). Further, sequence related metadata including the geographical origins of the isolates

were also collected from the NCBI.

2.2 |dentification of virulence and antibiotic resistance genes

Each genome sequence was submitted to the resistance gene identifier (RGI) tool of
comprehensive antibiotic resistance database (CARD) (Alcock et al., 2020) to obtain
annotations based on perfect, strict, or loose paradigm, and complete gene match criteria for
the identification of antibiotic resistance genes (Rao et a., 2023). The virulence factor
database (VFDB, http://www.mgc.ac.cn/VFY) is a comprehensive warehouse and online
platform widely used for the identification of virulence factors (VFs) (Liu et al., 2019). We
used Abricate 0.9.8 (https://github.com/tseemann/abricate) interface to screen the VFDB
using the parameters — percentage identity of >607" %[ and coverage of >4071%. The resulting
lists of genes were combined and duplicate entries were removed. They were then validated
by comparing against the protein-coding genes from the whole genome of S. maltophilia
K279astrain (NC_010943.1).
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2.3 Construction of protein-protein interaction (PPI) network

In order to investigate the interacting links between the AMR and virulent genesin S.
maltophilia K279a strain, they were mapped using Search Tool for the Retrieval of Interacting
Genes database (STRING v.11.0, https://string-db.org). Visualization of the PPl network was
carried out using Cytoscape (https://cytoscape.org). The PPl network was constructed with a
high confidence level of 0.7 and then imported to Cytoscape (3.9.2) for further analysis.

2.4 Topological analysis

The PPI network was analyzed for its topological properties using Network Analyzer, a
Cytoscape plugin. This tool analyses all the aspects of the PPI network. To better understand the
interaction between the proteins, connectivity degree (K), betweenness centrality (BC) and
closeness centrality (CC) were analyzed. These parameters provide the information about the
number of proteins connected to each protein, centrality of the proteins, and the distance between

them.

2.5. Functional and pathway enrichment analysis of AMR and virulence proteins

ClueGO, a Cytoscape plug-in, was used for thorough analysis and visualization of the
functionally enriched set of proteins. With ap-value of <0.05, STRING was used to obtain
annotations and Gene Ontology (GO) concepts for genes and their functional relationships.
KEGG (Kanehisa and Goto, 2000), UniProt , Pfam, and InterPro were used to comprehend
critical pathway information of the genes and proteins involved in diverse activities as
described in earlier study (Shetty et a., 2022).

2.6 Screening of hub genes and clusters

The PPI network was screened for its hub genes using a Cytoscape plug-in, CytoHubba (Chin et
al., 2014). Top 20 genes were identified from the PPI network using each of 12 in-built
algorithms of CytoHubba. The genes that overlapped in more than 6 algorithms were identified
as the hub genes in the PPl network and were assumed to play acritical rolein AMR and
virulence. A Cytoscape plugin, Molecular Complex Detection (MCODE), with parameters set as
the degree threshold (2), node score threshold (0.2), k-core threshold (4-6), and max depth of
network (100) with other default parameters, was used to screen for deeply linked clusters within
the PPI network. Based on the results, a suitable k-core was selected for further analysis. A
subnetwork was generated with the selected nodes of the clusters from MCODE results including
all edges along with seed proteins. These hub genes/proteins were considered as potential
druggable targets/models, and taken for model quality assessment/evaluation and docking.
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2.7. Model quality assessment and evaluation

Model validation servers were utilized to analyze the physicochemical features of the
identified hub proteins and determine metrics such as Z-score, Q mean DisCo Global score,
Ramachandran scores, etc. The functions of hub proteins were validated and their cellular
localization was predicted to understand their function as per the methodology described
earlier (Shetty et a., 2022).

2.8. Docking studies

The phytochemically derived molecules that might act as inhibitors of hub proteins based on the
information that those molecules were used in the treatment of respiratory infections were
selected from IMPPAT library. Docking studies with selected molecules and hub proteins were
conducted to understand the chemistry of interaction. The structure of hub proteins was obtained
from AlphaFold. PyRx virtual screen tool version 0.9.8 (Dallakyan and Olson, 2015) was used
for the docking of the phytochemical inhibitors of hub proteins. The ligands (selected inhibitors)
were retrieved from PubChem and used to create the 3D structure (Shetty et a., 2022). The
ligand energy was then minimized, and aligand file was created in accordance with the
specifications. The software's requirements were followed for maintaining the docking
parameter, and the optimal postures were chosen based on the binding energy. Discovery Studio
2020 Client and UCSF Chimera version 1.10.1 were used to evaluate the output files.

