

1 **Lipase-mediated detoxification of host-derived antimicrobial fatty acids by**

2 ***Staphylococcus aureus***

3

4 Arnaud Kengmo Tchoupa^{1,2,3}, Ahmed M. A. Elsherbini^{1,2,3}, Xiaoqing Fu⁴, Oumayma
5 Ghaneme^{1,2,3}, Lea Seibert^{1,2,3}, Marieke A. Böcker^{1,2,3}, Marco Lebtig^{1,2,3}, Justine
6 Camus^{1,2,3}, Stilianos Papadopoulos Lambidis^{1,2,3}, Birgit Schittek^{2,5}, Dorothee
7 Kretschmer^{1,2,3}, Michael Lämmerhofer⁴, Andreas Peschel^{1,2,3}

8

9

10 ¹ Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection
11 Biology Section, University of Tübingen, Tübingen, Germany

12 ² Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University
13 of Tübingen, Tübingen, Germany

14 ³ German Center for Infection Research (DZIF), partner site Tübingen

15 ⁴ Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany

16 ⁵ Dermatology Department, University Hospital Tübingen, Tübingen, Germany

17

18

19 Correspondence to

20 Arnaud Kengmo Tchoupa (arnaud.kengmo-tchoupa@uni-tuebingen.de)

21

22 Running title: Lipases protect *S. aureus* against AFAs

23 **Abstract**

24 Long-chain fatty acids with antimicrobial properties are abundant on the skin and
25 mucosal surfaces, where they are essential to restrict the proliferation of
26 opportunistic pathogens such as *Staphylococcus aureus*. These antimicrobial fatty
27 acids (AFAs) elicit bacterial adaptation strategies, which have yet to be fully
28 elucidated. Characterizing the pervasive mechanisms used by *S. aureus* to resist
29 AFAs could open new avenues to prevent pathogen colonization. Here, we identify
30 the *S. aureus* lipase Lip2 as a novel resistance factor against AFAs. Lip2 detoxifies
31 AFAs via esterification with cholesterol. This is reminiscent of the activity of the fatty
32 acid-modifying enzyme (FAME), whose identity has remained elusive for over three
33 decades. *In vitro*, Lip2-dependent AFA-detoxification was apparent during planktonic
34 growth and biofilm formation. Our genomic analysis revealed that prophage-
35 mediated inactivation of Lip2 was more common in blood and nose isolates than in
36 skin strains, suggesting a particularly important role of Lip2 for skin colonization.
37 Accordingly, in a mouse model of *S. aureus* skin colonization, bacteria were
38 protected from sapienic acid - a human-specific AFA - in a cholesterol- and lipase-
39 dependent manner. These results suggest Lip2 is the long-sought FAME that
40 exquisitely manipulates environmental lipids to promote bacterial growth. Our data
41 support a model in which *S. aureus* exploits and/or exacerbates lipid disorders to
42 colonize otherwise inhospitable niches.

43

44

45 Keywords: antimicrobial fatty acids/ lipase/ cholesterol/ *Staphylococcus aureus*/
46 esterification/ fatty acid-modifying enzyme (FAME).

47 **Introduction**

48 At the host-pathogen interface, lipids exert multifaceted functions as, for instance,
49 building blocks for cells and extracellular matrices¹⁻³, energy sources^{4,5}, entry routes
50 into host cells⁶, immunomodulators⁷, and potent antimicrobials⁸⁻¹⁰. To harness
51 environmental lipids and fuel their growth, bacteria utilize a plethora of lipolytic
52 enzymes, whose substrates include sphingolipids, phospholipids, and
53 triacylglycerols^{4,11-13}. These lipid hydrolases release host-derived long-chain fatty
54 acids with antibacterial properties, also referred to as antimicrobial fatty acids
55 (AFAs)¹⁴. An intriguing concept is that bacteria would secrete lipases to release
56 AFAs from complex lipids and thereby inhibit AFA-susceptible competitors within the
57 same niche, for instance on human skin. This has been demonstrated for
58 *Corynebacterium accolens* and *Streptococcus pneumoniae*¹². Hence, adaptation
59 strategies to AFAs represent a prerequisite for stable colonization of the skin and
60 mucosal surfaces. *Staphylococcus aureus*, an opportunistic pathogen colonizing
61 asymptotically the nares of ~30% of the human population¹⁵, is no exception.

62 The intermittent skin colonization by *S. aureus* in healthy individuals (10-20%) clearly
63 contrasts with the nearly persistent colonization of patients with dermo-inflammatory
64 disorders like atopic dermatitis (80-100%)¹⁶. Interestingly, atopic dermatitis has been
65 associated with several lipid disorders, including defects in sapienic acid, a potent
66 human-specific AFA¹⁷. It is unclear whether *S. aureus* strains associated with atopic
67 dermatitis are exceptionally impervious to AFAs. The diverse resistance mechanisms
68 used by *S. aureus* against AFAs have been reviewed elsewhere¹⁴. Notably, the
69 bacterium has long been known to secrete a fatty acid-modifying enzyme (FAME)
70 that mediates AFA-detoxification via esterification with cholesterol or, with lower

71 efficacy, other alcohols¹⁸. The identity of the protein(s) responsible for FAME
72 activity has remained elusive.

73 To uncover FAME and other protective strategies against the deleterious effects of
74 AFAs, proteins secreted by *S. aureus* grown in the presence of a subinhibitory
75 concentration of AFAs have been examined¹⁹. This study revealed that the
76 bacterium boosted its release of the lipolytic lipase Lip2 (also referred to as Geh or
77 Sal2) when primed with AFAs¹⁹. Recently, we uncovered Lip2 and other lipases as
78 major components of membrane vesicles (MVs) from *S. aureus* irrespective of the
79 presence of AFAs in the growth medium²⁰. Given that the impact of *S. aureus* lipases
80 on bacterial susceptibility to AFAs in various lipid environments has never been
81 thoroughly investigated, the protective effects of lipase-loaded MVs against AFAs²⁰
82 prompted us to probe the role of lipases in bacterial adaptation to AFAs.

83 Here, we unveiled Lip2 as an unanticipated resistance factor against AFAs. Lip2 is
84 necessary and sufficient for the esterification of AFAs to cholesterol, with
85 consequences for bacterial growth in liquid cultures, biofilms, and on mammalian
86 skin.

87

88 **Results**

89 ***S. aureus* lipases mediate resistance against AFAs**

90 Our recent proteomics study has uncovered lipases as major components of MVs
91 from *S. aureus* even when the bacterium was grown in the presence of AFAs²⁰.
92 These observations suggest that bacteria utilize lipases to cope with AFAs. In
93 agreement with the previously reported protective roles of MVs against AFAs²⁰, we
94 hypothesized that lipases are required for bacterial growth in the presence of AFAs.

95 To test this hypothesis, we monitored the growth kinetics of wild-type USA300 JE2
96 (WT) or its mutant defective for both Lip1 and Lip2 lipase production (henceforth
97 referred to as Δ lip²¹) in a rich medium where Δ lip displayed no growth defect (Fig.
98 1A,B). Notably, even upon treatment with palmitoleic acid (PA), a major AFA of
99 mammalian skin²² and nasal fluid⁹, no clear differences in growth behaviors were
100 apparent between Δ lip and WT, which were both strongly inhibited by 50 μ M PA, i.e.,
101 PA concentration in the nasal fluid⁹ (Fig. S1A and Fig. 1A,B). The abundance of PA
102 generally correlates with that of cholesterol in the nasal fluid⁹. Owing to cholesterol-
103 protective roles against AFAs¹⁴, we wondered whether cholesterol would boost the
104 growth of WT and Δ lip in the presence of otherwise inhibitory amounts of PA.
105 Strikingly, cholesterol, which alone does not alter the replication of *S. aureus* (Fig.
106 S1B,C), counteracted PA toxicity in a lipase-dependent manner (Fig. 1A,B). The
107 heightened susceptibility of Δ lip to AFAs was readily apparent when a different fatty
108 acid, linoleic acid (LA), was used (Fig. S1D). In experimental settings where WT and
109 Δ lip were similarly inhibited by LA, cholesterol was protective only for WT (Fig. S1E).
110 In addition to optical density readings, the lipase-dependent protective effects of
111 cholesterol were also evidenced by CFU (colony forming unit) enumeration (Fig. 1C).
112

113 **The lipase Lip2 is sufficient for cholesterol-mediated protection against AFAs**
114 To determine whether Lip1 and Lip2 were both required for the phenotype of the
115 double lipase mutant Δ lip or one of both enzymes played a dominant role, we first
116 tested a single *lip2* mutant (Δ /*lip2*²³) and its otherwise isogenic USA300 wild-type
117 strain for growth in the presence of LA. Δ /*lip2* displayed a longer lag phase (~ 11 h)
118 compared to its WT (~ 7 h), suggesting that Lip2 is protective against LA (Fig. S1E).
119 Next, Δ lip was complemented with *lip2* on a plasmid (p/*lip2*). The complemented

120 strain Δ lip *p/lip2* had no growth advantage in rich medium over a Δ lip mutant carrying
121 an empty plasmid (pEmpty). However, *p/lip2*-complementation enabled Δ lip to
122 proliferate in the presence of toxic amounts of PA (Fig. 1D), LA (Fig. S2A), or
123 sapienic acid (SA) (Fig. S2B), albeit only upon addition of cholesterol. The growth
124 defect of Δ lip pEmpty in media supplemented with cholesterol and AFAs, as
125 compared to either WT pEmpty or Δ lip *p/lip2*, was alleviated when this mutant was
126 provided with MVs from WT USA300 (Fig. 2A). MV-associated lipases appeared to
127 be responsible for MV-mediated complementation of Δ lip pEmpty since the AFA-
128 resistance was not restored when MVs were from Δ lip (Fig. S2C). Importantly,
129 recombinant Lip2 also enabled the growth of Δ lip pEmpty upon exposure to AFA and
130 cholesterol (Fig. 2B).

131 In addition to the prominent role of Lip2 in cholesterol-mediated protection against
132 AFAs, we sought to investigate a possible involvement of Lip1. Therefore, Δ lip was
133 complemented with *p/lip1*. The generated strain was then tested along with pEmpty-
134 bearing WT and Δ lip, as well as *p/lip2*-complemented Δ lip. In clear contrast to *p/lip2*,
135 *p/lip1* did not allow Δ lip to benefit from cholesterol and thereby grow in the presence
136 of PA (Fig. S3A) or α -linoleic acid (ALA) (Fig. 3A), suggesting that Lip2 is solely
137 responsible for cholesterol-aided protection against AFAs. Next, to test whether the
138 catalytic activity of Lip2 was required to mediate cholesterol-dependent AFA
139 resistance, we genetically engineered *p/lip2* into *p/lip2^{S412A}*, bearing a catalytically
140 inactive copy of Lip2 (Lip2 S412A), as demonstrated in previous studies^{13,23}. Upon
141 complementation with this catalytically inactive form of Lip2, the double mutant Δ lip
142 displayed no lipase activity, as assessed with a long-chain fatty acid ester substrate
143 (Fig. S3B). This mutant was also unable to benefit from cholesterol supplementation
144 to grow in the presence of ALA (Fig. 3B) or SA (Fig. S3C). Taken together, our data

145 indicate that Lip2 requires its enzymatic activity to mediate cholesterol-dependent
146 AFA resistance.

147

148 **Cholesterol-mediated protection against AFAs is widespread in *S. aureus***

149 To investigate whether cholesterol was protective against AFAs for *S. aureus* strains
150 other than USA300, USA400 MW2, USA200 UAMS-1, SH1000 and Newman were
151 assessed for growth in the presence of cholesterol and LA. All these *S. aureus*
152 strains clearly benefited from cholesterol to better grow in the presence of LA (Fig.
153 4A). Interestingly, Newman's protection by cholesterol (i.e., LA versus LA +
154 cholesterol) failed to reach statistical significance ($P = 0.1062$), in agreement with the
155 fact that Newman Lip2-encoding gene (*lip2*) is disrupted by a prophage²⁴. Upon
156 complementation with p*lip2*, Newman became able to replicate in a cholesterol-
157 dependent manner at otherwise toxic LA concentrations (Fig. S4A,B). Surprisingly,
158 p*lip2* imparted a strong metabolic burden to Newman in a rich medium (nutrient
159 broth), which was alleviated by a change of medium. In another rich medium (basic
160 medium), where pEmpty or p*lip2*-bearing Newman grew similarly, the role of Lip2 as
161 a resistance mechanism against AFA became apparent upon growth in planktonic
162 conditions (Fig. 4B and Fig. S4C,D), or within biofilms (Fig. 4C).

