

# Peripheral serotonergic neurons regulate gut motility and anxiety-like behavior

Hailong Zhang<sup>1,2,3</sup>, Deborah R. Leitner<sup>1,2,3</sup>, Yuko Hasegawa<sup>1,2,3</sup>, Matthew K. Waldor<sup>1,2,3\*</sup>

## Affiliations:

<sup>1</sup>Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115,  
USA

<sup>2</sup>Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA

<sup>3</sup>Howard Hughes Medical Institute, Boston, MA 02115, USA

\*Corresponding author. Email: [mwaldor@research.bwh.harvard.edu](mailto:mwaldor@research.bwh.harvard.edu)

**Author contributions:**

H.L.Z., and M.K.W. designed research; H.L.Z. and D.R.L. performed research; H.L.Z.

Y.H. and D.R.L. analyzed data; and H.L.Z. and M.K.W. wrote the paper.

**Competing interests:**

The authors declare no competing interests.

**Classification:**

Biological sciences, Neuroscience

**Keywords:**

peripheral serotonergic neurons, gut motility, anxiety-like behavior

**This file includes:**

Main Text

Figures 1 to 2

1    **Abstract:**

2    Serotonergic circuits in the central nervous system play important roles in regulating  
3    mood and behavior, yet the functions of peripheral serotonergic neurons are less  
4    understood. Here, we engineered mice lacking the serotonin-producing enzyme *Tph2* in  
5    peripheral neurons but with intact *Tph2* in central neurons. In contrast to mice lacking  
6    *Tph2* in all neurons, mice lacking *Tph2* in peripheral serotonergic neurons did not exhibit  
7    increased territorial aggression. However, similar to the total body *Tph2* KO mice, the  
8    conditional KO animals, exhibited reduced gut motility and decreased anxiety-like  
9    behavior. These observations reveal that peripheral serotonergic neurons contribute to  
10   control of intestinal motility and anxiety-like behavior and suggest that therapeutics  
11   targeting this subset of peripheral neurons could be beneficial.

12

13 **Main Text**

14 **Introduction**

15 The central nervous system (CNS) is derived from the neural tube, while the peripheral  
16 nervous system (PNS), which includes the dorsal root ganglia, and autonomic and enteric  
17 nervous systems (ENS), arises from embryonic neural crest cells (1). While the CNS is  
18 critical for higher cognition and behavior, the role of the PNS in these processes is less  
19 clear. However, both the PNS and CNS contribute to gastrointestinal physiology,  
20 including gastrointestinal motility and secretion (2).

21 Only a small subset of neurons in the CNS produce 5-hydroxytryptamine (5-HT),  
22 the neurotransmitter commonly known as serotonin. In the CNS, serotonergic neurons  
23 originate in the brainstem and ramify throughout the brain, regulating a variety of brain  
24 functions and behavior through a set of serotonin receptors (3). Although serotonergic  
25 neurons in the CNS have been the focus of much research, the production and function of  
26 serotonin by neurons in the PNS has received relatively little attention. Recently, single-  
27 cell RNA-seq analyses have shown that peripheral serotonergic neurons represent ~1% of  
28 sympathetic and enteric neurons (4, 5). Neuronal serotonin production relies on the  
29 enzyme tryptophan hydroxylase 2 (*Tph2*) (6). Mice lacking *Tph2* in all neurons exhibit  
30 several behavioral disorders, including decreased anxiety-like behavior and increased  
31 territorial aggression as well as reduced gut motility (7, 8). The existence of enteric  
32 serotonergic neurons was initially described almost 6 decades ago (9), and they have been  
33 implicated to play critical roles in gut motility (7) and potentially depression (10).  
34 However, the contribution of serotonergic neurons in the PNS to social behaviors is not

35 well-established. To answer this question, we generated a PNS-conditional knockout  
36 mouse (*Tph2*<sup>fl/fl</sup>; *Hand2-Cre*), leveraging the *Hand2* promoter, which is active in neural  
37 crest-derived cells including enteric neurons and sympathetic neurons in the PNS (11),  
38 but not in the brain (12), to selectively investigate the function of serotonergic neurons  
39 in the PNS.