3.RESULTS

3.1. Reconstruction of AMR and virulence PPl network of S. maltophilia

CARD yielded 75 AMR genes while VFDB yielded 92 virulence genes (Table S1 and S2).
We selected the S. maltophilia K279a strain because of it being the core S. maltophilia
genome in STRING. All virulence genes were present, but only a small subset of the AMR
genes (28 genes) was available in the STRING database. The network was extended by
setting the total number of interactorsto 50. The final network consisted of 150 genes with

1479 functional interactions.

After removing the loosely bound connections, the PPl network was visualized and analyzed
with Network Analyzer (Figure 1A and 1B). MCODE was used to screen the PPI network for
highly interconnected clusters, which resulted in the PPl network being divided into 3 clusters
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viz. C1 (40 nodes, 745 edges, seed protein motA), C2 (8 nodes, 26 edges, seed protein Smit2823),
C3 (16 nodes, 49 edges, seed protein rpoA (Figure 2). By using 12 distinct CytoHubba metrics,
proteins that overlapped in 7 or more parameters were classified as top hub proteins and eight
such hub proteins (pilL, fliA, SMt2260, SmIt2267, cheW, Smlt2318, cheZ, and fliM) were
identified (Table S2). These hub proteins were selected for docking analysis.

3.2. Topological features of PPl network

The protein interaction network (PIN) can be assessed by its mutual connections and topology.
The topology of the full network and subnetwork were analyzed using Network Analyzer (Table
1). The BC of the full network and subnetwork were found to be 0.0135 and 0.01857, while the
CC were 0.3493 and 0.57928, respectively. The analysis revealed that the hub protein pilL had
the highest degree value and CC value, while Smit2141 had high BC value (Table 2). Clustering
coefficient represents the closeness of nodes and neighbors, and the hierarchical modularity of
the PIN, and is used to spot the possible functional modules and uncover the molecular
complexes or signaling pathways in the PIN. The clustering coefficients were 0.8097 and 0.549
for the full network and subnetwork, respectively. The average number of neighbors for 150

nodes was 19.7.

3.3. Functional enrichment analysis

Annotations and Gene Ontology (GO) terms were retrieved for the genes and their functional
partners from STRING database with a p-value of = 0.05, where the functional enrichment
analysis data of these genes were given. The data provided various properties and functions of
AMR as well as virulence genes in the network. The enriched data were from KEGG
pathways, Pfam protein domains, UniProt, and InterPro databases. A total of 44 GO terms
were collected out of which 27, 9, and 8 terms corresponded to Biological Processes (BP),
Molecular Functions (MF) and Cellular Components (CC) respectively. The top biological
processes based on the number of genes associated involve cellular anatomical entity
[GO:0110165], nucleotide binding [ GO:0000166], purine ribonucleotide binding
[GO:0032555] and cellular process [GO:0009987].

3.4. Model evaluation

ProtParam Tool was implemented to examine the physicochemical characteristics of pilL, fliA,
Smit2260, SmMit2267, cheW, Smit2318, cheZ, and fliM proteins (Table 3). CheW showed
highest aliphatic index value indicating high thermostability. The most unstable was fliA,
which had the greatest value of the instability index, whereas pilL had the highest extinction
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241 coefficient. The model evaluation score analysis revealed that except pilL, all other proteins
242 carried anegative overall G-factor score. In pilL, fliA, cheZ, and fliM, the proportion of

243 generously allowed regions was zero, whereas the others had values greater than zero. But the
244 percentage of al generously allowed regions was less than 1%. The protein Smit2260 had a
245 better overall quality compared to other hub proteins, as predicted by ERRAT. The Levitt-

246 Gerstein (LG) and MaxSub scores established by ProQ, as well as the resolution estimated by
247 ResProx, demonstrate the dependability of constructed 3D models. The Ramachandran

248 favored percentages of the core hub proteins pilL, fliA, Sit2260, Smit2267 and fliM were

249 above 90% (Table 4) suggesting that the protein structures were of great stereochemical

250 quality, as predicted by MOLPROBITY . The Ramachandran plot for Smlit2260 (protein

251 having highest percentage of favored regions) isgivenin Fig S1. BLASTp, MOTIF, STRING,
252 and ScanProsite were performed to evaluate the precision of the functions annotated by

253 GenBank. Table S7 lists the annotated functions. All hub proteins were anticipated to be

254 localized to the cytoplasm, according to PSORTD v 3.0.3 and PSLPred, although fliM might
255 have several localization sites (Table S7).

