

1 Multiplex PCR with Nanopore Sequencing for Sequence- 2 Based Detection of Four Tilapia Pathogens

3
4 Jérôme Delamare-Deboutteville^{1#}, Watcharachai Meemetta^{2#}, Khaettareeya Pimsannil²,
5 Han Ming Gan³, Laura Khor Li Imm¹, Chadag Vishnumurthy Mohan¹, Ha Thanh Dong⁴,
6 Saengchan Senapin^{2,5}

7
8 ¹WorldFish, Penang, Malaysia

9 ²Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex
10 Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand

11 ³Patriot Biotech Sdn Bhd, Bandar Sunway, 47500, Selangor, Malaysia

12 ⁴School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani,
13 12120, Thailand

14 ⁵National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology
15 Development Agency (NSTDA), Pathum Thani, Thailand

16 Corresponding authors:

17 Jérôme Delamare-Deboutteville

18 Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang, Malaysia

19 Email address: j.delamare@cgiar.org

20
21 Saengchan Senapin

22 272 Rama VI Road, Ratchathewi, Bangkok 10400, THAILAND

23 Email address: saengchan@biotec.or.th

24
25 # These authors contributed equally to this work.

26

27

28

29

30

31

32

33

34 Abstract

35

36 **Background.** Tilapia aquaculture faces significant threats posed by four prominent pathogens: tilapia
37 lake virus (TiLV), infectious spleen and kidney necrosis virus (ISKNV), *Francisella orientalis*, and
38 *Streptococcus agalactiae*. Currently, employed molecular diagnostic methods for these pathogens rely on
39 multiple singleplex PCR reactions, which are time-consuming and expensive.

40

41 **Methods.** In this study, we present an approach utilizing a multiplex PCR (mPCR) assay, coupled with
42 rapid Nanopore sequencing, enabling the one-tube simultaneous detection and one-reaction Nanopore
43 sequencing-based validation of four pathogens.

44

45 **Results.** Our one-tube multiplex assay exhibits a detection limit of 1,000 copies per reaction for TiLV,
46 ISKNV, and *S. agalactiae*, while for *F. orientalis*, the detection limit is 10,000 copies per reaction. This
47 sensitivity is sufficient for diagnosing infections and co-infections in clinical samples from sick fish,
48 enabling rapid confirmation of the presence of pathogens. Integrating multiplex PCR and Nanopore
49 sequencing provides an alternative approach platform for fast and precise diagnostics of major tilapia
50 pathogens in clinically sick animals, adding to the available toolbox for disease diagnostics.

51

52 Introduction

53

54 Tilapia (*Oreochromis* spp.) is one of the most widely farmed freshwater fish species globally due to its
55 high adaptability, fast growth, and excellent meat quality. Global production is estimated at 6,100,719
56 tonnes in 2020 (FAO, 2022). By providing sustenance, employment opportunities, and domestic and
57 export revenues, this valuable species supports large populations worldwide (Wang & Lu, 2016). In the
58 past decade, tilapia production has almost doubled (FAO, 2020), attributed mainly to its ease of
59 cultivation, market demand, and stable pricing (Wang & Lu, 2016).

60

61 However, the production of tilapia has been threatened by several viral and bacterial diseases that can
62 cause significant economic losses (Debnath et al., 2023). Among the most important tilapia pathogens
63 are tilapia lake virus (TiLV), infectious spleen and kidney necrosis virus (ISKNV), *Francisella orientalis*,
64 and *Streptococcus agalactiae* (SAG) also called group B *streptococcus* (GBS) (Kawasaki et al., 2018;
65 Machimbiriike et al., 2019; Mabrok et al., 2021; Haenen et al., 2023; Alathari et al., 2023). Effective
66 diagnosis and monitoring of these pathogens are crucial for disease management and control (Dong et
67 al., 2023). Traditional diagnostic techniques such as virus and bacterial isolation, immunofluorescence
68 assay (IFA), and enzyme-linked immunosorbent assay (ELISA) are time-consuming, labor-intensive, and
69 require specialized equipment and expertise (Dong et al., 2023). In contrast, molecular methods such as
70 polymerase chain reaction (PCR) and quantitative PCR (qPCR) have gained widespread use in pathogen
71 detection due to their high sensitivity and specificity, rapid turnaround time, and ability to detect multiple
72 pathogens in a single reaction (Soto et al., 2010; Kralik & Ricchi, 2017; Liamnimitr et al., 2018;
73 Waiyamitra et al., 2018; López-Porras et al., 2019; Ramírez-Paredes et al., 2021; Taengphu et al., 2022;
74 Dong et al., 2023).

75

76 In current real-world situations, it is uncommon to perform subsequent sequencing of the positive PCR or
77 qPCR products to validate the pathogen identity due to the time and resources involved in conventional
78 Sanger sequencing. Sequence-based verification is particularly valuable in multiplex PCR since non-
79 specific amplification is more likely to occur in a multiplex PCR reaction due to multiple primer
80 combinations. Fortunately, this is now possible with Oxford nanopore technology (ONT) that allows on-
81 site amplicon sequencing (Delamare-Deboutteville et al., 2021). Therefore, proper integration of multiplex
82 PCR and ONT-based genotyping may present a promising tool for the efficient and precise detection and
83 characterization of pathogens in tilapia aquaculture.

84

85 We present a multiplex PCR assay with a detection level suitable for simultaneously identifying TiLV,
86 ISKNV, *F. orientalis*, and *S. agalactiae* in sick tilapia samples. Using the portable nanopore sequencing
87 platform, we confirmed the presence of these pathogens at the sequence level and gathered genetic
88 information from the amplicons. This assay offers a rapid and practical solution for detecting and
89 genetically characterizing these pathogens, with the potential to complement existing diagnostic tools and
90 inform targeted surveillance and control strategies.

91

92 Materials & Methods

93 Ethics declarations

94 The authors confirm that the journal's ethical policies, as noted on the journal's author guidelines page,
95 have been adhered to. No ethical approval was required as no animals were used in this study. Virus
96 sequences were generated from archived samples.

97

98 Clinical samples and nucleic acid extraction

99

100 We utilized archival clinical samples of fry, fingerling, juvenile and adult Nile tilapia, red tilapia, and Asian
101 sea bass from challenge experiments or from various disease outbreaks between 2015 and 2020. Our
102 investigation included samples that were either confirmed to be caused by a single pathogen using PCR
103 diagnosis or suspected to have resulted from co-infections. All sample details are comprehensively listed
104 in Table 1. To extract the nucleic acid from the samples, some were processed using the PathoGen-spin
105 DNA/RNA extraction kit from iNtRON Biotechnology, while others were archival RNA samples extracted
106 using Trizol reagent from Invitrogen, and DNA samples extracted using the conventional
107 phenol/chloroform ethanol precipitation method as described by (Meemetta et al., 2020). If done close to
108 the farm, the diagnostic workflow from the point of sample collection to the final data analysis can take
109 less than 12 hours. The processes include nucleic acid extraction, multiplex PCR, library preparation,
110 Nanopore sequencing, and data analysis, as illustrated in Figure 1.

111

112 Primers used in this study

113 We obtained the primers for the four selected target pathogens from Bio Basic (Canada), and the primer
114 sequences are summarized in Supplemental Table 1. Primers for TiLV, ISKNV, *F. orientalis*, and *S.*
115 *agalactiae* were reported in previous studies (Yang et al., 2013; Dong et al., 2016; Paria et al., 2016;
116 Leigh et al., 2018; Kawato et al., 2021; Taengphu et al., 2022). The expected amplicon sizes were 137,
117 190, 203, and 351 bp, respectively. The specificity of each primer pair was assessed *in silico* using the
118 Primer-BLAST program (<https://www.ncbi.nlm.nih.gov/tools/primer-blast/>).

119

120 Plasmid positive controls and the analytical sensitivity assay

121 All plasmid-positive controls except for *S. agalactiae* (constructed in this study) were obtained from our
122 previous studies (Supplemental Table 2). Positive plasmid control containing *S. agalactiae groEL* partial
123 gene was obtained by cloning a 351 bp-*groEL* amplified fragment purified before being ligated into
124 pGEM-T easy vector (Promega). A recombinant plasmid was subjected to DNA sequencing (Macrogen).
125 The copy number of each plasmid was calculated based on its size in base pair (bp) and amount in
126 nanogram (ng) using a web tool at <http://cels.uri.edu/gsc/cndna.html>. A combination of four recombinant
127 plasmids was mixed for the multiplex PCR sensitivity assay. This mixture was then subjected to 10-fold
128 serial dilution, resulting in a 1 to 10^6 copies/ μ l range. Subsequently, 4 μ l of the diluted series was used in
129 the multiplex PCR reaction. To simulate a clinical sample from a fish, each PCR reaction was spiked with
130 50 ng of RNA extracted from a healthy tilapia.