163

164 **Lipase Lip2 esterifies AFAs**

165 In addition to lipid hydrolysis, lipases catalyse esterification and transesterification²⁵.
166 Recently, a secreted lipase of *Vibrio parahaemolyticus* has been shown to esterify
167 cholesterol with host-derived polyunsaturated fatty acids²⁶. Moreover, *S. aureus* and
168 many other staphylococci are known to utilize FAME to detoxify unsaturated,
169 antimicrobial fatty acids by esterification with hydroxylated substrates, including

170 cholesterol^{18,27}. The protein responsible for FAME activity has been enigmatic for
171 three decades. In the light of the Lip2-dependent protective effects of cholesterol
172 against AFAs, we tested recombinant Lip2²³ for FAME (esterification) activity. Upon
173 incubation of Lip2 with LA and cholesterol, followed by lipid extraction and high-
174 performance thin layer chromatography (HPTLC), we detected cholesteryl linoleate,
175 a cholesteryl ester (Fig. 5A). Lip2-catalysed esterification of LA with cholesterol was
176 also confirmed via ultra-high performance liquid chromatography-electrospray
177 ionization-tandem mass spectrometry (UHPLC-MS/MS) (Fig. 5B). Lip2 but not
178 catalytically inactive Lip2 S412A displayed esterifying activity on all five AFAs we
179 tested, irrespective of chain length and degree of unsaturation, as revealed by
180 HPTLC (Fig. S5A).

181 Further, to demonstrate that Lip2 released by *S. aureus* can esterify cholesterol with
182 AFAs, we treated *S. aureus*-conditioned media from plasmid-bearing Δ lip or WT with
183 AFAs and cholesterol prior to lipid analysis. Cholesteryl esters (CE) were detected
184 only in Lip2-expressing WT pEmpty and Δ lip *p/lip2* strains by HPTLC (Fig. S5B) or
185 UHPLC-MS/MS (Fig. 5C). Accordingly, CE production was concomitant with
186 decreased concentrations of free AFA (Fig. 5D) and cholesterol (Fig. S5C). Taken
187 together, our data identify Lip2 as FAME, which detoxifies AFAs by esterification with
188 cholesterol.

189 Despite a clear preference for cholesterol, FAME has also been shown to use other
190 alcohols for AFA esterification¹⁸. Consistent with Lip2-mediated FAME activity, CE
191 were still produced by Lip2-expressing strains, when *S. aureus*-conditioned media
192 were supplemented with approximately eight hundred times molar excess of ethanol
193 to compete with cholesterol for AFA esterification (Fig. S5D). Moreover, this
194 experimental setup unveiled that while Δ lip *p/lip2* or WT pEmpty esterified AFA with

195 either ethanol or cholesterol, Δ lip complemented with *p/lip1* esterified AFA with
196 ethanol only (Fig. S5D), suggesting FAME activity for Lip1 with ethanol and
197 presumably other alcohols as substrates. The requirement of Lip2 for cholesterol
198 esterification was also evidenced in the USA400 strain, MW2 WT, in which single
199 mutants defective in Lip1 (MW2 Δ *lip1*) or Lip2 (MW2 Δ *lip2*) were generated.
200 Conditioned medium by MW2 Δ *lip2* could esterify ethanol (Fig. S5F) but not
201 cholesterol (Fig. S5E,F), while MW2 Δ *lip1*-conditioned medium retained the MW2
202 WT's ability to utilize ethanol and cholesterol for AFA esterification (Fig. S5E,F).
203 Together, these data underline cholesterol as preferred substrate for Lip2-mediated
204 esterification of AFAs. As exemplified by Lip1, the ability to modify AFAs with
205 alcohols is a poor predictor for cholesterol utilization and likely explains why FAME
206 has remained elusive for so long.

207

208 **Membrane damages caused by AFAs are not prevented by cholesterol**

209 Our data (Fig. 5 and Fig. S5) strongly suggest that the protective effects of
210 cholesterol against AFAs are due to the Lip2-mediated esterification/detoxification of
211 AFAs with cholesterol. However, additional or alternative mechanisms might
212 contribute to our observations. For instance, Lip2-dependent binding to cholesterol
213 could lead to the formation of bacterial aggregates with decreased susceptibility to
214 AFAs. To assess this possibility, we used dehydroergosterol (DHE) as a fluorescent
215 cholesterol analogue²⁸ for binding assays with pEmpty-bearing USA300 WT and
216 Δ lip, as well as Δ lip complemented with *p/lip1*, *p/lip2* or *p/lip2*^{S412A}. We did not observe
217 any difference between Lip2-defective and Lip2-proficient strains in their ability to
218 bind sterols (Fig. S6). This suggests that impaired cholesterol binding is unlikely to
219 be the reason why Lip2-deficient *S. aureus* failed to utilize cholesterol against AFAs.

220 Despite similar binding to sterols, it remained plausible that Lip2-deficient bacteria
221 were defective in preventing interactions with AFAs in the presence of cholesterol.
222 We took advantage of a palmitoleic acid analogue (PA alkyne) and click chemistry
223 with azide fluor 488 for AFA-binding studies^{20,29} with or without cholesterol
224 supplementation. We found that, irrespective of Lip2 expression and despite
225 cholesterol treatment, PA alkyne clearly bound to WT and mutants, as revealed by
226 fluorometry (Fig. S6B) and flow cytometry (Fig. S6C). Thus, our results suggest that
227 cholesterol does not prevent *S. aureus* membrane-targeting by AFAs.
228 Another putative protective mechanism of cholesterol could be to preserve the
229 membrane integrity of Lip2-expressing bacteria in the presence of AFAs, which
230 would be reminiscent of the role of the golden carotenoid pigments staphyloxanthin
231 in *S. aureus*³⁰. Since membrane-damaging effects of AFAs include loss of
232 membrane potential³¹, we examined the membrane potential of WT and mutants
233 upon treatment with PA, or PA and cholesterol. PA-treated bacteria displayed an
234 almost undetectable membrane potential, which was not restored by co-treatment
235 with cholesterol (Fig. S6D). This suggests that cholesterol per se does not prevent
236 membrane damages caused by AFAs. Thus, Lip2-mediated esterification of AFAs
237 which cholesterol seems to be the only mechanistical explanation of the protective
238 effects of cholesterol towards AFAs.

239

240 **Lip2 is a conserved protein that can be disrupted by prophages**

241 To gain unprecedented insights into a potential involvement of Lip2 into tissue
242 tropism, we delved into our custom database of almost four thousand genomes of *S.*
243 *aureus* obtained from the Bacterial and Viral Bioinformatics Resource Center (BV-
244 BRC)³² to identify potential association of the presence or absence of intact *lip2* with

245 specific *S. aureus* clones or specific human habitats. This database encompasses
246 blood (1481), nose (1587), and skin (767) isolates. An *in silico* polymerase chain
247 reaction³³ was used to retrieve sequences of *lip2* in 91.23% (1352 out of 1481),
248 88.78% (1409 out of 1587), or 95.2% (730 out of 767) of blood, nose, or skin
249 isolates, respectively (Fig. 6A). Next, Lip2 protein sequences were deduced from *lip2*
250 genes. In keeping with the widespread presence of lipases in staphylococci³⁴, Lip2
251 appeared to be highly conserved in *S. aureus* strains irrespective of the isolation site
252 (Fig. S7). Interestingly, across the seven major sequence types (ST) of our
253 database, the ST dictated Lip2 diversity (Fig. S8). Irrespective of ST, eight mutation
254 hotspots were apparent in Lip2 (Fig. S9A), with some mutations cooccurring in
255 several clonal groups (Table S1). It remains to be elucidated whether these
256 modifications impact Lip2 lipase/FAME activity.

257 The nucleotide sequence of *lip2* encompasses a conserved integration site for
258 prophages. A disruption of *lip2* gene by a prophage inactivates Lip2¹³. Therefore, we
259 had a second look at *lip2* sequences to investigate how often prophage insertion
260 occurred. Strikingly, only 2% (71 out of 3491) of the strains exhibited a prophage-
261 disrupted *lip2*. Roughly half of the strains with prophage-disrupted *lip2* were from the
262 sequence type ST398, a livestock-associated *S. aureus* lineage, which represents
263 only 8% of the genomes in our database (Fig. S9B,C). Remarkably, prophage-
264 mediated inactivation of *lip2* was more frequent in blood and nose isolates (2.1% and
265 2.7%, respectively) than in skin isolates (0.7%) (Fig. 6B). These results suggested
266 that an intact *lip2* may be required for successful skin colonization.

267 **Skin colonization by *S. aureus* is governed by environmental lipids**

268 To ascertain the requirement of lipases for skin colonization *in vivo*, we opted for a
269 well-established mouse skin colonization model^{21,35,36}, which mimics human atopic
270 dermatitis. This model leverages the impaired skin barrier function upon extensive
271 tape-stripping to improve skin colonisation by *S. aureus* in a similar manner as in
272 human atopic dermatitis patients. The tape-stripped skin was topically colonized with
273 *S. aureus*. With such a model, we previously observed that wild-type USA300 JE2
274 and Δ lip did not differ in their capacity to colonize mouse skin³⁷. Since tape-stripping
275 is known to deplete lipids from the skin^{38,39}, we repleted mouse skin with sapienic
276 acid (SA), or cholesterol plus SA during colonization with either WT or Δ lip. Whereas
277 skin colonization by Δ lip was largely unaffected by cholesterol application, Lip2-
278 proficient WT appeared to benefit from cholesterol to better colonize the skin in the
279 presence of SA (Fig. 6C,D). Taken together, our results strongly suggest that *S.*
280 *aureus* utilizes its lipases to manipulate environmental lipids and proliferate on the
281 skin.

282

283 **Discussion**

284 The immense success of *S. aureus* as an opportunistic pathogen requires strategies
285 to circumvent host defences, including AFAs^{8,40}. The huge variety of the resistance
286 mechanisms used by bacteria against AFAs strongly suggests a key role for AFAs at
287 the host – pathogen interface¹⁴. Importantly, bacteria utilize a vast array of lipases to
288 hydrolyse lipids in their environment with sometimes fatal consequences for
289 microbial competitors^{12,41} or eukaryotic host cells⁴². Bacteria-mediated lipid
290 hydrolysis releases long-chain fatty acids, which can be toxic to microbes^{12,23,43}. For
291 *S. aureus* and other staphylococci, it is currently thought that lipase-expressing

292 strains utilise FAME to detoxify AFAs released by lipases. However, the identity of
293 the protein(s) responsible for FAME activity has remained elusive for over three
294 decades. Here, we uncovered that lipases are responsible of FAME activities in *S.*
295 *aureus*. While both lipases Lip1 and Lip2 use ethanol and likely other alcohols for
296 AFA esterification, only Lip2 esterifies AFAs with cholesterol. The ability to utilise
297 cholesterol proved vital as cholesterol protected Lip2-proficient strains against AFA
298 toxicity in planktonic as well as biofilm settings. The unanticipated substrate flexibility
299 of Lip2 strongly suggests a more complex role for bacterial lipases in shaping the
300 host lipid landscape than previously thought, with potential consequences for the
301 microbiome.

302 The production of lipases by *S. aureus* was first documented more than a century
303 ago⁴⁴. Ever since, evidence of the requirement for bacterial lipases during *S. aureus*
304 infection has been accumulating. For instance, anti-lipase IgG antibodies have been
305 detected in patients infected with *S. aureus*⁴⁵. Furthermore, the expression of lipase-
306 encoding genes has been demonstrated during *S. aureus* infection in a murine renal
307 abscess model⁴⁶. However, only a handful of studies could show diminished
308 virulence for lipase-deficient mutants in mice infected with *S. aureus*^{13,34,47}.
309 Moreover, numerous studies have used strains with prophage-disrupted-*lip2* to
310 successfully establish murine models of infection with *S. aureus*^{8,48}. In sum, while it
311 is reasonable to perceive lipases as virulence factors, rigorous testing in various
312 models is still needed to fully understand the role played by *S. aureus* lipases during
313 colonization/infection. Our data suggests that suitable environmental lipids are
314 needed to illuminate the versatility of *S. aureus* lipases.