256

257 3.5. Docking analysis

258 Docking analysis with selected ligands (Table S8) were performed to hub proteins pilL, fliA,
259 SMIt2260 (cheA), SMit2267 (cheA2), cheW, Smit2318 (two-component response regulator

260  chemotaxissignal), chez, and fliM (Table S9). The details of hydrogen bonds and the

261 resulting binding energies for selected chosen ligands are given in Table 5. Out of multiple
262 selected compound Deoxytubulosine showed alower binding energies with Smit2267, cheWw,
263 and fliM.

264

265 Furthermore, Corosolic acid favored to bind Smit2318 and SmIt2260, followed by Emetineto
266 fliAand pilL proteins of S. maltophilia. These effective interactions of selected

267 phytochemical-based ligands to hub proteins suggested arole in structure-activity

268 relationship. The optimal interactions with the lowest autodock score and the best

260 conformation are given in Figures 2, 3, and 4. Based on protein-ligand interactive study,

270 Deoxytubulosine and Corosolic acid might be best candidate inhibitors of hub proteins of

271 pathogenic S. maltophilia.

272

273

274 4. DISCUSS ON

275
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The continued development of antibiotics is an immediate need if humankind is to stay ahead
and counter the emergence and spread of antibiotic resistance. As per recent estimates, about 0.7
million deaths annually worldwide are attributed to AMR; with the number projected to grow
rapidly to atune of 10 million deaths per year by 2050 (O’ Neill, 2016). Hospital infections
present the most pressing need for novel therapeutics. Aside from the current AMR bacterial
species, asmall but increasing number of isolates, predominantly Gram-negative bacteria (such
as S maltophilia), are becoming resistant to previously effective antibiotics available in the
market, further exacerbating the issue of antibiotic resistance (Livermore, 2004). Additionaly,
this bacterium has recently been identified as the most prevalent Gram-negative carbapenem-
resistant pathogen isolated from clinical settings. This remains one of the relatively understudied
bacteriain comparison to other Gram-negative bacteria despite having an undeniable clinical
impact (Cai et al., 2020). Due to S maltophilia's inherent resistance to several antibiotics and its
propensity to acquire additional resistance through horizontal gene transfer and mutation,
treatment of this organism can be challenging. The strain’s resistance to quinolones, cotrimoxale,
and/or cephal osporins, the antibiotics routinely used to treat S. maltophilia infections, have
evolved in recent years (Sanchez, 2015).

In order to maintain a steady flow of new antibacterial drug candidates into the development
pipeling, it is pivotal to accelerate antibiotic optimization efforts. For this reason, it is necessary
to boost the early stages of drug discovery and development since they are crucial for identifying
and validating novel therapeutic candidates that can effectively combat antibacterial resistance.
The attrition rate in antibacterial drug discovery has been particularly high in recent decades, as
evidenced by the fact that no new class of Gram-negative antibiotics has been introduced in more
than half-century (Miethke et al., 2021). However, designing entirely new scaffolds is much
more expensive than developing derivatives of established compound classes (Schlander et al.,
2021). Phytopharmaceuticals, which have recently attracted global interest, can be used to solve
the dearth of novel medications in development (Konwar et al., 2022). Antibiotics and plant
extracts work together synergistically to fight resistant bacteria, opening up new options for the
treatment of infectious disorders. This feature makes it possible to continue using the specific

antibiotic even after it loses its therapeutic impact (Sibanda and Okoh, 2007).

The sequenced complete genome of S. maltophilia K279a was analyzed in our study. This
specific strain sheds information on the potential genetic underpinnings of adaptation to various
habitats, which eventually resulted in enhanced host pathogenicity and resistance to a spectrum
of drugs (Abdaet al., 2015). Understanding bacterial pathogenicity and their interactions with
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the host, which may also serve as novel targetsin pharmaceutical and vaccine development,
requires the discovery of virulence factors. Over the past few decades, the advent of post-
genomic methods, like genomics, transcriptomics, and proteomics, has sped up the discovery of
virulence factors (Mason et al., 2018). We identified prospective pharmacological targets to aid

in the development of innovative treatments to address the resistance mechanism.