131

132 Multiplex PCR condition optimization and the detection of clinical samples

133 Previous studies claimed that qPCR reagents usually contain PCR additives and enhancers that can
134 improve amplification efficiency (Karunananthie et al., 2022). To optimize our multiplex PCR, we used
135 KAPA SYBR FAST One-Step qRT-PCR master mix (Roche), known to contain such additives. Each
136 reaction was prepared in a 25 μ l volume, comprising 1X master mix, 4 μ l of template, and 80-240 nM of
137 each primer pair (Supplemental Table 3). We determined the optimal annealing temperature (Ta) using

138 gradient PCR with Ta ranging between 55-65 °C. To identify the best combination of PCR components,
139 we added ammonium sulfate, BSA, dNTPs, and MgCl₂ in different proportions. The final cycling
140 conditions comprised a reverse transcription step at 42 °C for 5 min, followed by inactivation at 95 °C for
141 3 min, and 40 cycles of 95°C for 10 s and 60°C for 30 sec, with a final extension step at 60 °C for 5 min
142 (Supplemental Table 3). We then analyzed 10 µl of each product by electrophoresis on a 3.5% agarose
143 gel stained with ethidium bromide. The newly optimized multiplex PCR assay was subsequently used to
144 detect the presence of TiLV, ISKNV, *F. orientalis*, and *S. agalactiae* in archival clinical samples (Table 1).
145 Most of these samples were previously tested for a single pathogen using PCR or qPCR assays.

146

147 **Quantification of pathogens by qPCR assays**

148 A total of 15 clinical samples, whose mPCR products underwent Nanopore sequencing, were analyzed to
149 determine the presence and quantity of each pathogen. The established protocols (Leigh et al., 2018;
150 Kawato et al., 2021; Taengphu et al., 2022) were followed to detect TiLV, ISKNV, and SAG, as described
151 in Supplemental Table 4. For FnO qPCR, the same primers used in mPCR were used in this study's
152 SYBR Green-based qPCR assay.

153

154 **Nanopore sequencing**

155 The present study employed amplicons generated from both single and multiplex PCR reactions (Table 1,
156 samples highlighted in grey) as templates for library preparation using the ligation sequencing kit (SQK-
157 LSK109) and the native barcoding expansion 1-12 kit (EXP-NBD104) according to the standard protocols
158 of Oxford Nanopore Technologies (ONT) adapted for the Flongle flow cell. Three sequencing runs (r1-r3)
159 were conducted, with 250 ng of PCR product per sample and a unique native barcode (BC) assigned to
160 each sample. Run 1 (r1) involved sequencing amplicons obtained from individual PCR reactions and a
161 combination of these amplicons (Table 1). Run 2 (r2) focused on sequencing multiplex PCR (mPCR)
162 products derived from clinical samples. Run 3 (r3) employed mPCR products from the remaining clinical
163 samples. Additionally, different concentrations of single PCR products were included in this run. The
164 library of pooled barcoded samples was subjected to a Short Fragment Buffer (SFB) wash before the final
165 elution step of the protocol. The DNA concentration was quantified at every step using the Qubit assay.
166 Subsequently, the prepared library was loaded onto a Flongle flow cell (FLO-FLG106), following the
167 Nanopore standard protocol, and each Flongle flow cell was fitted to a Flongle adapter (FLGIntSP) for
168 MinION.

169

170 **Reads filtering and read abundance calculation**

171 Basecalled reads in fastq format were primer-trimmed with cutadapt v4.3 (Martin, 2011), and reads that
172 have been trimmed with length ranging from 75-400 bp will be retained for the subsequent analysis,
173 leaving out overly short or long reads without intact primer sequence on both ends. The filtered reads
174 were aligned to the four pathogen gene segments using Minimap2 v2.17 (Li, 2018). Reads that aligned
175 uniquely (only a single hit reported) with more than 80% coverage to the target region were used for
176 abundance calculation and variant calling (consensus generation). Calculation of raw, trimmed, and
177 aligned read statistics used seqkit v2.20 (Shen et al., 2016). Reads failing to align at this stringent level
178 were extracted and re-aligned using the default Minimap2 setting, followed by a less stringent blastN
179 alignment. The host genome was included in the reference sequence to assess the fraction of reads
180 mapping to the host.

181

182 **Generation of consensus and variant sequences**

183 Only reads with unique alignments were used as the template for Minimap2 and medaka variant calling
184 based on the ARTIC pipeline ("Core Pipeline - artic pipeline"; "sars-cov-2-ont-artic-variant-calling/COVID-
185 19-ARTIC-ONT"). The reads were mapped to the reference gene segments of four pathogens, followed
186 by variant calling using the medaka variant model r941_min_g507. Variant filtering was then performed
187 based on mapping quality and read depth. The number of ambiguous bases in the consensus sequences
188 was calculated using QUAST v5 (Gurevich et al., 2013). Only sequences without any ambiguous base
189 were selected for subsequent variant sequence generation. Variants were generated using cd-hit v.4.8.1
190 (Huang et al., 2010), whereby sequences with 100% nucleotide identity and exact sequence length were
191 clustered into the same genotype. The variant sequences were compared against the NCBI Blast nt
192 database (accessed on 25 April 2023) to identify the top 5 BLAST hits for each sequence.

193

194 **Code availability**

195 The Linux scripts used to generate initial FastQ files, assembled amplicons (public and from this study)
196 are publicly available in the Zenodo.org dataset <https://doi.org/10.5281/zenodo.7866295>.

197

198 **Results**

199

200 **Primer testing by single PCR**

201 Single PCR reactions were performed using each primer pair with its respective target template to
202 validate the selected primer pairs for each pathogen. The amplification of the target regions was
203 confirmed by amplicons of the expected sizes, as illustrated in Supplemental Figure 1. To simulate the
204 expected products from multiplex PCR (mPCR), an equal amount of each individual PCR product was
205 loaded into lane C of the Supplemental Figure 1. Gel electrophoresis analysis revealed distinct and
206 separable bands, demonstrating the potential for further utilization in the multiplex PCR analysis. Note
207 that the products generated from this step were subsequently employed in Nanopore sequence run 1 (r1).

208

209 **Multiplex PCR detection of four pathogens among clinical samples**

210 We have successfully optimized a multiplex PCR assay to simultaneously detect four important tilapia
211 pathogens, TiLV, ISKNV, *F. orientalis*, and *S. agalactiae*, in a single reaction. The detection sensitivity of
212 the new assay in the presence of spiked host RNA was 10^3 copies/reaction for TiLV, ISKNV, and *S.*
213 *agalactiae*. In the presence of 10^4 copies of each template, the assay could detect *F. orientalis* and three
214 other pathogens (Supplemental Figure 2). The assay could detect each pathogen efficiently in tilapia
215 clinical samples, as confirmed by distinct PCR bands (Figure 2). The assay was able to detect TiLV in
216 heavily infected samples (3-7) both on the gel and by nanopore but failed to detect it on the gel for
217 samples (8-12) with low levels of TiLV infection. Similarly, the highest number of reads for ISKNV were
218 found in sample #25 (twice more than in sample #27), yet it had a much fainter band on the gel (Table 1).
219 There is a good correlation between read numbers and bands intensity for *F. orientalis* in four samples
220 (#30-33) but only a weak band for *S. agalactiae* in one sample (#39) compared to number of amplicons
221 (Figure 2, 3, Supplemental Table 5). In some samples, we detected dual infections with more than one
222 pathogen, as evidenced by the presence of multiple bands, including a possible co-infection with *F.*
223 *orientalis* and TiLV in samples 3-7. However, differentiation of *F. orientalis* and ISKNV was challenging as
224 their respective bands have similar sizes (Figure 2).

225

226 **Successful recovery of pathogen sequence variants from infected samples**

227 A total of 246,756 reads were successfully demultiplexed from three separate Flongle runs (r1-r3), each
228 containing different sample types (Table 1, Supplemental Table 5). Following primer and length filtering, a
229 substantial reduction in read count was observed, resulting in an average of 64% of reads being removed
230 (range: 46%-87%) (Supplemental Table 5). An additional 10% of reads were removed after alignment
231 filtering. After these filtering steps, 75,203 reads remained, providing an average of 2,500 filtered reads
232 per sample for subsequent read abundance and consensus sequence generation (Supplemental Table
233 5).