315 In *S. aureus*, the expression of lipase-encoding genes is controlled by the global
316 regulators Agr and SarA^{49,50}. Accordingly, the secretion of lipases Lip1 and Lip2 is

317 impaired in mutants defective for Agr and/or SarA⁵¹. In a similar manner, FAME
318 production is drastically impaired in mutants deficient in Agr or SarA⁵². In addition to
319 a rather similar regulation, a strong correlation between lipase and FAME activities,
320 i.e., esterification of fatty acids, has been observed for *S. aureus*¹⁸ and some
321 coagulase-negative staphylococci²⁷. Moreover, Kumar and co-workers uncovered
322 that media conditioned by *S. aureus* strains with high lipolytic activity led to profound
323 changes in the bovine heart lipids, including the production of cholesteryl esters⁵³.
324 Our study provides evidence that Lip2 is the lipase catalysing the esterification of
325 AFAs with cholesterol. Lip2 can also use ethanol for AFA esterification whereas
326 Lip1-mediated esterification of AFAs only took place with ethanol. This mirrors the
327 substrate preference of Lip1 and Lip2 for short-chain and long-chain fatty acids,
328 respectively^{23,44}. It is yet unclear which structural features dictate substrate
329 preference and activity in *S. aureus* lipases. We surmise that these features also
330 govern the utilisation of cholesterol by Lip2, which could represent a novel
331 therapeutic target.

332 Collectively, with our newfound understanding of Lip2 activities, it is enticing to posit
333 that staphylococcal lipases play an underappreciated role in shaping host-derived
334 lipids on the skin and at mucosal surfaces. Eavesdropping on the lipid-mediated
335 crosstalk between microbiomes and hosts could prove pivotal for a better
336 understanding and prevention of colonization by opportunistic pathogens.

337 **Methods**

338 **Bacterial strains and growth conditions**

339 Bacterial strains and plasmids used in this study are detailed in Table S2. *S. aureus*
340 and *Escherichia coli* strains were routinely grown overnight at 37°C in tryptic soy
341 broth (TSB) or lysogeny broth (LB), respectively. Whenever appropriate, the medium
342 was supplemented with ampicillin (100 µg/mL), kanamycin (30 µg/mL), or
343 chloramphenicol (10 µg/mL).

344 **Construction of strains**

345 Primers used are listed in Table S3. In-frame deletion of *lip1* or *lip2* was performed
346 with pIMAY as described previously⁵⁴. Gene deletion was confirmed by PCR and
347 sequencing. For mutant complementation experiments, empty pALC2073⁵⁵
348 (pEmpty), pALC2073-*lip1* (p*lip1*), and pALC2073-*lip2*²³ (p*lip2*) were used. To
349 generate p*lip2*^{S412A}, p*lip2* was amplified with mutagenic primers. *E. coli* IM08 was
350 then transformed with the DpnI-treated PCR product. After plasmid purification,
351 successful mutagenesis was confirmed by digestion with Pael and sequencing.

352 **Purification of recombinant lipases**

353 N-terminally His₆-tagged Lip2 or Lip2 S412A²³ was overexpressed in *E. coli* BL21
354 (DE3). After cell lysis, recombinant protein was purified using nickel resin according
355 to standard procedures¹³.

356 **Membrane vesicle purification**

357 MVs were isolated with the ExoQuickTC reagent (EQPL10TC; System Bioscience)
358 as described elsewhere^{20,56}. Briefly, bacteria grown overnight were diluted to an
359 optical density at 600 nm of 0.1 (OD₆₀₀) in 20 ml fresh TSB and grown with shaking

360 for 6 h (late exponential growth phase). After centrifugation, supernatants were
361 sterile filtered and concentrated with 100-kDa centrifugal concentrator cartridges
362 (Vivaspin 20; Sartorius) prior to precipitation with ExoQuickTC and resuspension in
363 phosphate-buffered saline.

364 **Growth assays**

365 Growth assays were performed in TSB (Oxoid), nutrient broth no.2 (NB; Oxoid) or
366 basic medium (BM: 1% soy peptone, 0.5% yeast extract, 0.5% NaCl, 0.1% glucose
367 and 0.1% K_2HPO_4 , pH 7.2) as described previously²⁰. Overnight bacterial cultures
368 were diluted to an OD_{600} of ~0.01 in plain medium or medium supplemented with
369 AFAs (50 to 200 μM), cholesterol (50 to 100 μM), MVs (1 $\mu g/mL$), and/or
370 recombinant Lip2 (1 $\mu g/mL$). Bacteria were then grown in a 96-well plate (U-bottom)
371 at 37°C with linear shaking at 567 cpm (3-mm excursion) for 24 h. The OD_{600} was
372 measured every 15 min with an Epoch 2 plate reader (BioTek). Areas under growth
373 curves were computed with GraphPad Prism 9.5.1.

374 **Biofilm assay**

375 Biofilms formed under static conditions at 37°C for 24 h in cell culture 24-well plates
376 (Greiner) were stained with safranin as described elsewhere⁵⁷. Unbound safranin
377 was washed with PBS, and biofilm-associated safranin was incubated with 70%
378 ethanol and 10% isopropanol for elution. A CLARIOStar microplate reader (BMG
379 Labtech) was used to measure OD_{530} and quantify biofilms.

380 **Lipase activity assay**

381 The lipase activity of bacteria-conditioned media was assayed with *para*-nitrophenyl
382 palmitate as previously described²³. Bacteria-conditioned media were diluted fifty
383 times with the assay buffer (50 mM Tris-HCl, 0.005% Triton X-100, 1 mg/mL gum

384 arabic at pH 8.0) supplemented with 0.8 mM *para*-nitrophenyl palmitate. After
385 incubation at 37°C for 30 minutes, OD₄₀₅ was measured with a CLARIOStar
386 microplate reader (BMG Labtech).

387 **FAME activity assay, lipid extraction and HPTLC**

388 Recombinant lipases or bacteria-conditioned media were diluted in 0.1 M sodium
389 phosphate buffer (pH 6) supplemented with AFAs and cholesterol. Upon overnight
390 incubation in glass vials at 37°C with shaking, methanol (MeOH) and chloroform
391 were added to stop the reaction and extract lipids according to the Bligh and Dyer
392 protocol⁵⁸. The organic fraction was transferred to a fresh vial, dried, and
393 resuspended in 2:1 (vol/vol) chloroform: MeOH. Lipid extracts were then applied to
394 silica gel high-performance thin-layer chromatography (HPTLC) plates (silica gel 60
395 F₂₅₄, Merck) using a Linomat 5 sample application unit (CAMAG). Plates were
396 developed in an automatic developing chamber ADC 2 (CAMAG) with a mobile
397 phase system 90:10:1 (vol/vol/vol) petroleum ether: ethyl ether: acetic acid²⁶. Lipid
398 spots were visualized in an iodine vapor chamber.

399 **Internal standards and chemicals used for lipid analysis by untargeted UHPLC**
400 **MS/MS**

401 EquiSPLASH™ LIPIDOMIX® quantitative mass spectrometry internal standard,
402 phosphatidic acid 15:0-18:1 (d7), cholesterol (d7), cholesteryl ester (CE) 18:1 (d7),
403 lyso sphingomyelin (LSM) d18:1 (d9) and palmitoyl-L-Carnitine (CAR) 16:0 (d3) were
404 obtained from Avanti Polar Lipids (Alabaster, AL, USA). Arachidonic acid (AA) (d11)
405 and ceramide (Cer) d18:1-15:0 (d7) were purchased from Cayman Chemicals (Ann
406 Arbor, MI, USA). Isopropanol (IPA), acetonitrile (ACN) and methanol (MeOH) in Ultra
407 LC-MS grade were from Carl Roth (Karlsruhe, Germany). Ammonium formate,

408 formic acid and IPA in HPLC grade were purchased from Merck (Darmstadt,
409 Germany). Purified water was produced by Elga Purelab Ultra (Celle, Germany).

410 **Sample preparation for lipid analysis by UHPLC MS/MS**

411 Prior to lipid extraction, a mixture of internal standards was prepared by mixing ice-
412 cold MeOH with LIPIDOMIX®, phosphatidic acid 15:0-18:1 (d7), cholesterol (d7), CE
413 18:1 (d7), LSM d18:1 (d9), CAR 16:0 (d3), AA (d11), and Cer d18:1-15:0 (d7). This
414 internal standard mixture (225 µL) was then added to each sample. Lipid extraction
415 was then performed according to a biphasic extraction method^{59,60}. Samples
416 supplemented with standards were vortexed for 10 s. Next, 750 µL ice-cold methyl
417 tert-butyl ether (MTBE) was added to each sample. After 1h-incubation on ice, each
418 sample was supplemented with water (185 µL) to obtain a final ratio of 10:3:2.5
419 (vol/vol/vol) for MTBE, MeOH, and water, respectively. Samples were then incubated
420 at room temperature for 10 min to induce phase separation. The upper (organic)
421 phase was transferred to a fresh tube. MTBE:MeOH:water (10:3:2.5; vol/vol/vol) was
422 added to the lower (water) phase for re-extraction of lipids. The upper phase from
423 the second extraction was then combined with the upper phase from the first
424 extraction. The combined extracts were evaporated to dryness with GeneVac EZ2
425 evaporator (Ipswich, UK) under nitrogen protection. Lipid films were reconstituted in
426 100 µL MeOH. After vortexing (10 s), sonication (2 min), and centrifugation (10 min,
427 3,500 × g), lipid extracts were transferred to autosampler vials.

428 A pooled quality control (QC) sample was prepared by mixing 15 µL of each re-
429 constituted sample.

430 **Lipid analysis by UHPLC MS/MS**

431 Samples were analysed with an Agilent 1290 Infinity UHPLC system (Agilent,
432 Waldbronn, Germany) equipped with a binary pump, a PAL-HTX xt DLW
433 autosampler (CTC Analytics AG, Switzerland) and coupled to a SCIEX TripleTOF
434 5600 + quadrupole time of flight (QTOF) mass spectrometer with a DuoSpray Source
435 (SCIEX, Ontario, Canada). The chromatographic separation was performed on an
436 ACQUITY UPLC CSH C18 column (100 mm × 2.1 mm; particles: 1.7 µm; Waters
437 Corporation, Millford, MA, USA) with precolumn (5 mm × 2.1 mm; 1.7 µm particles).
438 The column temperature was 65°C with a flow rate of 0.6 mL/min. Mobile phase A
439 was composed of water: acetonitrile (2:3; vol/vol) supplemented with 10 mM
440 ammonium formate and 0.1% formic acid (vol/vol). The mobile phase B was
441 IPA:ACN:water 90:9:1 (vol/vol/vol) containing 10 mM ammonium formate and 0.1%
442 formic acid (vol/vol). A gradient elution started from 15% B to 30% B in 2 min,
443 followed by increase of B to 48% in 0.5 min. Mobile phase B was then further
444 increased to 82% at 11 min and quickly reached 99% in the next 0.5 min, followed by
445 holding this percentage for another 0.5 min. Afterwards, the percentage of B was
446 switched back to starting conditions (15% B) in 0.1 min to re-equilibrate the column
447 for the next injection (2.9 min).

448 UHPLC-MS/MS experiments were operated in both positive and negative mode with
449 injection volumes of 3 µL for positive and 5 µL for negative mode. An MS full scan
450 experiment with mass range *m/z* 50 to 1,250 was selected, while different SWATH
451 windows were acquired for MS/MS experiments (Table S4). The ion source
452 temperature was set to 350°C with curtain gas, nebulizer gas and heater gas
453 pressures 35 lb/in², 60 lb/in², and 60 lb/in², respectively, for both modes. The ion
454 spray voltage was set to 5,500 V in the positive mode and -4,500 V in negative

455 mode. The declustering potential was adjusted to 80 V and -80 V for positive and
456 negative polarity mode, respectively. The cycle time was always 720 ms. The
457 collision energy and collision energy spread for each experiment are specified in
458 detail Table S4.