40

41

## 42 **Results**

### 43 **Peripheral serotonergic neurons control gut motility**

44 Whole-body *Tph2* KO animals have reduced gut motility and it is thought that the  
45 absence of serotonin production from enteric neurons may contribute to this defect (7).  
46 To corroborate the importance of peripheral neuronal serotonin in intestinal motility, we  
47 analyzed total GI transit time in whole-body and PNS-conditional KO mice. Both *Tph2*<sup>-/-</sup>  
48 and *Tph2*<sup>fl/fl</sup>; *Hand2-Cre* mice had diminished total gut motility compared to co-housed  
49 littermate controls (Figures 1A). Furthermore, the propulsion of FITC-dextran down the  
50 small intestine was significantly slower in *Tph2*<sup>fl/fl</sup>; *Hand2-Cre* mice than in their WT  
51 littermates (Figures 1B). The results of these two independent assays demonstrate that  
52 peripheral serotonergic neurons contribute to intestinal motility. While it is clear that the  
53 PNS contributes to gut motility, the impact of CNS serotonin signaling on intestinal  
54 motility cannot be determined from these data because of differences in microbiota  
55 between the whole-body and PNS-conditional KO animals.

56

57 **Peripheral serotonergic neurons influence specific aspects of behavior**

58 Our PNS-conditional KO mice enabled us to begin to separate the function of  
59 serotonergic neurons in the CNS and PNS in the control of behavior. We assessed  
60 behaviors of *Tph2*<sup>fl/fl</sup> and *Tph2*<sup>fl/fl</sup>; *Hand2-Cre* mice to investigate whether peripheral  
61 serotonergic neurons contribute to the behavioral disorders that have been observed in the  
62 whole-body *Tph2* KO mice (8, 13). The absence of neuronal serotonin production in mice  
63 and rats lacking the *Tph2* gene is associated with heightened territorial aggression,  
64 measured in resident-intruder assays, as well as decreased anxiety-like behavior,  
65 measured in elevated plus and elevated zero maze tests. In these experiments, we first  
66 replicated reported behavioral defects in *Tph2*<sup>-/-</sup> mice (Figures 2A-2D and movie S1). Co-  
67 housed littermates were used for these comparisons in order to control for potential  
68 microbiota-related effects.

69 As observed in whole-body *Tph2* KO animals (8), the deficiency of *Tph2* in the  
70 PNS did not impact overall locomotor activity (Figure 2A), suggesting that central and  
71 peripheral serotonergic neurons have little influence on general movement. In contrast to  
72 the *Tph2*<sup>-/-</sup> animals, the *Tph2*<sup>fl/fl</sup>; *Hand2-Cre* mice did not exhibit heightened territorial  
73 aggression (Figure 2B and movie S1), consistent with the finding that aggression  
74 originates from a subset of *Tph2* neurons in the brain (14). Notably, the PNS-conditional  
75 *Tph2* KO mice displayed similar increased exploration in the open arm of the elevated  
76 plus and zero maze as observed in the whole-body *Tph2* KO animals (Figures 2C and  
77 2D), suggesting that *Tph2* activity in peripheral neurons plays an important role in

78 inhibiting anxiety-like behaviors. Together, these observations suggest that peripheral  
79 serotonergic neurons control important and specific aspects of behavior.

80 **Discussion**

81 While the roles of CNS serotonergic neurons in cognition and behavior have been well-  
82 studied, here, we investigated the roles of peripheral neuron-derived serotonin by creating  
83 conditional KO mice that are deficient in *Tph2* in the PNS and not the CNS. Our findings  
84 indicate that serotonin produced by peripheral serotonergic neurons impacts diverse  
85 processes, including gut motility and anxiety-like behavior, raising the possibility that  
86 these phenotypes, along with the intestinal immune deficits observed in the conditional  
87 KO (15), are linked.

88 The overlapping and distinct behavioral patterns in whole-body and PNS-  
89 conditional *Tph2* KO animals suggest that, at least in part, serotonergic neurons in the  
90 PNS control specific aspects of behavior. Territorial aggression appears to be mediated  
91 by CNS serotonergic circuits, since the PNS-conditional KO animals did not exhibit  
92 elevated aggression. Surprisingly, the *Tph2*<sup>-/-</sup> and *Tph2*<sup>fl/fl</sup>; *Hand2-Cre* animals both  
93 showed elevated exploratory behavior that is thought to reflect decreased anxiety. The  
94 PNS is heterogeneous and *Tph2* is expressed in a small subset of neural crest derivatives  
95 in the enteric nervous system, as well as dorsal root ganglia and autonomic neurons (4).  
96 Dissecting the specific roles of subsets of serotonergic neurons in the PNS (e.g., in  
97 enteric neurons) as well as potential interactions of peripheral and central serotonergic  
98 circuits in regulating anxiety-like behaviors is of interest. This research may shed light on  
99 a potential mechanism underpinning the gut-brain axis. Nevertheless, both whole-body