By generating interaction networks, analyzing clusters, and investigating functional enrichment,
this work revealed important information on efflux pumps and biofilm formation, as well as
other drug resistance and pathogenicity mechanisms of the S maltophilia K279a strain. The
virulence and AMR genes found in this work have been reported previously (Huang et al., 2017).
For example, the bacterial outer membrane lipoprotein pilL has been linked to pilus production,
motility, and genetic transformation in earlier investigations (Sakai et al., 2000). FliM isa
flagellar protein with diverse roles, while fliA has been demonstrated to be a sigma factor

specific for class 3 flagellar operons (Eichelberg et al., 2000).

Chemotaxis is one of the known mechanisms that helps bacteria adhere to surfaces and develop
by producing biofilms. This has been seen in many habitats and culture settingsin various
bacteria. Chemotaxis pathways would control both excitation and adaptability to environmental
cues since it may be necessary for bacterial survival, metabolism, and interactions within
ecological niches. CheA (Smit2260 and Smit2267) isa critical genein controlling the onset of
bacterial chemotaxis. CheA is a methyl-accepting protein that can recognize cues from the
environment (Albornoz et a., 2017). Another notable hub protein responsible for chemotaxisin
our study is cheW, which will help us understand the genetic and biochemical makeup that will
be pertinent in the search for new antibiotics (Liu et al., 1991). Another chemotactic protein,
SMit2318, possesses operon-like characteristics and stimulates their transcription, which may be
acrucial regulatory step in the development of S. maltophilia biofilms (Kang et a., 2015). The
hub proteins play a crucial role in the PPl network's operations. They are also implicated in a
number of virulence mechanisms and may be aimportant source of prospective therapeutic
targets (Wang et al., 2011). For experimental biologists, the network and sub-networks captured
by this topological analytic technique will provide fresh perspectives on crucia regulatory

networks and protein drug targets.

Both processesi.e., antimicrobial resistance and virulence mechanisms are traditionally thought
to be essential for bacteriato survive in challenging environments from a biological standpoint

(Christaki et al., 2020). The development of antimicrobial resistance is crucial for pathogenic

10
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bacteria to be able to withstand antimicrobial therapies, overcome host defense mechanisms, and
adapt to and flourish in challenging conditions. Virulence mechanisms are required to counter
host defense mechanisms (Beceiro et a., 2013). Hub protein structural insights can help in the
absence of phenotypic data and can also give a physical foundation for a more thorough
understanding of therapeutic targets to tackle antimicrobial resistance (Shetty et al., 2022). Asa
result, computational methods can help with the mechanistic understanding of how different
phytochemicals interact with proteins. Predicting suitable non-traditional compounds can be
done by further extending our understanding of the impacts of protein-ligand stability using

molecular docking experiments.

The eight hub proteins were created in this study as high-quality, energy-minimized 3D models
using SWISS MODEL. On model validation servers, additional parameters and physicochemical
characteristics were evaluated. The Smit2267 (CheA) protein in Vibrio harveyi regulate bacterial
motility, and adhesion at different temperature and salinity as well as pH values. The role of
RecA and a CheW-like proteins are proved to be required for surface-associated motility as well
as virulence of the multi-drug resistant pathogen Acinetobacter baumannii. Currently, Antibiotic
resistance breakers (ARBS), such as a drug combination, are being utilised to address the current
issue, however aternative approaches must be introduced to combat the rise of AMR. Therefore,
phytochemicals are another widely used strategy that is just as effective as other antibacterial
agents. Previous studies revealed effective antibacterial and anticancer activity by

deoxytubul osine which was isolated from Indian medicinal plant Alangium lamarckii (Rao and

V enkatachalam, 1999). Moreover, corosolic acid aso showed anticancer activity with limited
side effects (Ma et a., 2018). Our investigation for the phytochemicals which act on Smit2267,
cheWw, fliM, Smit2318, and Smit2260 reveal ed that deoxytubulosine and corosolic acid, due to
their low binding energy and high affinity, can be used as new antimicrobial agents against

resistant strains of S. maltophilia.