459 The sequence was started with three injections of internal standard mixture as
460 system suitability test followed by blank extract and QC sample. The whole
461 sequence was controlled by injection of QC sample after every five samples to
462 monitor the performance of the instrument throughout the analytical batch.

463 **Genomic analyses**

464 For our custom database, *S. aureus* genomes (3,835) downloaded from the BV-
465 BRC³². After manually curating the metadata, the database was stratified to blood
466 (1,481), nose (1,587) and skin (767) according to isolation sites. To extract *lip2* gene
467 sequence, *in-silico* PCR was performed with a Perl script
468 (https://github.com/egonozer/in_silico_pcr) using forward and reverse primers 5'-
469 ATGTTAAGAGGACAAGAAGAAA-3' and 5'-TTAACTTGCTTCAATTGTGTT-3',
470 respectively, and allowing 5 mismatch/indels. To detect prophages, results of the *in-*
471 *silico* PCR were uploaded as one multiFASTA file to PHASTER
472 (<https://phaster.ca/>)⁶¹. Prophage-disrupted *lip2* amplicons were not included in the
473 following analysis pertaining to amino acid sequence variability of Lip2. Extracted
474 sequences from the *in-silico* PCR were translated into full-length Lip2 protein
475 sequences, an aligned using MAFFT (v7.310)⁶² with default parameters using Lip2
476 sequence from *S. aureus* USA300 strain FPR3757 (accession number
477 NC_007793.1) as a reference. A Python script
478 (<https://github.com/AhmedElsherbini/Align2XL>) was then used to extract mutation
479 rates from the aligned protein sequences.

480 **Mouse experiments**

481 C57BL/6 mice were colonized epicutaneously with *S. aureus* following tape-stripping
482 as described previously^{21,35,36}. Briefly, overnight cultures of USA300 JE2 or its
483 isogenic Δ lip mutant were washed twice with PBS and adjusted to 5×10^9 cells per
484 mL. An inoculum of 15 μ L from the washed bacterial suspension was added to a film
485 paper disc. In addition to bacteria, these discs were supplemented with cholesterol
486 (7 μ g) and/or sapienic acid (5 μ g). Two discs with bacteria and lipids per mouse were
487 placed onto the back skin that had been shaved and tape-stripped seven times to
488 facilitate *S. aureus* establishment. Finn chambers on Scanpor (Smart Practise,
489 Phoenix, AZ, USA) and plasters (Tegaderm) were used to fix discs on mouse back
490 skin. After 24 hours with frequent monitoring, Finn chambers were removed, mice
491 were euthanized, and a biopsy puncher was used to collect *S. aureus*-colonized
492 skin. These skin punches were vortexed in PBS for 30 s to dislodge surface-attached
493 bacteria. Skin punches were then minced with scalpels and homogenized by
494 vortexing for 30 s in PBS to release tissue-associated bacteria. Surface associated
495 and tissue-associated bacteria were enumerated following serial dilution with PBS,
496 plating on tryptic soy agar, and incubation overnight at 37°C.

497 **Statistical analysis**

498 Statistical tests, which are all specified in the figure legends, were performed with
499 Prism 9.5.1 (GraphPad), and *P* values < 0.05 were considered significant. Analysis
500 of variance (ANOVA) with Dunn's, Dunnett's, Šídák's, or Tukey's multiple-
501 comparison test was used.

502 **Ethics statement**

503 All experimental procedures involving mice were carried out according to protocols
504 approved by the Animal Ethics Committees of the Regierungspräsidium Tübingen
505 (IMIT3/18).

506 **Acknowledgements**

507 We thank David E. Heinrichs (University of Western Ontario), Paul Fey (University of
508 Nebraska Medical Center), and Friedrich Götz (University of Tübingen) for providing
509 us with bacterial strains. We are indebted to Dr Libera Lo Presti (University of
510 Tübingen) for critical feedback on the manuscript, and to Ulrike Redel for technical
511 support. We acknowledge support by the High Performance and Cloud Computing
512 Group at the Zentrum für Datenverarbeitung (University of Tübingen), the state of
513 Baden-Württemberg through bwHPC and the Deutsche Forschungsgemeinschaft
514 (DFG) through the grant INST 37/935-1 FUGG.

515 A.K.T. is recipient of a fellowship from the Alexander von Humboldt Foundation. X.F.
516 gratefully acknowledges the support from the China Scholarship Council (grant
517 number 201908080155). This work was supported by grants from the DFG via the
518 Cluster of Excellence EXC 2124 'Controlling Microbes to Fight Infections' project ID
519 390838134 to A.K.T., B.S, and A.P.

520

521 **Figures legends**

522 **Figure 1. Lipases protect *S. aureus* against palmitoleic acid.**

523 A, Optical density at 600 nm (OD_{600}) was measured over 24 h to monitor the growth
524 of USA300 JE2 (WT) and its Lip1- and Lip2-defective double mutant (Δ lip) in plain
525 nutrient broth (NB), or NB supplemented with palmitoleic acid (PA) or PA and

526 cholesterol (Chol). **B**, Area under the growth curves (shown in **A**) was computed in
527 arbitrary units (AU). **C**, Viable WT and Δ lip were enumerated upon growth for 24 h in
528 NB, or NB supplemented with PA or PA + cholesterol (Chol). **D**, WT and Δ lip bearing
529 an empty plasmid (pEmpty), and Δ lip complemented with *plip2* were grown as
530 described in **C** while OD_{600} was measured. Data are presented as mean \pm standard
531 error of the mean (SEM) for 3 (**C**) or 4 (**A,B,D**) biological replicates. Statistical
532 significance was determined by one-way analysis of variance (ANOVA) with Tukey's
533 multiple comparisons test. *** $P = 0.0002$, **** $P < 0.0001$.

534 **Figure 2. Exogenous lipases enable cholesterol-dependent growth in the**
535 **presence of AFAs.**

536 **A**, Wild-type USA300 JE2 and its isogenic Δ lip mutant with pEmpty, and Δ lip
537 complemented with *plip2* were grown in plain NB, or NB with or without USA300
538 membrane vesicles (MVs) and supplemented with PA or PA + Chol. Computed area
539 under growth curves was plotted. **B**, Area under the curves of the strains described
540 in (**A**) upon growth in NB, or NB supplemented with sapienic acid (SA) or SA + Chol,
541 with or without recombinant Lip2. Data shown are mean + SEM ($n = 3$). Statistical
542 significance was evaluated by two-way ANOVA with Tukey's multiple comparisons
543 test. ** $P = 0.0019$, *** $P = 0.0009$, **** $P < 0.0001$.

544 **Figure 3. Catalytically active Lip2 is required for cholesterol-mediated**
545 **resistance to AFAs.**

546 **A**, Wild-type USA300 JE2 and its isogenic Δ lip mutant with pEmpty, and Δ lip
547 complemented with either *plip1* or *plip2* were grown for 24 h in basic medium (BM),
548 or BM supplemented with α -linoleic acid (ALA) or ALA + Chol. Computed area under
549 growth curves was plotted. **B**, Area under the curves of pEmpty-bearing wild-type

550 USA300 JE2 and its isogenic Δ lip mutant, and Δ lip complemented with either
551 $\text{p}lip2^{S412A}$ or $\text{p}lip2$ cultured for 24 h in BM, or BM supplemented with α -linoleic acid
552 (ALA) or ALA + Chol. Data shown are mean + SEM ($n = 3$). Statistical significance
553 was evaluated by one-way ANOVA with Tukey's multiple comparisons test. $*P <$
554 0.05 , $**P = 0.0011$, $****P < 0.0001$.

555 **Figure 4. Various *S. aureus* strains utilize cholesterol to resist AFAs.**

556 **A**, *S. aureus* strains (MW2, UAMS-1, SH1000, and Newman) were cultured for 24 h
557 in plain NB, or NB supplemented with linoleic acid (LA) or LA and Chol. Growth was
558 computed as area under the curves. **B**, Area under the curves of Newman with either
559 pEmpty or $\text{p}lip2$ grown for 24 h in plain BM, or BM supplemented with LA or LA +
560 Chol. **C**, Optical density at 530 nm (OD_{530}) was measured after safranin staining of
561 biofilms formed for 24 h by Newman with either pEmpty or $\text{p}lip2$ in plain BM, or BM
562 supplemented with Chol, PA, or Chol + PA. Data shown are mean + SEM for 3 (**A**,
563 **B**) or 4 (**C**) biological replicates. Statistical significance by two-way ANOVA with
564 Tukey's multiple comparisons test. $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $****P <$
565 0.0001 .

566 **Figure 5. Lip2 lipase mediates esterification of AFAs.**

567 **A**, HPTLC of lipid extracts after incubation of LA and Chol with or without
568 recombinant Lip2. **B**, Structure of cholesteryl linoleate (CE 18:2) and representative
569 extracted ion chromatograms of $m/z 648.585 \pm 0.010$ (precursor type $[\text{M}+\text{NH}_4]^+$ in
570 positive ion mode of CE 18:2) demonstrating detection of CE 18:2 upon co-
571 incubation of LA, Chol and recombinant Lip2. **C-D**, UHPLC-MS/MS lipid analysis
572 upon incubation of *S. aureus*-conditioned media from the indicated strain (WT
573 pEmpty , Δ lip pEmpty , Δ lip $\text{p}lip1$, Δ lip $\text{p}lip2$, or Δ lip $\text{p}lip2^{S412A}$) with Chol and LA. CE

574 18:2 (**C**) and LA (**D**) were measured. Bar graphs (**C, D**) are means + SEM for five
575 biological replicates. Statistical significance by one-way ANOVA with Dunnett's test
576 relative to WT pEmpty. ** $P = 0.0034$, **** $P < 0.0001$.

577 **Figure 6. The capacity to manipulate cholesterol governs skin colonization by**
578 ***S. aureus*.**

579 **A**, The occurrence of *lip2*, as detected via *in silico* PCR, is displayed according to the
580 isolations site for *S. aureus* genomes in our database. **B**, The sequences of *lip2*
581 (retrieved in **A**) were analysed for prophage bearing. **C-D**, USA300 JE2 (WT) and its
582 isogenic Δ lip mutant were used to topically colonize the skin of mice co-treated with
583 cholesterol (Chol) and/or sapienic acid (SA). Five mice per group correspond to 9 or
584 10 skin punches, which were strongly vortexed to dislodge surface-attached bacteria
585 (**C**), and then minced to release bacteria located in the deeper skin tissue (**D**). Viable
586 bacteria were counted as colony forming units (CFU). Bar graphs (C and D) are
587 medians. Statistical significance was evaluated by Kruskal-Wallis test with Dunn's
588 multiple comparisons. ** $P = 0.0013$.

589 **Figure S1. Cholesterol-dependent protective roles of *S. aureus* lipases against**
590 **AFAs.**

591 **A**, USA300 JE2 (WT) and its Lip1- and Lip2-defective double mutant (Δ lip) were
592 grown in nutrient broth (NB) supplemented with 0 to 50 μ M palmitoleic acid (PA).
593 Computed area under growth curves was plotted. **B-C**, Area under the curves of WT
594 and Δ lip upon growth in NB (**B**) or tryptic soy broth (TSB) (**C**) supplemented with 0,
595 50, or 100 μ M cholesterol (Chol). **D**, Area under the growth curves of WT and Δ lip in
596 NB or NB plus linoleic acid (LA). **E**, Optical density at 600 nm (OD_{600}) was measured
597 over 24 h to monitor the growth of WT and Δ lip in TSB, or TSB supplemented with

598 200 μ M LA or 200 μ M LA and 100 μ M cholesterol (Chol). **F**, The growth of the Lip2
599 mutant (Δ *lip2*) or isogenic wild-type USA300 (WT) was monitored over 24 h by OD₆₀₀
600 readings in NB or NB supplemented with 200 μ M LA. Data shown are mean \pm SEM
601 for at least three biological replicates. Statistical significance was evaluated by two-
602 way ANOVA with Šídák's multiple comparisons test. ***P* = 0.0049.