234

235 Given the small sampling size and possibly highly conserved nature of some of the pathogen gene
236 segments, one sequence variant was generated per pathogen gene segment except for the TiLV gene
237 segment, whereby two sequence variants were recovered (Table 2). All recovered sequence variants
238 exhibited 100% nucleotide identity to at least one publicly available sequence in the NCBI database. In
239 addition, samples derived from the single PCR product inputs and their combined mixture were clustered
240 in their respective sequence variants. In the case of the TiLV amplicons, we observed two unique
241 sequence variants (Var 0 and Var 1) for TiLV gene segment 9, one of which displayed 100% nucleotide
242 identity to the gene region of a relatively divergent TiLV strain from Vietnam (Table 2). This sequence
243 variant was detected in samples r2_NT_F1 to r2_NT_F5, collected from the same sampling site
244 simultaneously (Table 2).

245

246

247

248 **Effect of template input on data distribution and pathogen detection specificity on the Nanopore
249 platform**

250 In the first run (r1), using well-defined pathogen nucleic acids as templates for the detection assay,
251 confident alignments were observed for each sample to their expected pathogen gene segments, except
252 for sample r1_TiLV_1 which consisted purely of TiLV amplicons and did not sequence well enough to
253 enable subsequent variant calling (Figure 3 and Table 2). For sample 4PAT, which consisted of a
254 combination of products from 4 pathogens, the read distribution was broadly similar, as was the case for
255 sample 4PAT_DIL, which used a ten-fold diluted version of the template (Figure 3). In the second run (r2),
256 actual clinical samples with PCR-verified infections were used, and over 50% and up to 99% of reads
257 were primarily mapped to the primary suspected pathogen gene fragments, with the remaining reads
258 mapping to the other three pathogens. Interestingly, in the third run (r3), a significant percentage (>5%) of
259 reads aligned to other pathogens were observed among samples spiked with different amounts of single
260 amplified products (Figure 3). For example, among the TiLV samples (TiLV05, 15, 30, 50), the lowest
261 amount of PCR product template (TiLV05) resulted in a low number of TiLV reads and a higher
262 percentage of reads belonging to non-TiLV pathogens. A similar trend was observed for pure SAG
263 samples, with the most diluted SAG sample (SAG05) having the highest percentage of non-SAG reads.
264 However, in contrast to the pure synthetic TiLV samples, the percentage of non-specific reads decreased
265 to less than 2% in the SAG50 sample with the highest read count, while it remained around 10% in the
266 TiLV50 sample.

267 **Reads that failed stringent alignment to the pathogen gene panel were host-derived or partial
268 pathogen sequences with lower nucleotide identity**

269 Upon investigation of reads that failed to align, a significant proportion was found to map not only to the
270 four pathogen gene segments but also to the host genome when a more lenient alignment configuration
271 was employed (Figure 4). Samples from run 2 (r2), predominantly derived from fish tissues, exhibited a
272 higher percentage of reads mapping to the host genome than other samples. As expected, given the use
273 of input PCR products as the template for all samples in run 1 (r1), no reads were found to align to the
274 host genome when they were aligned with Minimap2 (default setting). On the contrary, a small portion of
275 reads belonging to the host genome was found among different concentrations of single PCR products
276 from run 3 (r3) (Figure 4 and Supplemental Table 5), which also consists of samples derived from tilapia
277 organs (Table 1).

278
279 **Discussion**

280 The intensification of tilapia farming has led to a surge in emerging and re-emerging infectious diseases,
281 resulting in substantial losses in the aquaculture industry (Machimbirike et al., 2019; Haenen et al., 2023;
282 Shinn et al., 2023). These diseases continue to evolve and spread under intense selective pressures,
283 particularly in regions with high-density tilapia farming. To address this issue, we built upon our previous
284 study (Delamare-Debouteville et al., 2021), and improved the detection and genotyping of multiple
285 pathogens by switching to multiplex PCR coupled with Nanopore sequencing. Our updated approach
286 enabled the simultaneous and sequence-based detection and verification of four major tilapia pathogens:
287 ISKNV, TiLV, *S. agalactiae*, and *F. orientalis*.

288
289 The requirement for simultaneous diagnosis of multiple pathogens is particularly relevant to high
290 mortalities observed in larger grow-out tilapia. These mortalities are likely exacerbated by co-infections,
291 as indicated by (Ramírez-Paredes et al., 2021) previous research findings, which revealed the active co-
292 infection of ISKNV-positive fish with *Streptococcus agalactiae* and other bacterial pathogens.

293
294 The discrepancies between gel-based interpretation of multiplex PCR products and qPCR or direct
295 amplicon sequencing approaches are not surprising, given the subjective nature of gel visualization and
296 the labor-intensive process of running multiple samples. The accuracy of pathogen detection can be
297 significantly impacted by faint or similar-sized bands, making it challenging to standardize results. To
298 streamline the multiplex PCR approach and increase throughput, the gel visualization step can be
299 eliminated in favor of direct Nanopore sequencing. With high-degree sample-based multiplexing, it is now
300 possible to perform high throughput sequence-based detection of multiple tilapia pathogens using
301

302 Nanopore sequencing. The utilization of this application is paramount for the aquaculture industry, given
303 that disease outbreaks are frequently linked with multiple infections (Abdel Latif & Khafaga, 2020; Huang
304 et al., 2020; Liu et al., 2020; Basri et al., 2020). Furthermore, as aquaculture farms are often situated in
305 remote locations far from diagnostic reference laboratories, the ability to mobilize diagnostic testing with
306 rapid results, high accuracy, and less complicated equipment near the farm is preferred.
307

308 Although our approach is scalable, there are limitations due to the old version of MinKNOW used during
309 the study. Short amplicons are sequenced less efficiently and have lower read accuracy. We addressed
310 this issue using a stringent read filtering and alignment approach, which led to a reduced read recovery in
311 the final abundance calculation. Some synthetic samples analyzed contained reads from other
312 pathogens, which was unexpected and suggests cross-ligation of native barcodes during library
313 preparation. The availability of unbound adapters is higher among samples with low DNA input, leading to
314 higher crosstalk levels and reads from other samples. New improvements in the current Nanopore
315 technology and library preparation protocols (as of 14 September 2024) will mitigate these issues. This
316 includes (1) Switching to a PCR-barcoding kit to only enrich for amplicon with Nanopore partial adapter,
317 (2) the use of a new Q20+ LSK114 kit with improved read accuracy, and (3) the use of high accuracy
318 Dorado base-calling model (<https://github.com/nanoporetech/dorado>).
319

320 By enforcing a stringent alignment setting, the reads aligning to the pathogen gene segment are directly
321 suitable for subsequent reference-based variant calling, producing highly accurate variants useful for
322 biological interpretation. This is exemplified by the consistent recovery of a TiLV segment 9 variant
323 previously only found in a Vietnamese TiLV strain in all Thai tilapia samples from the same sampling
324 batch. Considering the proximity of Thailand and Vietnam, this may suggest a possible spillover event,
325 highlighting the need for more thorough sampling and sequencing to elucidate the degree of TiLV
326 diversity in both regions.
327

328 For field diagnostics, some of the equipment used in the present study can be replaced with portable
329 items that are small enough to fit in a bag for use in remote settings. An example of the field application of
330 this diagnostic workflow is the Lab-in-a-backpack concept developed by WorldFish (WorldFish, 2020;
331 Huso et al., 2020; Cagua et al., 2021; The University of Queensland, 2021; Chadag et al., 2021; Barnes
332 et al., 2021). It includes all the necessary sampling, extraction, and sequencing kits, pipettes,
333 and consumables, as well as the use of the miniPCR thermocycler and blueGel electrophoretic system
334 from miniPCR bio™, a minicentrifuge, a magnetic rack, a fluorometer, a Nanopore MinION sequencer,
335 and flow cells for sequencing. Additionally, a laptop with minimum requirements to run the MinKNOW
336 software is required. Similar PCR-sequencing approaches using portable equipment have been employed
337 for the rapid identification of a diverse range of biological specimens, including plants, insects, reptiles
338 (Pomerantz et al., 2022), and viruses such as COVID-19, Ebola, and Zika (González-González et al.,
339 2019, 2020).
340

341 Improvements in the remote and low-resource applications of the current methodology will broaden its
342 use for capacity building and implementations in low-income countries, where high mortalities due to
343 unknown causes are prevalent in tilapia farming. Accurate and rapid genomic detection of fish pathogens
344 through our amplicon-based approach will allow health professionals to promptly provide advice and take
345 necessary actions for producers. Moreover, it can facilitate informed decisions regarding additional
346 investigations, such as whole-genome sequencing (WGS), on isolates stored in biobanks. The sequence
347 data obtained from WGS offer crucial epidemiological insights, which can be utilized to develop
348 customized multivalent autogenous vaccines using local pathogens (Barnes et al., 2022). These vaccines
349 can then be administered to broodstock and seeds before distribution among grow-out farmers for
350 restocking purposes.
351

352 **Conclusions**

353 In summary, our study presents an attractive approach for detecting and verifying four tilapia pathogens
354 in clinically sick fish, which can also be applied to pathogens in other livestock, fish, or crustaceans if the
355 genetic information of the pathogen is publicly available for primer design and reference mapping.