100 and conditional *Tph2* KO animals exhibit reduced anxiety-like behaviors, raising the  
101 possibility that peripheral serotonergic neurons contribute to anxiety-like behaviors along  
102 with CNS serotonergic circuits. Thus, drugs that block serotonin reuptake (SSRIs) may  
103 act, at least in part, by targeting serotonin signaling in the PNS. Engineering SSRIs so  
104 that they are unable to penetrate the blood-brain barrier could prevent untoward central  
105 nervous system-related side effects of new anxiolytic agents targeting the PNS.  
106 Furthermore, defining the cellular networks and mechanisms through which peripheral  
107 serotonergic neurons regulate behavior may reveal new targets for pharmacological  
108 interventions for anxiety as well as disorders of gut motility.

109

110 **Materials and Methods**

111 **Mice.**

112 C57BL/6, *Tph2*<sup>fl/fl</sup> mice were purchased from the Jackson Laboratory (Bar Harbor,  
113 ME, USA); Swiss Webster (CFW) mice were purchased from the Charles River  
114 Laboratories (Wilmington, MA, USA); *Tph2*<sup>-/-</sup> mice were a generous gift from Dr. Gerard  
115 Karsenty (Columbia University, NY, USA); *Hand2-Cre* transgenic mice were a generous  
116 gift from Ruaidhrí Jackson (Harvard Medical School, MA, USA). *Tph2*<sup>fl/fl</sup> mice were  
117 backcrossed to C57BL/6J background for at least six generations. All mice were  
118 maintained on a 12-hour light/dark cycle and a standard chow diet at the Harvard Institute  
119 of Medicine specific pathogen-free (SPF) animal facility. Animal experiments were  
120 performed according to guidelines from the Center for Animal Resources and  
121 Comparative Medicine at Harvard Medical School. All protocols and experimental plans  
122 were approved by the Brigham and Women's Hospital Institutional Animal Care and Use  
123 Committee (Protocol #2016N000416).

124 **Gut motility assays.**

125 Total gastrointestinal transit time: Carmine red, which cannot be absorbed from the  
126 lumen of the gut, was used to study total GI transit time. A solution of carmine red (200  
127 µl; 6%; C1022, Sigma) suspended in 0.5% methylcellulose (M0512, Sigma) was  
128 administered by gavage through a 21-gauge round-tip feeding needle. The time at which  
129 gavage was carried out was recorded as T0. After gavage, fecal pellets were monitored at

130 10 min intervals for the presence of carmine red. Total GI transit time was calculated as  
131 the interval between T0 and the time of first observance of carmine red in stool.

132 Small intestine transit time: A solution containing fluorescein isothiocyanate-dextran  
133 (FITC-Dextran, 100  $\mu$ l; 10 mg/ml in 2% methylcellulose; FD70, Sigma) was  
134 administered to mice by gavage through a 21-gauge round-tip feeding needle. Animals  
135 were sacrificed 15 min after gavage; the small intestine, cecum, and colon were collected  
136 in PBS. The small intestine was divided into 10 segments of equal length, and the colon  
137 was divided in half. Each piece of tissue was transferred into a 2 ml tube containing 1 ml  
138 of PBS, homogenized, and centrifuged (2000  $\times$  g), yielding a clear supernatant. FITC  
139 fluorescence was measured in the supernatant (Epoch2, Biotek). Small intestinal transit  
140 was estimated by the position of the geometric center of the FITC-dextran in the small  
141 bowel . For each segment of the small intestine (1-10), the geometric center (a) was  
142 calculated as follows:  $a = (\text{fluorescence in each segment} \times \text{number of the segment}) / (\text{total}$   
143  $\text{fluorescence recovered in the small intestine})$ . The total geometric center is  $\Sigma (a \text{ of each}$   
144  $\text{segment})$  and was normalized to WT littermates.

145 **Mouse behavior assays.**

146 The following assays were carried at the Harvard Medical School Mouse Behavior Core  
147 according to standard methods by an observer blinded to the genotype of the animal:

148 Open Field: a large arena (50  $\times$  50 cm) under low illumination (30 lux) was used as an  
149 open field to measure locomotor activity. Each mouse was placed into the arena and its

150 activity was measured during 10 min. The total distance traveled, and time spent in the  
151 center were calculated.