603 **Figure S2. The lipase Lip2 is required for cholesterol-mediated protection
604 against AFAs.**

605 **A**, Wild-type USA300 JE2 (WT) and its isogenic Δ lip mutant bearing pEmpty, and
606 Δ lip complemented with *p/lip2* were grown in plain NB, or NB supplemented with 150
607 μ M LA or 150 μ M LA and 75 μ M Chol. Growth was computed as area under the
608 curves. **B-C**, Area under the curves of the strains described in **A** upon growth in NB,
609 or NB supplemented with 50 μ M sapienic acid (SA), 50 μ M SA + 50 μ M Chol (**B**), or
610 50 μ M palmitoleic acid (PA) + 50 μ M Chol and in the presence of membrane vesicles
611 (MVs) from WT or Δ lip (**C**). Data shown are mean + SEM for three (**A**), four (**B**) or
612 five (**C**) biological replicates. Statistical significance was evaluated by one- (**A**, **B**) or
613 two-way (**C**) ANOVA with Tukey's multiple comparisons test. **P* < 0.05, ***P* < 0.01,
614 ****P* < 0.0006, *****P* < 0.0001.

615 **Figure S3. Inactivation of Lip2 abrogates cholesterol protection against AFAs.**

616 **A**, Wild-type USA300 JE2 and its isogenic Δ lip mutant with pEmpty, and Δ lip
617 complemented with either *p/lip1* or *p/lip2* were grown for 24 h in plain BM, or BM
618 supplemented with 100 μ M PA or 100 μ M PA + 100 μ M Chol. Computed area under
619 growth curves was plotted. **B**, The *S. aureus*-conditioned media from the indicated
620 strain (WT pEmpty, Δ lip pEmpty, Δ lip *p/lip1*, Δ lip *p/lip2*, or Δ lip *p/lip2^{S412A}*) were
621 incubated with *para*-nitrophenyl palmitate (pNP-16:0). The release of *para*-

622 nitrophenol, indicative of lipase activity, was quantified by measuring OD₄₀₅. **C**, Area
623 under the curves of pEmpty-bearing wild-type USA300 JE2 and its isogenic Δlip
624 mutant, and Δlip complemented with either p^{lip2}^{S412A} or p^{lip2} cultured for 24 h in BM,
625 or BM supplemented with 75 μM SA or 75 μM SA + 75 μM Chol. Shown are mean +
626 SEM for at least three biological replicates. One-way ANOVA with Tukey's multiple
627 comparisons test (**A**, **C**) or Dunnett's test relative to WT pEmpty was used to
628 calculate statistical significance (**B**). ****P < 0.0001.

629 **Figure S4. Complementation of Lip2-defective Newman strain by USA300 Lip2.**
630 **A**, OD₆₀₀ was measured over 24 h to monitor the growth of *S. aureus* Newman with
631 either pEmpty or p^{lip2} in NB, or NB supplemented with 100 μM LA or 100 μM LA +
632 100 μM Chol. **B**, Computed area under the growth curves shown in **A**. **C**, The growth
633 of Newman pEmpty or p^{lip2} was monitored over 24 h by OD₆₀₀ readings in basic
634 medium (BM), or BM supplemented with 50 μM PA or 50 μM PA + 50 μM Chol. **D**,
635 Growth curves shown in **C** were computed as area under the curves. Data
636 represented are means ± SEM; n = 4 (**A**, **B**) or 3 (**C**, **D**). Statistical significance by
637 one-way ANOVA with Tukey's multiple comparisons test. *P = 0.0418, **P = 0.0027,
638 ****P < 0.0001.

639 **Figure S5. Lip2 esterifies AFAs with cholesterol.**
640 **A**, Thin layer chromatography of lipids extracted after incubation of PA, SA, OA
641 (oleic acid), LA, or ALA (α-linoleic acid) with Chol in the presence of recombinant
642 *Staphylococcus aureus* lipase 2 (Lip2) or catalytically dead Lip2 S412A. Cholesteryl
643 esters (CE) were detected for all AFAs tested. **B**, TLC lipid analysis of USA300 *S.*
644 *aureus*-conditioned media from the indicated strain (WT pEmpty, Δlip pEmpty, Δlip
645 p^{lip1}, Δlip p^{lip2}, or Δlip p^{lip2}^{S412A}) incubated with Chol and ALA. **C**, UHPLC-MS/MS

646 lipid analysis to measure cholesterol upon incubation of *S. aureus*-conditioned media
647 from strains described in **B** with Chol and LA. **D**, TLC of lipids extracted after
648 incubation of *S. aureus*-conditioned media from strains listed in **B** with Chol, ethanol,
649 and ALA. Ethyl esters (EE) and/or CE were detected. **E-F**, TLC lipid analysis of *S.*
650 *aureus*-conditioned media from wild-type USA400 MW2 (MW2 WT), or its lipase-
651 deficient mutants (MW2 Δ lip1 and MW2 Δ lip2) incubated with Chol and ALA in the
652 absence (**E**) or presence of ethanol (**F**). Four lipid standards (ALA, cholesterol,
653 cholesteryl ALA, and ethyl ALA are shown. Bar graphs (**C**) are means + SEM for five
654 biological replicates. Statistical significance by one-way ANOVA with Dunnett's test
655 relative to WT pEmpty. *** $P < 0.001$, **** $P < 0.0001$.

656 **Figure S6. Cholesterol does not prevent membrane-damaging effects of AFAs.**
657 **A**, Wild-type USA300 JE2 and its isogenic Δ lip mutant with pEmpty, and Δ lip
658 complemented with *p/lip1*, *p/lip2^{S412A}*, or *p/lip2* were left untreated or treated with
659 dehydroergosterol. After washing with PBS, DHE-binding was quantified by
660 fluorometry in relative fluorescence units (RFU). **B-C**, WT pEmpty, Δ lip pEmpty, and
661 Δ lip *p/lip2* were stained with azide fluor 488 upon incubation in plain NB, or NB
662 supplemented with palmitoleic acid (PA) alkyne or PA alkyne + cholesterol. RFU or
663 mean fluorescence intensities (MFI) were determined using fluorometry (**B**) or flow
664 cytometry (**C**), respectively. **D**, The indicated strain (WT pEmpty, Δ lip pEmpty, Δ lip
665 *p/lip1*, or Δ lip *p/lip2*) was incubated in NB, or NB supplemented with PA or PA + Chol
666 prior to staining with DiOC₂(3) (3,3'-diethyloxacarbocyanine iodide). Membrane
667 potential, as computed by the ratio between red and green fluorescence intensities
668 ("red shift"), was determined by fluorometry. Shown are mean + SEM for three (**A-C**)
669 or four (**D**) biological replicates. Two-way ANOVA with Tukey's multiple comparisons

670 test was used to calculate statistical significance (**B**). * $P < 0.05$, ** $P < 0.01$, *** $P <$
671 0.001, **** $P < 0.0001$.

672 **Fig. S7. Lip2 is conserved in *S. aureus*.**

673 Lip2 is generally synthesized as a 690 or 691 amino acid polypeptide. A consensus
674 Lip2 sequence was generated upon alignment of over 3000 Lip2 sequences from our
675 database to USA300 Lip2 as reference. The percentage of the modal residue at
676 each amino acid position is shown.

677 **Fig. S8. The sequence type dictates Lip2 diversity.**

678 The multiple sequence alignment of over 3000 Lip2 sequences is represented as
679 three-dimensional space generated using dimensionality reduction. Lip2 sequence of
680 each *S. aureus* strain is represented as a dot whose colour depends either on the
681 isolation site (**A**) or the sequence type (ST) (**B**) of the bacterium.

682 **Fig. S9. Lip2 displays mutation hotspots and is disproportionately disrupted in
683 ST398 strains.**

684 **A**, Lip2 is usually a 690 or 691 amino acid protein. For the > 3000 Lip2 sequences
685 from our database, the mutation rate at each amino acid position, relative to
686 USA300, was determined. The insertion of serine (S) between positions 43 and 44 in
687 ~ 70% of our strains is denoted as “-44S” and highlighted in red as well as all
688 mutations that occurred in at least a quarter of our database. **B-C**, Sequence types
689 (ST) of all *S. aureus* isolates in our database (**B**) or isolates with prophage-disrupted
690 Lip2.

691 References

692 1 Hines, K. M. et al. Lipidomic and Ultrastructural Characterization of the Cell
693 Envelope of *Staphylococcus aureus* Grown in the Presence of Human Serum.
694 *mSphere* **5** (2020). <https://doi.org/10.1128/mSphere.00339-20>

695 2 Frank, M. W. et al. Host Fatty Acid Utilization by *Staphylococcus aureus* at the
696 Infection Site. *mBio* **11** (2020). <https://doi.org/10.1128/mBio.00920-20>

697 3 Feingold, K. R. & Elias, P. M. Role of lipids in the formation and maintenance
698 of the cutaneous permeability barrier. *Biochim Biophys Acta* **1841**, 280-294
699 (2014). <https://doi.org/10.1016/j.bbapap.2013.11.007>

700 4 Zheng, Y. et al. Commensal *Staphylococcus epidermidis* contributes to skin
701 barrier homeostasis by generating protective ceramides. *Cell Host Microbe*
702 **30**, 301-313.e309 (2022). <https://doi.org/10.1016/j.chom.2022.01.004>

703 5 Rivera-Chavez, F. & Mekalanos, J. J. Cholera toxin promotes pathogen
704 acquisition of host-derived nutrients. *Nature* **572**, 244-248 (2019).
705 <https://doi.org/10.1038/s41586-019-1453-3>

706 6 Eierhoff, T. et al. A lipid zipper triggers bacterial invasion. *Proc Natl Acad Sci
707 U S A* **111**, 12895-12900 (2014). <https://doi.org/10.1073/pnas.1402637111>

708 7 Bae, M. et al. *Akkermansia muciniphila* phospholipid induces homeostatic
709 immune responses. *Nature* **608**, 168-173 (2022).
710 <https://doi.org/10.1038/s41586-022-04985-7>

711 8 Clarke, S. R. et al. The *Staphylococcus aureus* surface protein IsdA mediates
712 resistance to innate defenses of human skin. *Cell Host Microbe* **1**, 199-212
713 (2007). <https://doi.org/10.1016/j.chom.2007.04.005>

714 9 Do, T. Q. et al. Lipids including cholestrylinoleate and cholestrylin
715 arachidonate contribute to the inherent antibacterial activity of human nasal
716 fluid. *J Immunol* **181**, 4177-4187 (2008).
717 <https://doi.org/10.4049/jimmunol.181.6.4177>

718 10 Verhaegh, R., Becker, K. A., Edwards, M. J. & Gulbins, E. Sphingosine kills
719 bacteria by binding to cardiolipin. *J Biol Chem* **295**, 7686-7696 (2020).
720 <https://doi.org/10.1074/jbc.RA119.012325>

721 11 Flores-Díaz, M., Monturiol-Gross, L., Naylor, C., Alape-Girón, A. & Flieger, A.
722 Bacterial Sphingomyelinases and Phospholipases as Virulence Factors.
723 *Microbiol Mol Biol Rev* **80**, 597-628 (2016).
724 <https://doi.org/10.1128/mmbr.00082-15>

725 12 Bomar, L., Brugger, S. D., Yost, B. H., Davies, S. S. & Lemon, K. P.
726 *Corynebacterium accolens* Releases Antipneumococcal Free Fatty Acids from
727 Human Nostril and Skin Surface Triacylglycerols. *mBio* **7**, e01725-01715
728 (2016). <https://doi.org/10.1128/mBio.01725-15>

729 13 Chen, X. & Alonzo, F., 3rd. Bacterial lipolysis of immune-activating ligands
730 promotes evasion of innate defenses. *Proc Natl Acad Sci U S A* **116**, 3764-
731 3773 (2019). <https://doi.org/10.1073/pnas.1817248116>

732 14 Kengmo Tchoupa, A., Eijkamp, B. A. & Peschel, A. Bacterial adaptation
733 strategies to host-derived fatty acids. *Trends Microbiol* **30**, 241-253 (2022).
734 <https://doi.org/10.1016/j.tim.2021.06.002>

735 15 Krismer, B., Weidenmaier, C., Zipperer, A. & Peschel, A. The commensal
736 lifestyle of *Staphylococcus aureus* and its interactions with the nasal
737 microbiota. *Nature reviews. Microbiology* **15**, 675-687 (2017).
738 <https://doi.org/10.1038/nrmicro.2017.104>