CONCLUSION

We have shown protein-protein interaction network comprising 92 virulence genes and 28 AMR
genes from Senotrophomonas maltophilia K279a constructed and critically assessed in the
current study. Eight hub proteins were identified using comparative topological analysis: pilL,
fliA, Smit2260, SMIt2267, cheW, Smit2318, cheZ, and fliM. These proteins will contribute to the

discovery of potential therapeutic targets to combat antibiotic resistance. Interestingly,
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deoxytubul osine and corosolic acid showed better binding affinity towards Smlt2267, cheW, and
fliM, and SMlt2318, and SMIt2260, respectively as aternative antibacterial agents for multidrug
resistant S. maltophilia.
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Figurelegends

Figure1: (A) Protein-protein interaction network between virulence (blue-colored) and AMR
(pink-colored) nodes/proteins. Proteins categorized as both virulence and AMR are colored in
yellow while extended proteins are colored in purple. Rhomboids are used to represent each of
the eight hub proteins. The network has 150 nodes connected by 1479 edges. (B) Three clusters
were identified (using MCODE) from the protein-protein interaction network with a MCODE
score of >6. Cluster 1 (blue-colored nodes; seed protein motA, score: 32.6), Cluster 2 (green-
colored nodes, seed protein SmIt2823, score: 6.0) and Cluster 3 (orange-colored nodes, seed
protein rpoA, score: 5.1). Seed protein is represented in pink-colored rhomboid.

Figure 2: Molecular docking of FliM, CheW, and Smit2267 with Deoxytubulosine. Binding
confirmation of proteins (A, D, and G), snapshot of ligand-protein complexes (B, E, and H), and

2D interactions of ligand with respective amino acids (C, F, and |) are shown.

Figure 3: Molecular docking of SmIt2260 and SmIt2318 with Corosolic acid. Binding
confirmation of proteins (A and D), snapshot of ligand-protein complexes (B and E), and 2D

interactions of ligand with respective amino acids (C and F) are shown.
Figure4: Molecular docking of FliA and PilL with Emetine. Binding confirmation of proteins

(A and D), snapshot of ligand-protein complexes (B and E), and 2D interactions of ligand with

respective amino acids (C and F) are shown.
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624  Table 1. MCODE parameters and topological parameters of whole network, clustered genes, and
625 individual clustersusing Network Analyzer.

Parameters Networ k Clusters
Whole network Subnetwork C1 C2 C3

Number of Nodes 150 64 40 8 16
Number of Edges 1479 829 745 26 49
Network Density 12.58 0.52 0.95 092 0.40
Clustering Coefficient 0.66 0.9 0.96 094 084
Average Number of Neighbors 19.72 28.67 37.25 65 6.12
Characteristic path length 2.99 2.05 1.04 107 201
Network Diameter 8 5 2 2 4
Betweenness centraity 0.0135 0.0185 - - -
Closeness centrality 0.3493 0.5792 - - -
Genespresent in clusters fliQ Smlt2823 rpoD

CheW Smlt2820 rpoA
motA Smit1426 sspA
flhB entF  clpP
flaA entA  kdsB
fliL SmIt2819  tufB
Smit2318 entC  kdsD
motB  Smit2821 groEL
fliM IpxK
Smlt2306 groES
flio kdsA
chez rpoZ
flhA htrB
flic clpB
chey2 dnaK
flgC kdtA
Smlt2309
flil
Smit2314
flgH
flgl
fliN
fliR
flgF
fliF
MotA
flgD
fliP
MotB
fliG
fliH
pilL
flhF
flgG
cheA
flgM
CheA
flgB
fliA
Smit2271

626
627
628
629
630
631
632
633

634
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635 Table 2. List of proteins with highest betweenness centrality, closeness centrality, and degree

636 interaction.

Protein  Betweenness centrality Closeness centrality Degreeinteraction

Smit2141 0.206 0.476 43
pilL 0.104 0.495 74
QroES 0.092 0.403 16
rpoB 0.087 0.383 12
kdsD 0.084 0.389 10
fliA 0.08 0.454 52
xanB 0.074 0.37 9
entA 0.067 0.305 9
emrB 0.066 0.325 10
PilU 0.055 0.376 15
CheA 0.051 0.482 66
entF 0.051 0.289 11
folP 0.046 0.328 8
dnaK 0.045 0.417 16
narG 0.043 0.288 5
cpB 0.04 0.382 12
Chew 0.039 0.441 48
pilM 0.033 0.369 17
acpP 0.031 0.335 4
tolC 0.031 0.271 9
cpP 0.03 0.382 13
Smit2306 0.029 0.427 40
Smit1037 0.028 0.377 12
flaA 0.027 0.426 39
pil T 0.025 0.363 18
emrA 0.023 0.33 7
rpoD 0.023 0.403 14
pilJ 0.022 0.425 25
flic 0.016 0.426 44
Smlt2318 0.012 0.446 59
cheY2 0.01 0.441 55
cheR 0.007 0.432 48
flgB 0.007 0.427 43
cheB 0.006 0.427 44
chez 0.005 0.433 49
fliM 0.005 0.433 49
flil 0.004 0.428 45
floC 0.004 0.408 43
Smit2314 0.003 0.423 1
Smit2263 0.003 0.401 42
Smit2309 0.003 0.42 39
flhB 0.002 041 47
fliG 0.001 0.408 45
fliN 0.001 0.408 45
flhA 0.001 0.408 45
fliR 0.000891 0.406 43
motB 0.000878 0.405 43
flgD 0.000765 0.406 44
flhF 0.000651 0.405 42
fliF 0.000566 0.404 a1
MOotA 0.000438 0.404 42
fliP 0.00041 0.403 41