152 Resident-intruder assay: This assay was performed largely as described(14). Transgenic  
153 male mice, “residents” were group-housed with male siblings until sexual maturity.  
154 Resident males were assayed for aggression toward a wild-type Swiss Webster (CFW)  
155 (Charles River) intruder mouse. Each intruder mouse was used only once to avoid  
156 submissive/dominance effects after the initial interaction. Behavioral interactions during  
157 each confrontation were recorded and subsequently scored by an observer blinded to the  
158 mouse genotype. Latency to the first attack, total amount of attacks and cumulative  
159 duration of attacks were analyzed.

160 Elevated plus maze (EPM) and zero maze (EZM): The EPM and EZM test is based on  
161 the aversion of rodents to open, bright illuminated spaces. The EPM consisted of two  
162 open arms (30 × 5 cm) and two closed arms (30 × 5 cm) that were enclosed by a sidewall  
163 on all edges (height 15cm). The EZM consisted of a gray plastic annular runway (width 6  
164 cm, outer diameter 46 cm, 50 cm above ground level). Two opposing sectors were  
165 protected by inner and outer walls of gray polyvinyl (height 15 cm). Mice were placed in  
166 one of the closed arms of the maze. Distance travelled and time spent in open arms were  
167 quantified during 10 min tests. Arm entry was only scored when an animal (the mouse  
168 mass center) was at least 3 cm in an arm

169 **Statistical methods.**

170 Statistical analyses were carried out using the two-tailed Student's *t*-test, two-tailed  
171 Mann-Whitney test or Kaplan-Meier Log-rank test on GraphPad Prism5 (version 9.4.1).

172

173 **Acknowledgments:**

174 We thank members of the Waldor lab and Drs. Brandon Sit and Susan M. Dymecki for  
175 helpful discussions on all aspects of this project, Dr. Gerard Karsenty at Columbia  
176 University for *Tph2*<sup>-/-</sup> mice, and Dr. Olga Alekseenko and Dr. Barbara Caldarone at the  
177 Harvard Mouse Behavior Core for assistance with mouse behavioral testing.

178 Research in the M.K.W. laboratory is supported by HHMI and NIH grant R01 AI-  
179 042347.

180

181 **License information:**

182 This article is subject to HHMI's Open Access to Publications policy. HHMI lab heads  
183 have previously granted a nonexclusive CC BY 4.0 license to the public and a  
184 sublicensable license to HHMI in their research articles. Pursuant to those licenses, the  
185 author-accepted manuscript of this article can be made freely available under a CC BY  
186 4.0 license immediately upon publication.

187

188 **References**

189 1. T. Sauka-Spengler, M. Bronner-Fraser, A gene regulatory network orchestrates neural  
190 crest formation. *Nat Rev Mol Cell Biol* **9**, 557-568 (2008).

191 2. K. N. Browning, R. A. Travagli, Central nervous system control of gastrointestinal motility  
192 and secretion and modulation of gastrointestinal functions. *Compr Physiol* **4**, 1339-1368  
193 (2014).

194 3. N. M. Barnes, T. Sharp, A review of central 5-HT receptors and their function.  
195 *Neuropharmacology* **38**, 1083-1152 (1999).

196 4. A. Furlan *et al.*, Visceral motor neuron diversity delineates a cellular basis for nipple- and  
197 pilo-erection muscle control. *Nat Neurosci* **19**, 1331-1340 (2016).

198 5. A. A. May-Zhang *et al.*, Combinatorial Transcriptional Profiling of Mouse and Human  
199 Enteric Neurons Identifies Shared and Disparate Subtypes In Situ. *Gastroenterology*  
200 10.1053/j.gastro.2020.09.032 (2020).

201 6. D. J. Walther *et al.*, Synthesis of serotonin by a second tryptophan hydroxylase isoform.  
202 *Science* **299**, 76 (2003).

203 7. Z. Li *et al.*, Essential roles of enteric neuronal serotonin in gastrointestinal motility and  
204 the development/survival of enteric dopaminergic neurons. *J Neurosci* **31**, 8998-9009  
205 (2011).

206 8. V. Mosienko *et al.*, Exaggerated aggression and decreased anxiety in mice deficient in  
207 brain serotonin. *Transl Psychiatry* **2**, e122 (2012).