739 16 Williams, M. R. & Gallo, R. L. The role of the skin microbiome in atopic
740 dermatitis. *Curr Allergy Asthma Rep* **15**, 65 (2015).
<https://doi.org:10.1007/s11882-015-0567-4>

742 17 Takigawa, H., Nakagawa, H., Kuzukawa, M., Mori, H. & Imokawa, G. Deficient
743 production of hexadecenoic acid in the skin is associated in part with the
744 vulnerability of atopic dermatitis patients to colonization by *Staphylococcus*
745 *aureus*. *Dermatology* **211**, 240-248 (2005). <https://doi.org:10.1159/000087018>

746 18 Mortensen, J. E., Shryock, T. R. & Kapral, F. A. Modification of bactericidal
747 fatty acids by an enzyme of *Staphylococcus aureus*. *J Med Microbiol* **36**, 293-
748 298 (1992). <https://doi.org:10.1099/00222615-36-4-293>

749 19 Neumann, Y. *et al.* The effect of skin fatty acids on *Staphylococcus aureus*.
750 *Arch Microbiol* **197**, 245-267 (2015). <https://doi.org:10.1007/s00203-014-1048-1>

752 20 Kengmo Tchoupa, A. & Peschel, A. *Staphylococcus aureus* Releases
753 Proinflammatory Membrane Vesicles To Resist Antimicrobial Fatty Acids.
754 *mSphere* **5** (2020). <https://doi.org:10.1128/mSphere.00804-20>

755 21 Nguyen, M. T., Hanzelmann, D., Härtner, T., Peschel, A. & Götz, F. Skin-
756 Specific Unsaturated Fatty Acids Boost the *Staphylococcus aureus* Innate
757 Immune Response. *Infect Immun* **84**, 205-215 (2016).
<https://doi.org:10.1128/iai.00822-15>

759 22 Subramanian, C., Frank, M. W., Batte, J. L., Whaley, S. G. & Rock, C. O.
760 Oleate hydratase from *Staphylococcus aureus* protects against palmitoleic
761 acid, the major antimicrobial fatty acid produced by mammalian skin. *J Biol
762 Chem* **294**, 9285-9294 (2019). <https://doi.org:10.1074/jbc.RA119.008439>

763 23 Cadieux, B., Vijayakumaran, V., Bernards, M. A., McGavin, M. J. & Heinrichs,
764 D. E. Role of lipase from community-associated methicillin-resistant
765 *Staphylococcus aureus* strain USA300 in hydrolyzing triglycerides into growth-
766 inhibitory free fatty acids. *J Bacteriol* **196**, 4044-4056 (2014).
<https://doi.org:10.1128/JB.02044-14>

768 24 Bae, T., Baba, T., Hiramatsu, K. & Schneewind, O. Prophages of
769 *Staphylococcus aureus* Newman and their contribution to virulence. *Mol
770 Microbiol* **62**, 1035-1047 (2006). <https://doi.org:10.1111/j.1365-2958.2006.05441.x>

772 25 Zorn, K., Oroz-Guinea, I., Brundiek, H. & Bornscheuer, U. T. Engineering and
773 application of enzymes for lipid modification, an update. *Prog Lipid Res* **63**,
774 153-164 (2016). <https://doi.org:10.1016/j.plipres.2016.06.001>

775 26 Chimalapati, S. *et al.* *Vibrio* deploys type 2 secreted lipase to esterify
776 cholesterol with host fatty acids and mediate cell egress. *eLife* **9** (2020).
<https://doi.org:10.7554/eLife.58057>

778 27 Long, J. P., Hart, J., Albers, W. & Kapral, F. A. The production of fatty acid
779 modifying enzyme (FAME) and lipase by various staphylococcal species. *J
780 Med Microbiol* **37**, 232-234 (1992). <https://doi.org:10.1099/00222615-37-4-232>

781 28 Pourmousa, M. *et al.* Dehydroergosterol as an analogue for cholesterol: why it
782 mimics cholesterol so well—or does it? *J Phys Chem B* **118**, 7345-7357 (2014).
<https://doi.org:10.1021/jp406883k>

784 29 Kengmo Tchoupa, A. *et al.* The type VII secretion system protects
785 *Staphylococcus aureus* against antimicrobial host fatty acids. *Sci Rep* **10**,
786 14838 (2020). <https://doi.org:10.1038/s41598-020-71653-z>

787 30 Kenny, J. G. *et al.* The *Staphylococcus aureus* response to unsaturated long
788 chain free fatty acids: survival mechanisms and virulence implications. *PLoS*
789 **One** **4**, e4344 (2009). <https://doi.org/10.1371/journal.pone.0004344>

790 31 Cartron, M. L. *et al.* Bactericidal activity of the human skin fatty acid cis-6-
791 hexadecanoic acid on *Staphylococcus aureus*. *Antimicrob Agents Chemother*
792 **58**, 3599-3609 (2014). <https://doi.org/10.1128/AAC.01043-13>

793 32 Davis, J. J. *et al.* The PATRIC Bioinformatics Resource Center: expanding
794 data and analysis capabilities. *Nucleic Acids Res* **48**, D606-D612 (2020).
795 <https://doi.org/10.1093/nar/gkz943>

796 33 Ozer, E. A., Nnah, E., Didelot, X., Whitaker, R. J. & Hauser, A. R. The
797 Population Structure of *Pseudomonas aeruginosa* Is Characterized by
798 Genetic Isolation of exoU+ and exoS+ Lineages. *Genome Biol Evol* **11**, 1780-
799 1796 (2019). <https://doi.org/10.1093/gbe/evz119>

800 34 Nakamura, K., Williams, M. R., Kwiecinski, J. M., Horswill, A. R. & Gallo, R. L.
801 *Staphylococcus aureus* Enters Hair Follicles Using Triacylglycerol Lipases
802 Preserved through the Genus *Staphylococcus*. *J Invest Dermatol* **141**, 2094-
803 2097 (2021). <https://doi.org/10.1016/j.jid.2021.02.009>

804 35 Zipperer, A. *et al.* Human commensals producing a novel antibiotic impair
805 pathogen colonization. *Nature* **535**, 511-516 (2016).
806 <https://doi.org/10.1038/nature18634>

807 36 Nguyen, M. T. *et al.* Staphylococcal (phospho)lipases promote biofilm
808 formation and host cell invasion. *Int J Med Microbiol* **308**, 653-663 (2018).
809 <https://doi.org/10.1016/j.ijmm.2017.11.013>

810 37 Nguyen, M. T., Matsuo, M., Niemann, S., Herrmann, M. & Götz, F.
811 Lipoproteins in Gram-Positive Bacteria: Abundance, Function, Fitness. *Front*
812 *Microbiol* **11**, 582582 (2020). <https://doi.org/10.3389/fmicb.2020.582582>

813 38 Kim, B. E. *et al.* Side-by-Side Comparison of Skin Biopsies and Skin Tape
814 Stripping Highlights Abnormal Stratum Corneum in Atopic Dermatitis. *J Invest*
815 *Dermatol* **139**, 2387-2389 e2381 (2019).
816 <https://doi.org/10.1016/j.jid.2019.03.1160>

817 39 Li, S. *et al.* Altered composition of epidermal lipids correlates with
818 *Staphylococcus aureus* colonization status in atopic dermatitis. *Br J Dermatol*
819 **177**, e125-e127 (2017). <https://doi.org/10.1111/bjd.15409>

820 40 Gerlach, D. *et al.* Methicillin-resistant *Staphylococcus aureus* alters cell wall
821 glycosylation to evade immunity. *Nature* **563**, 705-709 (2018).
822 <https://doi.org/10.1038/s41586-018-0730-x>

823 41 Kamal, F. *et al.* Differential Cellular Response to Translocated Toxic Effectors
824 and Physical Penetration by the Type VI Secretion System. *Cell Rep* **31**,
825 107766 (2020). <https://doi.org/10.1016/j.celrep.2020.107766>

826 42 Deruelle, V. *et al.* The bacterial toxin ExoU requires a host trafficking
827 chaperone for transportation and to induce necrosis. *Nat Commun* **12**, 4024
828 (2021). <https://doi.org/10.1038/s41467-021-24337-9>

829 43 Urbanek, A. *et al.* Composition and antimicrobial activity of fatty acids
830 detected in the hygroscopic secretion collected from the secretory setae of
831 larvae of the biting midge *Forcipomyia nigra* (Diptera: Ceratopogonidae). *J*
832 *Insect Physiol* **58**, 1265-1276 (2012).
833 <https://doi.org/10.1016/j.jinsphys.2012.06.014>

834 44 Rosenstein, R. & Gotz, F. Staphylococcal lipases: biochemical and molecular
835 characterization. *Biochimie* **82**, 1005-1014 (2000).
836 [https://doi.org/10.1016/s0300-9084\(00\)01180-9](https://doi.org/10.1016/s0300-9084(00)01180-9)

837 45 Christensson, B., Fehrenbach, F. J. & Hedstrom, S. A. A new serological
838 assay for *Staphylococcus aureus* infections: detection of IgG antibodies to *S.*
839 *aureus* lipase with an enzyme-linked immunosorbent assay. *J Infect Dis* **152**,
840 286-292 (1985). <https://doi.org/10.1093/infdis/152.2.286>

841 46 Lowe, A. M., Beattie, D. T. & Deresiewicz, R. L. Identification of novel
842 staphylococcal virulence genes by *in vivo* expression technology. *Mol*
843 *Microbiol* **27**, 967-976 (1998). <https://doi.org/10.1046/j.1365-2958.1998.00741.x>

845 47 Hu, C., Xiong, N., Zhang, Y., Rayner, S. & Chen, S. Functional
846 characterization of lipase in the pathogenesis of *Staphylococcus aureus*.
847 *Biochem Biophys Res Commun* **419**, 617-620 (2012).
848 <https://doi.org/10.1016/j.bbrc.2012.02.057>

849 48 Ishii, K. *et al.* Induction of virulence gene expression in *Staphylococcus*
850 *aureus* by pulmonary surfactant. *Infect Immun* **82**, 1500-1510 (2014).
851 <https://doi.org/10.1128/IAI.01635-13>

852 49 Cheung, G. Y., Wang, R., Khan, B. A., Sturdevant, D. E. & Otto, M. Role of
853 the accessory gene regulator *agr* in community-associated methicillin-
854 resistant *Staphylococcus aureus* pathogenesis. *Infect Immun* **79**, 1927-1935
855 (2011). <https://doi.org/10.1128/IAI.00046-11>

856 50 Blevins, J. S., Beenken, K. E., Elasri, M. O., Hurlburt, B. K. & Smeltzer, M. S.
857 Strain-dependent differences in the regulatory roles of *sarA* and *agr* in
858 *Staphylococcus aureus*. *Infect Immun* **70**, 470-480 (2002).
859 <https://doi.org/10.1128/IAI.70.2.470-480.2002>

860 51 Jones, R. C., Deck, J., Edmondson, R. D. & Hart, M. E. Relative quantitative
861 comparisons of the extracellular protein profiles of *Staphylococcus aureus*
862 UAMS-1 and its *sarA*, *agr*, and *sarA* *agr* regulatory mutants using one-
863 dimensional polyacrylamide gel electrophoresis and nanocapillary liquid
864 chromatography coupled with tandem mass spectrometry. *J Bacteriol* **190**,
865 5265-5278 (2008). <https://doi.org/10.1128/JB.00383-08>

866 52 Chamberlain, N. R. & Imanoel, B. Genetic regulation of fatty acid modifying
867 enzyme from *Staphylococcus aureus*. *J Med Microbiol* **44**, 125-129 (1996).
868 <https://doi.org/10.1099/00222615-44-2-125>

869 53 Gajenthra Kumar, N. *et al.* Untargeted lipidomic analysis to broadly
870 characterize the effects of pathogenic and non-pathogenic staphylococci on
871 mammalian lipids. *PLoS One* **13**, e0206606 (2018).
872 <https://doi.org/10.1371/journal.pone.0206606>