356 Although there are limitations to the current pipeline version used at the time of this study, we are
357 optimistic that the current improvements in Nanopore technology will further enhance the accuracy and
358 scalability of our approach.

359

360 Acknowledgements

361 We want to extend our utmost gratitude and profound recognition to the late Dr. Pattanapon
362 Kayansamruaj for his valuable contributions during the early stages of conceiving this research endeavor.

363

364 References

365 Abdel-Latif HMR, Khafaga AF. 2020. Natural co-infection of cultured Nile tilapia *Oreochromis*
366 *niloticus* with *Aeromonas hydrophila* and *Gyrodactylus cichlidarum* experiencing high
367 mortality during summer. *Aquaculture Research* 51:1880–1892. DOI: 10.1111/are.14538.

368 Alathari S, Chaput DL, Bolaños LM, Joseph A, Jackson VLN, Verner-Jeffreys D, Paley R, Tyler
369 CR, Temperton B. 2023. A Multiplexed, Tiled PCR Method for Rapid Whole-Genome
370 Sequencing of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Tilapia. *Viruses*
371 15:965. DOI: 10.3390/v15040965.

372 Barnes A, Das S, Rudenko O, Wilkinson S, Cagua F, Delamare-Deboutteville J. 2021. Diagnosis
373 in a fish farmer's backpack. In: *Food & Nutrition Security – The Biosecurity, Health,*
374 *Trade Nexus*. <https://www.crawfardfund.org/events/other-events/2021-conference/speakers-chairs/dr-andrew-barnes/>. Crawford Fund.,

375 Barnes AC, Silayeva O, Landos M, Dong HT, Lusiastuti A, Phuoc LH, Delamare-Deboutteville
376 J. 2022. Autogenous vaccination in aquaculture: A locally enabled solution towards
377 reduction of the global antimicrobial resistance problem. *Reviews in Aquaculture* 14:907–
379 918. DOI: 10.1111/raq.12633.

380 Basri L, Nor RM, Salleh A, Md. Yasin IS, Saad MZ, Abd. Rahaman NY, Barkham T, Amal
381 MNA. 2020. Co-Infections of Tilapia Lake Virus, *Aeromonas hydrophila* and
382 *Streptococcus agalactiae* in Farmed Red Hybrid Tilapia. *Animals* 10:2141. DOI:
383 10.3390/ani10112141.

384 Cagua F, Wilkinson S, Barnes A, Delamare-Deboutteville J. 2021. Lab in a Backpack: Rapid and
385 accurate diagnosis for the control and prevention of diseases in aquatic animals.
386 Available at <https://labinabackpack.com/> (accessed June 15, 2023).

387 Chadag V, Delamare-Deboutteville J, Beveridge M, Marwaha N. 2021. Reducing disease risks in
388 fish through better detection, management and prevention. *WorldFish*.
389 <https://worldfishcenter.org/publication/reducing-disease-risks-fish-through-better-detection-management-and-prevention>.

390 Core Pipeline - artic pipeline. Available at <https://artic.readthedocs.io/en/latest/minion/>
391 (accessed June 15, 2023).

392 Debnath SC, McMurtrie J, Temperton B, Delamare-Deboutteville J, Mohan CV, Tyler CR. 2023.
393 Tilapia aquaculture, emerging diseases, and the roles of the skin microbiomes in health
394 and disease. *Aquaculture International*. DOI: 10.1007/s10499-023-01117-4.

395 Delamare-Deboutteville J, Taengphu S, Gan HM, Kayansamruaj P, Debnath PP, Barnes A,
396 Wilkinson S, Kawasaki M, Vishnumurthy Mohan C, Senapin S, Dong HT. 2021. Rapid
397 genotyping of tilapia lake virus (TiLV) using Nanopore sequencing. *Journal of Fish
398 Diseases* 44:1491–1502. DOI: 10.1111/jfd.13467.

399

400 Dong HT, Chaijarasphong T, Barnes AC, Delamare-Deboutteville J, Lee PA, Senapin S, Mohan
401 CV, Tang KFJ, McGladdery SE, Bondad-Reantaso MG. 2023. From the basics to
402 emerging diagnostic technologies: What is on the horizon for tilapia disease diagnostics?
403 *Reviews in Aquaculture* 15:186–212. DOI: 10.1111/raq.12734.

404 Dong HT, Gangnonngiw W, Phiwsaiya K, Charoensapsri W, Nguyen VV, Nilsen P, Pradeep PJ,
405 Withyachumnarnkul B, Senapin S, Rodkhum C. 2016. Duplex PCR assay and in situ
406 hybridization for detection of *Francisella* spp. and *Francisella noatunensis* subsp.
407 *orientalis* in red tilapia. *Diseases of Aquatic Organisms* 120:39–47. DOI:
408 10.3354/dao03021.

409 FAO. 2020. *The State of World Fisheries and Aquaculture 2020: Sustainability in action*. Rome,
410 Italy: FAO, Rome. DOI: 10.4060/ca9229en.

411 FAO. 2022. FishStatJ: universal software for fishery statistical time series: aquaculture
412 production 1950–2020. FAO, Rome.

413 González-González E, Mendoza-Ramos JL, Pedroza SC, Cuellar-Monterrubio AA, Márquez-
414 Ipiña AR, Lira-Serhan D, Santiago GT, Alvarez MM. 2019. Validation of use of the
415 miniPCR thermocycler for Ebola and Zika virus detection. *PLOS ONE* 14:e0215642.
416 DOI: 10.1371/journal.pone.0215642.

417 González-González E, Santiago GT, Lara-Mayorga IM, Martínez-Chapa SO, Alvarez MM.
418 2020. Portable and accurate diagnostics for COVID-19: Combined use of the miniPCR
419 thermocycler and a well-plate reader for SARS-CoV-2 virus detection. *PLOS ONE*
420 15:e0237418. DOI: 10.1371/journal.pone.0237418.

421 Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome
422 assemblies. *Bioinformatics* 29:1072–1075. DOI: 10.1093/bioinformatics/btt086.

423 Haenen OLM, Dong HT, Hoai TD, Crumlish M, Karunasagar I, Barkham T, Chen SL, Zadoks
424 R, Kiermeier A, Wang B, Gamarro EG, Takeuchi M, Azmai MNA, Fouz B, Pakingking
425 Jr. R, Wei ZW, Bondad-Reantaso MG. 2023. Bacterial diseases of tilapia, their zoonotic
426 potential and risk of antimicrobial resistance. *Reviews in Aquaculture* 15:154–185. DOI:
427 10.1111/raq.12743.

428 Huang Y, Cai S, Jian J, Liu G, Xu L. 2020. Co-infection of infectious spleen and kidney necrosis
429 virus and *Francisella* sp. in farmed pearl gentian grouper ($\text{♀}E$. *Epinephelus fuscoguttatus*
430 $\times \text{♂}E$. *lanceolatus*) in China - A case report. *Aquaculture* 526:735409. DOI:
431 <https://doi.org/10.1016/j.aquaculture.2020.735409>.

432 Huang Y, Niu B, Gao Y, Fu L, Li W. 2010. CD-HIT Suite: a web server for clustering and
433 comparing biological sequences. *Bioinformatics (Oxford, England)* 26:680–682. DOI:
434 10.1093/bioinformatics/btq003.