637

638

639

640

641

642

643

644
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Table 3. Physicochemical properties of the hub proteins.

Parameters pilL fliA Smit2260 SmIt2267 Chew Smlt2318 cheZ fliM

Theoretical pl 4.27 5.5 4.97 5.16 4.39 5.38 4.77 5.08

Molecular weight (kD) 237570.7 272388  70281.2 651294  17561.9 342442 219386  37673.1

Extinction coefficient 110825¢ 14440 30940 20065* 5960 8940 7115* 27055*

I nstability index 44.49 47.38 40.37 41.32 22.24 44.66 53.35 4334
(Unstable) (Unstable) (Unstable) (Unstable) (Stable) (Unstable) (Unstable) (Unstable)

Aliphatic index 94.75 93.72 105.84 103.25 112.45  109.87 9.1 98.89

No. of amino acids 2225 247 663 609 163 314 201 334

Grand average of hydropathicity (GRAVY) -0.176 -0.344 0.054 -0.044 0.19 0.07 -0.374 -0.149

* Assuming al pairs of Cys residues form cystines.
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676 Table4. Model evaluation scores of the hub proteins.

Server Parameters pilL  fliA  Smlt2260 Smlt2267 CheW Smlt2318 cheZz fliM

ResProx Predicted resolution (A) 234 219 1.88 225 232 233 201 144

ERRAT Overdl quality (%) 815 941 98.7 956 884 739 831 934

ProSA-web Z score -6.37 -79 -8.46 <754 -6.72 -652 -3.79 -6.58

PROCHECK Most favoured regions (%) 935 932 95.3 91. 757 793 872 942

Additionally allowed regions (%) 6.50 6.80 3.40 6.80 228 182 106 5.80

Generously alowed regions (%) 0.00 0.00 0.90 050 0.70 080 0.00 0.00

Disallowed regions (%) 0.00 0.00 0.30 0.80 0.70 170 210 0.00

Overal G-factor (%) 049 -0.05 -0.07 -0.14 -0.45 -051 -024 -0.12

Planar groups (%, within limits) 100 914 92.0 931 923 852 968 851

SWISS-MODEL QMEAN DisCo Global (+SD?) 071 0.67 0.80 064 0.71 061 067 082

+0.06 +0.05 +0.05 +0.05 +0.07 +0.07 +0.07 +0.06

ProQ LG score 7129 8.675 9.693 9.735 7.124 7.283 11.466 8.827

MaxSub -0.304 -0.415 -0.381 -0.357 -0.326 -0.288 -0.951 -0.336

MOLPROBITY CB deviations >0.25A (%) 0.00 0.93 0.59 101 139 227 200 180

Residues with bad bonds (%) 083 011 0.00 0.02 0.08 009 008 013

Residues with bad angles (%) 026 0.93 0.66 092 0.86 211 140 132

Favoured rotamers (%) 100 914 97.1 89.3 884 927 925 963

Ramachandran favoured (%) 96.7 96.1 97.1 944 812 81.3 839 961

Ramachandran distribution Z-score (+SD?) -1.05 1.34 111 020 -4.05 -323 -478 0.76

+0.56 +0.56 +0.41 +0.29 +0.53 +0.63 +048 +0.60
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
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701 Table5. Molecular binding affinity of selected ligands against hub proteins of S. maltophilia.

Protein name Ligand Binding affinity (kcal/mol) Hydrogen bonds
CheW Deoxytubul osine -8.793 ARG108

Chez Cephaeline -8.137 GLN101, ASP102
FliA Emetine -8.796 ARG33

FliM Deoxytubul osine -9.579 HIS104

RilL Emetine -7.988 ASP1864, ARG1871
Smlt2260 Corosolic acid -9.174 ARG393, ASP397
Smit2267 Deoxytubul asine -8.648 GLN58, ASP148
Smit2318 Corosolic acid -8.833 HIS2, ASN21, GLU138

702
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