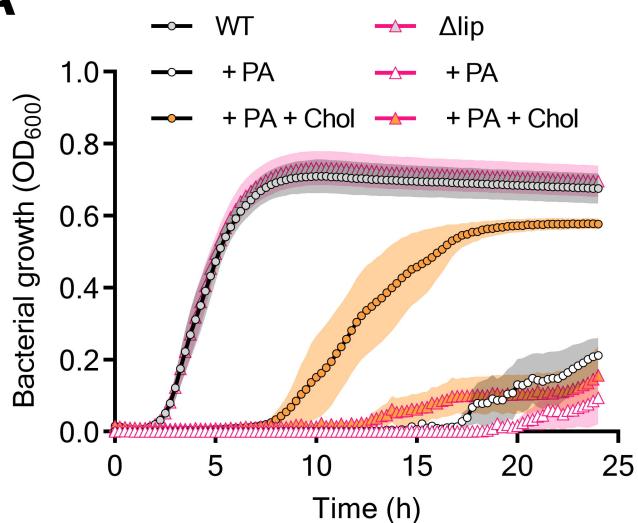
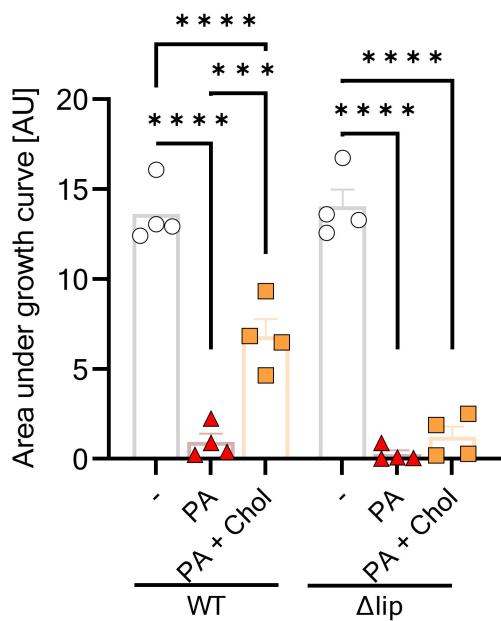
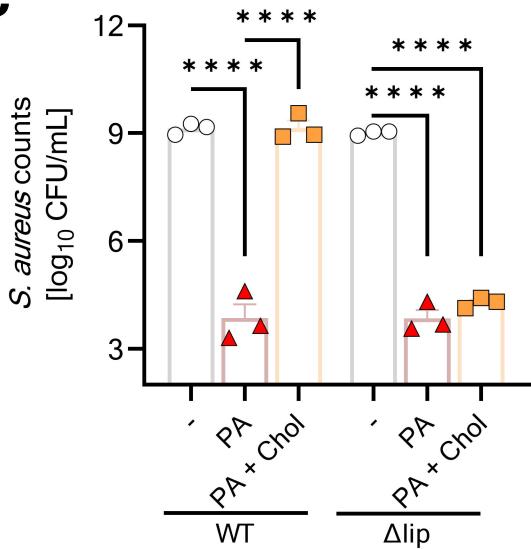
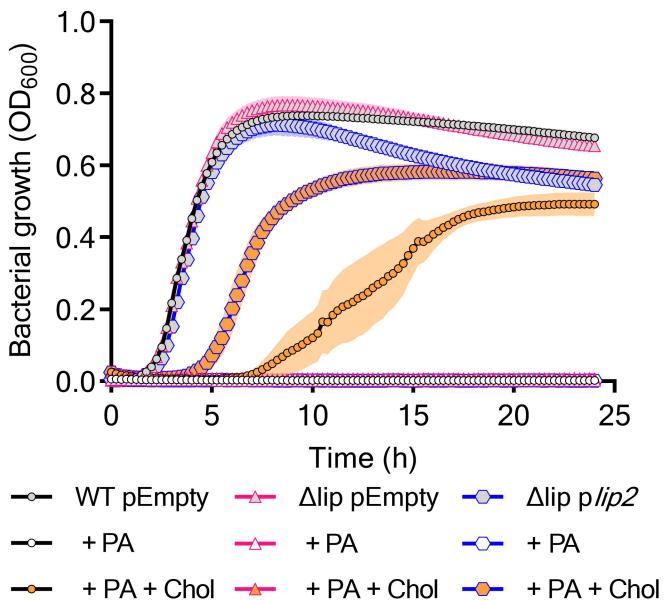
873 54 Monk, I. R., Shah, I. M., Xu, M., Tan, M. W. & Foster, T. J. Transforming the
874 untransformable: application of direct transformation to manipulate genetically
875 *Staphylococcus aureus* and *Staphylococcus epidermidis*. *mBio* **3** (2012).
876 <https://doi.org/10.1128/mBio.00277-11>

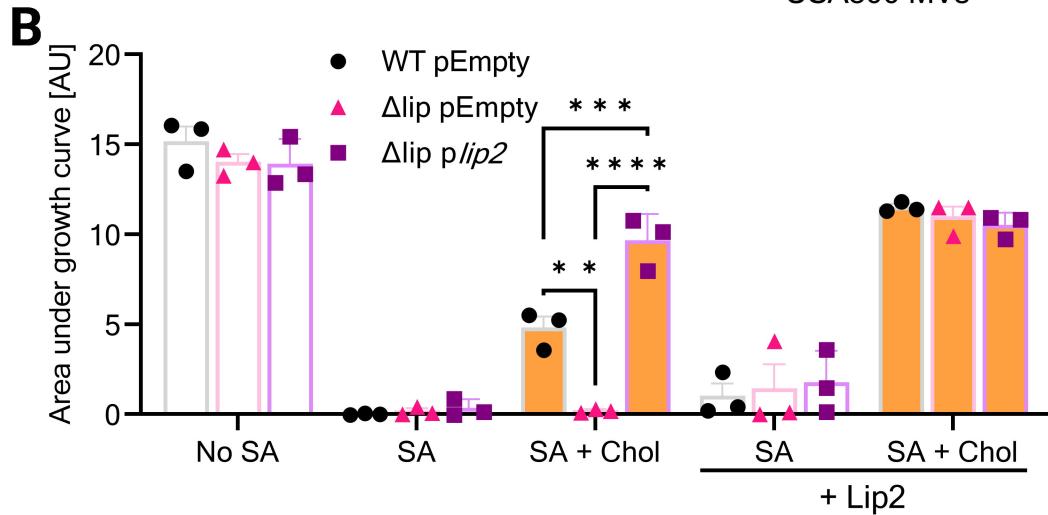
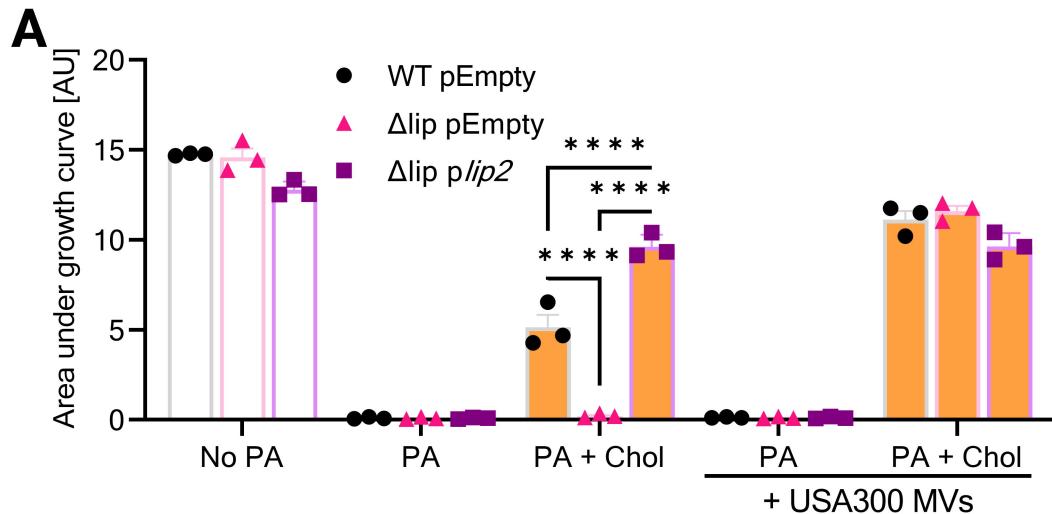
877 55 Bateman, B. T., Donegan, N. P., Jarry, T. M., Palma, M. & Cheung, A. L.
878 Evaluation of a tetracycline-inducible promoter in *Staphylococcus aureus* *in*
879 *vitro* and *in vivo* and its application in demonstrating the role of *sigB* in
880 microcolony formation. *Infect Immun* **69**, 7851-7857 (2001).
881 <https://doi.org/10.1128/IAI.69.12.7851-7857.2001>

882 56 Schlatterer, K. *et al.* The Mechanism behind Bacterial Lipoprotein Release:
883 Phenol-Soluble Modulins Mediate Toll-Like Receptor 2 Activation via
884 Extracellular Vesicle Release from *Staphylococcus aureus*. *mBio* **9** (2018).
885 <https://doi.org/10.1128/mBio.01851-18>

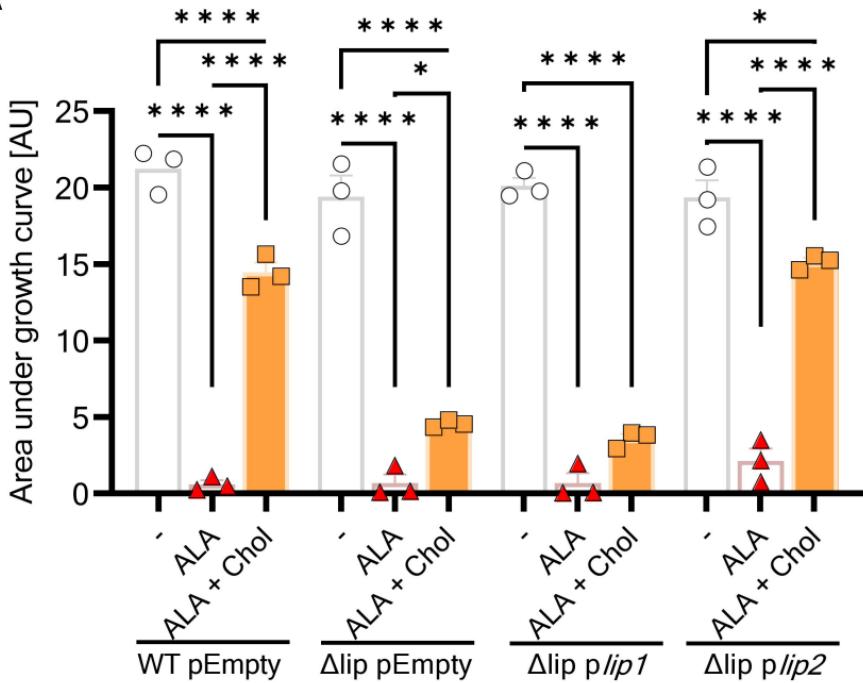
886 57 Cheung, G. Y. *et al.* Functional characteristics of the *Staphylococcus aureus*
887 delta-toxin allelic variant G10S. *Sci Rep* **5**, 18023 (2015).
888 <https://doi.org/10.1038/srep18023>

889 58 Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and
890 purification. *Can J Biochem Physiol* **37**, 911-917 (1959).
891 <https://doi.org/10.1139/o59-099>

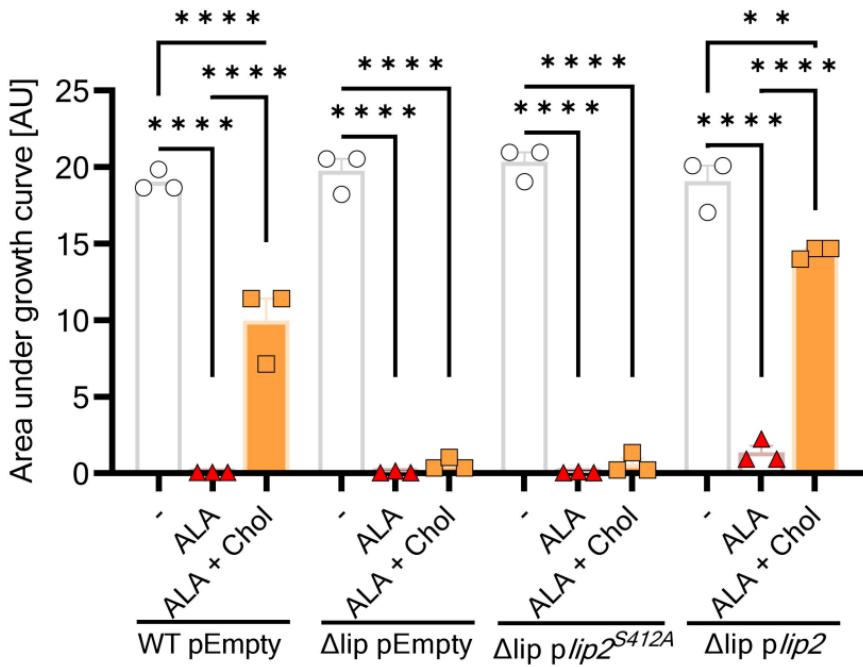




892 59 Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D.
893 Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. *J Lipid Res* **49**, 1137-1146 (2008). <https://doi.org/10.1194/jlr.D700041-JLR200>