435 Huso D, Wilkinson S, Barnes A, Delamare-Deboutteville J. 2020. Lab-in-a-backpack: Rapid
436 Genomic Detection to revolutionize control of disease outbreaks in fish farming.
437 Available at <https://fish.cgiar.org/impact/stories-of-change/lab-backpack-rapid-genomic-detection-revolutionize-control-disease> (accessed June 11, 2021).

438 Karunanathie H, Kee PS, Ng SF, Kennedy MA, Chua EW. 2022. PCR enhancers: Types,
439 mechanisms, and applications in long-range PCR. *Biochimie* 197:130–143. DOI:
440 10.1016/j.biochi.2022.02.009.

441 Kawasaki M, Delamare-Deboutteville J, Bowater RO, Walker MJ, Beatson S, Ben Zakour NL,
442 Barnes AC. 2018. Microevolution of *Streptococcus agalactiae* ST-261 from Australia
443 Indicates Dissemination via Imported Tilapia and Ongoing Adaptation to Marine Hosts

445 or Environment. *Applied and Environmental Microbiology* 84. DOI:
446 10.1128/AEM.00859-18.

447 Kawato Y, Cummins DM, Valdeter S, Mohr PG, Ito T, Mizuno K, Kawakami H, Williams LM,
448 Crane MSJ, Moody NJG. 2021. Development of New Real-time PCR Assays for
449 Detecting *Megalocytivirus* Across Multiple Genotypes. *Fish Pathology* 56:177–186.
450 DOI: 10.3147/jsfp.56.177.

451 Kralik P, Ricchi M. 2017. A Basic Guide to Real Time PCR in Microbial Diagnostics:
452 Definitions, Parameters, and Everything. *Frontiers in Microbiology* 8.

453 Leigh WJ, Zadoks RN, Jaglarz A, Costa JZ, Foster G, Thompson KD. 2018. Evaluation of PCR
454 primers targeting the groEL gene for the specific detection of *Streptococcus agalactiae* in
455 the context of aquaculture. *Journal of Applied Microbiology* 125:666–674. DOI:
456 10.1111/jam.13925.

457 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34:3094–
458 3100. DOI: 10.1093/bioinformatics/bty191.

459 Liamnimitr P, Thammatorn W, U-thoomporn S, Tattiyapong P, Surachetpong W. 2018. Non-
460 lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture.
461 *Aquaculture* 486:75–80. DOI: <https://doi.org/10.1016/j.aquaculture.2017.12.015>.

462 Liu X, Sun W, Zhang Y, Zhou Y, Xu J, Gao X, Zhang S, Zhang X. 2020. Impact of *Aeromonas*
463 *hydrophila* and infectious spleen and kidney necrosis virus infections on susceptibility
464 and host immune response in Chinese perch (*Siniperca chuatsi*). *Fish & Shellfish*
465 *Immunology* 105:117–125. DOI: 10.1016/j.fsi.2020.07.012.

466 López-Porras A, Elizondo C, Chaves AJ, Camus AC, Griffin MJ, Kenelty K, Barum S,
467 Barquero-Calvo E, Soto E. 2019. Application of multiplex quantitative polymerase
468 chain reaction methods to detect common bacterial fish pathogens in Nile tilapia,
469 *Oreochromis niloticus*, hatcheries in Costa Rica. *Journal of the World Aquaculture*
470 *Society* 50:645–658. DOI: 10.1111/jwas.12576.

471 Mabrok M, Elayaraja S, Chokmangmeepisarn P, Jaroenram W, Arunrut N, Kiatpathomchai W,
472 Debnath PP, Delamare-Deboutteville J, Mohan CV, Fawzy A, Rodkhum C. 2021. Rapid
473 visualization in the specific detection of *Flavobacterium columnare*, a causative agent of
474 freshwater columnaris using a novel recombinase polymerase amplification (RPA)
475 combined with lateral flow dipstick (LFD) assay. *Aquaculture* 531:735780. DOI:
476 10.1016/j.aquaculture.2020.735780.

477 Machimbirike VI, Jansen MD, Senapin S, Khunrae P, Rattanarojpong T, Dong HT. 2019. Viral
478 infections in tilapines: More than just tilapia lake virus. *Aquaculture* 503:508–518. DOI:
479 10.1016/j.aquaculture.2019.01.036.

480 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
481 *EMBnet.journal* 17:10–12. DOI: 10.14806/ej.17.1.200.

482 Meemetta W, Domingos JA, Dong HT, Senapin S. 2020. Development of a SYBR Green
483 quantitative PCR assay for detection of *Lates calcarifer* herpesvirus (LCHV) in farmed
484 barramundi. *Journal of Virological Methods* 285:113920. DOI:
485 10.1016/j.jviromet.2020.113920.

486 Paria A, Dong J, Padinhate Purayil SB, Marappan M, Chaudhari A, Thirunavukkarasu AR,
487 Purushothaman C, Kv R. 2016. Evaluation of candidate reference genes for quantitative
488 expression studies in Asian seabass (*Lates calcarifer*) during ontogenesis and in tissues of
489 healthy and infected fishes. *Indian journal of experimental biology* 54:597–605.

490 Pomerantz A, Sahlin K, Vasiljevic N, Seah A, Lim M, Humble E, Kennedy S, Krehenwinkel H,
491 Winter S, Ogden R, Prost S. 2022. Rapid in situ identification of biological specimens via
492 DNA amplicon sequencing using miniaturized laboratory equipment. *Nature Protocols*
493 17:1415–1443. DOI: 10.1038/s41596-022-00682-x.

494 Ramírez-Paredes JG, Paley RK, Hunt W, Feist SW, Stone DM, Field TR, Haydon DJ, Ziddah
495 PA, Nkansa M, Guilder J, Gray J, Duodu S, Pecku EK, Awuni JA, Wallis TS, Verner-
496 Jeffreys DW. 2021. First detection of infectious spleen and kidney necrosis virus
497 (ISKNV) associated with massive mortalities in farmed tilapia in Africa. *Transboundary
498 and Emerging Diseases* 68:1550–1563. DOI: 10.1111/tbed.13825.

499 sars-cov-2-ont-artic-variant-calling/COVID-19-ARTIC-ONT. Available at
500 <https://workflowhub.eu/workflows/111> (accessed June 15, 2023).

501 Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q
502 File Manipulation. *PLOS ONE* 11:e0163962. DOI: 10.1371/journal.pone.0163962.

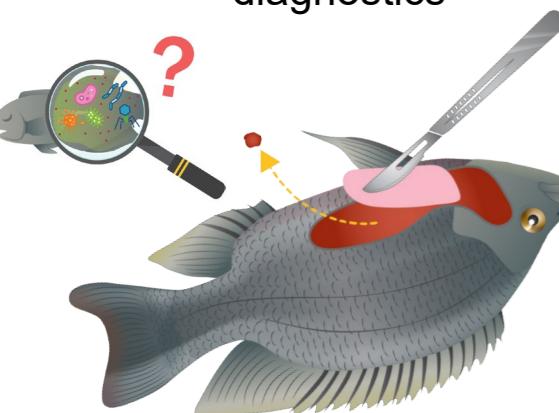
503 Shinn AP, Avenant-Oldewage A, Bondad-Reantaso MG, Cruz-Laufer AJ, García-Vásquez A,
504 Hernández-Orts JS, Kuchta R, Longshaw M, Metselaar M, Pariselle A, Pérez-Ponce de
505 León G, Pradhan PK, Rubio-Godoy M, Sood N, Vanhove MPM, Deveney MR. 2023. A
506 global review of problematic and pathogenic parasites of farmed tilapia. *Reviews in
507 Aquaculture* 15:92–153. DOI: 10.1111/raq.12742.

508 Soto E, Bowles K, Fernandez D, Hawke JP. 2010. Development of a real-time PCR assay for
509 identification and quantification of the fish pathogen *Francisella noatunensis* subsp.
510 *orientalis*. *Diseases of Aquatic Organisms* 89:199–207. DOI: 10.3354/dao02204.

511 Taengphu S, Kayansamruaj P, Kawato Y, Delamare-Debouteville J, Mohan CV, Dong HT,
512 Senapin S. 2022. Concentration and quantification of Tilapia tilapinevirus from water
513 using a simple iron flocculation coupled with probe-based RT-qPCR. *PeerJ* 10:e13157.
514 DOI: 10.7717/peerj.13157.

515 The University of Queensland. 2021. Diagnosis in a fish farmer's backpack. YouTube.
516 <https://www.youtube.com/watch?v=pUqmgQ-AuXM>.