208 9. M. D. Gershon, A. B. Drakontides, L. L. Ross, Serotonin: Synthesis and Release from the  
209 Myenteric Plexus of the Mouse Intestine. *Science* **149**, 197-199 (1965).

210 10. N. Israelyan *et al.*, Effects of Serotonin and Slow-Release 5-Hydroxytryptophan on  
211 Gastrointestinal Motility in a Mouse Model of Depression. *Gastroenterology* **157**, 507-  
212 521 e504 (2019).

213 11. Y. Morikawa *et al.*, The basic helix-loop-helix factor Hand 2 regulates autonomic nervous  
214 system development. *Dev Dyn* **234**, 613-621 (2005).

215 12. B. W. Okaty *et al.*, A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe  
216 Pet1 neurons. *Elife* **9** (2020).

217 13. D. G. A. Peeters *et al.*, Enhanced aggressive phenotype of Tph2 knockout rats is  
218 associated with diminished 5-HT(1A) receptor sensitivity. *Neuropharmacology* **153**, 134-  
219 141 (2019).

220 14. V. Niederkofer *et al.*, Identification of Serotonergic Neuronal Modules that Affect  
221 Aggressive Behavior. *Cell Rep* **17**, 1934-1949 (2016).

222 15. H. Zhang *et al.*, Peripheral serotonergic neurons regulate anxiety-like behavior and  
223 intestinal barrier immunity. *bioRxiv* 10.1101/2023.05.12.540588,  
224 2023.2005.2012.540588 (2023).

225

226

227 **Figures**

228 **Figure 1. Peripheral serotonergic neurons control gut motility.**

229 (A) Total GI transit time was measured using a carmine red assay in WT (n = 9) and  
230  $Tph2^{-/-}$  (n = 8) as well as  $Tph2^{fl/fl}$  (n = 10) and  $Tph2^{fl/fl}; Hand2-Cre$  (n = 12) mice.

231 (B) FITC-dextran assay of small intestinal motility in  $Tph2^{fl/fl}$  (n = 7) and  $Tph2^{fl/fl}; Hand2-$   
232  $Cre$  (n = 6) mice.

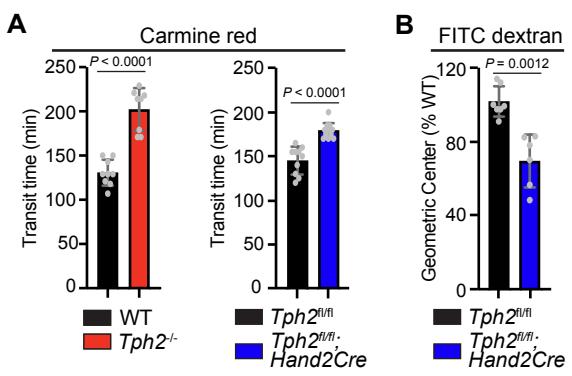
233 Data shown are means  $\pm$  SD. Statistical analysis was performed by two-tailed Mann-  
234 Whitney test.