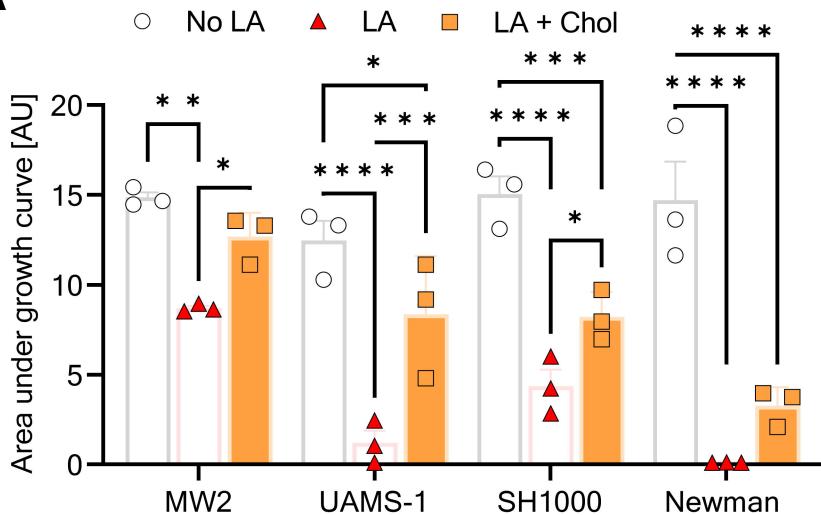
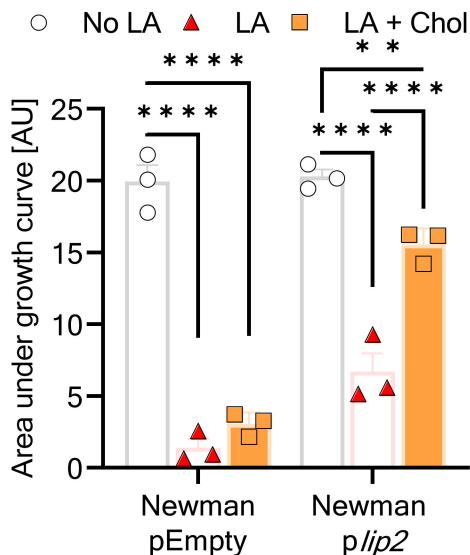
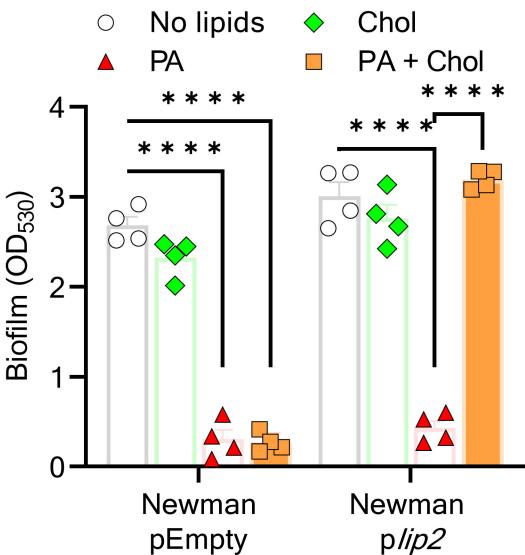


895 60 Huang, L. *et al.* Molecular Basis of Rhodomyrtone Resistance in
896 *Staphylococcus aureus*. *mBio* **13**, e0383321 (2022).
897 <https://doi.org/10.1128/mbio.03833-21>

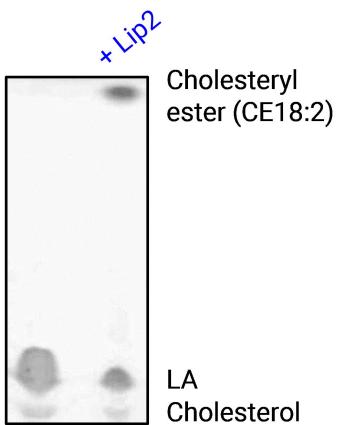
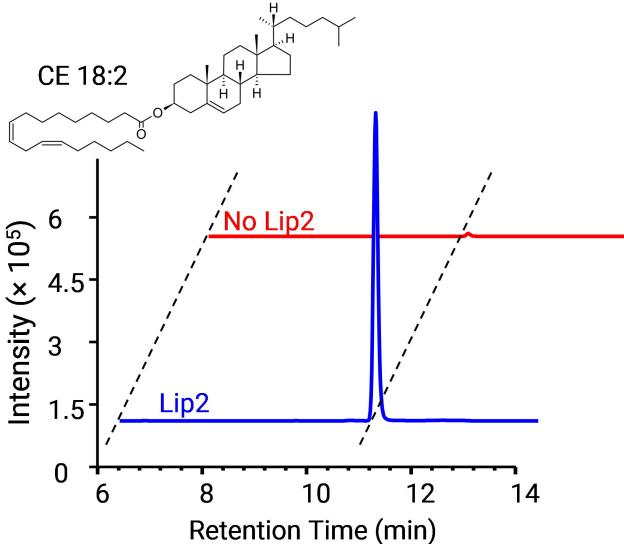
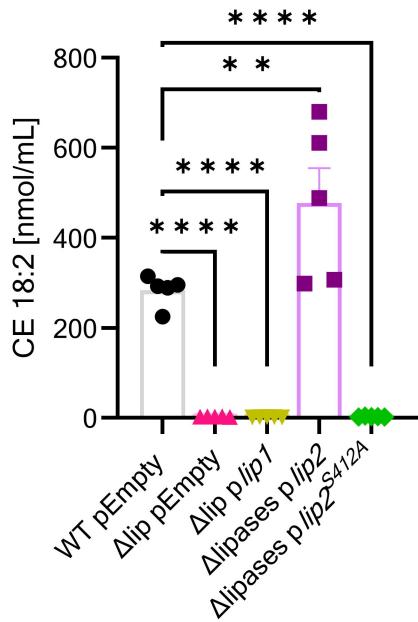
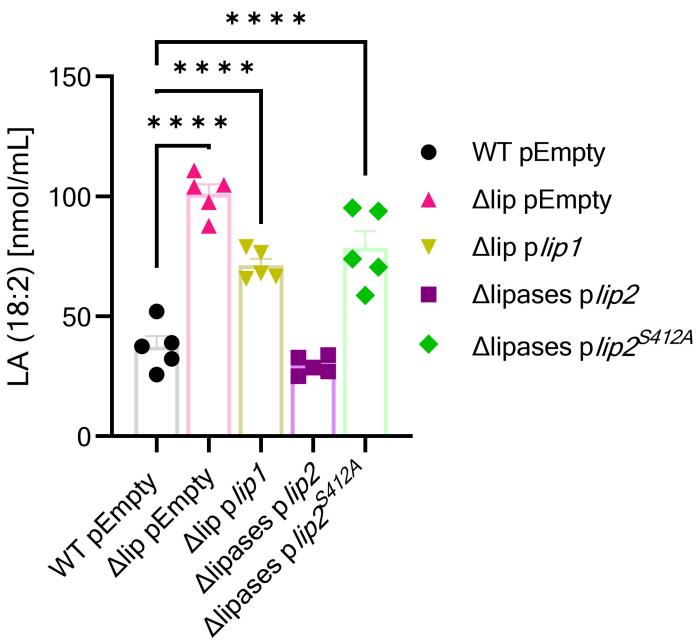
898 61 Arndt, D. *et al.* PHASTER: a better, faster version of the PHAST phage
899 search tool. *Nucleic Acids Res* **44**, W16-21 (2016).
900 <https://doi.org/10.1093/nar/gkw387>

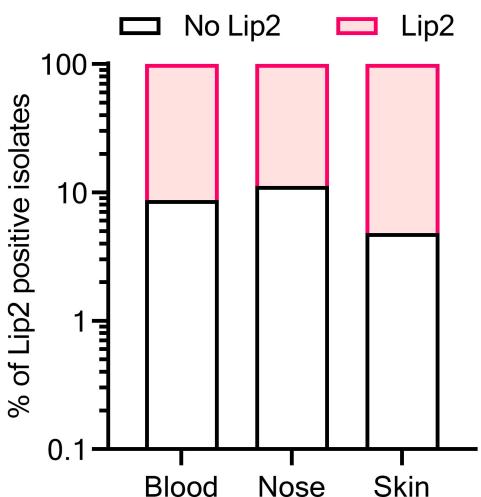
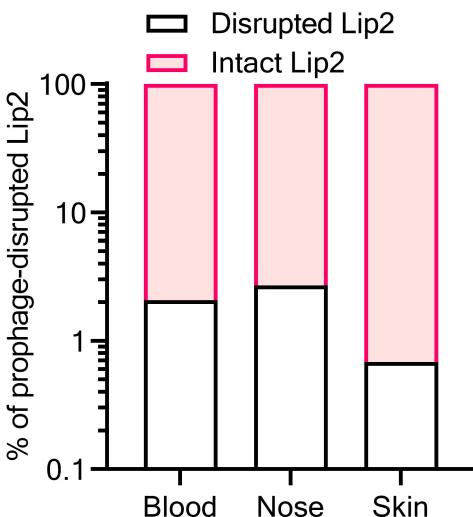
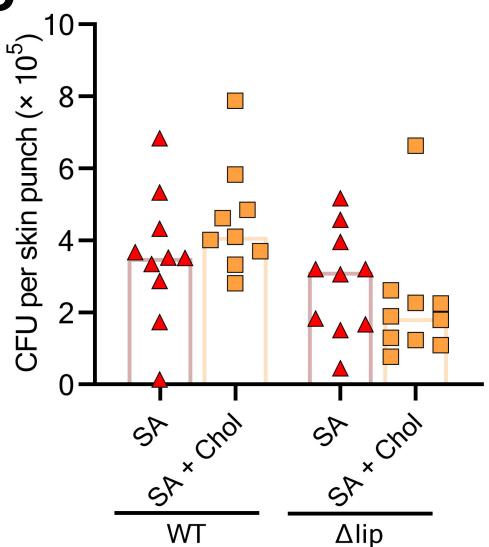
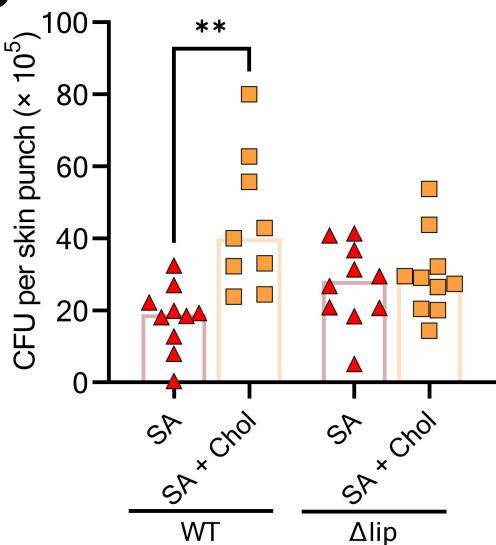

901 62 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software
902 version 7: improvements in performance and usability. *Mol Biol Evol* **30**, 772-
903 780 (2013). <https://doi.org/10.1093/molbev/mst010>

904


A**B****C****D**





A

B

A**B****C**

A**B****C****D**

A**B****C****D**