517 Waiyamitra P, Tattiaypong P, Sirikanchana K, Mongkolsuk S, Nicholson P, Surachetpong W.
518 2018. A TaqMan RT-qPCR assay for tilapia lake virus (TiLV) detection in tilapia.
519 *Aquaculture* 497:184–188. DOI: <https://doi.org/10.1016/j.aquaculture.2018.07.060>.


520 Wang M, Lu M. 2016. Tilapia polyculture: a global review. *Aquaculture Research* 47:2363–
521 2374. DOI: 10.1111/are.12708.

522 WorldFish. 2020. A New Concept for Rapid Genomic Detection of Fish Disease. YouTube.
523 <https://www.youtube.com/watch?v=iFxbodO6Fos>.

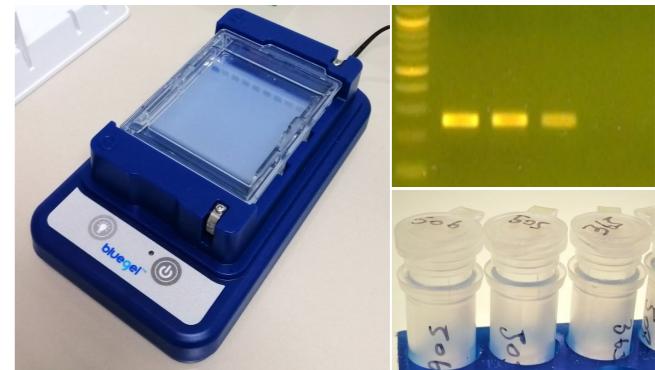
524 Yang CG, Wang XL, Tian J, Liu W, Wu F, Jiang M, Wen H. 2013. Evaluation of reference
525 genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia
526 (*Oreochromis niloticus*). *Gene* 527:183–192. DOI: 10.1016/j.gene.2013.06.013.

527

1 Fish sampling for disease diagnostics

30 min

2 Nucleic acid extraction


30 min

3 Multiplex PCR

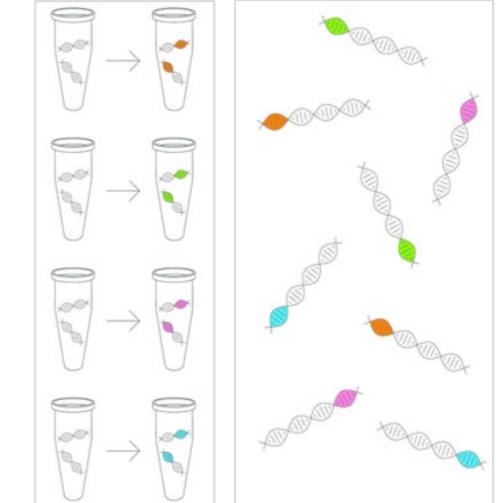
2 h

4 Gel electrophoresis & DNA clean up

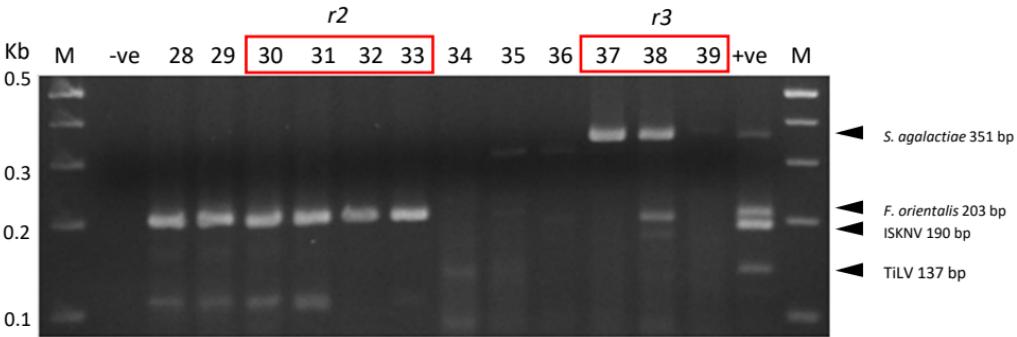
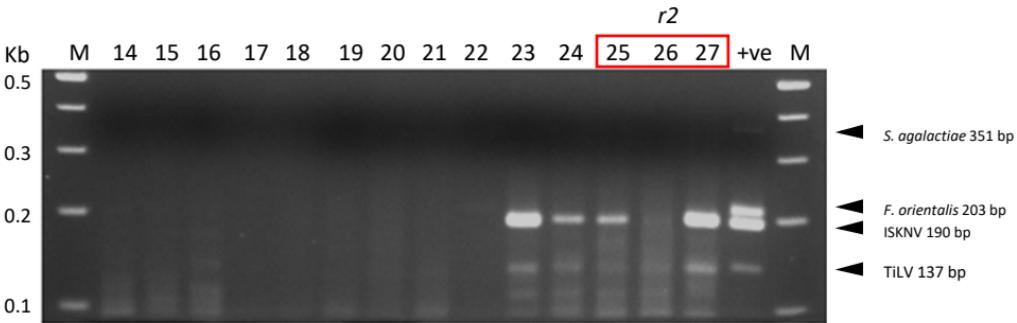
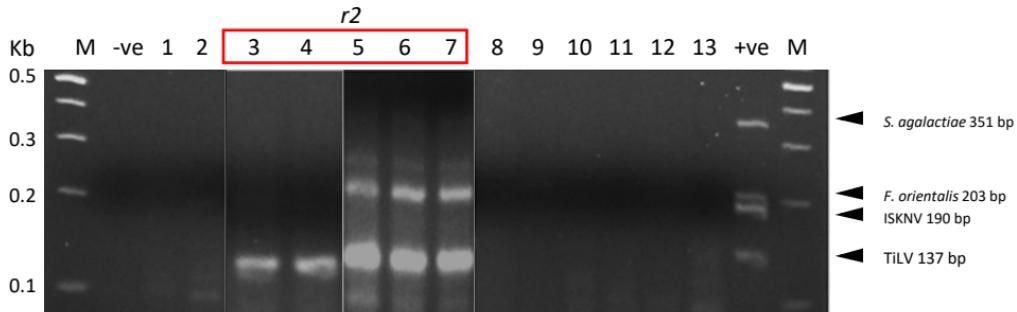
30 min