235

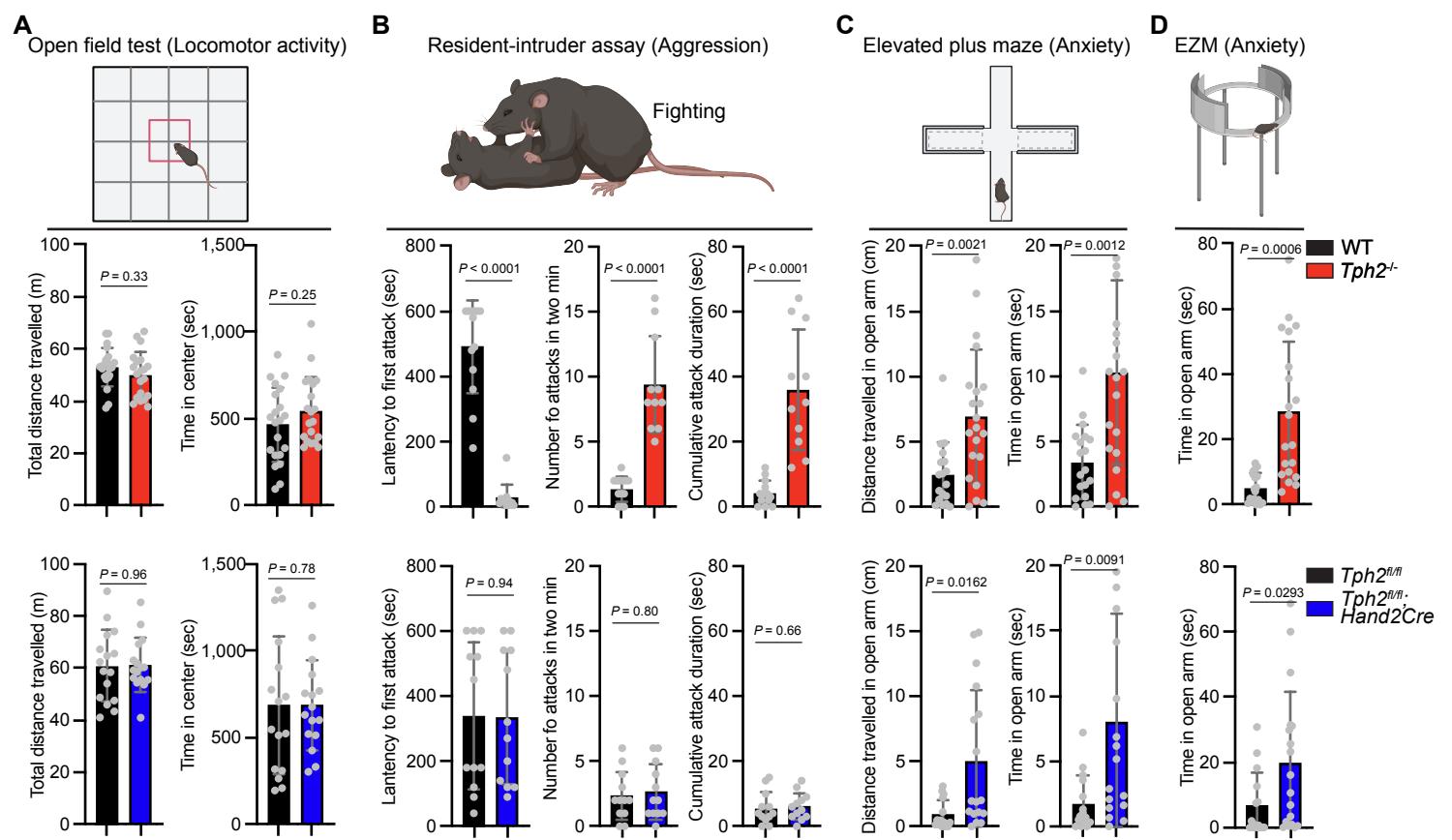
236 **Figure 2. Peripheral serotonergic neurons regulate specific aspects of behavior.**

237 (A) Open field test measures of total distance traveled, and time spent in the center area  
238 of the open field in mice of the indicated genotypes (WT, n = 21;  $Tph2^{-/-}$ , n = 20;  $Tph2^{fl/fl}$ ,  
239 n = 16; and  $Tph2^{fl/fl}; Hand2-Cre$ , n = 16).

240 (B) Resident-intruder assay measures of the latency to the first attack, number of attack  
241 bites and cumulative attack duration by WT (n = 13) and  $Tph2^{-/-}$  (n = 11) as well as  
242  $Tph2^{fl/fl}$  (n = 12) and  $Tph2^{fl/fl}; Hand2-Cre$  (n = 12) mice.


243 (C) Elevated plus maze assay measures of the total distance traveled, and time spent in  
244 the open arms by WT (n = 18) and  $Tph2^{-/-}$  (n = 21) as well as  $Tph2^{fl/fl}$  (n = 15) and  
245  $Tph2^{fl/fl}; Hand2-Cre$  (n = 17) mice.

246 (D) Elevated zero maze (EZM) measures of time spent in the open arms for WT (n = 13),  
247 *Tph2*<sup>-/-</sup> (n = 11), *Tph2*<sup>fl/fl</sup> (n = 12), and *Tph2*<sup>fl/fl</sup>; *Hand2-Cre* (n = 12).


248 Data shown are means ± SD. Statistical analysis was performed by two-tailed Mann-  
249 Whitney test in A-D.

250

251 **Supporting movie S1.** Analyzing aggressive behavior via the resident-intruder assay in  
252 *Tph2*<sup>-/-</sup> (left panel) and *Tph2*<sup>fl/fl</sup>; *Hand2-Cre* (right panel) mice.



**Fig. 1**



**Fig. 2**