8 Disease control in aquaculture.

7 Mapping to reference

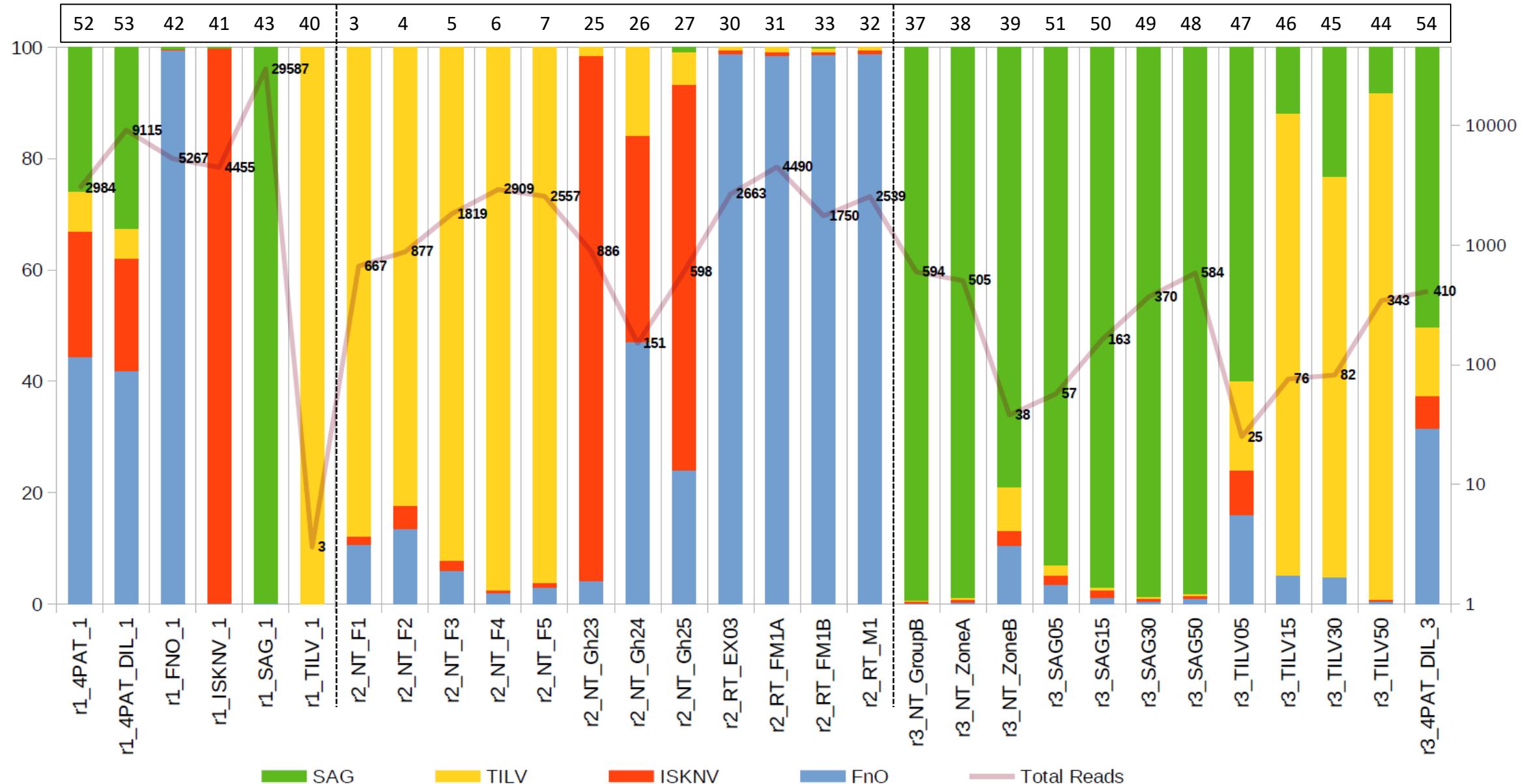

15 min

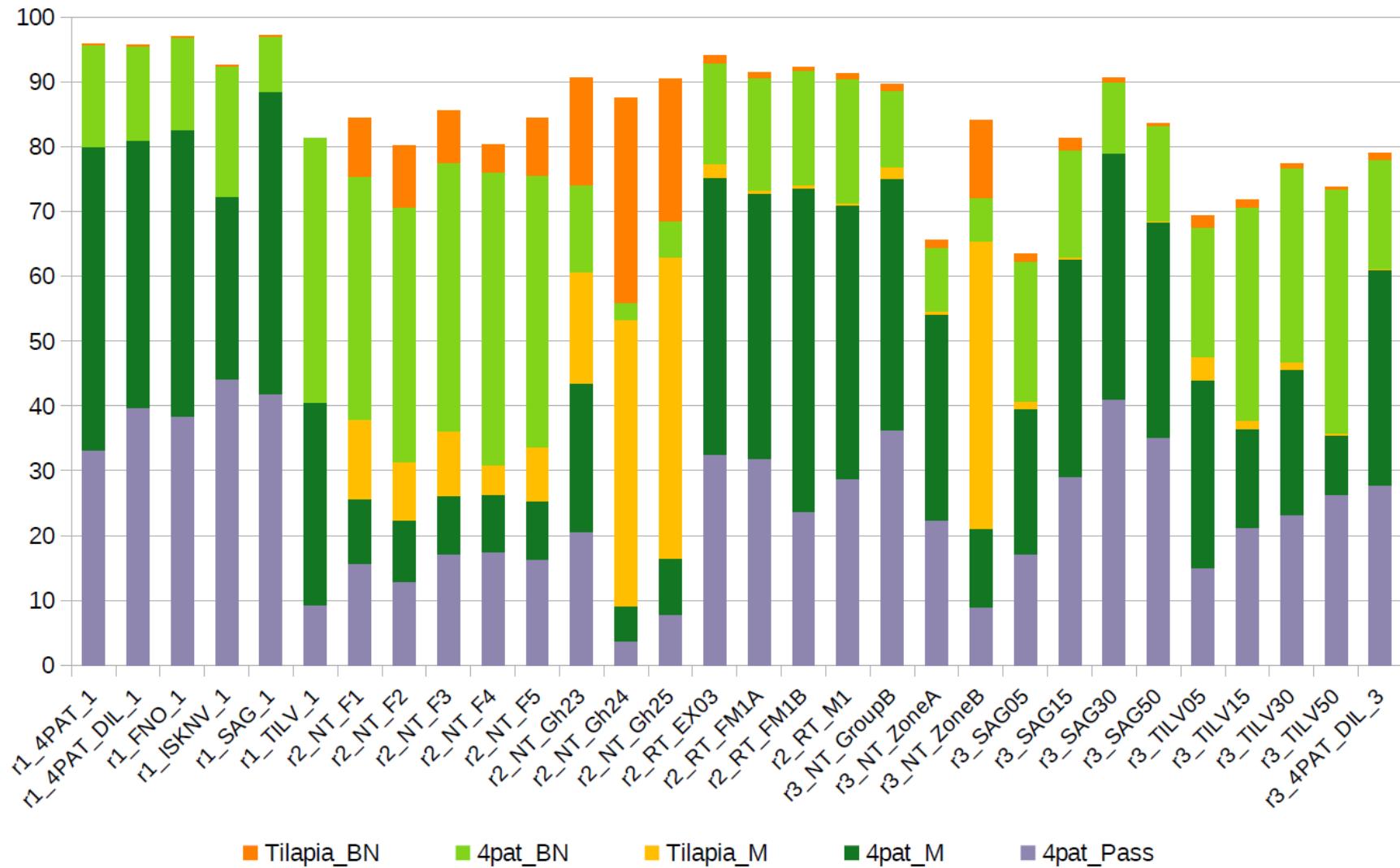
6 MinION sequencing




30 min

5 Nanopore multiplex Library preparation

90 min


bioRxiv preprint doi: <https://doi.org/10.1101/2023.05.13.540096>; this version posted November 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



Cq values of the qPCR assay

Sample numbers as listed in Table 1

TiLV	13	11	12	10	12	ud	ud	ud	34	ud	35	35	33	32	32
ISKNV	ud	ud	ud	ud	38	30	33	14	ud						
FnO	ud	ud	ud	ud	35	ud	ud	ud	23	14	18	13	ud	ud	ud
SAG	ud	24	25	33											

Table 1. Sources of clinical tilapia samples and PCR detection results

Code	Sample_name	Life stage	Country	Year Isolation	Previous Diagnosis sPCR	mPCR	Refs/comments
1	Healthy NT 1	juvenile (NT)	Thailand	2020	-	-	¹⁶
2	Healthy NT 2	juvenile (NT)	Thailand	2020	-	-	¹⁶
3	<i>r2_NT F1</i>	fingerling (NT)	Thailand	2020	TiLV (++)	TiLV*	¹⁶
4	<i>r2_NT F2</i>	fingerling (NT)	Thailand	2020	TiLV (++)	TiLV*	¹⁶
5	<i>r2_NT F3</i>	fingerling (NT)	Thailand	2020	TiLV (++)	TiLV*	¹⁶
6	<i>r2_NT F4</i>	fingerling (NT)	Thailand	2020	TiLV (++)	TiLV*	¹⁶
7	<i>r2_NT F5</i>	fingerling (NT)	Thailand	2020	TiLV (++)	TiLV*	¹⁶
8	NT fingerling pond C1	fingerling (NT)	Thailand	2020	TiLV (+)	-	¹⁶
9	NT fingerling pond C2	fingerling (NT)	Thailand		TiLV (+)	-	¹⁶
10	NT female brood	adult (NT)	Thailand		TiLV (+)	-	¹⁶
11	NT male brood	adult (NT)	Thailand		TiLV (+)	-	¹⁶
12	NT juvenile 4	juvenile (NT)	Thailand		TiLV (+)	-	¹⁶
13	RT F1	fingerling (RT)	Thailand		FnO (+)	-	²⁰
14	RT F2	fingerling (RT)	Thailand	2015	FnO (+)	-	²⁰
15	RT F3	fingerling (RT)	Thailand		FnO (+)	-	²⁰
16	RT F4	fingerling (RT)	Thailand		FnO (+)	-	²⁰
17	NT 1.2	fingerling (NT)	Thailand		TiLV (+)	-	²¹
18	NT 1.3	fingerling (NT)	Thailand		TiLV (+)	-	²¹
19	NT 2.1	fingerling (NT)	Thailand	2015	TiLV (+)	-	²¹
20	NT 2.3	fingerling (NT)	Thailand		TiLV (+)	-	²¹
21	NT 3.1	fingerling (NT)	Thailand		TiLV (+)	-	²¹
22	NT 3.3	fingerling (NT)	Thailand		TiLV (+)	-	²¹
23	NT Gh 21	juvenile (NT)	West Africa	2019	ISKNV (++)	ISKNV*	-
24	NT Gh 22	juvenile (NT)	West Africa		ISKNV (++)	ISKNV*	-
25	<i>r2_NT Gh 23</i>	juvenile (NT)	West Africa		ISKNV (++)	ISKNV*	-
26	<i>r2_NT Gh 24</i>	adult (NT)	West Africa		ISKNV (++)	ISKNV*	-
27	<i>r2_NT Gh 25</i>	juvenile (NT)	West Africa		ISKNV (++)	ISKNV*	-
28	RT EX 01	fry (RT)	Thailand	2019	FnO (++)	FnO#	²²
29	RT EX02	fry (RT)	Thailand		FnO (++)	FnO#	²²
30	<i>r2_RT EX03</i>	fry (RT)	Thailand		FnO (++)	FnO#	²²
31	<i>r2_RT FM1a</i>	adult (RT)	Thailand		FnO (++)	FnO#	²²
32	<i>r2_RT M1</i>	adult (RT)	Thailand		FnO (++)	FnO#	²²
33	<i>r2_RT FM1b</i>	adult (RT)	Thailand		FnO (++)	FnO#	²²
34	NT PV F8	adult (NT)	Thailand	2020	Not done	*	-
35	NT PV F9	adult (NT)	Thailand		Not done	#	-
36	NT PV F10	adult (NT)	Thailand		Not done	#	-
37	<i>r3_NT Group B</i>	fry (NT)	Thailand	2019	SAG (++)	SAG	-
38	<i>r3_NT Zone A</i>	fry (NT)	Thailand		SAG (++)	SAG*	-
39	<i>r3_NT Zone B</i>	fry (NT)	Thailand		SAG (++)	SAG	-
40	<i>r1_TiLV_1</i>	fingerling (RT)	Thailand	2018-07	TiLV	TiLV	²³
41	<i>r1_ISKNV_1</i>	fry (AS)	Thailand	2018-11	ISKNV	ISKNV	²⁴
42	<i>r1_FNO_1</i>	fingerling (RT)	Thailand	2015	FnO	FnO	²⁰
43	<i>r1_SAG_1</i>	fry (NT)	Thailand	2019-07	SAG	SAG	
44	<i>r3_TiLV50</i>	fingerling (RT)	Thailand	2019-07	TiLV	TiLV	TiLV PCR amplicon of 100 ng
45	<i>r3_TiLV30</i>	fingerling (RT)	Thailand	2019-07	TiLV	TiLV	TiLV PCR amplicon of 75 ng
46	<i>r3_TiLV15</i>	fingerling (RT)	Thailand	2019-07	TiLV	TiLV	TiLV PCR amplicon of 50 ng
47	<i>r3_TiLV05</i>	fingerling (RT)	Thailand	2019-07	TiLV	TiLV	TiLV PCR amplicon of 25 ng
48	<i>r3_SAG50</i>	fry (NT)	Thailand	2019-07	SAG	SAG	SAG PCR amplicon of 100 ng
49	<i>r3_SAG30</i>	fry (NT)	Thailand	2019-07	SAG	SAG	SAG PCR amplicon of 75 ng
50	<i>r3_SAG15</i>	fry (NT)	Thailand	2019-07	SAG	SAG	SAG PCR amplicon of 50 ng
51	<i>r3_SAG05</i>	fry (NT)	Thailand	2019-07	SAG	SAG	SAG PCR amplicon of 25 ng
52	<i>r1_4PAT_1</i>	N/A	Thailand	N/A	4PAT	4PAT	PCR amplicons 4 PAT (combined1)
53	<i>r1_4PAT_DIL_1</i>	N/A	Thailand	N/A	4PAT	4PAT	PCR amplicons 4 PAT (combined2)
54	<i>r3_4PAT_DIL_3</i>	N/A	Thailand	N/A	4PAT	4PAT	PCR amplicons 4 PAT (combined3)

Notes and abbreviations: sPCR, singleplex PCR; mPCR, multiplex PCR; NT, Nile tilapia; RT, red tilapia; AS, Asian sea bass; -, negative test; ++, high pathogen load; +, low pathogen load; *, suspected dual infections with other pathogen(s); #, probably non-specific products; TiLV, tilapia lake virus; ISKNV, infectious spleen and kidney necrosis virus; FnO, *Francisella noatunensis* subsp. *orientalis*; SAG, *Streptococcus agalactiae*; 4PAT: mixture of PCR amplicons 4 pathogens (TiLV, ISKNV, FnO, SAG). Samples sequenced are italicized and highlighted in grey, and the designation "r1" to "r3" indicates the run number in Nanopore.

Table 2. List of variants for the pathogen gene region, along with the inferred variants and their top 5 NCBI BLAST hits. Pat: Pathogen; Var, Variants; %ID, % nucleotide identity. The samples were grouped based on the sequencing run from which they were generated.

Pat	Samples	Var	Top 5 BLAST hits	%ID	Accession
FnO	r1_4PAT_1,r1_4PAT_DIL_1,r1_FNO_1,r1_SAG_1	0	<i>Francisella noatunensis</i> subsp. <i>orientalis</i> strain LPM2-AR2019	100	MN385384.1
	r2_NT_F1,r2_NT_F2,r2_NT_F3,r2_NT_F4,r2_NT_F5,r2_NT_Gh23,r2_NT_Gh24,r2_NT_Gh25,r2_RT_EX03,r2_RT_FM1A,r2_RT_FM1B,r2_RT_M1		<i>Francisella noatunensis</i> subsp. <i>orientalis</i> strain FO371	100	CP022953.1
	r3_4PAT_DIL_3		<i>Francisella noatunensis</i> subsp. <i>orientalis</i> strain FNO364	100	CP022952.1
			<i>Francisella noatunensis</i> subsp. <i>orientalis</i> strain FNO222	100	CP022951.1
			<i>Francisella noatunensis</i> subsp. <i>orientalis</i> strain FNO215	100	CP022950.1
ISKNV	r1_4PAT_1,r1_4PAT_DIL_1,r1_ISKNV_1	0	ISKNV isolate ISKNV/10	100	MT178422.1
	r2_NT_F2,r2_NT_Gh23,r2_NT_Gh24,r2_NT_Gh25		ISKNV isolate ISKNV/48	100	MT178418.1
			Angelfish iridovirus AFIV-16	100	MK689685.1
			ISKNV isolate M6	100	MK084827.1
			ISKNV isolate SB04	100	KY440040.1
SAG	r1_SAG_1,r1_4PAT_1,r1_4PAT_DIL_1,r1_SAG_1	0	<i>Streptococcus agalactiae</i> strain 01173	100	CP053027.1
	r3_4PAT_DIL_3,r3_NT_GroupB,r3_NT_ZoneA,r3_NT_ZoneB,r3_SAG05,r3_SAG15,r3_SAG30,r3_SAG50		<i>Streptococcus agalactiae</i> strain Sag153	100	CP036376.1
			<i>Streptococcus agalactiae</i> strain ZQ0910	100	CP049938.1
			<i>Streptococcus agalactiae</i> strain NJ1606	100	CP026084.1
			<i>Streptococcus agalactiae</i> strain BSE009	100	CP020387.1
TiLV	r1_4PAT_1,r1_4PAT_DIL_1	0	TiLV isolate WVL19054 segment 9	100	MN193531.1
	r3_4PAT_DIL_3,r3_TiLV15,r3_TiLV30,r3_TiLV50		TiLV isolate WVL19031-01A segment 9	100	MN193521.1
			TiLV isolate EC-2012 segment 9	100	MK392380.1
			TiLV isolate Til-4-2011 segment 9	100	KU751822.1
			TiLV AD-2016 Contig 20	100	KU552140.1
	r2_NT_F1,r2_NT_F2,r2_NT_F3,r2_NT_F4,r2_NT_F5	1	TiLV isolate RIA2-VN-2019 segment 9	100	ON376590.1
			TiLV isolate WVL19054 segment 9	98.91	MN193531.1
			TiLV isolate WVL19031-01A segment 9	98.91	MN193521.1
			TiLV strain EC-2012 segment 9	98.91	MK392380.1
			TiLV isolate Til-4-2011 segment 9	98.91	KU751822.1

Abbreviations: FnO, *Francisella noatunensis* subsp. *orientalis*; ISKNV, infectious spleen and kidney necrosis virus; SAG, *Streptococcus agalactiae*; TiLV, tilapia lake virus